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Abstract

Experiment E08-007-II measured the proton elastic form factor ratio µGE/GM in the mo-

mentum transfer range of Q2 ≈ 0.02− 0.08 GeV2, the lowest ever measured by polarization

transfer techniques. The experiment was performed at the Thomas Jefferson National Ac-

celerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam

with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH3

target. The asymmetries between the cross section of positive and negative helicity states

of the beam were determined. These asymmetries can be used to determine the form factor

ratio.

In this thesis, we present the asymmetry analysis of the experiment, discuss the main

challenges and show preliminary results for part of the data. Preliminary asymmetries indi-

cate an increase in the form factor ratio above unity. However, a complete analysis is required

before any conclusion can be made. Further analysis is ongoing, and final asymmetry results

and form factor extraction is expected during 2017.

We also present first results for 14N asymmetries for elastic and quasi-elastic scattering.

The measured asymmetries are in agreement with the shell model approximation, within the

low accuracy of the measurement. A change in the asymmetry sign between the elastic and

the quasi-elastic processes is seen, and should motivate further theoretical studies. These

experimental asymmetries will also be useful for systematic studies of other experiments

using polarized NH3 targets.
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Chapter 1

Introduction

Early in the 20th century, an anomalous magnetic moment for the proton was measured by

Estermann, Frisch, and Stern, to be

µp = 2.79µB, (1.1)

where µB is the Bohr magneton [1]. This discovery was the first evidence for the complex

internal structure of the proton. In adjacent to this understanding, electron scattering ex-

periments were used to probe the proton (and other nuclei) internal structure. Through the

measurements of electromagnetic form factors and nucleon structure functions, using elastic

and inelastic scattering experiments, the proton is understood as composed of three valence

quarks interacting through the strong force. While perturbative quantum chromodynamics

(pQCD) can make rigorous predictions for large momentum transfer squared, Q2, where the

quarks are effectively free [2], this cannot be done in the low Q2 regime, so phenomenological

models are used in attempt to explain the data. Hence, precise measurements of proton

elastic form factors and structure functions are essential to test and improve these models.

The proton elastic form factors were traditionally based on cross section measurements,

and these efforts continue to this day. In the last three decades, advances in technologies

of polarized beams and targets enabled new types of experiments which are based on spin

degrees of freedom. In contrast to the cross section measurements, spin-dependent measure-

ments provide the ratio between the form factors. This has several experimental advantages,

mainly by eliminating some of the main cross section measurement systematics, and enabling

the extraction of ratios at kinematic domains where the cross section is dominated by one

of the individual form factors.

Differences between the results of the two methods at high momentum transfer prompted

theoretical and experimental efforts to resolve this discrepancy [3–7]. At low momentum
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Figure 1.1: Leading order Feynman diagram for ep elastic scattering.

transfer, differences between high precision spin-dependent measurements of the ratios is

observed. In addition, recent measurements of the proton charge radius based on the Lamb

shift in muonic hydrogen resulted in significant deviation from the accepted results based on

both scattering and atomic measurements using electrons [8, 9]. For these reasons, precise

measurements of the proton form factors at low momentum transfer are required.

This report describes the second part of experiment E08-007 (GEp), which measured

the proton form factor ratio at Q2 =0.02-0.08 GeV2 using the double spin asymmetry tech-

nique. This Q2 region is the lowest ever measured using polarization techniques. The report

will provide the relevant theoretical background and terminology, describe the experimental

setup, and report the analysis approaches used to deal with the various challenges imposed

by this complex experiment. Finally, preliminary results for the left arm asymmetries will

be presented.

1.1 Definitions and Formalism

1.1.1 Electron Scattering

For the definition of the proton elastic form factors, we shall consider electron-proton (ep)

elastic scattering in the one-photon-exchange (OPE), or Born, approximation. In quantum
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electrodynamics (QED), the leading order approximation for ep elastic scattering is described

by the exchange of a single virtual photon, as shown in Fig. 1.1. The incoming and scattered

electrons have four-momenta kµ = (E,~k) and k′µ = (E ′, ~k′), respectively, and the target and

recoil protons have four-momenta pµ = (Ep, ~p) and p′µ = (E ′p, ~p
′). The four-momentum of

the virtual photon is qµ = (ω, ~q). We define the four-momentum transfer squared, Q2 as (see

Append. A)

Q2 = −qµqµ = −(ω2 − ~q2) = −kµ − k′µ = 4EE ′ sin2

(
θ

2

)
, (1.2)

where the last expression is valid for ultra-relativistic electrons, and θ is the scattering angle

of the electron.

The OPE approximation is justified at low momentum transfer due to the small elec-

tromagnetic coupling constant α ≈ 1/137. As discussed in Sec. 1.3, discrepancies between

cross section and polarization measurements suggests that the OPE approximation is not

valid above Q2 ∼ 1 GeV2. For the scope of this experiment, however, this approximation is

considered valid.

1.1.2 Formalism

The OPE amplitude for the ep elastic scattering is determined from the Feynman diagram

in Fig. 1.1 to be

iM = [iev̄ (p′) Γµ (p′, p) v (p)]
−igµν

q2
[ieū (k′) γνu (k)]

= − i

q2
[iev̄ (p′) Γµ (p′, p) v (p)] [ieū (k′) γµu (k)] ,

(1.3)

where γµ are the Dirac matrices

γ0 =

(
0 1

1 0

)
; γi =

(
0 ~σ

−~σ 0

)
(1.4)

i = 1..3, and ~σ are the Pauli matrices

σ1 =

(
0 1

1 0

)
;σ2 =

(
0 −i
i 0

)
;σ3 =

(
1 0

0 −1

)
(1.5)

u (k) and u (k′) are the Dirac spinors for the incoming and scattered electrons and v (p) , v̄ (p′)

are the Dirac four-spinors for the target and the recoil protons. The proton spinors enter in

the plane wave solution for a spin 1/2 particle:

ψ(x) = v(p)e−ip·x, (1.6)
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which satisfied the Dirac equation

(−iγµ∂µ −m)ψ(x) = 0, (1.7)

and:

v(p) =

(√
p · σχ
√
p · σ̄χ

)
(1.8)

with σµ = (1, ~σ), σ̄ = (1,−~σ) and χ is a normalized two spinor such that

χ†χ = 1. (1.9)

QED completely describes the leptonic current jµ = ieū (k′) γµu (k). The hadronic current

J µ = iev̄ (p′) Γµ (p′, p) v (p), however, which contains the information about the internal

structure of the proton, is not known from QED. The symmetries of the electromagnetic

interaction imply that the most general form of Γµ is a linear combination of the vectors

p and p′, and may contain constants such as the proton mass and charge. The Lorentz

invariance implies that these are functions of a single scalar variable, conventionally chosen

to be Q2. An accepted form to write the hadronic current is [10]

J µ = iev̄ (p′)

[
γµF1

(
Q2
)

+
iσµν

2Mp

κpF2

(
Q2
)]
v (p) , (1.10)

where σµν = i
2
[γµ, γν ], κp is the proton anomalous magnetic moment, and F1,2 (Q2) are

the proton elastic form factors. The elastic form factor contains the information about the

electrodynamic structure of the proton.

1.1.3 Elastic Form Factors

The coupling of F1 to γµ and F2 to σµν implies that F1 conserves helicity and F2 is responsible

for the spin flip in the hadronic current. The form factors are normalized according to their

static properties at Q2 = 0 to be:

F1p(0) = 1 ;F2p(0) = 1. (1.11)

Similarly, the elastic form factor can be defined for the neutron with the normalization:

F1n(0) = 0 ;F2n(0) = 1. (1.12)

Today, it is common to use an alternative definition of the form factor, suggested by Sachs

[11] and by Hand, Miller and Wilson [12], and usually refereed as the Sachs form factors:

GE = F1 − τκF2,

GM = F1 + κF2,
(1.13)
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where τ = Q2/4M2
p . The Sachs form factors allow more simple interpretation of the form

factors in a specific frame of reference, the Breit frame, as shown below. At Q2 = 0, the

Sachs form factors are normalized according to the static properties of the corresponding

nucleon:
GEp(0) = 1 ;GMp(0) = µp

GEn(0) = 0 ;GMn(0) = µn
(1.14)

1.1.4 Hadronic Currents

We can use the Gordon identity [10]

v̄(p′)γµv(p) = v̄(p′)

[
p′µ + pµ

2Mp

+
iσµνqν
2Mp

]
v(p) (1.15)

to write

v̄(p′)Γµv(p) = v̄(p′)

[
(F1 + κF2)γ

µ − (p+ p′)µ

2Mp

κF2

]
v(p) (1.16)

The Breit frame is a frame of reference where the interaction only flips the sign of the

nucleon three-momentum without changing its magnitude (see Appendix B). In the breit

frame, hadronic current is

J 0 = iev̄(p′)

[
(F1 + κF2)γ

0 − EpB
Mp

κF2

]
v(p), (1.17)

~J = ie(F1 + κF2)v̄(p′)~γv(p), (1.18)

where EpB is the proton energy in the Breit frame. Since v̄(p′) = v†(p′)γ0, we get

J 0 = ie

[
(F1 + κF2)v

†(p′)v(p)− κF2
EpB
Mp

v†(p′)γ0v(p)

]
. (1.19)

We can now use the definitions of Eq. (1.4) and (1.8) to write

J 0 =ie(F1 + κF2)χ
′†
(√

p′ · σ ·
√
p′ · σ̄

)(√p · σχ
√
p · σ̄χ

)

− ieκF2
EpB
Mp

χ′
(√

p′ · σ ·
√
p′ · σ̄

)(0 1

1 0

)(√
p · σχ
√
p · σ̄χ

)
.

(1.20)

Using the identities

Mp =
√
p′ · σ · √p · σ =

√
p′ · σ̄ ·

√
p · σ̄, (1.21)

2EpB =
√
p′ · σ ·

√
p · σ̄ +

√
p′ · σ̄ · √p · σ, (1.22)

τ =
Q2

4M2
p

=
~q2B

4M2
p

=
E2
pB −M2

p

M2
p

, (1.23)

19



where ~qB is the three-momentum of the virtual photon in the Breit frame, we find

J 0 = 2ieMpχ
′†χ (F1 − τκF2) = 2ieMpχ

′†χGE. (1.24)

Similarly, we get

~J = −eχ′† (~σ × ~qB)χ(F1 + κF2) = −eχ′† (~σ × ~qB)χGM . (1.25)

These results enables a simple interpretation of the Sachs form factors in the Breit frame.

In this frame, GE contains the information of the electric charge distribution, and GM

contains the information of the magnetic currents distribution. In this frame we can associate

the form factors with the Fourier transforms of these distributions:

GE,M(Q2) =

∫
ρ(~r)E,Me

i~q~rd3r =

∫
ρ(~r)E,Md

3r − ~q2

6

∫
ρ(~r)E,M~r

2d3r + ... (1.26)

The first term in this expansion is the total charge (or magnetic moment), while the sec-

ond term defines the charge and magnetic radii of the nucleon. However, this simplified

interpretation loses its meaning when moving to other, more physical, frame of references.

1.2 Measurement Techniques

1.2.1 Rosenbluth Separation

The traditional form factor measurement technique is referred to as the Rosenbluth separa-

tion [13]. This method was the only method used until the 1990s and is still in use today.

To understand the principle of the Rosenbluth separation technique, we shall start with the

cross section for ep elastic scattering, as calculated by [10]

dσ

dΩ
=
〈|M|2〉
64π2

(
E ′

E

)
1

Mp

. (1.27)

In the OPE approximation, the cross section can be written [13]

dσ

dΩ
=

(
dσ

dΩ

)
Mott

E ′

E

[
F 2
1 (Q2) + 2(F1(Q

2) + f2(Q
2))2 tan2 θ

2

]
, (1.28)

where the Mott cross section, (dσ/dΩ)Mott, is the cross section for electron scattering off a

spin 1/2 point-like target (
dσ

dΩ

)
Mott

=

(
e2

2E

)2
(

cos2 θ
2

sin4 θ
2

)
. (1.29)
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Figure 1.2: Illustration of the Rosenbluth separation method.

Using the definition of the Sachs form factors (Eq. 1.13), Eq. 1.28 becomes

dσ

dΩ
=
α2

Q2

(
E ′

E

)2
[

2τG2
M +

cot2 θ
2

1 + τ
(G2

E + τG2
M)

]
, (1.30)

where α = e2/4π is the electromagnetic fine structure constant. The advantage of this

representation is that there is no interference term, allowing a simple separation of the Sachs

form factors.

We further define the ”reduced cross section” as

σred = (1 + τ)
dσ/dΩ

(dσ/dΩ)Mott

= G2
E +

τ

ε
G2
M , (1.31)

where ε ≡ [1 + 2(1 + τ) tan2(θ/2)]−1 is the virtual photon polarization. As mentioned above,

the Mott cross section is the cross section for scattering off a point-like target. Hence, the

reduced cross section isolates the contribution of the internal structure, represented by the

Sachs form factors, to the cross section. Since τ and Q2 are kinematic parameters controllable

experimentally by changing beam energy and scattering angle, it is possible to produce a set

of measurements with the same Q2 and a linear correlation between σR = εσred and ε. From

a linear fit to such set of measurements, the Sachs form factors can be extracted (See Fig.

1.2). This experimental technique is called ”Rosenbluth separation”.

Although the Rosenbluth separation technique was and still is a successful method for

form factor measurements, it has several disadvantages. The main disadvantage is the need
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for a cross section measurement, which is an absolute measurement. Absolute measurements

suffer several systematic difficulties like absolute normalizations as well as acceptance and

efficiency uncertainties. The need for several ε data points with the same Q2 involves mea-

surements at different angles and/or beam energies, and all these systematics must be well

understood in order to use them for the same form factor extraction. An additional disad-

vantage is that the contribution of GM is scaled by τ/ε, which implies low sensitivity for GE

at high Q2 and low sensitivity for GM at low Q2.

1.2.2 Polarization transfer measurements

Alternative methods for form factor measurements are based on spin degrees of freedom

and are focused on the interference term of the form GEGM . Akheizer and Rekalo [14]

suggested the use of a longitudinally polarized electron beam, and measuring the polarization

components of the recoil proton from the reaction ~e + p → e′ + ~p. The polarization of the

recoil proton can be expressed, in the coordinate system defined in Fig. 1.3, as [15]

P ≡


Cx

Py

Cz

 , (1.32)

where Py = 0 (in the OPE approximation), and

σredCx = −2h cot
θ

2

√
τ

1 + τ
GEGM (1.33)

σredCz = h
E + E ′

Mp

√
τ

1 + τ
G2
M , (1.34)

σred is defined in 1.31, and h is the value of the beam polarization defined as

h =
NR −NL

NR +NL

, (1.35)

where NR(L) is the number of electrons with right (left) handed helicity. By simultaneously

measuring both polarization components, and by taking the ratio between them, one can

obtain the form factor ratio:

µp
GE

GM

= −µp
E + E ′

2Mp

Cx
Cz

tan
θ

2
. (1.36)

The advantage of this method is that only a single measurement is required for each Q2

point, and it eliminates the systematics associated with absolute cross section measurements.

