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ABSTRACT

The Qweak experiment has tested the Standard Model through making a precise
measurement of the weak charge of the proton (Qp

W). This was done through
measuring the parity-violating asymmetry for polarized electrons scattering off
of unpolarized protons. The parity-violating asymmetry measured is directly
proportional to the four-momentum transfer (Q2) from the electron to the
proton. The extraction of Qp

W from the measured asymmetry requires a precise
Q2 determination. The Qweak experiment had a Q2 = 24.8± 0.1 m(GeV2) which
achieved the goal of an uncertainty of ≤ 0.5%. From the measured asymmetry
and Q2, Qp

W was determined to be 0.0719± 0.0045, which is in good agreement
with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible
“new physics”. This dissertation describes the analysis of Q2 for the Qweak

experiment.
Future parity-violating electron scattering experiments similar to the Qweak

experiment will measure asymmetries to high precision in order to test the
Standard Model. These measurements will require the beam polarization to be
measured to sub-0.5% precision. Presently the electron beam polarization is
measured through Møller scattering off of a ferromagnetic foil or through using
Compton scattering, both of which can have issues reaching this precision. A
novel Atomic Hydrogen Møller Polarimeter has been proposed as a non-invasive
way to measure the polarization of an electron beam via Møller scattering off of
polarized monatomic hydrogen gas. This dissertation describes the development
and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Møller
Polarimeter.
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Chapter 1

Introduction

This dissertation is on two projects, which are both related to parity-violating electron

scattering. The first chapters deal with the Qweak experiment which was conducted

at the medium energy electron accelerator, Thomas Jefferson National Accelerator

Facility (Jefferson Lab or simply JLab) for two years ending in 2012. It had the goal

of measuring the weak charge of the proton at low momentum transfer by scattering

polarized electrons off of protons. For this I will present my work on finding the

momentum transfer from the electron to the proton for the experiment.

The second half is on the Atomic Hydrogen Møller Polarimeter or “Hydro-Møller”,

a new technique proposed by E. A. Chudakov and V. G. Luppov [1, 2], which would

improve the present methods of measuring the polarization of an electron beam

through Møller scattering from a target made of monatomic hydrogen (H) gas. This

polarimeter would be useful in future electron scattering experiments at JLab and

the MAMI accelerator at the Johannes Gutenberg University, Mainz in Germany.

The Johannes Gutenberg University, Mainz is building a new Mainz Energy Recovery

Superconducting Accelerator (MESA) which will host a future proton weak charge

experiment, called the P2 experiment. At JLab, the MOLLER experiment will make

a measurement of the electron’s weak charge. In order to meet their precision goals,

both experiments require precise measurements of the electron beam polarization, for

which a Hydro-Møller would be very beneficial.
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Chapter 2 will discuss the Standard Model (SM), specifically introducing the

electro-weak interaction. A basic overview of the elements of the Qweak experimental

apparatus relevant to my work is included in Chap. 3. Analysis of the momentum

transfer is discussed in Chap. 4. How this result impacts the final results of the Qweak

experiment is discussed in Chap. 5.

The last three chapters are related to the Hydro-Møller. An overview on Møller

and Compton polarimetry and the proposed Hydro-Møller apparatus are in Chaps. 6

and 7 respectively. Finally the Monte Carlo for the Hydro-Møller, HMolPol and the

initial analysis done with it is discussed in Chap. 8.



3

Chapter 2

Theory of Weak Charges

2.1 Theory of the Standard Model

There are four known fundamental forces: gravity, electromagnetism, the strong and

weak nuclear forces. The Standard Model (SM) is a quantum field theory based

on gauge symmetries, and has been very successful in describing the interactions of

fundamental particles through the latter three fundamental forces. It does this through

combining the strong nuclear force, SU(3)C, with the electroweak SU(2)L × U(1)Y

gauge groups.

The SM includes three main groups of particles: gauge bosons, quarks, and leptons.

