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We calculate the single spin asymmetry for the ep → e∆(1232) process, for an electron beam
polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon
exchange approximation, and are directly proportional to the absorptive part of a two-photon ex-
change amplitude. As the intermediate state in such two-photon exchange process is on its mass
shell, the asymmetry allows one to access for the first time the on-shell ∆→ ∆ as well as N∗ → ∆
electromagnetic transitions. We present the general formalism to describe the ep → e∆ beam nor-
mal spin asymmetry, and provide a numerical estimate of its value using the nucleon, ∆(1232),
S11(1535), and D13(1520) intermediate states. We compare our results with the first data from the
Qweak@JLab experiment and give predictions for the A4@MAMI experiment.

I. INTRODUCTION

A lot of information is available on the electromagnetic
structure of protons and neutrons, such as their magnetic
moments, charge radii, elastic form factors, or electro-
magnetic polarizabilities. In contrast, our knowledge on
the electromagnetic structure of nucleon excited states
is very scarce. Even for the lowest excitation of the nu-
cleon, the prominent ∆(1232) resonance, the information
is limited to the non-diagonal N → ∆ electromagnetic
transition, see e.g. Refs. [1–3] for some recent reviews.
Deducing from such measurements physical quantities as
the magnetic dipole moment or the charge radius of the
∆(1232) state, has long required resorting to theoretical
approaches which relate the properties of the ∆ to prop-
erties of the nucleon and/or to the experimentally ac-
cessible N → ∆ transition. Such theoretical approaches
include different types of constituent quark models (see
Ref. [1] for a review of some of these models), general
large-Nc relations in QCD [4–7], as well as chiral effec-
tive field theory including nucleon and ∆ fields [8–12]. In
recent years, lattice QCD has been able to also provide
direct calculations of such static quantities and FFs for
the ∆ resonance [13–15].

In order to experimentally access the electromagnetic
structure of the ∆(1232) resonance, and to directly com-
pare with lattice QCD predictions, a way to measure the
diagonal ∆ → ∆ electromagnetic transition is required.
As the ∆(1232) is a very short lived resonance, the only
viable way is to use a reaction where the ∆ is first pro-
duced, and then couples to the electromagnetic field be-
fore decaying into a πN state. One such process which

has been proposed to access the magnetic dipole moment
(MDM) of the ∆+(1232) resonance is the radiative π0

photoproduction process γp→ γ∆+ → γπ0p [9, 16–20].
A first experimental extraction of the ∆+(1232) MDM
has been performed in Ref. [21] using the reaction model
of Ref. [18], resulting in the value listed by PDG [22]:

µ∆+ = 2.7+1.0
−1.3 (stat.)± 1.5(syst.)± 3(theor.)µN , (1)

with µN = e/2MN the nuclear magneton. One notices
that the error in Eq. (1) is dominated by the theoretical
uncertainty. A dedicated follow-up γp → γπ0p experi-
ment [23] found it difficult to improve on the precision of
the ∆+ MDM due to model dependencies in the used the-
oretical framework, which is needed to access the on-shell
γ∗∆∆ vertex from such reaction process.

Accessing the on-shell electromagnetic FFs of the
∆(1232) resonance has not been possible in experiment
to date. To achieve such goal, we need a two-photon
observable where the ∆ is firstly produced on a proton
target by one virtual photon and then couples to the sec-
ond photon leading to the ∆ final state, which is then
detected through its πN decay. In order to properly ac-
cess the on-shell γ∗∆∆ vertex, we need to look at the
pole-position of the intermediate ∆ state. If we want to
realize such an experiment with virtual photons it will
in general be dominated by the direct electromagnetic
N → ∆ transition which involves only one photon, and
is well studied in experiment, e.g. through the pion elec-
troproduction process on a proton in the ∆ region. If
we aim to access the electromagnetic ∆ FFs, we need an
observable where this direct N → ∆ transition through
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one photon is suppressed or absent. An observable which
realizes this is the beam normal spin asymmetry for the
ep→ e∆(1232) process, which we study in this work.

Normal single spin asymmetries (SSA) for the ep→ eR
processes, with R some well defined state, e.g. re-
constructed through its invariant mass, with either the
electron beam or the hadronic target polarized normal
to the scattering plane, are exactly zero in absence of
two or multi-photon exchange contributions. These nor-
mal SSAs are proportional to the imaginary (absorp-
tive) part of the two-photon exchange (TPE) amplitude,
which is the reason why they are exactly zero for real
(non-absorptive) processes such as one-photon exchange
(OPE). At leading order in the fine-structure constant,
α = e2/(4π) ' 1/137, the normal SSA results from the
product between the OPE amplitude and the imaginary
part of the TPE amplitude, see Ref. [24] for a recent re-
view. As the SSA is proportional to the imaginary part
of the TPE amplitude at leading order in α, it guarantees
that the intermediate hadronic state is produced on its
mass shell.

For a target polarized normal to the scattering plane,
the corresponding normal SSAs were predicted to be in
the (sub) per-cent range some time ago [25]. Recently, a
first measurement of the target normal SSA for the elastic
electron-3He scattering has been performed by the JLab
Hall A Coll., extracting a SSA for the elastic electron-
neutron subprocess, for a normal polarization of the neu-
tron, in the per-cent range [26]. For the experiments with
polarized beams, the corresponding normal SSAs for the
ep→ ep process involve a lepton helicity flip which is sup-
pressed by the mass of the electron relative to its energy.
Therefore these beam normal SSA were predicted to be in
the range of a few to hundred ppm for electron beam en-
ergies in the GeV range [27–29]. Although such asymme-
tries are small, the parity violation programs at the major
electron laboratories have reached precisions on asymme-
tries with longitudinally polarized electron beams well
below the ppm level, and the next generation of such
experiments is designed to reach precisions at the sub-
ppb level [30]. The beam normal SSA, which is due to
TPE and thus parity conserving, has been measured over
the past fifteen years as a spin-off by the parity-violation
experimental collaborations at MIT-BATES (SAMPLE
Coll.) [31], at MAMI (A4 Coll.) [32, 33], and at JLab (G0
Coll. [34, 35], HAPPEX/PREX Coll. [36], and Qweak
Coll. [37]). The measured beam normal SSA for the elas-
tic ep→ ep process ranges from a few ppm in the forward
angular range to around a hundred ppm in the backward
angular range, in good agreement with theoretical TPE
expectations.

Preliminary results from the QWeak Coll. [38, 39] for
the beam normal SSA for the ep → e∆+(1232) pro-
cess indicate that the asymmetry for the inelastic pro-
cess is around an order of magnitude larger than the
elastic asymmetry. It is the aim of this work to detail
the formalism to understand this inelastic beam normal
spin asymmetries and to study their sensitivity on the

∆(1232) electromagnetic FFs as well as on the N∗ → ∆
electromagnetic transitions.

The outline of this work is as follows. In Section II
we briefly recall the definition of the beam normal SSA.
In Section III, we describe the leading one-photon ex-
change amplitude to the ep→ e∆ process. Subsequently
in Section IV, we give the general expression of the ab-
sorptive part of the two-photon exchange amplitude to
the ep→ e∆ process, and describe the dominant regions
in the phase space integrations. In Section V, we provide
the details of the model for the hadronic tensor enter-
ing the ep → e∆ TPE amplitude which we use in this
work. Besides the intermediate nucleon contribution,
we subsequently describe the ∆(1232), S11(1535), and
D13(1520) resonance intermediate state contributions. In
Section VI, we show our results and discussions. We com-
pare with the existing data for the Qweak@JLab exper-
iment, and provide predictions for the A4@MAMI ex-
periment. Our conclusions are given in Section VII. We
provide the quark model relations to relate the electro-
magnetic ∆ → S11 and ∆ → D13 helicity amplitudes to
the N → S11 and N → D13 helicity amplitudes in an
Appendix.

II. BEAM NORMAL SPIN ASYMMETRY

The beam normal single spin asymmetry (Bn), corre-
sponding with the scattering of an electron with polar-
ization normal to the scattering plane on a unpolarized
proton target, is defined by :

Bn =
σ↑ − σ↓
σ↑ + σ↓

, (2)

where σ↑ (σ↓) denotes the cross section for an unpolarized
target and for an electron spin parallel (anti-parallel) to
the normal polarization vector, defined as :

ξµ = ( 0 , ~ξ ), ~ξ ≡ (~k × ~k′) / |~k × ~k′|. (3)

Applying the derivation of Ref. [25] to the case of a
beam polarization normal to the scattering plane, Bn
can be expressed to order e2 as:

Bn '
2 Im

[
(T1γ)

∗
fi (AbsT2γ)fi

]
∑

spins

|T1γ |2
, (4)

where T1γ denotes the OPE amplitude, and AbsT2γ the
absorptive part of the TPE amplitude between the initial
state i and the final state f . The beam polarization in the
initial state in Eq. (4) is understood along the direction
of ~ξ. The numerator in Eq. (4) corresponds (to order e2)
to the difference of squared amplitudes for normal beam
polarizations ↑ and ↓, while all other spins are summed
over, whereas the denominator is the squared amplitude
summed over all spins. The phase of the amplitude T
is defined through its relation to the S-matrix amplitude
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S = 1 − i T . In Eq. (4), the absorptive part of the two-
photon amplitude is defined as 1:

(AbsT2γ)fi ≡
∑
n

T ∗nf Tni, (5)

involving a sum over all physical (i.e. on-shell) interme-
diate states n.