Furthermore, the interference term is not suppressed at any Q2. On the other hand, this

method does not provide information on the individual form factors.
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Figure 1.3: Coordinate system for the recoil polarization measurement.

1.2.3 Double Spin Asymmetry

Although the recoil polarization method can, in principle, extract the form factor ratio at

any Q2, this requires a measurement of the recoil proton polarization. This is a limitation

at very low Q2, where the energy transfer is low, and the proton does not acquire enough

energy to exit the target material and reach the polarimeter. A different method, also based

on spin degrees of freedom, is called the Double Spin Asymmetry (DSA). In a 1985 paper,

Donnelly and Raskin [16] suggested using a longitudinally polarized electron beam with a

polarized proton target, and measure the asymmetry in the cross section between the two

helicity states.

The helicity of the electron is defined as the projection of the electron spin along its

momentum direction, and can be either positive or negative for a longitudinally polarized

electron beam, h = ±1. The differential cross section for elastic scattering can be written

as:
dσ

dΩ
= Σ± h∆, (1.37)

where Σ is the unpolarized cross section in Eq. 1.30, and the spin-dependent contribution

∆ is given by [16]:

∆ = −Σf1
aF 2

T + bFLFT
F 2

(1.38)

with the following definitions (in the ultra-relativistic approximation)1:

f1 =
1√
2
, (1.39)

vL =

(
Q2

q2

)2

, (1.40)

vT = −1

2

(
−Q2

q2

)
+ tan2 θ

2
, (1.41)

1When comparing with the original work by Donnelly and Raskin, note that the definition of Q2 uses

opposite signs relative to the notations in this report.
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vTL =
1√
2

(
−Q2

q2

)√
Q2

q2
+ tan2 θ

2
, (1.42)

vT ′ =

√
Q2

q2
+ tan2 θ

2
tan

θ

2
, (1.43)

vTL′ =
1√
2

(
−Q2

q2

)
tan

θ

2
, (1.44)

FL =
1 + τ√

4π
GE, (1.45)

FT =
−
√

2τ(1 + τ)√
4π

GM , (1.46)

F 2 = vLF
2
L + vTF

2
T , (1.47)

a =
√

2vT ′ cos θ∗, (1.48)

b = 2
√

2vTL′ sin θ
∗ cosφ∗. (1.49)

In the above terms, we use both the scattering angle of the electron in the lab frame, θ,

and the spherical coordinates (θ∗, φ∗) of the polarization axis relative to the virtual photon

direction, as illustrated in Fig. 3.6.

With the results above, one can use the asymmetry between the cross sections of the

different helicities to write:

A =
σ+ − σ−

σ+ + σ−
=

∆

Σ
, (1.50)

A = f1
aF 2

T + bFLFT
F 2

= f1
aF 2

T + bFLFT
vLF 2

L + vTF 2
T

. (1.51)

Dividing by F 2
T we get:

A = f1
a+ bFL

FT

vL

(
FL

FT

)2
+ vT

, (1.52)

which is a function of the form factor ratio GE/GM . Using this relation, the DSA technique

enables the extraction of the proton elastic form factor ratio using only a measurement of the

scattered electron, without the need to detect the recoil proton, hence allowing the extraction

of the ratio at even lower Q2 regions. The DSA technique is the one used for this experiment.
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Figure 1.4: World data for proton GE from unpolarized measurements [17–29], using the

Rosenbluth method, normalized to the dipole parameterization. Figure from [30].

Figure 1.5: World data for proton GM from unpolarized measurements [17, 19, 21, 23, 25–

29, 31, 32], using the Rosenbluth method, normalized to the dipole parameterization. Figure

from [30].
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1.3 World Data

1.3.1 World Data

Experimental form factors based on Rosenbluth separation are shown in Figs. 1.4,1.5. The

results are scaled to the dipole parametrization, which is considered a reasonable approxima-

tion for the form factors. The dipole parametrization describes an exponential distribution

of the charge or magnetization densities, and has the form:

GD =

(
1 +

Q2

0.71GeV2

)−2
. (1.53)

The parameter 0.71 is an empirical parameter, fit to reproduce the experimental values

obtained by cross section measurements within an accuracy of ∼10% up to about 10 GeV2.

The more recent polarization transfer measurements were done at the MIT-bates [34–36]

facility, MAMI facility [37, 38] and at Jefferson Lab [39–46]. Fig. 1.6 shows the results

obtained by these experiments, relative to the Rosenbluth separation results. Unlike the

Rosenbluth results, a clear decline in the ratio as Q2 increases is evident for the polarization

data. This discrepancy has been the focus of much theoretical and experimental work [3–

7]. It is today considered most probable that the OPE approximation is not valid at this

Q2 region, and Two-Photon-Exchange (TPE) corrections are required. A re-analysis of the

Rosenbluth results with a TPE correction is shown in Fig. 1.6.

Fig. 1.7 shows the current data from polarization measurements, fits, and models for

the form factor ratio at low Q2. Differences between spin-dependent measurements of the

ratios are evident. This region is a subject of increased interest in recent years, due to high

precision measurements of the proton radius by muonic hydrogen Lamb shift measurements

[8, 9]. These measurements show a 7σ deviation of the proton charge radius relative to

the values extracted by electron scattering and Lamb shift measurements (see Fig. 1.8).

As mentioned above, the polarization measurements at low momentum transfer contribute

mainly to the extraction of GM , while the proton radius problem impacts the charge radius.

However, there is a possibility that the origin of the discrepancy with the radii is the way

that fits are done at the region of Q2 → 0. Since the proton RMS radius is defined by the

slope of the form factor as Q2 → 0 (Eq. 1.26), precise knowledge of the functional behavior

at low Q2 is required for reliable comparison between the scattering data and the Lamb shift

data. Constraining GM at low Q2, and constraining GE/GM in models and fits at low Q2,

will improve the reliability of the extraction of the slope in fits and models.

Additional recent work by Bernauer et al. at MAMI [55], performed a large survey

consisting of ≈1400 data points at the low Q2 region, using unpolarized electron scattering
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Figure 1.6: Ratio µGE/GM extracted from polarization transfer (filled blue diamonds) and

Rosenbluth method (open red circles). The top (bottom) figures show Rosenbluth method

data without (with) TPE corrections applied to the cross sections. Figures from [33].
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Figure 1.7: Low Q2 polarization measurements of µGE/GM , models and fits [34, 35, 37–

39, 42, 45–52]. Figure from [45]

Figure 1.8: A summary of some recent proton charge radius determinations: Sick [53],

CODATA 2006 [54], Pohl et al. [8], Bernauer el al. [55], CODATA 2010 [56], Zhan et al.

[45], and Antognini el al. [9]. Figure from [57].
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Figure 1.9: The form factors GE and GM normalized to the standard dipole and GE/GM as

a function of Q2, as measured by [55]. Black line: best fit to the data, blue area: statistical

68% pointwise confidence band, light blue area: experimental systematic error. The different

data points depict previous measurements. Dashed lines are previous fits to the old data in.

Figures and refs. from [55].
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Figure 1.10: Vector meson dominance picture for the coupling of the photon to a nucleon.

Figure from [58].

measurements. The extraction of the form factors was not done by the Rosenbluth separation

technique, but by a simultaneous fit of a large variety of form factor models directly to the

cross sections. Fig. 1.9 shows the results of this survey, which claims excellent precision

for both GE and GM at low Q2. However, these results are not in agreement with GM

values extracted by previous experiments, and the small error band might be a result of the

limited number of parameters in the fit relative to the large number of data points, and the

normalization constraint µGM(0) = 1.

1.3.2 Models and Fits

While pQCD gives predictions for the nucleon form factors at high Q2, and QCD effective

theories can, in principle, give predictions in the very low Q2 region, in the intermediate Q2

region this task is much harder. Several QCD-inspired models, phenomenological models,

and empirical fits suggested to provide prediction of the form factor behavior in this Q2

regime. References [3, 7, 58] summarize in details these efforts. Here we will give a brief

overview of the main models and fit approaches in this field.

Vector Meson Dominance (VMD)

The VMD model is based on the understanding that the lowest lying vector mesons, ρ, ω,

and φ, are prominent in the process e+e− → hadrons at the relevant time-like values of the

CM energy squared q2 > 0. It is likely then that much of the behavior of the coupling at

low space-like momentum transfer could be explained by the virtual photon converting to

a strongly interacting meson which then interacts with the nucleon, as illustrated in Fig.

1.10. Early VMD models used single vector meson exchange with simple couplings giving
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Figure 1.11: Several VMD fits compared to the JLab µGE/GM data. The solid curve (black)

is the fit of Lomon [62], the dashed curve (blue) is that of Iachello, Jackson, and Lande [59],

and the dotted curve (red) is that of Bijker and Iachello [63]. Figure from [58].

an m2
V /(m

2
V − q2) factor from its propagator, for the falloff of the form factor, while more

recent ones added more complexity to the propagator [59], and included excited states of

the mesons [60]. These models show good agreement with data, and had some success in

predicting the form factor behavior in the past, but are inconsistent with general constraints

from unitarity [61]. Fig. 1.11 shows some recent results from VMD models.

1.3.3 Constituent Quarks Models (CQMs)

Constituent quark models refer to the nucleon as the ground state of a quantum mechanical

three-quark system in a confining potential. The proton is described to be composed of three

light quarks, which are described by an SU(6) flavor wave function and a completely anti-

symmetric color wave function. Form factor calculations based on CQM require a realistic

treatment of the proton, that takes into account the fact that the quarks are relativistic, due

to their small mass scale as compared to the confinement mass scale. Relativistic transfor-

mation of the wave function in the rest frame to the moving frame is not trivial, and three

main approaches are used to produce predictive models based on CQM:
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Figure 1.12: The JLab µGE/GM data compared to the results of some constituent quark

models. The short dashed curve (blue) is from Boffi et al. [49], the solid (orange) from de

Melo et al. [52], the long dash (magenta) from Gross et al. [64], the dotted (red) from Chung

and Coester [65], and the dash-dot (cyan) from Cardarelli et al. [66]. Figure from [58].

� The point form: In this approach, all boosts and rotations are dynamical, meaning

that as operators in a field theory they can be written without having to know their

interactions. As a consequence, their angular momenta and Lorentz boosts are the

same as in the free case. The cost is that all four components of the momentum

operators are interaction dependent.

� The instant form: In this approach, the rotation operators and space components of

the momenta are dynamical. As a consequence, dealing with angular momentum is

easy, at the cost of including interaction effects for the boosts.

� The light-front form: In this approach, seven generators are dynamical, while the

other three, which contain the interaction, one component of the four-momentum and

2 transverse rotations, are kinematical. The advantage of the light-front form is that

states are simply transformed between frames of reference, but angular momenta are

hard to construct.

The simplicity of state transformation makes the light-front form the most attractive for

form factor calculations, and several calculations based on this approached were published

[65, 67]. Improvement of these models is obtained by introducing form factors for the quarks
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Figure 1.13: Connected (left) and disconnected (right) lattice diagrams.

[66, 68]. Other works added Goldstone bosons, which arise as effective degrees of freedom of

low-energy QCD from spontaneous chiral symmetry breaking [69]. Some results from these

methods are shown in Fig. 1.12.

1.3.4 Lattice QCD

The lattice QCD approach is to use computational resources to perform path integral calcu-

lation, on a discretized space-time lattice [70]. The calculation starts with (today artificial)

quark masses and the coupling constants. The calculation is repeated with different lattice

spacing, a, to allow extrapolation to a = 0.

The calculation of nucleon form factors requires evaluation of three-point functions, which

have both connected and disconnected contributions (see Fig. 1.13). For connected diagrams,

the photon couples to one of the valence quarks in the initial or final nucleon. For the

disconnected diagrams, the photon couples to a sea quark qq̄ loop which then exchanges a

gluon with the valence quark lines. The disconnected diagrams are incalculable today due

to computational limitations. However, since these diagrams are the same for protons and

neutrons, it is possible to take the differences between their form factors and cancel the effect

of the disconnected diagrams. Thus, with today’s computational capabilities, only isovector

form factor can be calculated using lattice QCD.

1.3.5 Fits

There exist different fits for the form factors and their ratios, which are not necessarily

based on models, but are useful for the sake of calculating cross sections and other form

factor related quantities. There is discussion about what kind of functions can be used for

this task, since these functions usually do not show the complete physical behavior expected

by theory. We will try to list here the more common functional forms in use.
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Figure 1.14: Fits to nucleon electromagnetic form factors. For GEn , data using recoil or

target polarization [72–78] are shown as filled circles while data obtained from the deuteron

quadrupole form factor [79] are shown as open circles. Figure from [71].

Kelly proposed the simple parametrization [71]:

G(Q2) ∝ Σn
k=0akτ

k

1 + Σn+2
k=1bkτ

k
. (1.54)

In this parametrization, both numerator and denominator are polynomials in Q2 and the

behavior at large Q2 is proportional to Q−4 as expected from theory [71]. Fig. 1.14 shows

good agreement with data using only four parameters for GEp , GMp , and GMn , and only two

for GEn .

Arrington and Sick [80] performed a continued fraction fit:

G(Q) =
1

1 + b1Q2

1+
b2Q

2

1+...

. (1.55)

This fit is good for the low momentum transfer region, and extends up to Q =
√
Q2 ≈ 0.8

GeV. They also include TPE correction for the Rosenbluth form factor.

There are also fits that take into account physical considerations of the expected analytical

behavior of the form factors except for cuts at the time-like region, which begin where one

can have a π → 2γ transition at q2 = 4m2
π. Such effects leads to the use of the conformal

variable z, defined as [81, 82]:

z(t, tcut) =

√
tcut − t−

√
tcut√

tcut − t+
√
tcut

, (1.56)
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where tcut = 4m2
π. Interestingly, the fit performed by Lorentz [82] yields a proton radius of

0.840 ± 0.015 fm, in agreement with the muonic Lamb shift results, albeit with a χ2 that

indicates only moderate agreement with the data. However, this result was criticized by

Bernauer and Distler [83] for being inconclusive.
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Chapter 2

Experimental Setup

2.1 Setup

The goal of the GEp experiment was to measure the proton elastic form factor ratio at a Q2

range of 0.01-0.08 GeV2, using the Double Spin Asymmetry (DSA) technique (see Sec. 1.2.3).

The experiment was preformed in Hall A of the Continuous Electron Beam Accelerator

Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility, Newport News,

VA (Sec. 2.3). A schematic view of the experimental setup is shown in Fig. 2.1. The

CEBAF polarized beam at energies of 1.1, 1.7 and 2.2 GeV passed through fast and slow

rasters (2,3, Sec. 2.4.2), reaching two chicane magnets (7, Sec. 2.4.4) compensating for the

effect of the target magnetic field. The electrons, scattered off the polarized NH3 target (9,

Sec. 2.5), and bent by the septum magnet (10, Sec. 2.6) enters one of two High Resolution

Spectrometers, HRSs (13, Sec. 2.4.5), and were detected by the detection package (14, Sec.