Bosons are integer spin particles, while quarks and leptons are fermions which have

half-integer spin. The gauge bosons are spin 1, and mediate a force: the electromagnetic

(photon, γ), the weak (Z and W± bosons), and the strong (gluons, g). There are

three different generations of quarks and leptons which are shown from left to right in

Fig. 2.1. Three of the six leptons, the electron (e−), muon (µ−), and tau (τ), couple to

all the force carriers in the SM but gluons. These leptons have corresponding neutrinos,

νe, νµ, and ντ which only interact through the weak interaction, as they carry no

electric charge or color.
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Figure 2.1: Diagram of the fundamental particles described by the SM. Reproduced
from [3] with original from [4].

For a fermion, the Dirac Lagrangian is

LDir = ψ̄(iγµ∂µ −m)ψ , (2.1)

where ψ and m are the wave function and mass of the fermion respectively and γµ

are the gamma matrices for µ ∈ [0, 3]. This Lagrangian is invariant under the global

gauge transformation by a constant phase of φ, i.e. ψ → eiφψ. However, for a similar

local transformation where φ is dependent on the position and time φ→ φ(t, ~x), the

Lagrangian is no longer invariant. By introducing a gauge field, Aµ, with the coupling

g and using the covariant derivative in Eq. 2.2 in place of the derivative, the Lagrangian

stays invariant:

Dµ ≡ ∂µ − igAµ . (2.2)

The gauge field must also transform to remove the unwanted terms created through

adding it in,

Aµ → Aµ +
1

g
∂µφ(t, ~x) . (2.3)

For a more in depth look at the information in this chapter see [5–9].
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2.2 Parity Violation

Parity is the discrete inversion of spatial coordinates i.e. (x, y, z) → (−x,−y,−z),

and can be thought of as a mirror reflection. For particles the quantum number of

the parity operator is the particle’s handedness, or a particle’s chirality, or in the

relativistic limit its helicity. Helicity, h, is the product of the particle’s momentum, ~p

and its spin, ~s. When these are parallel the particle is right handed or has positive

helicity, and when they are anti-parallel the particle is left handed or has negative

helicity,

h ≡ ~s · ~p =


> 0 positive helicity

< 0 negative helicity

. (2.4)

Parity violation in the weak interaction was first observed by C.S. Wu et al. in

1957 [10], and until then parity was believed to be conserved. Wu and collaborators

measured the electron from β-decay1in 60Co, where they aligned the spin of the nucleus

with a magnetic field. If parity is conserved the same number of electrons would be

emitted parallel and anti-parallel to the magnetic field. However Wu observed that

most of the electrons were emitted anti-parallel to the spin of the nucleus, a clear

violation of the conservation of parity in the weak interaction.

In the SM parity violation is incorporated though the left-handed doublet and

right-handed singlet, which for the case of the electron is

Left-Doublet:

e−

νe


Right-Singlet: e−

. (2.5)

The doublet state has a weak isospin of 1/2, and the singlet has a weak isospin of 0.

1
β-decay equation:

60
Co→ 60

Ni + e
−

+ νe
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Figure 2.2: The Higgs potential, with arbitrary constants.

2.3 Electroweak Theory

The SU(2)L × U(1)Y is the gauge theory that combines the electromagnetic and weak

interactions together, and was proposed by S. L. Glashow [11], A. Salam[12], and

S. Weinberg [13] in the late 1960’s.

The SM Lagrangian (LSM) is

LSM = Lgauge +Lf +LHiggs +LYuk , (2.6)

which is the sum of the gauge, fermion, Higgs, and Yukawa sectors of the SM theory,

respectively. The Higgs part of LSM through symmetry breaking gives rise to the

mass of the W± and Z0, and will be discussed in Sec 2.3.1; the other parts of LSM are

beyond the scope of this dissertation. The Higgs part of the SM Lagrangian is

LHiggs = (DµΨ)†(DµΨ)− V (Ψ†Ψ) , (2.7)

where V (Ψ†Ψ) is the potential term. The Higgs potential is illustrated in Fig. 2.2 and

has the form

V (Ψ†Ψ) = −µ2Ψ†Ψ + λ(Ψ†Ψ)2 . (2.8)

For this to be gauge invariant, the electroweak gauge group has a covariant derivative

given by

Dµ = ∂µ + i
g

2
σaW a

µ + i
g′

2
Bµ , (2.9)
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where W a
µ and Bµ, respectively, are the SU(2)L and U(1)Y bosons, σa are the Pauli

matrices (a ∈ [1, 3]), and g and g′ are the gauge coupling constants.