Generally, as illustrated by Eq. (4), one-photon ex-
change alone will give no beam normal single spin asym-
metry. The observed particle needs at least one further
interaction. When only the final electron is observed,
which we consider in this work, this means two or more
photon exchange. In the resonance region, one can imag-
ine observing instead a final pion, whence a non-zero Bn
is possible even for one-photon exchange [40], since the
strong force guarantees final state interactions for the
pion.

In the following, we will evaluate Eq. (4) for the
e−p → e−∆(1232) process. To this aim, we will discuss
in Section III the OPE amplitude T1γ , and in Sections
IV and V the absorptive part of the TPE amplitude.

III. ONE-PHOTON EXCHANGE AMPLITUDE

In this section, we briefly review the inelastic ep→ e∆
process in the one-photon exchange (OPE) approxima-
tion. The kinematics of the inelastic transition :

e−(k, se) +N(p, λ)→ e−(k′, s′e) + ∆(p′, λ′), (6)

is described by four-vectors k(k′) of the initial (final) elec-
trons, and p(p′) of the nucleon (∆). Furthermore, se(s′e)
denote the normal spin projections of the initial (final)
electrons, and λ(λ′) the helicities of the nucleon (∆). In
this work, we will use the notation q for the momentum
transfer towards the hadronic system:

q = k − k′ = p′ − p, (7)

and adopt the usual definitions for the kinematical in-
variants of this process:

s = (k + p)2, u = (k − p′)2, t = q2 ≡ −Q2, (8)

which are related as: s+u−Q2 = M2
N+M2

∆+2m2
e, where

MN (M∆) are the nucleon (∆) masses respectively, and
me is the electron mass. Usually experiments are per-
formed at fixed beam energy Ee, which determines s as
s = M2

N +m2
e + 2MNEe. Furthermore, it is conventional

in electron scattering to introduce the polarization pa-
rameter ε of the virtual photon, which can be expressed
in terms of the above kinematical invariants as (neglect-

1 With this definition, one obtains the absorptive part from uni-
tarity as: AbsTfi = i

[
(T )fi − (T †)fi

]
.

ing the electron mass):

ε =
2(M2

NM
2
∆ − su)

s2 + u2 − 2M2
NM

2
∆

. (9)

p p′

q

k k′

Figure 1. The one-photon exchange diagram. The grey blob
represents the electromagnetic vertex of the nucleon.

The OPE amplitude for the ep → e∆ process is given
by 2:

T1γ = − e
2

Q2
ū(k′, s′e)γµu(k, se)〈∆(p′, λ′)|Jµ(0)|N(p, λ)〉,

(10)

with e the proton electric charge. The matrix element of
the hadronic current can be expressed in the covariant
form :

〈∆(p′, λ′)|Jµ(0)|N(p, λ)〉 ≡ ūα(p′, λ′)ΓαµN∆(p′, p)u(p, λ),

(11)

where u is the nucleon spinor, and uα is the Rarita-
Schwinger spinor for the ∆. Furthermore, the on-shell
γ∗N∆ vertex is given by:

ΓαµN∆(p′, p) ≡
√

3

2

(M∆ +MN )

MNQ2
N∆+

[
gM (Q2)i εαµρσp′ρqσ

−gE(Q2)(qαp′µ − q · p′gαµ)γ5

−gC(Q2)(qαqµ − q2gαµ)γ5

]
, (12)

where we use ε0123 = +1, and where gM , gE , and gC rep-
resent the three form factors (FFs) describing the N → ∆
vector transition [1]. We furthermore introduced the
shorthand notation:

Q2
N∆± ≡ Q2 + (M∆ ±MN )2. (13)

Phenomenologically, the γ∗N∆ transition is usually
expressed in terms of a different set of FFs introduced by
Jones-Scadron [41], which are labeled G∗M , G∗E , G

∗
C , and

2 For simplicity of notation, we will redefine here and in the fol-
lowing of the paper the T -matrix elements by taken a global
energy-momentum conservation factor (2π)4δ4(k + p − k′ − p′)
out of the T -matrix element.
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describe the magnetic dipole (M1), electric quadrupole
(E2), and Coulomb quadrupole (C2) transitions respec-
tively. The latter have the property that they have a
one-to-one relation with the imaginary parts of the pion
electroproduction multipoles at the resonance position,
and have been extracted in experiment, see Ref. [1] for
details. In terms of these Jones-Scadron FFs, the FFs
entering Eq. (12) are straightforwardly related as:

gM = G∗M −G∗E , (14)

gE = − 2

Q2
N∆−

[
(M2

∆ −M2
N −Q2)G∗E +Q2G∗C

]
,

gC =
1

Q2
N∆−

[
4M2

∆G
∗
E − (M2

∆ −M2
N −Q2)G∗C

]
,

where all FFs are functions of Q2. The spin averaged
squared matrix element for the ep → e∆ process in the
OPE approximation can then be expressed as :∑

spins

|T1γ |2 ≡
e4

Q2
D1γ(s,Q2), (15)

where the function D1γ(s,Q2) is given by:

D1γ(s,Q2) =
2Q2

N∆−(M∆ +MN )2

(1− ε)M2
N

×
[
G∗2M + 3G∗2E + ε

Q2

M2
∆

G∗2C

]
. (16)

In this work, we will take the empirical information on
the FFs G∗M (Q2), G∗E(Q2), and G∗C(Q2), characteriz-
ing the electromagnetic N → ∆ transition, from the
MAID2007 analysis [42, 43]. In this analysis, the em-
pirical N → ∆ transition FFs have been expressed as:

G∗M,E,C(Q2) =

(
QN∆+

MN +M∆

)
G∗AshM,E,C(Q2), (17)

with the so-called Ash FFs G∗AshM,E,C parameterized as [42,
43]:

G∗AshM (Q2) = 3.00(1 + 0.01Q2)e−0.23Q2

GD(Q2),

G∗AshE (Q2) = 0.064(1− 0.021Q2)e−0.16Q2

GD(Q2),

G∗AshC (Q2) = 0.124
(1 + 0.120Q2)

1 + 4.9Q2/(4M2
N )

(
4M2

∆

M2
∆ −M2

N

)
× e−0.23Q2

GD(Q2), (18)

for Q2 in GeV2, and where GD(Q2) = 1/(1 + Q2/0.71)2

is the standard dipole FF. Note that the magnetic dipole
N → ∆ transition provides by far the dominant contribu-
tion as G∗M (0) = 3.0, whereas the electric and Coulomb
quadrupole FFs are only at the few percent level relative
to the magnetic dipole FF in the low Q2 range.

We like to notice that in the forward direction, Q2 → 0,
the function D1γ for the ep → e∆ process behaves, for

fixed beam energy, approximately as:

D1γ −→
Q2→0

4

M2
N

{(
s− 1

2
(M2

∆ +M2
N )

)2

+
1

4
(M2

∆ −M2
N )2

}[
G∗2M + 3G∗2E

]
. (19)

In contrast, the corresponding function for the elastic
process ep → ep, which we denote by Del

1γ , behaves
as [29]:

Del
1γ −→

Q2→0

16

Q2
(s−M2

N )2F 2
1

+
4

M2
N

[
(s−M2

N )2F 2
2 − 4sM2

NF
2
1

]
+O(Q2), (20)

where F1 (F2) are the Dirac (Pauli) FFs of the nucleon
respectively. Eq. (20) then leads at forward angles to the
characteristic 1/Q4 Rutherford behavior for the elastic
OPE squared amplitude, defined by Eq. (15). On the
other hand, the ep → e∆ process, which necessarily in-
volves a finite energy and momentum transfer, behaves
as the Pauli (F2) FF term of the elastic process, which
only leads to a 1/Q2 behavior for the squared amplitude
at small Q2. We therefore see that the OPE cross section
for the ep → e∆ process, which enters the denominator
of Bn, is suppressed by one power of Q2 relative to its
elastic counterpart. The TPE amplitude for the ep→ e∆
process, on the other hand, does not have this same sup-
pression at forward angles, as we will see in the following.
As Bn is proportional to the TPE amplitude relative to
the OPE amplitude, see Eq. (4), this leads to an enhance-
ment of Bn for the ep → e∆ process at small values of
Q2, relative to its elastic counterpart.

IV. IMAGINARY (ABSORPTIVE) PART OF
THE TWO-PHOTON EXCHANGE AMPLITUDE

In this section we relate the imaginary part of the TPE
amplitude, which appears in the numerator of Bn, to the
absorptive part of the matrix element for the ep → e∆
process, as shown in Fig. 2.