2.4.5). A detailed description of each component follows.

Between runs, Møller measurements were taken to determine beam polarization level (5).

See Sec. 2.4.3 for details.

The GEp experiment ran at relatively low currents (∼ 10 nA), hence no reliable beam

position information could be extracted (6,8). Also, asymmetry measurements do not require

absolute current normalization, so current information was not used for the analysis of this

experiment (1,4). Another scintillator was positioned in the backward direction for the g2p

experiment (12). All the components will not be detailed here, and the reader is referred to

Hall A [84] and g2p [85, 86] documentation for a discussion of these components.

The GEp experiment ran alongside the g2p experiment [85, 86], and several aspects of

the analysis were performed jointly with this experiment.
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Figure 2.1: Schematic diagram of the GEp experimental setup. See text for description.
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E (GeV) arm θ (deg) θ* (deg) φ* (deg) E’ (GeV) Q2 (GeV2)

2.253 left 6.0 85.7 0.3 2.224 0.055

1.712 left 6.0 87.3 0.6 1.695 0.032

1.157 left 7.4 89.0 0.6 1.145 0.022

Table 2.1: Central kinematics for the left arm. θ is the scattering angle, while starred angles

are the angles of the proton polarization axis relative to the recoil direction (see Sec. 1.1.2).

Note that average values are different due to cross section weighting.

2.2 Kinematics

During the entire experiment, two HRSs were tuned to detect elastic scattering at angles

around 6 degrees. The experiment ran at 1.1, 1.7 and 2.2 GeV, central kinematics (i.e., the

kinematics at the center of the acceptance) are listed in Table 2.1. Note that central kine-

matics are not the average values, which are affected by the cross section’s strong dependence

on the scattering angle (see Eq. (1.28)).

2.3 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab [87] is com-

posed of two superconducting electron linear accelerators, which are capable of delivering a

100% duty factor, polarized or unpolarized beam, to three experimental halls. Each linac

contains 20 cryomodules with an average cavity gradient of 7.5 MV/m. The beam recircu-

lates in a race-track shaped track for a total energy of up to about 6 GeV (See Fig. 2.2).

(After this experiment, CEBAF was upgraded to 12 GeV [88]). After gaining proper energy,

the beam is delivered to one (or more) of three experimental halls (today four), at currents

of 1-150 µA for two of the halls and 1-100 nA for the other.

The electron source is either a thermionic or a polarized gun. With the polarized gun

(as used in this experiment) a strained GaAs cathode is illuminated by a 1497 MHz gain-

switched diode laser, operated at 780 nm. The usage of a right or left circularly polarized

laser light determines the electron helicity, and a polarization level of up to 80%-90% was

achieved for this experiment. Electron helicity was pseudo-randomly flipped at a rate of

960.015 Hz. Occasionally, a half-wave plate (HWP) was inserted into the injector, to flip the

helicity sign, and used for an additional systematic check of the obtained asymmetries.
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Figure 2.2: Schematic diagram of the Continuous Beam Accelerator Facility (CEBAF) at

Jefferson Lab. The electron beam is produced by a Ti:Sap laser at the injector and further

accelerated in each of two superconducting linacs. The beam can be extracted simultaneously

to each of the three (today four) experimental halls.
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Figure 2.3: Schematic cross section of Hall A with one of the HRS spectrometers in the

(fictitious) 0◦ position. Figure is taken from [84].

2.4 Experimental Hall A

2.4.1 General

Hall A, operational since May 1997, is the largest experimental hall at CEBAF. The basic

layout of Hall A is shown in Fig. 2.3. The central elements are the target scattering chamber,

and the two High Resolution Spectrometers (HRS), referred to as LHRS, or left arm, for the

left HRS, and RHRS, or right arm, for the right HRS. The HRS enables accurate momentum

and angle measurements at high luminosities, and the presence of two HRSs enables coinci-

dence measurements (not used for GEp), or, in our case, an additional detection system for

higher statistics and systematic studies.

2.4.2 Rasters

Two raster systems, fast and slow (see Fig. 2.1) were used to decrease target damage and

polarization loss, and to reduce systematic uncertainties for the polarization measurements

by Nuclear Magnetic Resonance (NMR), since the NMR coil was in contact only with the

outer layer of the target [89]. The rasters were positioned about 17 meters upstream of the

target. Both the fast and slow rasters consist of two dipole magnets. The fast raster magnets

used a common triangular waveform with a frequency of 25 kHz, and results in a 2× 2 mm2

square (Fig. 2.4a). The slow raster applies two 30 Hz sine functions, with a relative phase

of π/2 between vertical and horizontal axes to obtain a circular pattern with a diameter of

about 2 cm (Fig. 2.4b).
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Figure 2.4: Fast (a) and slow (b) raster patterns.

2.4.3 Møller Polarimeter

Beam polarization was measured several times during the entire period of the experiment,

before, between, and after production runs of GEp, by the Hall A Møller polarimeter [84, 90].

The principle of the Møller polarimeter is to use polarized electron targets and measure the

cross section for the ~e− + ~e− → e− + e− process. The cross section for this reaction is given

by:

σ ∝

[
1 +

∑
i=x,y,z

(Aii · Pt,i · Pb,i)

]
(2.1)

where i is the projection of the polarizations on the Cartesian axis, A is the analyzing power,

which is a function of the scattering angle in the center-of-mass frame, θCM , and Pb, Pt are

beam and target polarizations, respectively. Assuming that the beam direction is along the

z-axis and the scattering happens in the zx plane, the analyzing power is:

Axx = − sin4 θCM

(3 + cos2 θCM)2
,

Ayy = −Axx,

Azz = −sin2 θCM (7 + cos2 θCM)

(3 + cos2 θCM)2

(2.2)

Analyzing power peaks at θCM = 90◦, with a ratio of 7 between the longitudinal and trans-

verse components. Since we are only interested in the longitudinal component of the polar-

ization, measurements were taken at ±20◦ and averaged to cancel the transverse asymmetries

which have opposite signs for these angles.

The polarized electron target is composed of a ferromagnetic foil, magnetized in a mag-

netic field of about 24 mT along its plane, and the detection is performed by a QQQD

magnetic spectrometer (see Fig. 2.5). More details about the Møller polarimeter can be
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Figure 2.5: Layout of the Møller polarimeter, (a) presents a side view, while (b) presents

a top view. The trajectories displayed belong to a simulated event of Møller scattering at

θCM = 80◦ and φCM = 0◦ , at a beam energy of 4 GeV. Figure taken from [84].

found in [84], and details about the measurement for the GEp experiment can be found in

[91]. The relevant results for the GEp experiment are summarized in Table 2.2.

2.4.4 Chicane Magnets

The target is polarized by a 5T magnetic field, at 5.6◦ towards the x-axis (horizontally) in

HCS (see Sec. 3.2.1 for coordinate system definitions). The transverse component of the

field causes downwards deflection of the beam. To compensate for this effect, two chicane

magnets were installed 5.92 m and 2.66 m upstream of the target (Fig. 2.6). The two dipole

magnets were tuned, based on simulations, to direct the beam - after deflection - towards

the target as close as possible to the center of the target at horizontal orientation. See also

Sec. 3.2.3 for the resulting tilt angle correction that was needed.
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date beam polarization

03/03/2012 -79.91 ± 0.20

03/30/2012 -80.43 ± 0.46

03/30/2012 +79.89 ± 0.58

04/10/2012 -88.52 ± 0.30

04/23/2012 +89.72 ± 0.29

05/04/2012 -83.47 ± 0.57

05/04/2012 -81.82 ± 0.59

05/04/2012 +80.40 ± 0.45

05/15/2012 +83.59 ± 0.31

Table 2.2: Beam polarization as measured by Møller polarimetry. Quoted uncertainties are

statistical. Systematic uncertainties are estimated to be 1.7% for all measurements. For

details see [91].

Figure 2.6: The two chicane magnets. Scattering chamber (“target”) is seen at the left of

the image.
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Figure 2.7: Layout of HRS magnets and detector package.

2.4.5 High Resolution Spectrometers

The data of the GEp experiment were taken using the standard Hall A HRS spectrometers

[84]. Both spectrometers were in use, to increase statistics and for the study of systematic

uncertainties. The spectrometers were positioned at their minimum possible angle, 12.5◦,

and septum magnets were used to achieve the required angles for the experiment (see Sec.

2.6). Here we describe the main characteristics of the HRSs. For a detailed description see

[84].

HRS Magnet System

The spectrometer is composed of a QQDQ arrangement. A schematic view of the HRS is

shown in Fig. 2.7, and the main characteristics are given in Table 2.3. First, two super-

conducting cos 2θ quadrupoles are focus the beam in the vertical and transverse directions,

the dipole magnet is used for bending the beam and mapping the momenta dispersion to

position distribution, and the last quadrupole focuses in the transverse direction. The HRS

has a vertical bend angle of 45◦, followed by the HRS detector package.

Fig. 2.8 shows the detector package, which consists of several detection elements, provid-

ing information on particle trajectories, particle identification, and for triggering. A detailed

description of all detection elements can be found in [84]. Here we focus on the relevant

elements for this experiment. Electron momenta and trajectories were extracted using two
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Configuration QQDnQ vertical bend

Bending angle 45◦

Optical length 23.4 m

Momentum range 0.3-4.0 GeV/c

Momentum acceptance ±4.5% (δp/p)

Momentum resolution 1× 10−4

Dispersion at the focus (D) 12.4 m

Radial linear magnification (M) -2.5

D/M 5.0

Horizontal angular acceptance ±30 mrad

Vertical angular acceptance ±60 mrad

Horizontal resolution 1.5 mrad

Vertical resolution 4.0 mrad

Solid angle at δp/p = 0, y0 = 0 6 msr

Transverse length acceptance ± 5 cm

Transverse position resolution 1 mm

Table 2.3: Main design characteristics of the Hall A high resolution spectrometers; the

resolution values are for the FWHM. Table from [84].
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Figure 2.8: Layout of the detector package. The arrow illustrates particle trajectory.

Vertical Drift Chamber (VDC) detectors, and triggering was achieved by two scintillator

planes (S1 and S2), separated by a distance of about 2 m. Due to the small scattering angle

and energy transfer kinematics of the GEp experiment, particle identification was practi-

cally not needed, as π− could not be emitted into the solid angle of the elastic peak with the

proper momentum values (see Sec. 3.3.1).

Vertical Drift Chamber

Each HRS detection package has a pair of VDC detectors (see Fig. 2.9). They are separated

by about 335 mm, and aligned in a standard UV configuration, with their wires oriented

at 90◦ to one another. The VDCs lie horizontally, and nominal particle trajectory is 45◦

to the VDC plane. There are a total of 368 sense wires in each plane, spaced 4.24 mm

apart. The VDC is filled with a gas mixture of argon (62%) and ethane (38%), and the

wires are grounded. An electric field is applied by gold plated Mylar planes, nominally at

−4 kV. Fig. 2.10 illustrates the detection process. When a charged particle passes through

the VDC, it ionizes the gas along its trajectory, and the ionized electrons drift towards the

wires along the geodesic path, which is the path of minimum drift time to the wires. Drift

time information, collected by TDCs with a common stop signal, allows the reconstruction

of the particle trajectory inside the chamber. In the focal plane, a position resolution of 100
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Figure 2.9: Layout of a VDC pair for one HRS (not to scale). The active area of each wire

plane is rectangular and has a size of 2118 mm × 288 mm. Each VDC consists of one U and

one V wire plane. The sense wires in each of them are orthogonal to each other and lie in the

laboratory horizontal plane. They are inclined at an angle of 45◦ with respect to both the

dispersive and the non-dispersive directions. The vertical distance between like wire planes

is 335 mm. Figure from [84].
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Figure 2.10: Particle detection in VDC. The charged particle ionizes the gas within the drift

chamber, and the drift electrons are detected by the wires. Drift time information is used to

reconstruct the trajectory within the VDC.

µm and an angular resolution of 0.5 mrad is obtained.

Scintillator Triggering Planes

Two scintillator planes, S1 and S2, were used for triggering (see Fig. 2.8), each plane consists

of a set of plastic scintillators (5 mm BC408). S1 has 6 paddles in a 1× 6 configuration, and

S2 has 16 in a 1× 16 configuration. The active area for the scintillators is 0.5× 29.5× 35.5

cm3 for S1 and 0.5 × 37.0 × 54.0 cm3 for S2. Each scintillator had 2 PMTs readouts, and

the plane provide time resolution detection of 0.3 ns. Each scintillator could be turned on

and off independently, and this feature was use in parts of the experiment to overcome DAQ

rate limitations by dismissing irrelevant data on the focal plane. Fig. 2.11 shows the layout

of a scintillators plane.

2.5 Polarized Target

A highly polarized proton target was needed for the GEp experiment. For this, we used the

UVa solid NH3 target [92, 93], that was successfully used for several experiments at JLab

[94]. The target operates at a temperature of 1 K, with a 5 T magnetic field, and the high

polarization level is achieved by the Dynamic Nuclear Polarization (DNP) technique.
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Figure 2.11: Layout of scintillators plane.

2.5.1 Dynamic Nuclear Polarization

Target polarization level is defined by the difference between positive and negative aligned

nuclear spins relative to the polarization axis, divided by the total number of nuclear spins:

P =
N↑ −N↓
N↑ +N↓

. (2.3)

A thermal equilibrium (TE) polarization is the case when a target is cooled to low tempera-

tures, and placed in a high magnetic field. In that case, the population of two magnetic sub

levels is determined by the Boltzmann distribution:

N1 = N2 · exp

(
−∆E

kBT

)
, (2.4)

where T is the temperature of the target, kB is the Boltzmann constant, and N1,2 are the

number of nuclear spins in each sub level. For a spin-1/2 target, the polarization level

obtained by TE is:

P = tanh

(
gµB

2kBT

)
. (2.5)

Here g and µ are the particle g-factor and magnetic moments, respectively. Although for

electrons TE polarization can reach above 90% polarization in practical conditions, the low
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Figure 2.12: Population densities of the electron levels Ne at different temperatures of the

spin-spin interaction reservoir TSS and electron Zeeman reservoir TZe . (a) Spin-spin interac-

tion reservoir and Zeeman reservoir in thermal equilibrium with the lattice: TSS = TZe = TL,

(b) 0 < TSS < TZe. Figure from [95]

value of the proton magnetic moment, µp, causes much lower polarization levels. For example,

at temperature of 0.5 K and magnetic field of 5 T, the TE polarization of protons is about

0.01, whereas electron polarization is almost unity [95].