2.3.1 Spontaneous Symmetry Breaking

Through the Higgs mechanism the electroweak theory goes through spontaneous

symmetry breaking which leads to the weak force bosons, W+, W−, Z0 which have

mass, and the electromagnetic massless boson, the photon, γ . The complex scalar

Higgs field, Ψ for Eq. 2.7 is a doublet defined as

Ψ =

ψ+

ψ0

 =

 1√
2
(ψ1 + iψ2)

1√
2
(ψ3 + iψ4)

 , (2.10)

where ψi = ψ†i for i ∈ [1, 4] are the four basis Hermitian fields.

One can choose the minimum potential in terms of the vacuum expectation value,

v, to be

Ψ =
1√
2

0

v


and therefore

〈Ψ〉2 =
v2

2
.

(2.11)

In the case of µ2 < 0, the minimum potential which is at v = 0 is stable and the

SU(2)L × U(1)Y symmetry is not broken. However if µ2 > 0, v = 0 is not stable and

symmetry breaking can take place, and in order for the vacuum to be stable one must

have λ > 0. Using Eqs. 2.8 and 2.11, v =
√
µ
2
/λ.

The gauge terms of the Higgs part of the SM Lagrangian2 implicitly includes the

information on the weak and electromagnetic bosons. Then the covariant derivative of

2
The second two terms of the covariant derivative in Eq. 2.9.
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Ψ as defined in Eq. 2.11 becomes

DµΨ =
i

2
√

2

gW 3
µ − g

′Bµ g(W 1
µ +W 2

µ)

g(W 1
µ −W

2
µ) −gW 3

µ + g′Bµ


0

v


=

iv

2
√

2

 g(W 1
µ +W 2

µ)

−gW 3
µ + g′Bµ


. (2.12)

To find the mass of W±, Z0, and γ , the following definitions are commonly made3,

W±µ =
W 1
µ ∓ iW

2
µ√

2
(2.13)

Zµ =
gW 3

µ + g′Bµ√
g2 + g′2

(2.14)

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

(2.15)

The W±µ corresponds to the weak charge-current interaction (W±), the Zµ corresponds

to the weak neutral current interaction (Z0), and Aµ corresponds to the electromagnetic

interaction (γ). With the definitions in Eqs. 2.13, 2.14 and 2.15, (DµΨ)†(DµΨ) becomes

(DµΨ)†(DµΨ) =
v2g2

4

∣∣∣W±µ ∣∣∣2 +
v2(−gW 3

µ + g′Bµ)2

8

=
(gv

2

)2
W+
µ W

−µ +
1

2

v
√
g2 + g′2

2

2

ZµZ
µ

. (2.16)

From Eq. 2.16 the masses of the W±, Z0, and γ can be picked off from the coefficients

of each term respectively,

m
W
± =

gv

2
, m

Z
0 =

v

√
g2 + g′2

2
, mγ = 0 . (2.17)

The coefficient mγ comes from there being no AµA
µ term. The predicted masses of

3
As seen in textbooks e.g. Peskin & Schroeder [9] and Langacker [6].
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the W± and Z0 agree well with the measured values of mW ≈ 80 GeV and mZ ≈

91 GeV [14].

While W± is directly related to W 1
µ and W 2

µ as illustrated in Eq. 2.13, this is not

the case for W 3
µ and Bµ and Z0 and γ . There is a mixing between W 3

µ and Bµ which

leads to the weak mixing angle or Weinberg angle (θW ), defined by

tan θW =
g′

g
, cos θW =

g2√
g2 + g′2

, sin θW =
g′2√
g2 + g′2

. (2.18)

The denominator,

√
g2 + g′2 is also often defined as gZ . It is often more useful to have

the Weinberg angle in terms of the mass of W and Z bosons,

sin2 θW = 1−
(
mW

mZ

)2

. (2.19)

Using the Weinberg angle, Eqs. 2.14 and 2.15 can rewritten as

Zµ = cos θWW
3
µ − sin θWBµ (2.20)

Aµ = sin θWW
3
µ + cos θWBµ . (2.21)