In the e−p c.m. frame, its contribution can be ex-
pressed as:

AbsT2γ =

∫
d3~l

(2π)32El
ū(k′, s′e)γµ(γ · l +me)γνu(k, se)

× e4

Q2
1Q

2
2

·Wµν(p′, λ′; p, λ) , (21)

where the momenta are defined as indicated on Fig. 2,
with q1 ≡ k − l, q2 ≡ k′ − l, q1 − q2 = q, and where El
is the energy of the intermediate lepton. Furthermore,
Q2

1 ≡ −q2
1 = −(k− l)2 and Q2

2 ≡ −q2
2 = −(k′− l)2 corre-

spond with the virtualities of the two spacelike photons.
Denoting the c.m. angle between initial and final elec-
trons as θcm, the momentum transfer Q2 ≡ −q2 > 0 can
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k l k′

q1 q2

p p′
X

Figure 2. The discontinuity of the two-photon exchange di-
agram. The cut blob represents the absorptive part of the
doubly virtual Compton amplitude on a nucleon.

be expressed as :

Q2 =
(s−M2

N )(s−M2
∆)

2 s
(1− cos θcm) + O(m2

e).(22)

In Eq. (21), the hadronic tensor Wµν(p′, λ′; p, λ) cor-
responds with the absorptive part of the doubly virtual
γ∗N → γ∗∆ tensor for two space-like photons :

Wµν(p′, λ′; p, λ) =
∑
X

(2π)4 δ4(p+ q1 − pX)

×〈∆(p′, λ′)|J†µ(0)|X 〉 〈X|Jν(0)|N(p, λ)〉, (23)

where the sum goes over all possible on-shell intermedi-
ate hadronic states X. We will use the unitarity relation
to express the full non-forward tensor in terms of elec-
troproduction amplitudes γ∗N → X. The number of
intermediate states X which one considers in the calcu-
lation will then put a limit on how high in energy one
can reliably calculate the hadronic tensor of Eq. (23). In
this work, we will model the tensor Wµν as a sum over
different baryon intermediate states, and will explicitly
consider X = N , ∆(1232), S11(1535), and D13(1520),
resonance contributions.

The phase space integral in Eq. (21) runs over the 3-
momentum of the intermediate (on-shell) electron. Eval-
uating the process in the e−p c.m. system, we can express
the c.m. momentum of the intermediate electron as :

|~l|2 =
1

4s

[
(
√
s−me)

2 −W 2
] [

(
√
s+me)

2 −W 2
]
,

(24)
where W 2 ≡ p2

X is the squared invariant mass of the in-
termediate state X. The c.m. momenta of the initial
(and final) electrons are given by the analogous expres-
sion as Eq. (24) by replacing W 2 with M2

N (M2
∆) respec-

tively. The phase space integral in Eq. (21) depends,
besides the magnitude |~l|, upon the solid angle of the in-
termediate electron. We define the polar c.m. angle θ1

of the intermediate electron w.r.t. to the direction of the
initial electron. The azimuthal angle φ1 is chosen such
that φ1 = 0 corresponds with the scattering plane of the
ep → e∆ process. Having defined the kinematics of the

intermediate electron, we can express the virtuality of
both exchanged photons. The virtuality of the photon
with four-momentum q1 is given by :

Q2
1 =

1

2s

[
(s−M2

N +m2
e)(s−W 2 +m2

e)− 4m2
es

−
√

(s−M2
N +m2

e)
2 − 4m2

es

×
√

(s−W 2 +m2
e)

2 − 4m2
es cos θ1

]
. (25)

The virtuality Q2
2 of the second photon has an analogous

expression as Eq. (25) with the replacements MN →M∆

and cos θ1 → cos θ2, where θ2 is the angle between the in-
termediate and final electrons. In terms of the polar and
azimuthal angles θ1 and φ1 of the intermediate electron,
one can express :

cos θ2 = sin θcm sin θ1 cosφ1 + cos θcm cos θ1. (26)

In case the intermediate electron is collinear with the
initial electron (i.e. for θ1 → 0, φ1 → 0), denoting the vir-
tual photon virtualities for this kinematical situation by
Q2
i,V CS ≡ Q2

i (θ1 = 0, φ1 = 0), one obtains from Eq. (25)
that:

Q2
1, V CS ' m2

e

(W 2 −M2
N )2

(s−W 2)(s−M2
N )
,

Q2
2, V CS '

(s−W 2)

(s−M2
N )
Q2 +O(m2

e). (27)

We thus see that when the intermediate and initial elec-
trons are collinear, the photon with momentum ~q1 =
~k − ~k1 is also collinear with this direction, and its vir-
tuality becomes of order of O(m2

e), whereas the other
photon has a large virtuality, of order Q2. For the case
W = MN , this precisely corresponds with the situation
where the first photon is soft (i.e. q1 → 0), and where
the second photon carries the full momentum transfer
Q2

2 ' Q2. For the case W > MN , the first photon is
hard but becomes quasi-real (i.e. Q2

1 ∼ m2
e). In this

case, the virtuality of the second photon is smaller than
Q2. An analogous situation occurs when the intermediate
electron is collinear with the final electron (i.e. θ2 → 0,
φ1 → 0, which is equivalent with θ1 → θcm). The corre-
sponding photon virtualities are obtained from Eq. (27)
by the replacements Q2

1, V CS ↔ Q2
2, V CS andMN ↔M∆.

The second photon is quasi-real in this case, and the first
photon carries a virtuality smaller than Q2. For the spe-
cial case of a ∆ intermediate state W = M∆, the second
photon becomes soft, and the first photon carries the full
momentum transfer Q2. These phase space regions with
one quasi-real photon and one virtual photon correspond
with quasi virtual Compton scattering (quasi-VCS), and
correspond at the lepton side with the Bethe-Heitler pro-
cess, see e.g. Ref. [44] for details. They lead to large en-
hancements in the integrand entering the absorptive part
of the TPE amplitude.

Besides the near singularities corresponding with
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quasi-VCS, where the intermediate electron is collinear
with either the incoming or outgoing electrons, the TPE
process also has a near singularity when the intermedi-
ate electron momentum goes to zero |~l| → 0 (i.e. the
intermediate electron is soft). In this case the first pho-
ton takes on the full momentum of the initial electron,
i.e. ~q1 → ~k, whereas the second photon takes on the full
momentum of the final electron, i.e. ~q2 → ~k′. One im-
mediately sees from Eq. (24) that this situation occurs
when the invariant mass of the hadronic state takes on
its maximal value W = Wmax ≡

√
s −me. In this case,

the photon virtualities are given by :

Q2
1, RCS =

me√
s

{(√
s−me

)2 −M2
N

}
,

Q2
2, RCS =

me√
s

{(√
s−me

)2 −M2
∆

}
. (28)

This kinematical situation with two quasi-real pho-
tons, corresponding with quasi-real Compton scattering
(quasi-RCS), also leads to an enhancement in the corre-
sponding integrand of AbsT2γ .

In the upper panel of Fig. 3, we show the kinemat-
ical accessible regions for the virtualities Q2

1, Q
2
2 in the

phase space integral of Eq. (21) for a beam energy of
Ee = 0.855 GeV corresponding with the A4@MAMI ex-
periment, for different values of the c.m. angle θcm. In
the lower panel we display these phase space regions for
three different values of W , corresponding with the N ,
∆(1232), and S11(1535) intermediate states. We notice
from Fig. 3 that the largest possible photon virtualities
in the TPE amplitude occur for the nucleon intermediate
state, whereas for the S11(1535) intermediate state both
photons have very small virtualities.

Using Eq. (21) for the absorptive part of the TPE am-
plitude, we can then express the normal spin asymmetry
Bn of Eq. (4) for the ep → e∆ process in terms of a
3-dimensional phase-space integral:

Bn = − e2

D1γ(s,Q2)

1

(2π)3

∫ (
√
s−me)2

M2

dW 2

(
s−W 2

8 s

)
×
∫
dΩ1

1

Q2
1Q

2
2

Im (Lκµν H
κµν) , (29)

where the denominator factor D1γ(s,Q2) is originating
from the OPE process as given by Eq. (16), and dΩ1 =
d cos θ1dφ1.

Equivalently, the phase space integration in Eq. (29)
can be re-expressed in a Lorentz invariant way as an in-
tegral over photon virtualities Q2

1 and Q2
2 by using the

Jacobian

J =

∣∣∣∣ ∂Q2
1

∂ cos θ1

∂Q2
2

∂φ1

∣∣∣∣ . (30)

Using Eq.(25) and an analogous expression for Q2
2, the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q1
2(GeV2)

Q
22 (

G
eV

2 )

θ=150∘

θ=30∘

θ=90∘

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

Q12(GeV2)

Q
22
(G
eV

2 )

W=0.9383 GeV

W=1.232 GeV

W=1.535 GeV

Figure 3. Kinematical accessible region for the virtualities
Q2

1, Q
2
2 in the phase space integral of Eqs. (21, 29) entering

the ep → e∆ process. The upper panel shows the phase
space regions for different c.m. angles θcm as indicated on
the ellipses for Ee = 0.855 GeV (s = 2.485 GeV2), and for
W = 0.9383 GeV (i.e. for a nucleon intermediate state). The
lower panel shows the allowed values of the photon virtualities
for different intermediate states for θcm = 30o. We show three
cases corresponding with the contribution of N , ∆(1232) and
S11(1535) excitations. The accessible regions correspond with
the interior of the ellipses. The intersection with the axes
correspond with quasi-VCS, whereas the situation at W =√
s −me where all ellipses shrink to the point Q2

1 = Q2
2 ' 0

corresponds with quasi-RCS.