The DNP technique is a way to significantly increase nuclear polarization levels by apply-

ing microwave radiation on the target. In the UVa target, the relevant effect for the increase

in polarization is described by the equal spin temperature theory (EST). The spin temper-

ature model is needed since in solid NH3 target the electron density is high and spin-spin

interaction (SSI) plays an important role in the description of the system. Fig. 2.12 illus-

trates the electron energy level schemes without (a) and with (b) microwave radiation. In the

TE situation, there is the Zeeman splitting between the main two energy levels, while each

of the Zeeman level contains a quasi-continuous band of spin-spin (SS) states. The entire

level occupation distribution follows a Boltzmann distribution with a lattice temperature

TL. The EST theory describes the state occupation within each band, and the occupation

of the different bands, using Boltzmann distributions with different temperatures denoted

TSS for the SSI reservoir and TZe for the electron Zeeman reservoir. Similarly, the nuclear

Zeeman reservoir has its own temperature TZn. In the TE case, all temperatures are the

same. However, while applying microwave radiation, different temperatures might be driven

by changing the occupations of the different levels using the proper frequencies (Fig. 2.12b).

In the DNP process, we apply microwave radiation with frequency of (νe −∆), where hνe is

the electron Zeeman energy gap, and −h∆ is an additional small amount of energy observed

by the electron SSI reservoir. If ∆ is positive, the SSI reservoir must emit energy and cool

down. Finally, the microwave radiation generates thermal mixing between the SSI reservoir
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and nuclear Zeeman reservoir. For this, a forbidden transition is driven with a frequency of

νn, corresponding to the nuclear Zeeman energy gap. This transition can be achieved only if

∆ ≈ νn falls into the range of the characteristic frequency of the SSI reservoir. As a result,

TSS and TZn are equalized. After this procedure, the polarization level will be determined

by

P = tanh

(
gµB

2kBTSS

)
, (2.6)

which in real condition can reach above 90%.

2.5.2 Target Material

The solid NH3 was prepared as ≈2 mm-diameter solid beads. The beads were prepared by

the University of Virginia polarized target lab, by condensing ammonia gas and sealing it in

a stainless steel tube coated with Teflon. The whole assembly is cooled in a liquid nitrogen

bath. After the ammonia freezes, the solid is forced through a mesh to form the beads. The

ammonia beads are then transfered to the Medical Industrial Radiation Facility (MIRF)

at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, and

irradiated by 14 MeV electron beam at ≈ 10µA to reach the total dose of 1017 e−/cm2. This

process introduces NH2 paramagnetic radicals to improve target polarization [92, 93, 96].

2.5.3 Target Assembly

The standard UVa polarized target was used for this experiment. Fig. 2.13 shows the general

setup of the target. The main components of the target are the superconducting 5T magnet,

the evaporation refrigerator, the microwave, the NMR readout system and the target insert.

Target Magnet

The original magnet of the target was replaced prior to the experiment due to technical

problems. A replacement superconducting magnet from the Hall B polarized target was

used. The magnet is designed with an open geometry, in order to allow the beam to pass

through the target to the HRSs in various magnetic field configurations. There are some

differences between the original magnet and the replacement magnet, with the most relevant

difference being the smaller volume of the uniform magnetic field, a cylindrical volume 20

mm in diameter and 20 mm long, that does not cover the full volume of the NH3 target.

However, we saw no adverse effect on the proton polarization. For further details about

these differences see [97].
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Figure 2.13: Target assembly.

Evaporation Refrigerator

The original refrigerator of the target was damaged in a previous experiment, hence, a new
4He refrigerator was used for this experiment. The design of the refrigerator is shown in

Fig. 2.14. The refrigerator is fed with liquid helium from the magnet dewar by an insulated

transfer line onto the top of a stainless steel separator, where it drains through a 1 mm thick

plate of stainless steel to remove vapor transfered with the liquid [97]. The liquid below

the separator is delivered to the target nose, where the vapor is pumped away to reach a

temperature of ∼1 K. For further details see [93, 97].

The Microwave

The microwaves were generated by Extended Interaction Oscillator (EIO) tube. For a 5T

magnetic field, microwaves at 140 GHz are needed. The tube has a tunable range of 1%,

that was needed for flipping spin direction. The tube was mounted on top of the target lifter

and move with the insert, and a circular waveguide was used to deliver the microwaves to

the target insert. Microwave power of 1 W was delivered to the target cells.
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Figure 2.14: The evaporation refrigerator.

NMR

An NMR system was used for continuous measurement of the polarization level in the target.

The NMR system used in this experiment is the same as the one used in previous experiments

with this target. The signal from the NMR coil was connected to a Q-meter circuit to measure

the polarization of the target [98]. A scheme of the NMR circuit is shown in Fig. 2.19. The

circuit inductor is a short coil of CuNi capillary installed inside the target cells.

The polarization level depends on the magnetic susceptibility:

P = K

∫ ∞
0

χ′′ (ω) dω, (2.7)

where K is a constant, and the susceptibility:

χ = χ′(ω)− iχ′′(ω). (2.8)

The NMR coil inductance is affected by the susceptibility:

L(ω) = L0 (1 + 4πχ(ω)) , (2.9)

where η is the effective filling factor of the coil. For protons, the susceptibility is zero for

all frequencies except for a small band close to the proton resonance ω0, and the integral is

evaluated only in this range, causing a peak in the output of the circuit. Changes in proton

polarization, hence changes in χ′′, cause a change in the Q value of this resonant system and

allows the evaluation of the polarization through the area of the NMR peak.
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Figure 2.15: The target cells. On the left the cells are shown empty in air. On the right, the

cells are full and submerged in liquid nitrogen. The top two cells seen contained the NH3

target material. The microwave horn can be seen at the top of the image. Figure from [97].

Target Insert

The target insert consisted of a long, 1.65 inch diameter carbon fiber tube with an aluminum

ladder piece attached to the end. The ladder contains two cells for production NH3 targets,

the other cells are for carbon and dummy targets, used for optics purposes. The ladder is

shown in Fig. 2.15.

2.6 Septum Magnets

The data were taken at forward angles of ∼ 4◦ − 7◦. Due to technical limitations, the

HRSs could not be placed at angles below 12.5◦. For this reason, the target was placed

88 cm upstream of the traditional Hall A center, and two septum magnets were installed

in front of the spectrometer to redirect the scattered electrons from the forward angles to

the actual HRSs position. During the experiment, between production of 2.2 GeV to 1.7

GeV configurations, a series of technical failures in the right septum occurred, and caused

some additional complexity for the optics of the right arm data. A schematic diagram of the

septum magnet is shown in Fig. 2.16.
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Figure 2.16: A schematic drawing of the septum magnet.

2.7 Data Acquisition

The standard Hall A DAQ for left and right HRSs were used for the experiment (Fig. 2.17).

As a trigger, a logical AND between the S1 and S2 scintillator planes was used (see Sec.

2.4.5). Trigger efficiency was not determined for the purpose of asymmetry extraction, but

was estimated to be above 99% based on Cherenkov analysis by the E08-027 experiment

[85, 86]. The scalers has two modes. The SIS3800 is a counter where each trigger is counted

once for the charge, triger and clock signals, and the SIS3801 is a ring buffer triggered by

helicity to save and clean the buffer, and was used to save the helicity dependent signals

stored in the SIS3800.

Beam helicity was set by a helicity control board. The orientation of the laser polarization

is controlled by the level of the high voltage supply, which in turn determines the helicity sign.

The helicity is produced pseudo-randomly in either −++− or +−−+ patterns. The helicity

control board sends four signals to the experimental hall with the helicity information (Fig.

2.18): T-Settle signal is used for triggering and helicity reliability, Pair Sync and Pattern Sync

contain information on pair (−+/+−) and pattern (−++−/+−−+) helicities, respectively,

for a double check of the helicity extraction. To prevent electronic cross-talk that could feed

real-time helicity information to the DAQ system or experimental setup, the helicity signal

received by the experimental DAQ is delayed by 8 windows, and the actual helicity of a

physics event is predicted with the Delayed Helicity signal off-line by the same pseudo-

random algorithm.

Target polarization was measured with a continuous-wave NMR coil and a Q-meter en-

closure containing two separate Q-meters and Yale gain cards (Q-meter conditioning card)

for the two different target cells (See Fig. 2.19) [95, 98]. A Rohde & Schwartz RF generator

(R&S) produced a triangle wave of 1 kHz providing a sweep over frequency. The R&S re-

sponded to an external modulation sweeping linearly from 400 kHz below to 400 kHz above

the Larmor frequency. The signal from the R&S was connected to the NMR coils within
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Figure 2.17: Hall A standard DAQ system.

Figure 2.18: Helicity signals.

the target material. This connection was made with a λ/2 semi-rigid cable with a Teflon

dielectric. The signal from the Q-meter was passed through the Yale gain card before the

signal was digitized. It is possible to enhance the signal to noise level by performing multi-

ple frequency sweeps and averaging the signals. A completion of the set number of sweeps

resulted in a single target event with a time stamp. The averaged signal was integrated to

obtain a NMR polarization area for that event. Each target event contained all NMR system

parameters and the target environment variables needed to calculate the final polarization.
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Figure 2.19: Schematic diagram depicting the RF generator, the Q-meter, and the target

cavity. Figure from [96].
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Chapter 3

Data Analysis

3.1 Target Polarization

The Q-meter uses the NMR coil as a polarization detector, by coupling inductively with

the magnetic moments of the nuclei in the material leading to a linear relation between

the coil impedance and the complex magnetic susceptibility of the target material (see Sec.

2.5.3). The NMR signal peaks above the Larmor frequency, while the absorption, which is

the imaginary part, describes the spectral distribution of the precession frequencies of the

spins near the Larmor frequency. Hence, the integral of the NMR signal around the peak is

proportional to the target polarization.

In order to determine a calibration constant for the ratio between the the integrated NMR

signal and the target polarization, thermal equilibrium measurements (TE) were used. In

this measurement, the target polarization was measured in the presence of the same magnetic

field as in the experiment, with the same target material, but without microwave radiation

or beam on target. If we denote the area beneath the NMR signal during TE as ATE, we

can extract the calibration constant CTE by:

CTE =
PTE
ATE

, (3.1)

where the thermal polarization level PTE is calculated by Eq. 2.5. In real conditions, we can

extract the actual polarization using the linear relation:

P = G
A

ATE
PTE = GCTEA, (3.2)

where G is the ratio of the gains from the Yale card used during TE and the experiment.
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Figure 3.1: An example of raw NMR signal for one of the TE measurements. The black

curve is the polynomial fit for the baseline.

3.1.1 NMR Signal Fitting and Integration

Fig. 3.1 is an example of the NMR signal for one of the TE measurements. The signal is

the dip on top of the non linear baseline. A baseline spectrum was taken by adjusting the

magnetic field to be off-resonance. A polynomial fit is used for the baseline, and the fitted

baseline is shown in the figure.

Fig. 3.2 is an example of the subtracted signal for a TE measurement and for an en-

hanced signal during the experiment. The area is calculated using a Riemann sum, and

the uncertainty is the combination of the baseline and the Riemann sum. As evident from

Fig. 3.2 and Eq. 3.2 , the contribution of the enhanced signal area uncertainty to the total

uncertainty is negligible. In order to obtain an estimate in the TE Riemann sum, a Gaus-

sian signal of average TE amplitude was generated on a standard baseline and the Riemann

sum with background fit was used to obtain an area. The uncertainty from the background

fit is calculated as the percent change in area using the various parameterizations of the

polynomial during the χ2 minimization,
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Figure 3.2: The TE (left) and the enhanced signal (right) after baseline and background

subtraction.

3.1.2 Thermal Equilibrium Polarization

TE measurements were taken with each target material separately. Each TE required a ther-

malization period of several hours until thermal equilibrium was achieved at 1.5 K. Target

temperature was measured using two independent liquid helium vapor pressure sensors con-

nected to a Baratron 690A manometer. The standard accuracy of the manometer is about

0.12% with a 10−6 full scale resolution. The temperature is calculated from the pressure

according to:

T =
9∑
i=0

ai

(
ln p− b

c

)i
, (3.3)

where the constants ai, b and c are a set of parameters which depend on the state and

temperature scale of the helium [99]. There were two He bulbs and manometers. A 3He

bulb ∼3 cm above the top cup , and a 4He bulb more than 5 cm above the full helium

liquid level. The temperature difference maybe due to the distance or calibration variation

between the two probes, and this difference, denoted ∆T , is treated as the uncertainty on

the temperature.

A quality check for each TE measurement was applied to determine whether the TE is

usable. During each TE measurement, temperature and NMR signal area were taken many

times. The procedure was to search for the set of data with the smallest slope over the

largest number of points. The criteria for usability was a requirement of at least six points

in area (pressure) spanning the time range in which a fit to a two parameter line gives a

slope of less than 0.0035 area/min (Torr/min). In cases that such set of data points was
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Figure 3.3: Example of fits in area and pressure analysis for TE. The top left (right) shows

the two parameter check on the slope of the line for area (pressure). The bottom left (right)

shows the final one parameter fit to a one parameter line for area (pressure). The error bars

represents the total uncertainties, which are dominated by systematics. Figure from [96].

not found, the TE measurement was classified as unusable. In case that such data set was

found, a fit for a constant number applied to obtain the value for the area (pressure). The

uncertainties from these fits are used as the uncertainty for area and pressure, and not the

individual single point uncertainties. Fig. 3.3 demonstrates this procedure. Table 3.1 shows

the calibration constants CTE that were used for GEp experiment.

For further details about the analysis of target polarization, Yale card and Q-meter

characteristics, and quality checks, please refer to [96].

3.1.3 Polarization Data

Target polarization was measured regularly during data production, and the data were

recorded with time stamps for proper association to HRS data. Polarization was charge-
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runs Ebeam (GeV) cup CTE

3061-3070 , 22146-22155 2.2 top -1.30 (3.05%)

3071-3084 , 22156-22172 2.2 bottom -1.37 (3.76%)

3085-3130 , 22173-22217 2.2 top -1.30 (3.05%)

4599-4695 , 23540-23618 1.7 bottom -1.82 (3.01%)

5339-5344 , 24113-24118 1.1 top -1.424 (2.87%)

5345-5346 , 24120-24121 1.1 bottom -1.799 (3.28%)

5347-5484 , 24122-24258 1.1 bottom -1.731 (3.18%)

Table 3.1: TE calibration constants and their relative uncertainties with the associated

experimental production runs.

averaged assuming a linear change in polarization within a single run as function of time:

P run =
n∑
i

QiPi. (3.4)

Although we know that the polarization drops exponentially, we consider this assumption

reasonable due to the small variation, in a single run. The error estimate for the charge-

averaged polarization is calculated using:

∆P run =

√√√√ n∑
i

Q2
i (P run − Pi)2. (3.5)

Runs with ∆P run/P run > 0.5% were excluded. Fig. 3.4 shows the final polarization results

used in the analysis.