Adding a small perturbation of a neutral Higgs field (h(x)) to the vacuum expecta-

tion value can give the fermions mass; doing this Eq. 2.11 then becomes

Ψ =
1√
2

 0

v + h(x)

 . (2.22)

With the addition of h(x) the above formalism stays intact, but now there is a Higgs

coupling which is part of an SU(2)L doublet. Neutrinos which do not have a right

handed singlet state, are massless4, while the other fermions have a mass proportional

to their coupling. Details on the Higgs sector and neutrino masses are outside the

4
Experiments have observed that neutrinos oscillate between νe, νµ, and ντ , and therefore must

have mass. Since neutrinos are not massless, the SM needs to be extended, but this is outside the
scope of this dissertation.
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scope of this dissertation.

2.3.2 Neutral Current

The neutral current interaction is an exchange of a Z0 or γ , as illustrated in Fig. 2.3.

�γ

f

f

γ exchange

�Z0

f

f

Z0 exchange

Figure 2.3: Neutral current exchange diagrams for both the electromagnetic and weak
exchange.

The neutral current for the Z0 is

JZ
0

µ = g cos θWJ
W

3

µ − g′ sin θW
JYµ
2

=
e

sin θ cos θ

[
JW

3

µ − sin2 θWJ
γ
µ

] (2.23)

and for the γ is

Jγµ = ψ̄γµQψ , (2.24)

which is dependent on the current of the charge operator (Q), the hypercharge (Y )

and W 3
µ . The current for W 3

µ is

JW
3

µ = ψT 3γµ(1− γ5)ψ

= ψLT
3γµψL .

(2.25)

The charge-current weak interaction only interacts with left-handed particles, as can

be seen in Eq. 2.255, where the third component of the weak isospin is T 3. The

5
This is through the left and right parity operators PL = (1−γ5)/2 and PR = (1+γ

5
)/2.
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hypercharge is related to Q and T 3 by

Q = T 3 +
Y

2
. (2.26)

Therefore the current for Y is

JYµ = ψY γµψ

= ψ
(

2Q− 2T 3
)
γµψ

= 2Jγµ − 2JW
3

µ

. (2.27)

Unlike with W 3
µ , JYµ interacts with both left and right-handed particles. Then JZ

0

µ

(Eq. 2.23) can be rewritten by using Eqs. 2.25, 2.26 and 2.27 as

JZ
0

µ =
e

sin θW cos θW

[
ψLγµ

(
T 3 −Q sin2 θW

)
ψL

+ ψRγµ

(
−Q sin2 θW

)
ψR

] . (2.28)

Here the coefficient e/sin θW cos θW is the coupling constant for the Z0 (gZ =

√
g2 + g′2)6.

The neutral current is more often written in terms of the weak vector (V ) and axial

(A) charges of a fermion, which respectively are

g
f
V ≡ g

f
L + g

f
R = T 3 − 2Q sin2 θW , (2.29)

g
f
A ≡ g

f
L − g

f
R = T 3 . (2.30)

Similar to the simplification in Eq. 2.25, JZ
0

µ can be written as,

JZ
0

µ = gZψγµ

[(
T 3 −Q sin2 θW

)(
1− γ5

)
+
(
−Q sin2 θW

)(
1 + γ5

)]
ψ

= gZψγµ

[(
T 3 − 2Q sin2 θW

)
+ γ5

(
−T 3

)]
ψ .

(2.31)

6
In some texts gZ contains an extra factor of 1/2, and therefore is defined as e/2 sin θW cos θW .
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Therefore with Eq. 2.29 and 2.30,

JZ
0

µ = gZψγµ(g
f
V − g

f
Aγ

5)ψ . (2.32)

From Eq. 2.32 it is seen that the weak neutral current interacts differently with right

and left-handed fermions, leading to the parity violation in the neutral current process.

Table 2.1 summarizes these values for the fundamental fermions.

Particle Q T 3 g
f
V g

f
A

u, c, t +2
3 +1

2
1
2 −

4
3 sin2 θW +1

2

d, s, b −1
3 −1

2 −1
2 + 2

3 sin2 θW −1
2

νe, νµ, ντ 0 +1
2 +1

2 +1
2

e−, µ−, τ− -1 −1
2 −1

2 + 2 sin2 θW −1
2

Table 2.1: The SM values for the electromagnetic charge (Q), third component of the
weak isospin (T 3), and the vector and axial coupling for various fermions.