Jacobian is given by

J =
[
(s−W 2 +m2

e)
2 − 4m2

es
]
/(4s2)

×
[
(s−M2

N +m2
e)

2 − 4m2
es
]1/2

×
[
(s−M2

∆ +m2
e)

2 − 4m2
es
]1/2

× sin θcm sin θ1 sinφ1, (31)
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leading to the equivalent expression for Bn:

Bn = − e2

D1γ(s,Q2)

1

(2π)3

∫ (
√
s−me)2

M2

dW 2

(
s−W 2

8 s

)
×
∫

dQ2
1dQ2

2

J−1(Q1, Q2)

Q2
1Q

2
2

Im (Lκµν H
κµν) , (32)

where the (Q2
1, Q

2
2) integration regions cover the inside of

ellipses as displayed e.g. in Fig. 3.

The integrand in Eqs. (29, 32) arising from the inter-
ference between the OPE and TPE amplitudes has been
expressed as a product of a lepton tensor Lλµν and a
hadron tensor Hλµν . The polarized lepton tensor can be
expressed as a trace using the spin projection technique:

Lκµν = Tr{γκ(/k′ +me)γµ(/l +me)γνγ5 /ξ(/k +me)}, (33)

where ξα is the polarization vector of Eq. (3) for an elec-
tron polarized normal to the scattering plane. We see
from Eq. (33) that the polarized lepton tensor vanishes
for massless electrons. Keeping only the leading term in
me, it is given by:

Lκµν = me (−Tr {γ5γµ/lγν /ξ /k γκ}+ Tr {γ5/k
′γµ/lγν /ξ γκ}

− Tr {γ5/k
′γµγν /ξ /k γκ} ) + O(m2

e). (34)

Furthermore, the unpolarized hadron tensor Hλµν is
given by

Hκµν =
∑
λ,λ′

[ūα(p′, λ′)ΓακN∆(p′, p)u(p, λ)]
∗

×Wµν(p′, λ′; p, λ). (35)

We can express the sum over the hadron spins in Eq. (35)
as a trace by expressing the hadron tensor Wµν through
an operator Ŵ in spin space, defined as:

Wµν(p′, λ′; p, λ) ≡ ūβ(p′, λ′)Ŵ βµν(p′, p)u(p, λ). (36)

The spin summation in Eq. (35) can then be worked out
as:

Hκµν = Tr
{

Γ̃ακN∆(p′, p)P
(3/2)
αβ (p′,M∆)Ŵ βµν(p′, p)

× P (1/2)(p,MN )
}
, (37)

where Γ̃αβN∆ ≡ γ0
(

ΓαβN∆

)†
γ0 stands for the adjoint oper-

ator, and where the spin-3/2 and spin-1/2 projectors for
a state of mass M are defined by:

P (1/2)(p,M) = /p+M, (38)

P
(3/2)
αβ (p,M) = (/p+M)

[
−gαβ +

1

3
γαγβ

+
1

3p2
(/pγαpβ + pαγβ/p)

]
. (39)

For narrow intermediate states X, which we will con-

sider in the following, the hadronic tensor is given by :

Hκµν ≡ (2π)δ(W 2 −M2
X)H̃κµν , (40)

which then reduces the expression for Bn in Eq. (32) to
a 2-dimensional integral:

Bn = − 1

(2π)2

e2

D1γ(s,Q2)

(
s−M2

X

8 s

)
θ(s−M2

X)

×
∫

dQ2
1dQ2

2

J−1(Q1, Q2)

Q2
1Q

2
2

Im
(
Lκµν H̃

κµν
)
. (41)

V. MODELS FOR THE HADRONIC TENSOR

In this Section, we will model the hadronic tensor
Ŵ βµν of Eq. (36) as a sum over different baryon interme-
diate states. We will explicitly considerX = N , ∆(1232),
S11(1535), and D13(1520) resonance contributions in the
blob of Fig. 2. The nucleon contribution is calculable
based on the empirical electromagnetic FFs for the nu-
cleon and for the N → ∆ transition. We will express
the ∆ intermediate state contribution in terms of the ∆
electromagnetic FFs, and will use a lattice calculation
for the latter for an estimate. To estimate the unknown
∆ → S11 and ∆ → D13 electromagnetic transitions, we
will use a constituent quark model to relate them to the
corresponding FFs for the N → S11 and N → D13 elec-
tromagnetic transitions. The latter FFs will be taken
from experiment. We will detail these different contribu-
tions in the following.

A. Nucleon intermediate state contribution

The contribution to Ŵ βµν , corresponding with the nu-
cleon intermediate state in Fig. 2, is exactly calculable in
terms of on-shell γ∗NN and γ∗N∆ vertices as:

Ŵ βµν
N (p′, p)= 2π δ(W 2 −M2

N ) ΓβµN∆(p′, pN )

× P (1/2)(pN ,MN )ΓνNN (pN , p), (42)

with pN ≡ p + q1, where ΓβµN∆ is as in Eq. (12), and the
on-shell γ∗NN vertex ΓνNN is given by:

ΓνNN (pN , p) ≡ (F1 + F2)γν − F2
(p+ pN )ν

2MN
, (43)

with F1(F2) the Dirac (Pauli) proton FFs respectively.
For the nucleon intermediate state contribution, the un-
polarized hadronic tensor entering Eqs. (29, 32) for Bn
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can be written as:

Hκµν
N = 2π δ(W 2 −M2

N )

× Tr
{

Γ̃ακN∆(p′, p)P
(3/2)
αβ (p′,M∆) ΓβµN∆(p′, pN )

×P (1/2)(pN ,MN )ΓνNN (pN , p)P
(1/2)(p,MN )

}
.

(44)

B. ∆(1232) intermediate state contribution

The matrix element of the electromagnetic current op-
erator Jµ between spin 3/2 states can be decomposed into
four multipole transitions: a Coulomb monopole (E0), a
magnetic dipole (M1), an electric quadrupole (E2) and
a magnetic octupole (M3). We firstly write a Lorentz-
covariant decomposition for the on-shell γ∗∆∆ vertex
which exhibits manifest electromagnetic gauge-invariance
as [1]:

〈∆(p′, λ′)|Jµ(0)|∆(p, λ)〉 ≡ ūα(p′, λ′)Γαβµ∆∆ (p′, p)uβ(p, λ),

(45)

where λ (λ′) are the initial (final) ∆ helicities, and where
Γαβµ∆∆ is given by:

Γαβµ∆∆ (p′, p) = −
[
F∆

1 g
αβ + F∆

3

qαqβ

(2M∆)2

]
γµ

−
[
F∆

2 g
αβ + F∆

4

qαqβ

(2M∆)2

]
iσµνqν
2M∆

, (46)

where q = p′ − p. F∆
1,2,3,4 are the ∆ electromagnetic FFs

and depend on Q2. Note that F∆
1 (0) = e∆ is the ∆

electric charge in units of e (e.g., e∆+ = +1). For further
use we also define the quantity τ∆ ≡ Q2/(4M2

∆).
A physical interpretation of the four electromagnetic

∆ → ∆ transitions can be obtained by performing a
multipole decomposition [45, 46]. The FFs F∆

1,2,3,4 can
be expressed in terms of the multipole form factors GE0,
GM1, GE2, and GM3, as [14]:

F∆
1 =

1

1 + τ∆

{
G∆
E0 −

2τ∆
3
G∆
E2

+τ∆

[
G∆
M1 −

4τ∆
5
G∆
M3

]}
,

F∆
2 = − 1

1 + τ∆

{
G∆
E0 −

2τ∆
3
G∆
E2 −G∆

M1 +
4τ∆

5
G∆
M3

}
,

F∆
3 =

2

(1 + τ∆)2

{
G∆
E0 −

(
1 +

2τ∆
3

)
G∆
E2

+τ∆

[
G∆
M1 −

(
1 +

4τ∆
5

)
G∆
M3

]}
,

F∆
4 = − 2

(1 + τ∆)2

{
G∆
E0 −

(
1 +

2τ∆
3

)
G∆
E2

−
[
G∆
M1 −

(
1 +

4τ∆
5

)
G∆
M3

]}
. (47)

At Q2 = 0, the multipole FFs define the charge e∆, the
magnetic dipole moment µ∆, the electric quadrupole mo-
ment Q∆, and the magnetic octupole moment O∆ as:

e∆ = G∆
E0(0), µ∆ =

e

2M∆
G∆
M1(0),

Q∆ =
e

M2
∆

G∆
E2(0), O∆ =

e

2M3
∆

G∆
M3(0). (48)

The inelastic contribution to Ŵ βµν , corresponding
with the ∆(1232) intermediate state in the blob of Fig. 2,
is exactly calculable in terms of on-shell γ∗N∆ and γ∗∆∆
electromagnetic vertices as:

Ŵ βµν
∆ (p′, p) = 2π δ(W 2 −M2

∆) Γβγµ∆∆ (p′, p∆)

× P (3/2)
γδ (p∆,M∆)ΓδνN∆(p∆, p). (49)

with p∆ ≡ p+ q1. This allows us, for the ∆ intermediate
state contribution, to evaluate the unpolarized hadronic
tensor entering Eqs. (29, 32) for Bn as:

Hκµν
∆ = 2π δ(W 2 −M2

∆)

× Tr
{

Γ̃ακN∆(p′, p)P
(3/2)
αβ (p′,M∆)Γβγµ∆∆ (p′, p∆)

× P
(3/2)
γδ (p∆,M∆)ΓδνN∆(p∆, p)P

(1/2)(p,MN )
}
.(50)

In the following, we will study the sensitivity of Bn
to the ∆ electromagnetic FFs. For the purpose of ob-
taining an estimate on the expected size of Bn, we will
also directly compare with lattice calculations for the ∆
FFs. We will use the results for the hybrid lattice calcu-
lation of Ref. [14], which was performed for a pion mass
ofmπ = 353 MeV. The lattice results for G∆

E0, were fitted
in Ref. [14] by a dipole parameterization:

G∆
E0(Q2) =

1

(1 +Q2/Λ2
E0)

2 , (51)

with resulting fit value :

Λ2
E0 = 1.160± 0.078 GeV2. (52)

The FFs G∆
M1 and G∆

E2, were fitted by exponential pa-
rameterizations since the expected large Q2-dependence
for these FFs drops stronger than a dipole:

G∆
M1(Q2) = G∆

M1(0) e−Q
2/Λ2

M1 ,

G∆
E2(Q2) = G∆

E2(0) e−Q
2/Λ2

E2 . (53)

The fit to the lattice calculations found as values [14]:

G∆
M1(0) = 3.04± 0.24, Λ2

M1 = 0.935± 0.122 GeV2,

G∆
E2(0) = −2.06+1.27

−2.35, Λ2
E2 = 0.54+1.69

−0.25 GeV2.

(54)

The magnetic octupole form factor G∆
M3 was found to

be compatible with zero within the statistical accuracy
obtained in Ref. [14], and will be neglected in our calcu-
lation.
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C. S11(1535) intermediate state contribution

In this section we consider the contribution to Bn when
the intermediate state corresponds with the S11(1535)
resonance. The S11(1535) resonance, with mass MS =
1.535 GeV, and quantum numbers I = 1/2 and JP =
1/2−, is the negative parity partner of the nucleon.

A Lorentz-covariant decomposition of the matrix el-
ement of the e.m. current operator Jµ for the γ∗NS11

transition, satisfying manifest e.m. gauge-invariance, can
be written as:

〈S11(pS , λS)|Jµ(0)|N(p, λ)〉
≡ ψ̄(pS , λS)ΓµNS(pS , p)u(p, λ), (55)

where ψ is the spinor for the S11 field, pS (λS) its four-
momentum (helicity) respectively, and where the vertex
ΓµNS is given by:

ΓµNS(pS , p) = FNS1

(
γµ − γ · q q

µ

q2

)
γ5

+ FNS2

iσµνqν
(MN +MS)

γ5, (56)

with q ≡ pS − p. The functions FNS1,2 are the e.m. FFs
for the γ∗NS11 transition and depend on Q2.

Equivalently, one can parametrize the γ∗NS11 tran-
sition through two helicity amplitudes A1/2 and S1/2,
which are defined in the S11 rest frame. These S11 rest
frame helicity amplitudes are defined through the follow-
ing matrix elements of the e.m. current operator:

ANS1/2 ≡ NNS〈S11(~0,+1/2) | Jµ · εµλ=+1 |N(−~q,−1/2)〉,
SNS1/2 ≡ NNS〈S11(~0,+1/2) | J0 |N(−~q,+1/2)〉, (57)

where both spinors are chosen to have the indicated
spin projections along the z-axis (which is chosen along
the virtual photon direction) and where the transverse
photon polarization vector entering A1/2 is given by
~ελ=+1 = −1/

√
2(1, i, 0). Furthermore in Eq. (57), we

introduced the conventional normalization factor

NNS ≡
e√

4MN (M2
S −M2

N )
. (58)

The helicity amplitudes are also functions of the pho-
ton virtuality Q2 and have been extracted from data on
the pion electroproduction process on the proton. Us-
ing the empirical parameterizations of the helicity ampli-
tudes ApS1/2, and S

pS
1/2 from Ref. [43], which are listed in

Eq. (A.8), the transition FFs can then be obtained as:

FNS1 =
Q2

√
2NNSQNS+Q2

NS−

×
{
ANS1/2 − (MS −MN )

√
2

(
2MS

QNS+QNS−

)
SNS1/2

}
,

FNS2 =
(M2

S −M2
N )√

2NNSQNS+Q2
NS−

×
{
ANS1/2 +

Q2

(MS −MN )

√
2

(
2MS

QNS+QNS−

)
SNS1/2

}
,

(59)

where we generalized the shorthand notation of Eq. (13)
as:

Q2
ij± ≡ Q2 + (Mi ±Mj)

2, (60)

with i, j = N,∆, S,D denoting the N , ∆, S11, D13 states
in the following.

A Lorentz-covariant decomposition of the matrix ele-
ment of the e.m. current operator Jµ for the transition
γ∗S11∆, satisfying manifest e.m. gauge-invariance, can
be written as:

〈S11(pS , λS)|Jµ(0)|∆(p∆, λ∆)〉
≡ ψ̄(pS , λS)Γαµ∆S(pS , p∆)uα(p∆, λ∆), (61)

where the vertex Γαµ∆S is given by:

Γαµ∆S(pS , p∆) =
1

Q∆S−Q∆S+

×
{

(qα γµ − γ · q gαµ)M∆ F∆S
1

+ (qα Pµ − q · P gαµ) F∆S
2

+
(
qα qµ − q2 gαµ

)
F∆S

3

}
, (62)

where P ≡ (p∆ + pS)/2 and q ≡ pS − p∆. In the defini-
tion of Eq. (62), the FFs are defined for the ∆+ → S11

transition, and the prefactor 1/(Q∆S−Q∆S+) was chosen
such that the resulting e.m. FFs F∆S

1,2,3 are dimensionless.
The helicity amplitudes are defined through the fol-

lowing specific matrix elements of the electromagnetic
current operator

A∆S
−1/2 ≡ N∆S〈S11(~0,−1/2) | Jµ · εµλ=+1 |∆(−~q,−3/2)〉,
A∆S

1/2 ≡ N∆S〈 S11(~0,+1/2) | Jµ · εµλ=+1 |∆(−~q,−1/2)〉,
S∆S

1/2 ≡ N∆S〈 S11(~0,+1/2) | J0 |∆(−~q,+1/2)〉, (63)

where the subscripts on the helicity amplitudes indicate
the S11 spin projections along the z-axis (which is cho-
sen along the virtual photon direction), and where we
introduced the normalization factor

N∆S ≡
e√

4MS(M2
S −M2

∆)
. (64)

Note that we can relate the above helicity amplitudes
A∆B
λB

for the ∆ → B transition, in the rest frame of the
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baryon resonance B with helicity λB , to the correspond-
ing amplitudes AB∆

λ∆
for the B → ∆ transition, in the

rest frame of the ∆ with helicity λ∆, as:

AB∆
λ∆

= ηBη∆A
∆B
1−λ∆

, (65)

with ηB , η∆ the corresponding intrinsic parities.
The relations between the helicity amplitudes of

Eq. (63) and the transition FFs for the electromagnetic
∆→ S11 transition can be obtained as:

F∆S
1 = − 1

N∆S Q∆S−

[√
3A∆S

1/2 −A∆S
−1/2

]
,

F∆S
2 =

1

N∆S Q∆S−

[√
3A∆S

1/2 −A∆S
−1/2

]
− (Q2 +M2

S −M2
∆)

N∆SQ2
∆S+Q∆S−

[√
3A∆S

1/2 +A∆S
−1/2

]
− 4

√
6M∆MSQ

2

N∆SQ3
∆S+Q

2
∆S−

S∆S
1/2 ,

F∆S
3 = − 1

2N∆S Q∆S−

[√
3A∆S

1/2 −A∆S
−1/2

]
+

(Q2 +M2
S + 3M2

∆)

2N∆SQ2
∆S+Q∆S−

[√
3A∆S

1/2 +A∆S
−1/2

]
− 2
√

6M∆MS(M2
S −M2

∆)

N∆SQ3
∆S+Q

2
∆S−

S∆S
1/2 .