3.1.4 Uncertainties

Eq. (3.2) is used for the polarization extraction. The relative uncertainty on the enhanced

signal sum is negligible. The relative uncertainty on the TE signal sum is composed from

the uncertainty on the Riemann sum, ∆ATE ≈ 1.61%, and the uncertainty on the baseline

fit ∆Afit ≈ 0.75% (see Sec. 3.1.1). The polarization during TE, PTE, is calculated according

Eq. (2.5), and the uncertainty is:

δPTE =
µB

kT

√(
δB

B

)2

+

(
δT

T

)2

sech2

(
µB

kT

)
. (3.6)

The uncertainty on the magnetic field originated from an instrumental uncertainty of about

0.01%, and the uncertainty of the field strength through the target material. The total
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Figure 3.4: The final charge-averaged polarization and uncertainty per run. As discussed in

the text and summarized in Tab. 3.2, the uncertainties are mainly calibration uncertainties,

and corresponds to a global scaling uncertainty for each data set.

estimate for the uncertainty is δB ≈ 0.022%. The uncertainty on temperature obtained

from the pressure is estimated according to Eq. (3.3) using:

δT =
9∑
1

iai

(
ln p− b

c

)i−1
δP

Pc
, (3.7)

where δp of the manometer is ∼0.53%. This uncertainty is in addition to the uncertainty in

the temperature due to the differences between the manometers which denoted here as ∆T

and is about 1.45%.

In addition to the above uncertainties, there are several instrumental uncertainties that

should be considered. ∆VQ ≈ 0.75% are non-linearities of the Q-meter circuit and changes

in the electronic length of the λ/2 cable as a function of temperature of the circuit itself.

RB ≈ 0.5% is the uncertainty from tuning changes due to magnetoresistance of the coils

and cables inside the cryostat. ∆VY ale ≈ 0.1% is the uncertainty on the gain voltage,

and ∆Bdrift ≈ 0.25% is due to the magnetic field drift during the experiment. Table 3.2

summarize these uncertainties. In addition, the uncertainties due to the variations in pressure

and area by the procedure described in Sec. 3.1.2 (Fig. 3.3) are taken into account in the

final uncertainties listed in Table 3.1. Note that the major contribution to the polarization

uncertainty comes from the TE measurements, hence are scaling uncertainties for the whole
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source uncertainty (%)

∆T 1.45

∆ATE 1.61

∆Afit 0.75

∆RB 0.50

∆VQ 0.75

NMR tune 0.47

∆Bdrift 0.25

∆VY ale 0.10

∆P run 0.50

total 2.6

Table 3.2: Summary of polarization uncertainties, not including uncertainties associated

with TE quality check described in Sec. 3.1.2. Note that the major contributions for the

polarization uncertainty comes from the TE measurements, hence are scaling uncertainties

for the whole set of runs associated with the same calibration constant (Table 3.1).

set of runs associated with the same calibration constant (Table 3.1). Due to the statistical

behavior of most of the uncertainties related to the calibration constant, a set of several TE

measurements would significantly reduce the systematics of the polarization measurements,

which in turn will significantly reduce the uncertainties of the final asymmetries (see Table

4.4). Unfortunately, time constrains prevented such additional measurements.

3.2 Optics

The objective of the optics analysis is to obtain physical variables of the scattering process in

the target from the measured quantities at the detector package. The standard optics study

procedure for HRS was used [100], with modifications to account for the effect of the target

and septa magnetic fields. A detailed description of this procedure is found in [101]. For

optics studies, a sieve slit was placed before the entrance of the septum magnet. A diagram

of the sieve slit is shown in Fig. 3.5.

3.2.1 Definition of Coordinate Systems

Several different coordinate systems are used in the optics and physics analysis of the ex-

periment. Here we will define the different coordinate systems that are relevant for this
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Figure 3.5: Geometric configuration of the sieve slit. Dimensions are in mm. The two large

holes are used to determine the orientation of the sieve slit. The diameter is 1.4 mm and 2.7

mm for the normal holes and the large holes respectively. Figure from [101].

report. In general, 〈x, y, z〉 coordinates are Cartesian, and spherical coordinates follow the

convention:
x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

(3.8)

Scattering Coordinate System

The scattering coordinate system defines the ẑ direction as the momentum direction of the

incoming electron, and the scattering angle θ as the angle between the incoming electron

and the scattered electron (see Fig. 3.6). If we denote the incoming electron momentum

as ~k and the scattered electron momentum as ~k′, the scattering coordinate system will be

defined by:

ẑ =
~k

|~k|
,

cos θ =
~k · ~k′

|~k| · |~k′|
.

(3.9)

In this analysis, the azimuthal angle φ is arbitrary and has no use.
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Figure 3.6: Coordinate systems for the scattering of polarized electrons from polarized target.

In this figure, the unit vectors ~uS, ~uN , ~uL define the scattering coordinate system, while

~ux, ~uy, ~uz define the starred coordinate system. Figure from [16].

Starred Coordinate System

The starred coordinate system is used for the asymmetry calculation, and defined by the

virtual photon momentum ~q = ~k − ~k′ and target polarization axis ~S (see Fig. 3.6). We

denote normal to the scattering plane:

~n1 = ~q × ~k, (3.10)

and normal to the plane containing the virtual photon momentum and target polarization:

~n2 = ~q × ~S. (3.11)

The starred angles will be defined as:

θ∗ = arccos

(
~q · ~S
|~q| · |~S|

)
,

φ∗ = arccos

(
~n1 · ~n2

|~n1| · |~n2|

)
.

(3.12)

For asymmetry calculation, the azimuthal angle φ∗ must be taken into account.

Hall Coordinate System (HCS)

The Hall A coordinate system, HCS, is the Cartesian coordinate system of the experimental

hall. The origin of the HCS is at the center of the Hall A, which is defined to be the

intersection point of the beam and the vertical axis of the target. ẑ is along the beam line
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Figure 3.7: Target coordinate system (top and side views). θ0 is the spectrometer central

angle in HCS, L is the distance from the sieve slit to the TCS origin, Dx and Dy are the

vertical and horizontal deviations of the spectrometer central ray to the HCS origin. Figure

from [101].

Figure 3.8: Focal plane coordinate system. The red trajectories represents trajectories with

θtg = φtg = 0. Figure from [101].
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and points downstream and ŷ is vertically up. Thus x̂ is to the left if looking along ẑ. This

orientation is also used while referring to “left” and “right” HRSs.

Target Coordinate System (TCS)

The ẑ axis of the TCS, also noted as ztg angle, is defined by the central ray of the sieve

collimator for a given spectrometer which is the line vertically passing through the center

point of the central sieve slit hole (see Fig. 3.7). The angle between ẑtg of the TCS and the

ẑ of the HCS is defined as the central angle θ0 of the spectrometer. The out-of-plane angle

θtg and the in-plane φtg angle with respect to the central ray are given by:

tan θtg =
dx

dz
,

tanφtg =
dx

dz
.

(3.13)

Note that other reports might refer to the tangent of these angles without implicitly men-

tioning it.

Detector Coordinate System (DCS)

DCS are the coordinates of the detected particle as measured in the VDCs. ẑdet is perpen-

dicular to the VDC plane pointing vertically up, and x̂det is parallel to the long symmetry

axis of the lower VDC pointing downstream. Thus ŷdet is parallel to the short symmetry

axis of the lower VDC. When a particle is detected, two angular coordinates θdet, φdet and

two spatial coordinates xdet, ydet are calculated in this coordinate system.

Transport Coordinate System at the focal plane (TRCS)

The TRCS is an intermediate coordinate system that is used to transport the DCS to the

focal plane coordinate system. It is done by rotating DCS clockwise by ρ = 45◦. The implicit

transformation is given by:

θtra =
θdet + tan ρ0

1− θdet tan ρ0
,

φtra =
φdet

cos ρ0(1− θdet tan ρ0)
,

xtra = xdet cos ρ0 (1 + θtra tan ρ0) ,

ytra = ydet + sin ρ0φtraxdet.

(3.14)
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Focal Plane Coordinate System (FCS)

The FCS is a rotation of DCS that fixes ẑfp parallel to trajectories with θtg = φtg = 0, and

rotating DCS clockwise around its ŷ by the angle ρ between ẑfp and ẑdet (see Fig. 3.8). This

rotation is calculated by:

xfp = xtra,

tan ρ =
∑

Ct
i000x

i
fp,

yfp = ytra −
∑

Cy
i000x

i
fp,

θfp =
θdet + tan ρ

1− θdet tan ρ
,

φfp =
φdet −

∑
Cp
i000x

i
fp

cos ρ (1− θdet tan ρ)
.

(3.15)

Where the coefficients Ct
i000, C

y
i000, C

p
i000 include the corrections due to the systematic offset

of the VDCs.

Further details of the different Hall A coordinate systems can be found in [100].

3.2.2 Reaction Variables Reconstruction

The standard HRS variables reconstruction procedure described in [100] is able to reconstruct

the trajectories in cases where no target field is applied. In our case, a 5T magnetic field

around the target adds more complexity to the procedure. For this, optics calibration and

analysis is broken into two parts. The trajectories between the target and septa entrance

are calculated by simulations of the electron motion in magnetic field. The magnetic field

is characterized by applying the Biot-Savart law to the current density distribution, and a

cross-check is done by direct measurement of the target field. The uncertainty of the field

map is less than 1.2% over the whole region [102]. The reconstruction of the trajectories

from focal plane to the entrance of the septa is done using the optics matrix. The optics

matrix is a matrix that correlates focal plane variables with TCS variables θtg, ytg, φtg and

the delta momentum variable defined as:

δ =
P − P0

P0

, (3.16)

where P is particle momentum and P0 is HRS central momentum. During the calibration,

xtg is effectively set to zero. The optics matrix, to the first order approximation, can be

expressed as:
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
δ

θ

y

φ


tg

=


〈δ|x〉 〈δ|θ〉 0 0

〈θ|x〉 〈θ|θ〉 0 0

0 0 〈y|y〉 〈y|φ〉
0 0 〈φ|y〉 〈φ|φ〉



x

θ

y

φ


fp

(3.17)

In practice, the full matrix is optimized up to third order.

The optimization of the optics matrix is done using the sieve slit, and based on the

well known behavior of elastic scattering and on survey data described in [103, 104]. The

simulation of the magnetic field is also required for the optics matrix optimization, since

linear propagation of the trajectories from the target to the sieve slit cannot be assumed.

3.2.3 Tilt Angle

In addition to the bending of the scattered electron, the presence of the target field results

in bending the beam prior to the interaction. To compensate for this effect, two chicane

magnets were installed to lower then lift beam trajectory in the precise amount to guide the

beam as parallel to zHCS as possible, and at the center of the target. However, even after

this correction, the beam had deviations from the center and was slightly tilted relative to

zHCS.

During production runs, beam current was reduced to ∼10 nA to decrease target polar-

ization degradation. As a result, beam position information could not be extracted. The

position information required for the interaction variables reconstruction obtained using BdL

simulation, and the results are given using average quantities. Note that this information is

used twice: first for the reconstruction of HCS variable, and second for the transformation

from HCS to scattering coordinate system, which is where the physics analysis is done.

3.2.4 Elastic peak correction

The accuracy of the above procedure can be checked against the elastic scattering formula

(see Append. A):

E ′ =
E

1 + E
M

(1− cos θ)
. (3.18)

One can see that the decrease in the scattered electron energy depends on E/M . This results

in a separation between different elements on the focal plane. Fig. 3.9a shows an example of

the event distribution in TRCS. The separation between the hydrogen and the other heavier

elements (14N and 4He) is evident even on the focal plane. Fig. 3.9b shows the same picture
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after applying the above variable reconstruction procedure. The red curves represent Eq.

3.18 correlations for the different elements. The separation between the hydrogen elastic

events and the heavy elements is, in general, consistent with Eq. 3.18. A quantitative check

of this consistency can be done by cutting on hydrogen events and then adding a tight cut

on the scattering angle θ around some fixed angle θ0, and plotting the angular distribution

of the inverse relationship:

cos θ = 1 +M

(
1

E
− 1

E ′

)
. (3.19)

Ideally, this distribution should be centered around θ0, with some broadening due to the

resolution of the experimental assembly (experimental broadening, detection resolution and

reconstruction resolution). In practice, as shown in Fig. 3.10, a deviation of the mean from

θ0 is found for most configurations. It should be mentioned that all these comparisons are

done after adding an average value to correct for the energy losses before (Eloss,b) and after

(Eloss,a) the interaction:

E = Ebeam − Eloss,b,

E ′ = Edetected + Eloss,a.
(3.20)

The energy losses are calculated using g2psim (see Sec. 3.4.2).

In principle, this deviation indicates that the reconstruction procedure suffers from an

inaccuracy in the reconstruction of the scattering angle or the momentum - or both. In

practice, the reconstruction of the momentum is considered much more reliable, and it is

almost not affected by the target and septum fields. On the other hand, the reconstruction

of the scattering angle is significantly affected by the modeling of the trajectories in the

magnetic fields, before and after the interaction. For these reasons, we applied an additional

correction on the scattering angle to account for this deviation, assuming that the momentum

reconstruction is reliable and using Eq. 3.19.

A direct reconstruction of the scattering angle, on an event-by-event basis, based on

detected momentum and the elastic scattering relations, is not applicable due to the signif-

icant smearing of the momentum in the target and along the electron trajectory. Instead,

we used the current scattering angle reconstruction as a basis, created histograms of the

calculated scattering angle using Eq. 3.19 on tight slices of the reconstructed scattering

angle, and created correction functions for each experimental configuration (see Fig. 3.11).

These functions were used as a correction on an event-by-event basis for the scattering angle

reconstruction.

The uncertainty on the above procedure is estimated to be ∼1 MeV, based on HRS

resolution, electron energy loss approximation, and deviation of the invariant masses of
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hydrogen peaks from 0.9383 MeV. This translates into a ∼2 mrad systematic uncertainty in

the scattering angle.

3.2.5 The g2p Helicity Decoder

The helicity of the first window of each pattern is determined by a pseudo-random generator

in the helicity control board. The generator is a 30 bit shift register, hence can be predicted

using any sequence of 30 helicity patterns. The helicity reconstruction is done off-line with

a dedicated code package, reported separately in [105]. The helicity decoder has about 93%

efficiency, meaning that for 7% of the events the helicity state cannot be reconstructed. These

events are not used in the analysis, and the only effect of this inefficiency is a reduction in

the statistics.
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Figure 3.9: Typical focal plane plot in TRCS (a), compared to the reconstructed variables of

momentum and scattering angle (b). The separation between elastic scattering on hydrogen

and the heavier elements 14N and 4He is evident already on the focal plane, and the red

curves compare the reconstructed variables to the elastic stripe formula (Eq. 3.18).
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Figure 3.10: Angular distribution of the angles calculated by Eq. 3.19, using the cut |θ −
0.1| < 5 × 10−4, and cutting on hydrogen elastic events. A deviation of the mean from 0.1

indicates an inaccuracy in the reconstruction of the scattering variables.
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Figure 3.11: Scattering angle correction function for the left arm 2.2 GeV configuration.

This function is calculated based on the mean detected momenta and the elastic scattering

relation (Eq. 3.19). The function is used as a correction of the scattering angle on an

event-by-event basis.
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3.3 Asymmetries

Physical asymmetries were extracted for the left HRS at all experimental configurations.

For the two higher energies, 2.2 and 1.7 GeV, the acceptance was divided into two bins

in scattering angle. This was not possible at the 1.1 GeV configuration due to the poor

separation between the hydrogen and the heavy-elements at small angles (see Fig. 3.12f).

In total, asymmetries for 5 Q2 points were extracted for the left HRS. The optics analysis

of the right HRS was slower, and at this point right HRS asymmetries are not available.

However, we will present here raw asymmetries for the right HRS. The full process from raw

asymmetries to physical asymmetries is described below.

3.3.1 Cuts

The main cut used for asymmetry extraction is a cut on the elastic peak in the invariant

mass W (see Fig. 3.12). The invariant mass is calculated, using the target momentum

P µ = (Mp, 0, 0, 0) and the momentum transfer qµ = kµ − k′µ, as:

P µ
tot = qµ + P µ, (3.21)

W =
√
Pµ,totP

µ
tot. (3.22)

The use of the invariant mass allows a one-dimensional analysis which is equivalent to a two-

dimensional analysis on momentum and scattering angle, such as in Fig. 3.9b. The deviation

from the known proton mass serves as an indication of the quality of the optics calibration.

The center of the each W cut is determined as the peak of the hydrogen elastic events. In

principle, the width of the cut should have no effect on the physical asymmetry, but only

on the statistical uncertainty. In practice, inaccuracies in the background evaluation will

result in cut-dependent asymmetries. For this reason, for each data point the asymmetries

are extracted for a range of cut widths and a mean value is used for the asymmetry. This is

also used as an evaluation on the cut-related uncertainties, as discussed in Sec. 3.4.4.

GEp kinematics cuts are well below π− threshold: Wπ− = Mp + mπ− . The cut on the

invariant mass also serves as an acceptance cut for scattering angle and momentum. We also

applied additional cut on φHCS, as shown in Fig. 3.13.
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3.3.2 Raw Asymmetries

Asymmetries were calculated for each run separately. The asymmetry and the corresponding

statistical uncertainty were calculated using:

A =
N+ −N−

N+ +N−
, (3.23)

∆A =

√
4N+N−

(N+ +N−)3
. (3.24)

Fig. 3.14 shows raw asymmetries for left HRS runs. It should be noted that the asymmetry

flips sign several times during the experiment. This is due to proactively flipping of target

spin direction by changing microwave frequency, and beam helicity by introducing and re-

moving a half-wave plate. A decrease in absolute asymmetry with time is due to polarization

degradation of the target. All these effects should be corrected if dividing the asymmetry by

beam and target polarization and half-wave plate status, Araw/PBPT . The red dots in Fig.

3.14 represent this correction.

During the production of the 2.2 GeV data, target material was changed for runs 3071-

3089 to the bottom slot of the target insert, before the original top target was used again.

This change requires additional systematic studies due to the differences in the packing

fraction of the two targets, and the statistical significance of these runs is low. We decided

to omit these runs from the analysis, and this is the reason for the gap in Figs. 3.14a and

3.14b.

For the right HRS data, delays in the optics analysis prevent a complete analysis at this

point. However, loose two-dimensional cuts on the focal plane were used for the extraction

of raw asymmetries, as presented in Fig. 3.15.
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Figure 3.12: Invariant mass distributions for the left HRS at all experimental configurations.

Except for the lowest Q2 setting, the hydrogen elastic events can be identified as the peak

at ∼938 MeV.

77



 (rad)
HCS

φ
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y
ie

ld
s 

(a
rb

. 
u

n
it

s)

0

1000

2000

3000

4000

5000

6000

7000

2<0.08 GeV2<Q2E=2.2 GeV, 0.053 GeV

(a)

 (rad)
HCS

φ
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y
ie

ld
s 

(a
rb

. 
u

n
it

s)

0

5000

10000

15000

20000

25000

30000

2<0.53 GeV2<Q2E=2.2 GeV, 0.030 GeV

(b)

 (rad)
HCS

φ
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y
ie

ld
s 

(a
rb

. 
u

n
it

s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2<0.53 GeV2<Q2E=1.7 GeV, 0.036 GeV

(c)

 (rad)
HCS

φ
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y
ie

ld
s 

(a
rb

. 
u

n
it

s)

0

2000

4000

6000

8000

10000

12000

14000

2<0.36 GeV2<Q2E=1.7 GeV, 0.023 GeV

(d)

 (rad)
HCS

φ
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y
ie

ld
s 

(a
rb

. 
u

n
it

s)

0

500

1000

1500

2000

2500

3000

3500

2<0.30 GeV2<Q2E=1.1 GeV, 0.020 GeV

(e)

Figure 3.13: φHCS distributions for the left HRS at all experimental configurations (blue),

compared to g2psim (black, see Sec. 3.4.2). In red are the cuts that were used for the

analysis.
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Figure 3.14: Blue: raw asymmetries for all left HRS runs. Red: raw asymmetries corrected

for half-wave plate, beam and target polarizations. The fits for a constant value are done

for the corrected asymmetries, and the χ2/NDF values show consistent statistical behavior

after these corrections. The gap in the 2.2 GeV runs (a+b) is due to the change in the target

material (see text).
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Figure 3.15: Raw asymmetries for all right HRS runs.
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Figure 3.16: 14N polarization as function of proton polarization. The squares and the stars

represents two methods of measurements, while the solid curve represents an EST-based

calculation. Further details of the measurements and calculation can be found in [106].

3.4 Dilution analysis

3.4.1 General

The asymmetry at the proton elastic peak around W = 938 MeV is diluted by two main

sources of background. The first one is the radiative tail from elastic scattering off heavy

elements (mainly 14N and 4He, but also minor contribution from 27Al at the entrance win-

dow). In addition, there is the background from the high energy region of the quasi-elastic

(single nucleon knock-out) peaks from the heavy elements.

For an unpolarized background B, the experimental asymmetry (assuming 100% beam

and target polarization) is:

Araw =
N+ −N−

N+ +N− +B
=

Aphys

1 + B
N++N−

, (3.25)

Araw = Aphys ·
(

1− B

T

)
(3.26)

Where Aphys is the physical asymmetry, and T = N+ +N−+B is the total event count. We

define the dilution factor f = 1− B/T and adding the corrections for the beam and target

polarization to obtain:

Aphys =
Araw
fPBPT

. (3.27)
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In order to evaluate the amount of background below the proton elastic peak precise

knowledge of relative yields between all the five reactions is required (proton elastic scat-

tering, 4He and 14N elastic and quasi-elastic scattering). Monte-Carlo simulation of the

experimental assembly can use cross section models and study acceptance, solid angle and

radiative corrections for the evaluation of the background level within a specific cut. Al-

though cross sections for elastic scattering are available, no experimental cross section data

for 4He or 14N quasi-elastic reaction in the relevant kinematics exist. Furthermore, the pack-

ing fraction (i.e., the ratio between NH3 and liquid He in the target) can be extracted only to

poor accuracy. In Sec. 3.4.2 we will describe our approach for dealing with the background

level evaluation.

The above formula (Eq. 3.27) is correct only if the background does not contributes to

the asymmetry. In our case, 4He has spin 0 and hence, does not contributes asymmetry to

the background. 14N has spin 1 and a certain amount of polarization is obtained for it. In a

previous work by the Spin Muon Collaboration on a similar target, the polarization of the

nitrogen was estimated to be 9%-14% for a proton polarization of 70%-90% [106] (see Fig.

3.16). The measured asymmetry is related to the physical asymmetries of the nitrogen and

the proton by:

Araw = fPBPT

(
Ap +

nNPN
npPp

σNAN
σp

)
, (3.28)

where PN/Pp is the ratio between nitrogen and proton polarizations, nN/np is the ratio

between nitrogen and proton nuclei in the target, σN/σp is the cross section ratio, and

Ap, AN are the proton and nitrogen physical asymmetries, respectively. The authors of [106]

also estimate, based on a simplified shell model approximation treating the nitrogen as a

spinless carbon core with an extra proton and neutron in a 1p1/2 orbital state, that the

nitrogen asymmetry is:

σNAN = −1

3
(σpAp + σnAn) , (3.29)

where σn, An are the neutron cross section and asymmetry respectively. In our low Q2

forward kinematics an additional approximation of σn � σp can be used to give:

Araw = fPBPTAphys

(
1− 1

3

nNPN
npPp

)
, (3.30)

Aphys ≈
Araw

0.983 · fPBPT
. (3.31)

This approximation was originally done for deep inelastic scattering, and does not necessarily

hold for the cases of elastic and quasi-elastic scattering. In addition, the ratio between

nitrogen and proton contributions for the asymmetry in Eq. 3.28 does not take into account
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the radiative tail from the nitrogen elastic peak. However, this approximation is the only

available one, and can be used as a general estimation for the significance of this correction.

Unfortunately, there is no available experimental data for nitrogen asymmetry. In Sec. 3.4.3

we will describe our method to address this problem, and will show first experimental results

for nitrogen asymmetries.

3.4.2 g2psim

As part of the optics analysis, g2psim, a Monte-Carlo simulation of the experimental setup

was developed. The simulation contains the materials and the field map along the trajectory

of the scattered electron, and was used for the calibration of the optics matrix (see Sec. 3.2.2).

The trajectories are calculated by integration of the equation of motion in the magnetic

fields using the Runge-Kutta-Nyström method. Energy losses due to ionization, electron

scattering, internal and external Bremsstrahlung are calculated, as described in [107]. As

an input to the simulation, elastic models for protons, 4He, 12C and 14N were coded based

on experiment-based form factor parameterizations [108, 109]. Inelastic data at the relevant

kinematics are not available. g2psim uses two models, QFS [110] and PBosted [111] as

an input for the inelastic scattering. The two models produce significantly different yields

at the quasi-elastic region in our kinematics. Unpublished nitrogen data at close, but not

identical, kinematics were compared to these models, and PBosted model seems to produce

more accurately the quasi-elastic peak. This is also indicated by the low energy region of

quasi-elastic peaks in our data.

Fig. 3.17 shows a comparison between the experimental spectrum and the simulated

contributions of the five reactions by g2psim. Although the yields in this figure are arbi-

trary, it is clear that g2psim underestimates resolution effects of the experimental system.

The position of the proton elastic peak also indicates small inaccuracies in the energy loss

calculation.

In order to use g2psim results for the background analysis, we treat the simulation results

in two steps. The first step is to apply Gaussian smearing and shifting on an event-by-event

basis. That means that each simulated event with energy E is replaced by a different energy

E ′ normally distributed as E ′ ∼ N(E + µ, σ), where the parameters µ, σ are adjusted to

agree with the experimental proton elastic peak, that serves as a clear calibration for the

experimental resolution and electron energy. The same Gaussian correction is applied to

all five interactions. This step accounts for the inaccuracy in the transport simulation. To

deal with the lack of knowledge of the absolute yields, the magnitude of each contribution
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Figure 3.17: Comparison between experimental data at 2.2 GeV and g2psim output. For

the heavy elements, elastic interactions (low W peaks) and quasi-elastic interactions (high

W peaks) are calculated separately. The absolute yields are arbitrary for all interactions.

is scaled to the data using a minimum χ2 fit. Fig. 3.18 shows the simulation results for all

experimental configurations after the correction and the fit.

The above fitting procedure is not very sensitive to the differences between 4He and 14N

elastic peaks, and it is almost completely insensitive to the differences between the quasi-

elastic peaks of these two elements. Nevertheless, the differentiation between the three main

regions in the spectrum, heavy elastics, proton elastics and quasi-elastics is very clear. For

the sake of determining the background level below the proton elastic peak, we consider the

above procedure sufficient. The uncertainties will be discussed in Sec. 3.4.4. We do not

consider these results reliable in terms of the differences between 4He and 14N yields.

The azimuthal angle, φ, was not directly used for the background analysis, but a com-

parison between the experimental φHCS distribution and g2psim results can be used as an

indication of the magnetic field modeling accuracy. Fig. 3.13 shows a reasonable agreement

for the 2.2 GeV and 1.7 GeV configurations, while for the 1.1 GeV case the simulation under-

estimates the bending of the beam in the magnetic field. The procedure for the systematic

studies described in Sec. 3.4.4 should account for these inaccuracies.
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3.4.3 Physical Asymmetries Extraction

In the previous section we described how we use simulations to divide the experimental

yields into the partial contributions of the different reactions. As discussed in Sec. 3.4.1,

this enables the use of Eq. 3.27 to extract the physical asymmetry from the raw asymmetry,

in the theoretical case of unpolarized background. If the asymmetry contribution from the

nitrogen was known, we could, in principle, extract the proton physical asymmetry from the

data using the procedure discussed in Sec. 3.4.1. Due to the lack of experimental data for

nitrogen asymmetry for the elastic and quasi-elastic regions, the unknown packing fraction

and the insensitivity of the simulations to the differences between helium and nitrogen, it is

hard to evaluate the reliability of this approach.

A different approach would be to use the data itself for the extraction of physical asym-

metries for all the reactions in the experiment. To deal with the packing fraction problem,

and the insensitivity of the simulation to the differences between helium and nitrogen, we

ignore the differences between them and treat the data as if it consisted of three reactions:

proton elastics, heavy-element elastics, and quasi-elastics. To each of these reactions we

attribute a physical asymmetry A1, A2, A3, respectively. Each of these reactions dominates

a different region in invariant mass, with some level of mixture in all three regions (see Fig.

3.19). From the data, after appropriate cuts on invariant mass, we extract raw asymme-

tries for each region, Araw,1, Araw,2, Araw,3. The raw asymmetries are related to the physical

asymmetries by:

Araw,i =
3∑
j=1

Ci,jAj, (3.32)

where the coefficient Ci,j is the partial contribution of reaction j to the yields in region i,

and it is calculated from the simulation. This set of linear equations can be solved to extract

the physical asymmetries for the three reactions A1, A2, A3.

The main advantage of this approach is that it is based on data, and does not require

knowledge of the nitrogen polarization level and asymmetry, packing fraction, elastic or

quasi-elastic cross sections. It is also based on the most accurate part of the simulations. It

is to be noted, that the strengths of the three main regions are very clear in the data, and the

successful reproduction of the quasi-elastic region by the simulation makes the determination

of Ci,j quite robust. A quantitative estimation of the uncertainties will be discussed in Sec.