(66)

As the helicity amplitudes A∆S
−1/2, A

∆S
1/2, and S

∆S
1/2 are

not know from experiment, we will estimate them using
a non-relativistic quark model, as detailed in the Ap-
pendix. The quark model provides relations between the
helicity amplitudes for the ∆ → S11 transition and the
corresponding ones for the p → S11 and p → D13 tran-
sitions, as given by Eqs. (A.5,A.7). For the numerical
estimates, we will use these relations and use the empir-
ical results of Eq. (A.8) for the electromagnetic p→ S11

and p→ D13 helicity amplitudes as input.
The inelastic contribution to Ŵ βµν , corresponding

with the S11(1535) intermediate state, can then be ex-
pressed in terms of on-shell γ∗NS11 and γ∗∆S11 vertices
as:

Ŵ βµν
S11

(p′, p) = 2π δ(W 2 −M2
S) Γ̃βµ∆S(pS , p

′)

× P (1/2)(pS ,MS)ΓνNS(pS , p), (67)

where the adjoint vertex Γ̃βµ∆S ≡ γ0
(

Γβµ∆S

)†
γ0 is given by

exactly the same operator as in Eq. (62), with q = pS−p′
in this case denoting the outgoing photon momentum.

This allows us, for the S11 intermediate state contribu-
tion, to evaluate the unpolarized hadronic tensor entering
Eqs. (29, 32) for Bn as:

Hκµν
S11

= 2π δ(W 2 −M2
S)

× Tr
{

Γ̃ακN∆(p′, p)P
(3/2)
αβ (p′,M∆)Γ̃βµ∆S(pS , p

′)

× P (1/2)(pS ,MS)ΓνNS(pS , p)P
(1/2)(p,MN )

}
. (68)

D. D13(1520) intermediate state contribution

We next consider the contribution to Bn when the in-
termediate state corresponds with the D13(1520) reso-

nance. This is the lowest mass baryon resonance, with
mass MD = 1.520 GeV, which has quantum numbers
I = 1/2 and JP = 3/2−.

A Lorentz-covariant decomposition of the matrix ele-
ment of the e.m. current operator Jµ for the γ∗ND13

transition, satisfying manifest e.m. gauge-invariance, is
given by:

〈D13(pD, λD)|Jµ(0)|N(p, λ)〉
≡ ψ̄α(pD, λD)ΓαµND(pD, p)u(p, λ), (69)

with pD (λD) denoting the four-momentum (helicity)
of the D13 state respectively, where ψα is the Rarita-
Schwinger spinor for the D13 field, and where the vertex
ΓαµND is given by:

ΓαµND(pD, p) =
1

QND−QND+

×
{

(qα γµ − q · γgαµ)MDF
ND
1

+ (qα pD
µ − q · pD gαµ)FND2

+
(
qα qµ − q2 gαµ

)
FND3

}
, (70)

with q ≡ pD − p. In Eq. (70), the prefactor was chosen
such that the resulting e.m. FFs FND1,2,3 are dimensionless.

In the same way as we did for the γ∗NS11 transition
above, one can also parametrize the γ∗ND13 transition
through helicity amplitudes in the D13 rest frame. For
the spin-3/2 resonance, we need three helicity amplitudes
AND3/2 , A

ND
1/2 and SND1/2 , which are defined through the fol-

lowing matrix elements of the e.m. current operator:

AND3/2 ≡ NND〈D13(~0,+3/2)| Jµ · εµλ=+1 |N(−~q,+1/2)〉,
AND1/2 ≡ NND〈 D13(~0,+1/2)| Jµ · εµλ=+1 |N(−~q,−1/2)〉,
SND1/2 ≡ NND〈 D13(~0,+1/2)| J0 |N(−~q,+1/2)〉, (71)
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with NND defined, analogously as in Eq. (58), as

NND ≡
e√

4MN (M2
D −M2

N )
. (72)

Using the empirical parameterizations of the helicity am-
plitudes ApD3/2, A

pD
1/2, and SpD1/2 from Ref. [43], which are

listed in Eq. (A.8), the transition FFs can then be ob-
tained as:

FND1 =
1

NNDQND−

{
AND3/2 −

√
3AND1/2

}
,

FND1 + FND2 =
1

NNDQ2
ND+QND−

×
{

(M2
D −M2

N −Q2)
[
AND3/2 +

√
3AND1/2

]
− 4
√

6M2
DQ

2

QND+QND−
SND1/2

}
,

FND3 = − 2M2
D

NNDQ2
ND+QND−

{
AND3/2 +

√
3AND1/2

+

√
6(M2

D −M2
N −Q2)

QND+QND−
SND1/2

}
. (73)

A Lorentz-covariant decomposition for the on-shell
γ∗∆D13 vertex which exhibits manifest electromagnetic
gauge-invariance as:

〈D13(pD, λD)|Jµ(0)|∆(p∆, λ∆)〉
≡ ψ̄β(pD, λD)Γαβµ∆D (pD, p∆)uα(p∆, λ∆), (74)

where p∆ (pD) are the four-momenta and λ∆ (λD) the
helicities of ∆ (D13) respectively, and where the vertex
Γαβµ∆D is given by:

Γαβµ∆D (pD, p∆) =

−
[
F∆D

1 gαβ + F∆D
3

qαqβ

(M∆ +MD)2

](
γµ − γ · q q

µ

q2

)
γ5

−
[
F∆D

2 gαβ + F∆D
4

qαqβ

(M∆ +MD)2

]
iσµνqν

(M∆ +MD)
γ5

− F∆D
5

(M∆ +MD)

(
gαµqβ − gβµqα

)
γ5, (75)

where q ≡ pD − p∆.

Although we will only need on-shell vertices in this
work, one can also define consistent vertices for off-shell
spin-3/2 particles which satisfy a spin-3/2 gauge invari-
ance, as discussed in Ref. [47, 48], i.e. (p∆)αΓαβµ∆D = 0

and (pD)βΓαβµ∆D = 0, by replacing e.g. in Eq. (75):

gαβ → 1

M2
∆M

2
D

{
p2

∆p
2
Dg

αβ − p2
∆p

α
Dp

β
D − p2

Dp
α
∆p

β
∆

+p∆ · pDpα∆pβD
}
, (76)

or

qαqβ →
(
qα − q · p∆

p2
∆

pα∆

)(
qβ − q · pD

p2
D

pβD

)
. (77)

For the ∆ → D13 amplitude, there are five helicity
amplitudes, defined by the following matrix elements of
the e.m. current operator,

A∆D
3/2 ≡ N∆D〈D13(~0,+3/2)|Jµ · εµλ=+1 |∆(−~q,+1/2)〉,

A∆D
1/2 ≡ N∆D〈D13(~0,+1/2) | Jµ · εµλ=+1 |∆(−~q,−1/2)〉,

A∆D
−1/2 ≡ N∆D〈D13(~0,−1/2) | Jµ · εµλ=+1 |∆(−~q,−3/2)〉,
S∆D

3/2 ≡ N∆D〈D13(~0,+3/2) | J0 |∆(−~q,+3/2)〉,
S∆D

1/2 ≡ N∆D〈D13(~0,+1/2) | J0 |∆(−~q,+1/2)〉, (78)

where N∆D is defined as

N∆D ≡
e√

4MD(M2
D −M2

∆)
. (79)

It is also convenient to introduce

F̃∆D
1,3 = F∆D

1,3 +

(
MD −M∆

MD +M∆

)
F∆D

2,4 . (80)

The helicity amplitudes for the electromagnetic ∆→ D13

transition are obtained as:
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A∆D
3/2 = N∆D

√
2

3
Q∆D+

{
F̃∆D

1 − Q2
∆D−

2M∆(MD +M∆)
F∆D

5

}
,

A∆D
−1/2 = N∆D

√
2

3
Q∆D+

{
F̃∆D

1 +
Q2

∆D−
2MD(MD +M∆)

F∆D
5

}
,

A∆D
1/2 = N∆D

√
2

6

Q∆D+

M∆MD

{
2
(
Q2 +M2

D +M2
∆

)
F̃∆D

1 − Q2
∆D+Q

2
∆D−

(MD +M∆)2
F̃∆D

3 +
(MD −M∆)Q2

∆D−
(MD +M∆)

F∆D
5

}
,

S∆D
3/2 = N∆D

Q2
∆D+Q∆D−

2MDQ2

{
−(MD −M∆)F̃∆D

1 +
Q2

∆D−
(MD +M∆)

F∆D
2

}
,

S∆D
1/2 = N∆D

Q2
∆D+Q∆D−

6M2
DM∆Q2

{
(Q2 +M2

D +M2
∆ −MDM∆)

[
−(MD −M∆)F̃∆D

1 +
Q2

∆D−
(MD +M∆)

F∆D
2

]
+

Q2
∆D+Q

2
∆D−

2(MD +M∆)2

[
(MD −M∆)F̃∆D

3 − Q2
∆D−

(MD +M∆)
F∆D

4

]
+

Q2
∆D−Q

2

(MD +M∆)
F∆D

5

}
. (81)

Inverting the relations in Eq. (81) gives

F̃∆D
1 =

√
3

2

1

N∆DQ∆D+(MD +M∆)

(
MDA

∆D
−1/2 +M∆A

∆D
3/2

)
,

F∆D
2 =

(MD +M∆)

N∆DQ2
∆D+Q

3
∆D−

{
2MDQ

2S∆D
3/2 +

√
3

2
Q∆D+Q∆D−

(MD −M∆)

(MD +M∆)

(
MDA

∆D
−1/2 +M∆A

∆D
3/2

)}
,

F̃∆D
3 =

√
6

(MD +M∆)