3.4.4. An additional important advantage is that we are also extracting, for the first time,

physical asymmetries for 14N elastic and quasi-elastic scattering. Indeed, the unknown level

of 4He background implies large uncertainties on the nitrogen asymmetries. A disadvantage

of this approach is that we introduce additional statistical and systematic uncertainties to
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the proton asymmetries. This is due to the large relative statistical uncertainties on the small

nitrogen elastic and quasi-elastic asymmetries, and the systematic uncertainties on the fit

at these regions. These are introduced to the proton asymmetries through the non-diagonal

coefficients in Eq. 3.32.

For the 1.1 GeV configuration, the above procedure could not be applied. The reason is

that during the experiment the trigger was changed to exclude events far from the proton

peak. It was done by turning off most of the s2 scintillators. This effect could not be

simulated, hence statistics from the runs with the adjusted trigger were unusable for the

quasi-elastic region. The physical asymmetry for this configuration was extracted using Eq.

3.27, and larger systematic uncertainty is quoted for the unknown background asymmetry.

86



W (GeV)
0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

y
ie

ld
s 

(a
rb

. 
u
n
ti

s)

0

200

400

600

800

1000

1200

1400

1600

1800

2<0.08 GeV2<Q2E=2.2 GeV, 0.053 GeV 2<0.08 GeV2<Q2E=2.2 GeV, 0.053 GeV

(a)

W (GeV)
0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

y
ie

ld
s 

(a
rb

. 
u
n
ti

s)

0

500

1000

1500

2000

2500

3000

3500

4000

2<0.53 GeV2<Q2E=2.2 GeV, 0.030 GeV 2<0.53 GeV2<Q2E=2.2 GeV, 0.030 GeV

(b)

W (GeV)
0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

y
ie

ld
s 

(a
rb

. 
u
n
ti

s)

0

500

1000

1500

2000

2500

2<0.53 GeV2<Q2E=1.7 GeV, 0.036 GeV 2<0.53 GeV2<Q2E=1.7 GeV, 0.036 GeV

(c)

W (GeV)
0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01

y
ie

ld
s 

(a
rb

. 
u
n
ti

s)

0

500

1000

1500

2000

2500

3000

2<0.36 GeV2<Q2E=1.7 GeV, 0.023 GeV 2<0.36 GeV2<Q2E=1.7 GeV, 0.023 GeV

(d)

W (GeV)
0.92 0.93 0.94 0.95 0.96 0.97 0.98

y
ie

ld
s 

(a
rb

. 
u
n
ti

s)

0

1000

2000

3000

4000

5000

6000

7000

2<0.30 GeV2<Q2E=1.1 GeV, 0.020 GeV 2<0.30 GeV2<Q2E=1.1 GeV, 0.020 GeV

(e)

Figure 3.18: Simulation results for all experimental configurations. The black curves are the

experimental data, the red curves are the total simulated yields, the blue, green and purple

curves are the proton, helium and nitrogen partial contributions, respectively.
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Figure 3.19: An example of invariant mass histogram divided into three regions, each domi-

nated by different reaction: proton elastics (1), heavy-elements elastics (2) and quasi-elastics
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×10−7 A1 A2 A3

A1 4.66 0.21 -1.57

A2 0.21 3.00 -0.79

A3 -1.57 -0.79 3.07

(a) 0.053 < Q2 < 0.080 GeV2

×10−7 A1 A2 A3

A1 1.92 -0.06 -0.64

A2 -0.06 0.46 -0.16

A3 -0.64 -0.16 1.36

(b) 0.030 < Q2 < 0.053 GeV2

×10−7 A1 A2 A3

A1 6.62 0.01 -1.93

A2 0.01 1.03 -0.48

A3 -1.93 -0.48 4.49

(c) 0.036 < Q2 < 0.053 GeV2

×10−7 A1 A2 A3

A1 0.36 -0.07 -0.86

A2 -0.07 0.24 -0.16

A3 -0.86 -0.16 2.13

(d) 0.023 < Q2 < 0.036 GeV2

Table 3.3: Covariance matrices for 2.2 GeV (top) and 1.7 GeV (bottom) configurations. See

text for the meaning of A1, A2, A3. The matrices are calculated with 5 MeV invariant mass

cut at 2.2 GeV and 2.5 MeV invariant mass cut at 1.7 GeV. All values should be multiplied

by 10−7.

3.4.4 Uncertainties

In this section we will discuss the uncertainties related to the dilution analysis and asymmetry

extraction procedure described above.

Statistical asymmetries were extracted in two steps. The first step was to assign statisti-

cal uncertainties to each experimental raw asymmetry according to Eq. 3.24. The statistical

uncertainties of the physical asymmetries, A1, A2, and A3 should be derived from Eq. 3.32,

to account for the mixture between the asymmetries in the raw asymmetries. We calculated

these uncertainties with brute force by Monte-Carlo. For each extraction of physical asym-

metries, Eq. 3.24 was solved 106 times, each of them with Araw,i randomly generated around

the experimental values with the appropriate variance. The mean of the resulting distri-

bution was used as the physical asymmetry, and the variance as the statistical uncertainty.

The correlations between the three reactions were also calculated by Monte-Carlo using the

definition:

Σi,j =
∑
n

(Xi,n −X i)(Xj,n −Xj)/N, (3.33)

where Xi,n is the n’s calculated asymmetry for reaction i, X i is the mean asymmetry for

reaction i, and N is the total number of events in the Monte-Carlo. Table 3.3 lists the

covariance matrices for the 1.7 and 2.2 GeV configurations.
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Figure 3.20: An example of simulated background (red) relative to the simulated proton

elastic peak (blue). Invariant mass cuts of ±1 MeV (black) and ±4 MeV (purple) are drawn

in dashed lines. The proton-to-background ratio changes significantly with cut width.

The systematic robustness of the dilution analysis and asymmetry extraction are tested

in two ways. The first way is to change the invariant mass cut width over a wide range

relative to the proton peak width, and the second way is to change the simulation energy

and resolution calibrations, µ and σ, in ranges that produce reasonable agreement with data.

These specific tests follow the analysis procedure, they have some degree of correlation, and

not necessarily represent all the aspects of the systematic effects. However, we treat them

as uncorrelated and sufficient for the reasons listed below.

The systematic uncertainties should not be studied on their own, but as they affect the

asymmetries. Fig. 3.20 shows an example of the total background, as calculated by the

simulation, relative to the proton elastic peak from the same simulation. The change in cut

width has significant effect on the dilution factor, f . In the presented example, changing the

cut from ±1 to ±4 MeV reduces the dilution factor from 0.629 to 0.544, which translates to

∼15% difference in the experimental asymmetry. In Fig. 3.21 the drop in the raw asymmetry

is evident as W cut increases and the proton peak is more diluted. A perfect dilution analysis

would eliminate this drop. Fig. 3.22 shows the physical asymmetries as were extracted with

different cut widths. The variations in physical asymmetries indicate the effect of the inac-

curacies in the background model on the extracted asymmetries. Qualitatively, the fact that

in all configurations, in spite of non-trivial background shape and significant differences in
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beam energy (GeV) Q2 (GeV2) relative uncertainty (%)

2.2 0.053-0.080 0.26

2.2 0.030-0.053 0.19

1.7 0.036-0.053 0.36

1.7 0.023-0.036 0.01

1.1 0.020-0.030 1.08

Table 3.4: Systematic uncertainties due to invariant mass cut width. The uncertainties are

given relative to the extracted asymmetries.

proton-to-background ratios, the fluctuation in physical asymmetries as a function of invari-

ant mass cut width are small, indicates that the simulations and the extraction procedure

are reliable. Exceptions are the tightest cuts, that in some cases show significant deviation

from the other cuts. This is reasonable since they are most sensitive to fine resolution effects

that are not accounted for by the simulation. These are smeared in the wider cuts. A quan-

titative estimation of the systematic effects, however, is not done based on cut widths but by

changing the simulation parameters as follows. Since W cut width is an additional arbitrary

parameter in the analysis that has effect on the results, we still use the fluctuations of the

extracted asymmetries with cut width as an additional uncorrelated systematic uncertainty.

The systematic uncertainties due to the cut width are listed in Table 3.4.

An additional systematic check of the simulations was done by changing the simulation

energy and resolution calibration, µ and σ, as described in Sec. 3.4.2. The smearing and

shifting parameters are scanned within a reasonable range (in terms of reproducing the

data), and the full asymmetry extraction procedure is done for each (µ, σ). The uncertainty

is estimated based on the range of asymmetries obtained. We used conservative estimations

of 2% for the proton asymmetries, 10% for the heavy-elastic peak asymmetries and 25% for

the quasi-elastic peak asymmetries. For the 1.1 GeV case, nitrogen asymmetries could not

be extracted and the systematic uncertainty for proton asymmetry was estimated to 3.5%.

Fig. 3.23 illustrates this procedure.

Nitrogen polarization was calculated from proton polarization based on [106] (see Sec.

3.4.1). The uncertainty of the nitrogen polarization is evaluated, based on the differences

between the EST model and the experimental data in Fig. 3.16, to be 15% relative.

Nitrogen elastic and quasi-elastic asymmetries are diluted by the presence of 4He. The

ratio between helium and nitrogen in the data could not be extracted from the simulation.

Due to the low accuracy extraction of nitrogen asymmetries in this experiment, a dilution
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factor of f14N = 0.75± 0.25 is used.
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Figure 3.21: Polarization-corrected raw asymmetries, Araw/PBPT as function of invariant

mass cut width. A decrease in raw asymmetry is evident as cut width increases due to the

lower proton-to-background ratio. Error bars represents statistical uncertainties, which are

highly correlated between different cuts.
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Figure 3.22: Physical asymmetries as a function of invariant mass cut width. Physical

asymmetries extracted according to the procedure described in the text. Except for the

tightest cuts, consistent values obtained for the different cut widths. Error bars represents

statistical uncertainties, which are highly correlated between different cuts.
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(a) µ = 0.1 MeV, σ = 1.6 MeV
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(b) µ = 1.0 MeV, σ = 2.5 MeV
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(c) µ = 0.5 MeV, σ = 2.0 MeV

Figure 3.23: Systematic study of simulation-related uncertainty. The uncertainty is es-

timated by changing the parameters of the smearing Gaussian, which represents energy

calibration (µ) and resolution adjustment (σ). The plots show two extreme parameteri-

zations that still produce reasonable fits (top), and the parameterization that is used for

the asymmetry extraction(bottom). The extracted asymmetries in this case varies between

2.72%-2.77% for protons, 0.078%-0.081% for the heavy-elastic peak, and 0.186%-0.233% for

the quasi-elastic peak. Based on the entire data set, conservative systematic uncertainties

of 2%, 10% and 25%, respectively, were estimated.
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Chapter 4

Results and Discussion

The analysis of the experiment is not yet completed, and form factor ratios have yet to be

extracted. These will have to wait for the complete analysis of both arms. We will show

here our results for the asymmetries. Since the analysis of the right arm should improve our

understanding of the system and the extraction of the asymmetries, the below results should

be treated as preliminary results.

4.1 Proton Asymmetries

Results of physical asymmetries for electron-proton elastic scattering are listed in Table 4.1

and plotted in Fig. 4.1. The results are for the left arm asymmetries. Right arm asymmetries

are still under analysis. The asymmetries were extracted for the Q2 ranges listed in Table

4.1. The Q2 values plotted in Fig. 4.1 are the RMS values of Q2 distributions within bin

cuts, and the horizontal error bars are the STD values of these distributions. These should

not be confused with the weighted-averaged Q2 values and their uncertainties that are model

dependent and were not calculated here.

beam energy (GeV) Q2 (GeV2) A (%) ∆Astat (%) ∆Asys (%)

2.2 0.053-0.080 -3.57 0.061 0.142

2.2 0.030-0.053 -2.41 0.044 0.096

1.7 0.036-0.053 -2.73 0.078 0.109

1.7 0.023-0.036 -2.02 0.019 0.081

1.1 0.020-0.030 -1.63 0.083 0.082

Table 4.1: Proton asymmetries with their absolute statistical and systematic uncertainties.
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Figure 4.1: Physical asymmetries for electron-proton elastic scattering. The solid line is the

calculated asymmetry using the dipole parametrization (Eq.1.53). See text for the meaning

of the the horizontal error bars.
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beam energy (GeV) Q2 (GeV2) A (%) ∆Astat (%) ∆Asys (%)

2.2 0.053-0.080 0.66 0.54 0.32

2.2 0.030-0.053 0.62 0.21 0.30

1.7 0.036-0.053 0.76 0.29 0.36

1.7 0.023-0.036 0.49 0.14 0.24

Table 4.2: 14N elastic asymmetries with their absolute statistical and systematic uncertain-

ties.

beam energy (GeV) Q2 (GeV2) A (%) ∆Astat (%) ∆Asys (%)

2.2 0.053-0.080 -0.58 0.56 0.31

2.2 0.030-0.053 0.75 0.37 0.40

1.7 0.036-0.053 -1.82 0.61 0.97

1.7 0.023-0.036 -0.77 0.41 0.41

Table 4.3: 14N quasi-elastic asymmetries with their absolute statistical and systematic un-

certainties.

4.2 Nitrogen Asymmetries

Results for physical asymmetries for electron-14N elastic scattering are listed in Table 4.2

and asymmetries for electron-14N quasi-elastics scattering are listed in Table 4.3. Fig. 4.2

compares both asymmetries. See Sec. 4.1 for the meaning of the horizontal error bars in this

figure. The results are for the left arm asymmetries. Right arm asymmetries are still under

analysis.
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Figure 4.2: Physical asymmetries for electron-14N elastic (blue circles) and quasi-elastic (red

squares) scattering. See text for the meaning of the the horizontal error bars.

99



origin statistical (%) systematic (%)

beam polarization 0.20 1.70

target polarization 0.75 2.9

asymmetry cuts - 0-1.1

asymmetry extraction 0.9-5.1 2.0-3.5

(a) Proton elastic uncertainties

origin statistical (%) systematic (%)

beam polarization 0.20 1.70

target polarization 0.75 15

asymmetry extraction 30-80 10
4He dilution - 44

(b) 14N elastic uncertainties

origin statistical (%) systematic (%)

beam polarization 0.20 1.70

target polarization 0.75 15

asymmetry extraction 30-100 25
4He dilution - 44

(c) 14N quasi-elastic uncertainties

Table 4.4: A summary of asymmetry uncertainties for electron-proton elastic (a), electron-
14N elastic (b) and electron-14N quasi-elastic scattering (c). The tables list ranges over the

whole dataset, and specific total uncertainties are listed in Tables 4.1,4.2,4.3.

4.3 Summary of Uncertainties

A detailed description of the various sources of uncertainties in this experiment can be found

throughout this report. Table 4.4 contains a summary of the relative uncertainties of the

physical asymmetries extraction. As explained in Sec. 3.2.4, an uncertainty of 2 mrad is

associated with the scattering angle.
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4.4 Discussion

4.4.1 Proton Asymmetries

As mentioned above and in Sec. 4.5, the analysis of the right arm might improve our under-

standing of the system, the optics, the simulations, and the polarization levels. The proton

asymmetries presented here should be treated as preliminary asymmetries. Furthermore, a

physical interpretation of the asymmetries should start with a proper averaging of Q2 dis-

tributions over bin acceptance, using form factor models, to determine the mean values of

the kinematic parameters Q2, θ, θ∗, and φ∗. However, the general trend of the data suggests

significantly lower asymmetries (in absolute values) than could be expected by the existing

models, especially for the 1.7 GeV and 1.1 GeV configurations. In the most general terms,

this discrepancy might originate from either inaccuracies in the experiment or its analysis,

or from inaccuracies in the form factor ratio models at low Q2.

An additional inaccuracy in the experiment might be the reconstruction of the scattering

angle. Misalignment of the chicane magnets, error in the field map, or in the optic matrix

can all result in wrong scattering angles. The elastic peak correction should eliminate the

possibility of large errors in the scattering angle, and the position of the proton peak in the

invariant mass distribution should indicate such an error. Such indications were not found in

the data. Significant underestimates of the energy losses along the electron trajectory might

result in a larger reconstructed scattering angle that would not be corrected by position of

the elastic peak and decrease the discrepancy between the extracted asymmetries and the

models, but only if accompanied by an independent angle reconstruction error to the same

direction. Another possible inaccuracy might stem from underestimating the background

evaluation by the simulations (current elastic peak corrections are to the opposite direction).

At least for the proton asymmetries, the systematic checks described in Sec. 3.4.4, the

good agreement with data, and the fact that the simulations sometimes overestimate and

sometimes underestimate the data at the region between the elastic peaks make it unlikely

that a systematic and significant under estimation of the background exists. The final

potential option for experimental inaccuracy is a systematic overestimation of the beam or

target polarizations. Both Møller measurement of beam polarization, and UVa polarized

target analysis are well-established procedures that were used for many experiments in the

past.

If the extracted asymmetries are correct, and a proper weighting will indicate lower

asymmetries relative to the existing models, this might be an indication of a form factor

ratio grater than unity at low Q2. Although such a trend might be seen below Q2=0.2 GeV
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in the BLAST data [34] and in one parametrization [49], it would have to be a very strong

increase to account for the extracted asymmetries in this experiment. We believe that any

conclusions about the ratios must wait for the finalization of the right arm analysis.

4.4.2 Nitrogen Asymmetries

Nitrogen asymmetries were extracted experimentally for the first time. These asymmetries

are important for the analysis of experiments with polarized NH3 targets. The accuracy of

our results is low, but sufficient to evaluate the significance of the nitrogen asymmetries for

experiments with such targets. We also demonstrate a method for the extraction of these

asymmetries.

These asymmetries are also interesting on their own, for the study of the 14N nucleus and

shell model approximations. The extracted asymmetries show general agreement with the

approximations made by [106] for DIS, at least in absolute values. Regarding the sign of the

asymmetries, it seems that 14N elastic and quasi-elastic asymmetries have opposite signs.

While the elastic asymmetries are very clean and it is very clear that they show opposite

sign relative to the proton asymmetries, the quasi-elastic asymmetries are heavily mixed with

radiative tails from both nitrogen and proton elastic peaks. Although the uncertainties were

carefully studied and conservatively estimated, a significant unknown error in the radiative

model or in the simulations might change the sign of the nitrogen quasi-elastic asymmetries.

Note that such a change might be due to underestimation of the proton elastic strength

in the quasi-elastic low energy region. It is likely that such error will result in even lower

proton asymmetries, due to the decrease in the strength of the quasi-elastic background level.

Hence, a change in the sign of the quasi-elastic asymmetries is correlated with a decrease

in proton asymmetries (in absolute values). With the appropriate caution for preliminary

results, we can state that it is unlikely that 14N elastic and quasi-elastic asymmetries share

the same sign. This experimental result should motivate further studies.

4.5 Future Outlook

Right HRS data analysis is ongoing. When right arm optics, simulations, and asymmetries

are ready, an extensive study should be done to compare systematic effects between the two

arms. In Sec. 4.4.1 we listed several potential causes for unknown errors in the analysis.

Some of these causes are common for both arms, such as beam and target polarization, and

some are partially independent, such as scattering angle reconstruction and some aspects
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of the the simulations. Septum magnetic field is also different, and, as a result, scattering

angles are not the same. The results from the right arm should improve our understanding

on whether the discrepancies between the extracted asymmetries and the models are the

result of yet unknown systematics or if are they representing a real deviation of the from

factors from the models.

Similar experiments in the future are advised to spend more time on systematic studies

during the experiment itself. A dedicated measurement of nitrogen yields in the same kine-

matics and magnetic fields might obviate the need of simulations. More TE measurements

of the target might significantly decrease the systematics of the polarization level.

Much more precise measurement of nitrogen asymmetries might be achieved by increasing

the scattering angle. This will improve the separation between the three reactions, and even

enable evaluating the exact level of the unpolarized 4He background. In parallel, a shell

model approximation of the ratio between proton and nitrogen asymmetries at the elastic

and quasi-elastic region can be performed, to examine if there are theoretical reasons for the

opposite signs of the asymmetries.
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Appendix A

Elastic Scattering Kinematics

Electron-proton elastic scattering kinematics imply some correlations between incoming elec-

tron energy, scattered electron energy, scattering angle, and Q2. We use these correlations

throughout this report, and we will show these correlations in this chapter.

An incoming electron with four-momentum kµ = (E, 0, 0, k) is scattered off a static

nucleus in the lab frame, P µ = (M, 0, 0, 0). The electron is scattered in the x− z plane with

k′µ = (E ′, k′ sin θ, 0, k′ cos θ), and the proton recoils with P ′µ = (E ′p,−P ′ sinφ, 0, P ′ cosφ)

(see Fig. A.1). Energy-momentum conservation implies:

kµ + P µ = k′µ + P ′µ. (A.1)

Or implicitly:

E +M = E ′ + E ′p (A.2)

k′ sin θ = P ′ sinφ (A.3)

k = k′ cos θ + P ′ cosφ (A.4)

θk

k’

P’

φ

Figure A.1: Notations for elastics scattering.
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We want to solve these equations. We start by calculating the magnitude of the 3-

momentum:

~P ′2 = P ′2 cos2 φ+ P ′2 sin2 φ (A.5)

P ′ cosφ = k − k′ cos θ (A.6)

~P ′2 = k′2 sin2 θ + k2 + k′2 cos2 θ − 2kk′ cos θ (A.7)

~P ′2 = k2 + k′2 − 2kk′ cos θ. (A.8)

Now using Eq. A.2:

E ′2p = E2 +M2 + E ′2 + 2EM − 2E ′M − 2EE ′ (A.9)

The relativistic energy is:

E ′2p = ~P 2 +M2 = k2 + k′2 − 2kk′ cos θ +M2 (A.10)

For ultra relativistic electrons E ≈ k:

E ′2p = E2 + E ′2 − 2EE ′ cos θ +M2 (A.11)

=⇒ E2 + E ′2 − 2EE ′ cos θ +M2 = E2 +M2 + E ′2 + 2EM − 2E ′M − 2EE ′ (A.12)

E ′ [M + E (1− cos θ)] = EM (A.13)

E ′ =
E

1 + E
M

(1− cos θ)
(A.14)

We also want to calculate Q2 = −qµqµ. We start by writing the momentum transfer:

qµ = kµ − k′µ (A.15)

qµ = (E − E ′,−k′ sin θ, 0, k − k′ cos θ) (A.16)

q2 = (E − E ′)2 − k′2 sin2 θ − (k − k′ cos θ)2 (A.17)

q2 = E2 + E ′2 − 2EE ′ − k′2(sin2 θ + cos2 θ)− k2 + 2kk′ cos θ (A.18)

Using E ≈ k,E ′ ≈ k′:

q2 = −2EE ′(1− cos θ) (A.19)

Using the identity:

sin2

(
θ

2

)
=

1− cos θ

2
, (A.20)

we get:

Q2 = −q2 = 4EE ′ sin2

(
θ

2

)
. (A.21)
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Appendix B

The Breit Frame

The Breit frame, or the brick wall frame, is defined as the frame where the interaction only

flips the sign of the nucleon three momentum, without changing its magnitude:

~pB = −~p′B = −~qB
2
. (B.1)

In elastic scattering, there is no energy transfer in the Breit frame:

ωB = 0 (B.2)

Q2 = −qB,µqµB = ~q2B. (B.3)

For the electron:
EB = E ′B,

~k2B = ~k′2B ,

~kB = ~qB + ~k′B.

(B.4)

Choosing the 3-axis parallel to ~q implies:

kB1 = k′B1 =
|~qB|

2
cot

θB
2

=

√
Q2

2
cot

θB
2
,

kB2 = k′B2 = 0,

kB3 = −k′B3 =
~qB
2

=

√
Q2

2
.

(B.5)

Back to the lab frame, the 1 and 2 components are unaffected by the Lorentz transformation:

k1 = kB1 ; k2 = kB2, (B.6)
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and we use the fact that ~q is along the 3-axis to write:

k23 =

(
~k · ~q

)2
~q2

=
~k · ~k − ~k · ~k′

~q2

=
E2)2 + (EE ′ cos θ)2 − 2E2EE ′ cos θ

~q2
,

(B.7)

where θ is the scattering angle in the lab frame.

k21 = ~k2 − k23,

=
~k2~q2 − (~k · ~q)2

~q2
,

=
E2E ′2 sin2 θ

~q2
,

=
4E2E ′2

~q2
sin2 θ

2
cos2

θ

2
.

(B.8)

Using the relation Q2 = 4EE ′ sin2
(
θ
2

)
we get:

k21 =
(Q2)2

4~q2
cot2

θ

2
. (B.9)

Since:

qµ = p′µ − pµ (B.10)

pµp
µ = p′µp

′µ = M2
p , (B.11)

we get:

p′µp
′µ = qµq

µ + 2pmuq
µ + pµp

µ (B.12)

qµq
µ = −2qµp

µ = −2ωMp (B.13)

ω = − Q2

2Mp

. (B.14)

hence:

~q2 = Q2

(
1 +

Q2

4MP

)
= Q2(1 + τ). (B.15)

We can now rewrite Eq. (B.9) as:

k21 =
Q2

4(1 + τ)
cot2

θ

2
, (B.16)

and, together with Eq. (B.6) gives the transformation between the scattering angles in the

Breit frame and the lab as:

cot2
θB
2

=
cot2 θ

2

1 + τ
. (B.17)
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מדידת יחס גורמי המבנה של

הפרוטון במעבר תנע נמוך

חיבור לשם קבלת תואר דוקטור לפילוסופיה

מאת

משה פרידמן

הוגש לסנט האוניברסיטה העברית בירושלים 

2016אב תשע"ו - אוגוסט 



עבודה זו נעשתה בהדרכתו

של פרופסור גיא רון.



תקציר

מדד את יחס גורמי המבנה של הפרוטון, E08-007-IIניסוי   μGE/GM , במעברי תנע בתחוםQ2≈0.02-0.08

GeV2זהו תחום מעברי התנע הנמוך ביותר שנמדד בשיטות המבוססות על דרגות חופש של הספין. הניסוי .

נערך במעבדה הלאומית על שם תומאס ג'פרסון, הממוקמת בניופורט ניוז במדינת וירג'יניה, במהלך שנת

ו 1.7, 1.1. קרן אלקטרונים מקוטבת באנרגיות של 2012  2.2 GeVפוזרה על גבי מטרת אמוניה מוצקה  

מקוטבת. האסימטריה בין חתך הפעולה לפיזור אלסטי עבור אלקטרונים במצבי בורגיות חיוביים ושליליים

נמדדה. מתוך אסימטריה זו ניתן לחלץ את יחס גורמי המבנה של הפרוטון.

בתזה זו אנו מציגים את אנליזת האסימטריה של הניסוי, דנים באתגרים השונים ומציגים תוצאות ראשוניות

. ברם, יש צורך1וחלקיות של הניסוי. תוצאות ראשוניות אלו מרמזות על עליה ביחס גורמי המבנה מעבר ל-

בהשלמה של האנליזה על מנת להגיע למסקנות כלשהן מן הנתונים. המשך עבודת האנליזה בעיצומה, ותוצאות

.2017סופיות עבור האסימטריות ועבור יחס גורמי המבנה צפויות במהלך 

בנוסף, אנו מציגים לראשונה תוצאות נסיוניות של אסימטריה לפיזורים אלסטיים וקוואזי-אלסטיים על חנקן

. התוצאות שנמדדו מתאימות להערכה על בסיס מודל הקליפות, בתוך רמת הדיוק של הניסוי. בניסוי נצפה14

שינוי בכיוון האסימטריה בין פיזורים אלסטיים וקוואזי אלסטיים, תופעה הדורשת מחקר נוסף. תוצאות אלו

ישמשו לצורך האנליזה של ניסויים אחרים המשתמשים במטרת אמוניה מוצקה מקוטבת.

 



מכתב תרומה

-E08 ו E08-007הניסוי המתואר בתזה זו, ההכנות והאנליזה נעשו כחלק ממאמץ משותף של הקולבורציות 

. העבודה הזו מתמקדת בתרומה האישית שלי לחלקים הניסיוניים ולאנליזה של הניסוי. מטבע הדברים,027

התזה מתארת גם את עבודתם של אחרים שתרמו לניסוי. מכיוון שישנם אנשים רבים שתרמו לצדדים השונים

של המחקר, לא נוכל למנות אותם בשמותם.

ההכנות לניסוי נעשו ברובן זמן רב לפני הצטרפותי לקבוצה. מרגע שהצטרפתי לקבוצה, נטלתי את האחריות

. במהלך הניסוי עצמו הייתי אחראי על אנליזה ראשונית של הנתונים, ועל קבלת החלטותE08-007על ניסוי 

בהתאם להתפתחות הניסוי.

. החלקים הקשורים באופטיקה נעשו עלE08-007לאחר הניסוי ביצעתי את האנליזה של חלק הפיסיקה בניסוי 

, אותו ביצעתי3.2.4ידי אחרים, מלבד תיקון זווית הפיזור הנובע ממיקומו של הפיק האלסטי המתואר בפרק 

בעצמי. גם האנליזה של המטרה נעשתה בעיקר על ידי הקבוצה שעוסקת בכך.

בעבודה,  המתוארת  ותרומתי התבטאהg2psimהסימולציה הבסיסית  אנשים,  בשיתוף של כמה  נכתבה   ,

בכתיבת המודלים לחתכי הפעולה האלסטיים. אני פיתחתי ויישמתי את ההתאמה המתוארת בעבודה של

הסימולציה הבסיסית לתוצאות הניסיוניות, את ההליך למציאת התרומות החלקיות, ואת חילוץ האסימטריות

. אני גם ביצעתי את האנליזה של אי הוודאויות הנלוות לשלבים אלו.14עבור הפורטון והחנקן 
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