N∆DQ3
∆D+Q

2
∆D−

{
MD

(
Q2 +MD(MD +M∆)

)
A∆D
−1/2 +M∆

(
Q2 +M∆(MD +M∆)

)
A∆D

3/2

−
√

3MDM∆(MD +M∆)A∆D
1/2

}
,

F∆D
4 =

2(MD +M∆)3

N∆DQ4
∆D+Q

5
∆D−

{
2MDQ

2
[
(Q2 +M2

D +M2
∆ −MDM∆)S∆D

3/2 − 3M∆MDS
∆D
1/2

]
+

√
3

2
Q∆D+Q∆D−

[
MD(Q2 +MD(MD −M∆))A∆D

−1/2 −M∆(Q2 −M∆(MD −M∆))A∆D
3/2

−
√

3MDM∆(MD −M∆)A∆D
1/2

]}
,

F∆D
5 =

√
6

MDM∆

N∆DQ∆D+Q2
∆D−

(
A∆D
−1/2 −A∆D

3/2

)
. (82)

As discussed above for the electromagnetic ∆ → S11

transition, for our numerical estimates we will also use
the quark model to relate the helicity amplitudes for
the ∆ → D13 transition to the corresponding ones for
the p → S11 and p → D13 transitions, as given by
Eqs. (A.5,A.7), and use the empirical results of Eq. (A.8)
for the latter.

The inelastic contribution to Ŵ βµν , corresponding
with the D13(1520) intermediate state, can then be ex-
pressed in terms of on-shell γ∗ND13 and γ∗∆D13 vertices

as:

Ŵ βµν
D13

(p′, p) = 2π δ(W 2 −M2
D) Γ̃βγµ∆D (pD, p

′)

× P (3/2)
γδ (pD,MD)ΓδνND(pD, p), (83)

where the adjoint vertex Γ̃βγµ∆D ≡ γ0
(

Γβγµ∆D

)†
γ0 is given

by the same operator as in Eq. (75), with q = pD − p′ in
this case denoting the outgoing photon momentum, and
where in addition the sign of the term proportional to
the FF F∆D

5 is reversed.
This allows us, for theD13 intermediate state contribu-
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tion, to evaluate the unpolarized hadronic tensor entering
Eqs. (29, 32) for Bn as:

Hκµν
D13

= 2π δ(W 2 −M2
D)

× Tr
{

Γ̃ακN∆(p′, p)P
(3/2)
αβ (p′,M∆)Γ̃βγµ∆D (pD, p

′)

× P
(3/2)
γδ (pD,MD)ΓδνND(pD, p)P

(1/2)(p,MN )
}
.

(84)

VI. RESULTS AND DISCUSSION

In this section, we will show estimates for the nor-
mal beam SSA using the hadronic model described
above, which includes the contributions of N , ∆(1232),
S11(1535), and D13(1520) intermediate states.

To visualize the contributions from different kinemati-
cal regions entering Eq. (41) for Bn, we will show density
plots of the integrand, which are defined through

Bn ≡
∫

dQ2
1dQ2

2

Q2
1Q

2
2

I(Q2
1, Q

2
2). (85)

Due to the photon virtualities in the denominator, the
full integrand of Bn is very strongly peaked towards the
quasi-VCS regions, where either Q2

1 or Q2
2 becomes of

order O(m2
e), see Eq. (27), corresponding with the physi-

cal situations where the intermediate electron is collinear
with either the incident or scattered electrons. Fur-
thermore, when

√
s approaches the invariant mass W

of an intermediate baryon resonance, one also obtains
an enhancement as both photons become quasi-real, see
Eq. (28). As the integrand is amplified in the region of
small Q2

1 and/or Q2
2 due to these near singularities, spe-

cial care is needed when integrating over these regions
numerically.

The electromagnetic transition strengths are encoded
in the dimensionless density function I(Q2

1, Q
2
2) in

Eq. (85). Using the model for the hadronic tensor
outlined in Section V, we show the density functions
I(Q2

1, Q
2
2) for a beam energy Ee = 0.855 GeV of the

A4@MAMI experiment, in Figs. 4 and 5 for the N and
∆(1232) intermediate states respectively.

In Fig. 6, we show our result for the angular depen-
dence of Bn for a beam energy Ee = 1.165 GeV, cor-
responding with the Qweak@JLab experiment [38]. We
notice from Fig. 6 that the nucleon and ∆ intermediate
state contributions to Bn are strongly forward peaked.
This behavior for the ep→ e∆ process is unlike the corre-
sponding Bn for the elastic process. The measured value
for Bn for the elastic ep→ ep process ranges from a few
ppm in the forward angular range to around a hundred
ppm in the backward angular range for beam energies be-
low and around 1 GeV [31–37], in good agreement with
theoretical TPE expectations [29]. For the inelastic pro-
cess ep → e∆, we expect an enhancement of Bn in the
forward angular range, corresponding with low Q2, since
the OPE process which enters the denominator of Bn,

Figure 4. Plot of the density I(Q2
1, Q

2
2) entering the integrand

of Bn in Eq. (85) for the nucleon intermediate state contribu-
tion for Ee = 0.855 GeV. The upper and lower panels show
the distribution for θcm = 30 deg and θcm = 150 deg, re-
spectively. The integrand takes zero value along the dashed
curve. Larger negative (positive) values of I correspond with
stronger shades of blue (red). The distance between the con-
tours corresponds with 0.5 × 10−8 for the upper panel and
1.25× 10−7 for the bottom panel.

is suppressed by one power of Q2 relative to its elastic
counterpart, as seen from Eqs. (19, 20). We furthermore
see from Fig. 6 that the sum of S11(1535) + D13(1520)
contributions do not show such forward angular enhance-
ment as their electromagnetic transitions are suppressed
by an extra momentum transfer. The S11 and D13 con-
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Figure 5. Plot of the density I(Q2
1, Q

2
2) entering the inte-

grand of Bn in Eq. (85) for the ∆ intermediate state con-
tribution for Ee = 0.855 GeV. The upper and lower panels
show the distribution for θcm = 30 deg and θcm = 150 deg,
respectively. The integrand takes zero value along the dashed
curve. Larger negative (positive) values of I correspond with
stronger shades of blue (red). The distance between the con-
tours corresponds with 0.5 × 10−7 for the upper panel and
0.5× 10−6 for the bottom panel.

tributions show a similar size and strength, and their
combined contribution to Bn becomes larger than the
∆(1232) contribution for angles θlab > 45 deg.

In Fig. 6, we also show a first data point for the beam
normal SSA for the e−p → e−∆+(1232) process which
has been reported by the Qweak Coll. [38]. Despite its
large error bar, the data point at a forward angle of

E
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 = 1.165 GeV

θ
lab

 ( deg )

B
n
 (

p
p

m
)

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90

Figure 6. Beam normal spin asymmetry Bn for the e−p →
e−∆+ process as function of the lab scattering angle for a
beam energy Ee = 1.165 GeV. The curves denote the contri-
butions from different intermediate states: nucleon (dashed-
dotted red curve); ∆(1232) (dashed blue curve); S11(1535) +
D13(1520) (dotted violet curve); N + ∆ + S11(1535) +
D13(1520) (solid black curve). The data point is from the
Qweak Coll. [38].

θlab = 8.3 deg shows a large value of Bn of around 40 ppm
for this process. The data point is very well described
both in sign and magnitude by our calculation, confirm-
ing the large expected enhancement in the forward angu-
lar range. Since the S11(1535) +D13(1520) contribution
is very small at this angle, Bn is dominated by N and ∆
intermediate states at this forward angle. Furthermore,
since the N → N , N → ∆ electromagnetic transitions
are well known from experiment, and the ∆→ ∆ electro-
magnetic transition is completely dominated by the cou-
pling to the ∆+ charge at this forward angle, the model
dependence in our prediction is very small at this angle.

In Figs. 7 and 8, we show the corresponding re-
sults for different kinematics corresponding with the
A4@MAMI experiment. Fig. 7 shows the result for
Ee = 0.855 GeV. This beam energy corresponds with
a value

√
s ≈ 1.58 GeV, which is closer to the S11(1535)

and D13(1520) thresholds. We therefore expect an en-
hancement of their contributions. As one gets very close
to the threshold for an intermediate state contribution,
one approaches the situation where the intermediate elec-
tron becomes soft, and both photons have small virtu-
alities, see Eq. (28), corresponding with the quasi-real
Compton process.

Fig. 8 shows the results for Bn for two beam ener-
gies of the A4@MAMI experiment below the thresholds
for S11(1535) and D13(1520). These kinematical situ-
ations are therefore dominated by N and ∆ interme-
diate state contributions. We see that the correspond-
ing asymmetries become large at forward angles. In
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Figure 7. Beam normal spin asymmetry Bn for the e−p →
e−∆+ process as function of the lab scattering angle for
a beam energy Ee = 0.855 GeV where data have been
taken by the A4@MAMI experiment [32, 33]. The curves
denote the contributions from different intermediate states:
nucleon (dashed-dotted red curve); ∆(1232) (dashed blue
curve); S11(1535) +D13(1520) (dotted violet curve); N + ∆ +
S11(1535) +D13(1520) (solid black curve).

the angular range θlab = 30 − 40 deg, where poten-
tial data exist from the A4@MAMI experiment, we pre-
dict Bn ' 200 − 250 ppm for Ee = 0.420 GeV, and
Bn ' 75 − 95 ppm for Ee = 0.570 GeV. It will be in-
teresting to confront these numbers with experiment.

In Fig. 9, we also show the sensitivity of Bn at Ee =
0.570 GeV to the value of the ∆+ magnetic dipole mo-
ment µ∆. We compare our results for three values of
µ∆ corresponding with the theoretical uncertainty range
which is currently listed by PDG, given in Eq. (1). We see
from Fig. 9 that for θlab around 90◦, Bn varies by around
5 ppm when varying µ∆ in the range µ∆ = 1.5− 4.5 (in
units e/(2M∆)), in a region where Bn is about 28 ppm.

VII. CONCLUSIONS

In this work, we have presented the general formal-
ism to describe the beam normal spin asymmetry Bn
for the ep → e∆+(1232) process. This beam normal
SSA arises from an interference between a one-photon
exchange amplitude and the absorptive part of a two-
photon exchange amplitude. As the intermediate state in
the TPE amplitude is on its mass shell, it allows access
to the ∆→ ∆ and N∗ → ∆ electromagnetic transitions,
which otherwise are not accessible in an experiment with-
out resorting to a theory framework. We have provided
estimates for this asymmetry by considering nucleon,
∆(1232), S11(1535), and D13(1520) intermediate states.
We find that Bn for the ep→ e∆ process shows a strong
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Figure 8. Beam normal spin asymmetry Bn for the e−p →
e−∆+ process as function of the lab scattering angle, for
beam energies in the ∆-resonance region where data have
been taken by the A4@MAMI experiment [32, 33]. Upper
panel: Ee = 0.420 GeV; lower panel: Ee = 0.570 GeV). The
curves denote the contributions from different intermediate
states: nucleon (dashed-dotted red curves); ∆(1232) (dashed
blue curves); N + ∆ (solid black curves).

enhancement in the forward angular range, as compared
to its counterpart for the elastic process ep→ ep, which
has been measured by several collaborations. The for-
ward enhancement of Bn for the inelastic process is due
to the OPE process for the ep→ e∆ process, entering the
denominator of Bn, which is suppressed by one power of
Q2 relative to its elastic counterpart. The normal beam
SSA for the ep → e∆ reaction therefore offers an in-
creased sensitivity to the absorptive part of the TPE
amplitude. We have compared our results for Bn with
the first data point for the e−p → e−∆+ process from
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Figure 9. Sensitivity of the beam normal spin asymmetry
Bn for the e−p → e−∆+ process at Ee = 0.570 GeV on the
∆+ magnetic dipole moment. The curves denote the contri-
butions from N + ∆ intermediate states for different values
of µ∆ (in units of e/(2M∆)): µ∆ = 1.5 (blue dashed curve);
µ∆ = 3.0 (black solid curve); µ∆ = 4.5 (red dashed-dotted
curve).

the Qweak@JLab experiment and found that the forward
angle data point is very well described both in sign and
magnitude by our calculation. We have also given pre-
dictions for the A4@MAMI experiment, for which data
have been taken, and have shown the sensitivity of this
observable to the ∆+ magnetic dipole moment. It will
be interesting to analyse those data and provide a com-
parison with the above theory predictions.
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Appendix: Electromagnetic ∆→ S11 and ∆→ D13

transitions in the quark model

For calculations with the S11 and D13 intermediate
states, we need the ∆ → S11 and ∆ → D13 transition
matrix elements, as well as the proton to S11 and D13

matrix elements. The latter are known from analyses of
scattering with proton targets [43], but for the former no
direct experimental information is available.

However, using ideas from SU(6) or from the con-
stituent quark model one can relate the transition ma-
trix elements involving ∆s to those involving nucleons.
We shall implement these ideas in a nonrelativistic (NR)
limit, and give the helicity amplitudes for the transitions
connecting a ∆ to the S11 or D13 in terms of those con-
necting a proton to the same states. A summary of the
techniques and the relevant results are given here. De-
tails regarding the techniques can be found in [49], and
the same methods of course can be used for other tran-
sitions as well [49–52].

The helicity matrix elements, defined for the present
cases in Eqs. (63) and (78), contain the operators Jµ ·εµλ=1
and J0. At the quark level in a NR limit, these operators
become

Jµ · εµλ=1 → 3Aeq3S3+ + 3Beq3L3+ ,

J0 → 3Ceq3 . (A.1)

The operators are written in anticipation of use in a wave
function completely antisymmetric among the quarks, so
we only evaluate for the third quark and multiply by
3; eq3 is the charge of the third quark, S3+ is the spin
raising operator for the third quark, and L3+ similarly
is the angular momentum raising operator. We have let
the photon three-momentum be in the z-direction. The
factors A, B, and C depend on position; C is the simplest
example being just eiqz3 where z3 is the z coordinate
of the third quark. Details of the derivations may be
found in [49] starting from a Hamiltonian formalism, and
one can obtain the same results using a NR reduction of
standard relativistic expressions for the current.

The ∆ state has the same spatial wave function as the
nucleon state, and may in short form be given as

|∆(Sz)〉 = |ψS00φ
SχSSz 〉 , (A.2)

where ψ, φ, and χ respectively represent the space, flavor,
and spin wave functions of the three quarks, the color
wave function is tacit, superscripts S indicate a wave
function that is totally symmetric, the subscripts on the
space wave function indicate orbital angular momentum
and projection, L and Lz, and the subscript on the spin
wave function is the spin projection. The flavor wave
function, here and elsewhere in this section, is chosen to
be for the total charge +1 state.

The states S11(1535) and D13(1520) are negative par-
ity states usually associated with the SU(6) 70-plet states
where the three quarks are collectively in a spin-1/2, fla-
vor octet state. Mixing with other states is possible but
will be ignored for now. The wave functions, again in
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short form, are

|J, Jz〉 =
1

2

∑
Lz,Sz

(
J 1 1/2
Jz Lz Sz

)
×
{
ψMS

1Lz

(
−φMSχMS

Sz + φMAχMA
Sz

)
+ ψMA

1Lz

(
φMAχMS

Sz + φMSχMA
Sz

)}
, (A.3)

where J is a stand-in for S11 when J = 1/2 or D13 when
J = 3/2. The first symbol after the summation sign
is Clebsch-Gordan coefficient, and superscripts MS and
MA stand for mixed symmetry states where the first pair
of quarks is either symmetric or antisymmetric.

The crucial matrix elements involving the spatial wave
function of the ground state N or ∆ on one side and the
mixed symmetry states of the 70-plet on the other side
are

A1(Q2) = 〈ψMS
10 |A|ψS00〉 ,

B1(Q2) = 〈ψMS
11 |BL3+|ψS00〉 ,

C1(Q2) = 〈ψMS
10 |C|ψS00〉 , (A.4)

where A1, B1, and C1 are generally real. The MA states
do not enter because of symmetry considerations. Then,

A∆S
1/2 =

NS∆

3
√

3
A1(Q2),

A∆S
−1/2 = −NS∆

3
A1(Q2),

A∆D
3/2 = 0,

A∆D
1/2 = −ND∆

3

√
2

3
A1(Q2),

A∆D
−1/2 = −ND∆

√
2

3
A1(Q2). (A.5)

The B amplitudes also do not enter, because of the mis-
matched spins of the ∆ and S11, D13 quark wave func-
tions, meaning that the S3+ operator is always needed.
Similarly, all the scalar S11 and D13 transition ampli-
tudes to the ∆ are zero. Normalizations NS∆ and ND∆

are given in Eqs. (64) and (79), respectively.

A pair of proton to 70-plet amplitudes are

ApS1/2 =
NpS√

6

(
−A1(Q2) +

√
2B1(Q2)

)
,

ApD1/2 =
NpD√

6

(√
2A1(Q2) +B1(Q2)

)
. (A.6)

These allow us to obtain A1 from measured amplitudes,

A1(Q2) =

√
2

3

(√
2ApD1/2

NpD
−
ApS1/2

NpS

)
. (A.7)

The MAID parameterizations are [43]:

ApS1/2 = 66.4× 10−3 GeV−1/2
(
1 + 1.608Q2

)
e−0.70Q2

,

SpS1/2 = −2.0× 10−3 GeV−1/2
(
1 + 23.9Q2

)
e−0.81Q2

,

ApD1/2 = −27.4× 10−3 GeV−1/2

×
(
1 + 8.580Q2 − 0.252Q4 + 0.357Q8

)
e−1.20Q2

,

ApD3/2 = 160.6× 10−3 GeV−1/2

×
(
1− 0.820Q2 + 0.541Q4 − 0.016Q8

)
e−1.06Q2

,

SpD1/2 = −63.5× 10−3 GeV−1/2
(
1 + 4.19Q2

)
e−3.40Q2

,

(A.8)

for Q2 in GeV2.
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