2.3.3 Nucleon Weak Charge

The electromagnetic charge of a composite particle can determined through the sum

of charges of its valence quarks, Q =
∑
Qi. For the proton (uud) this is,

QEMp = QEMu +QEMu +QEMd

=
2

3
+

2

3
− 1

3

= 1 .

(2.33)
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Likewise the weak charge of a composite particle is defined as the sum of its vector

couplings (g
f
V ) at tree level. For the proton this is,

QZp = Q
p
W = QZu +QZu +QZd

= g
u
V + g

u
V + g

d
V

=

(
1

2
− 4

3
sin2 θW

)
+

(
1

2
− 4

3
sin2 θW

)
+

(
−1

2
+

2

3
sin2 θW

)
= 1− 4 sin2 θW

. (2.34)

Similarly the weak charge of the neutron (at tree level), Q
n
W= −1, and for the electron,

Q
e
W= 1− 4 sin2 θW .

When looking at certain energy scales often it is useful to use an effective theory,

which allows for interactions and particles that are too heavy to directly produce to

be integrated out, reducing an interaction to an effective one; for a fermion scattering

experiment this is a four-fermion effective interaction. For energies � mZ , most of the

weak couplings are due to virtual Z0s, which allows for an effective Lagrangian to be

defined,

LZ
0

eff =
GF√

2
JZ

0

µ J
Z

0
µ

(2.35)

where the Fermi coupling constant, GF , is defined by, GF/
√

2 = g
2
/8m

2
Z . Using this,

along with Eq. 2.32, a neutral current Lagarangian can be defined for a composite

particle, details which are outside the scope of this dissertation and can be found in

the resources referenced at the beginning of this chapter and [15, 16]. For composite

particles like a nucleus the weak charge of the particle can be determined in a similar

method. The parity-violating part of the neutral current Lagrangian (LNC) is then

LNC = −GF√
2

∑
i=u,d

[
C1ieγµγ

5eqiγ
µqi + C2ieγµeqiγ

µγ5qi

]
, (2.36)

where C1i is the weak quark-vector, electron-axial coupling and C2i weak electron-
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vector, quark-axial coupling. At tree level in the SM these are,

C1u = −1

2
+

4

3
sin2 θW , C2u = −1

2
+ 2 sin2 θW (2.37)

C1d =
1

2
− 2

3
sin2 θW , C2d =

1

2
− 2 sin2 θW . (2.38)

Using these, Q
p
W can be rewritten as,

Q
p
W = −2(2C1u + C1d) (2.39)

2.4 Why Study Physics Beyond the Standard Model

Based on various observations, it is known that the SM is incomplete, making it

important to both test predicted values of the SM and search for physics beyond the

SM. As stated before, the SM does a very good job at describing the electromagnetic,

strong, and weak forces, however it does not include gravity. The dark matter and

dark energy which make up most of the universe also are not included in the SM [17,

18]. Neutrinos oscillate between their different flavors, therefore they must have mass;

however this is not the case in the SM, so again it can’t be complete. It is also unknown

if neutrinos are Dirac or Majorana particles7.

Along with the observations that are missing from the SM, another reason why

the SM is considered to be incomplete is the large number of adjustable parameters.

Exactly how many of these parameters there are depends on what one considers a

parameter, but they can include masses, coupling constants, mixing angles, and number

of generations of fermions. Fundamental theories ideally are simple and elegant, so the

ultimate theory would have only a few input parameters, ideally one.

Experiments like the Qweak experiment look for physics beyond the SM indirectly,

by making measurements of constants precisely predicted by the SM. While the Qweak

experiment measured Q
p
W, other experiments measure the weak charge of the electron,

Q
e
W (E158 experiment [19] and MOLLER experiment). Other experiments test the

7
Majorana particles are their own antiparticle, unlike Dirac particles.
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SM by directly looking for various predictions of the SM, like the Higgs boson or new

fermions and gauge bosons not in the SM. In 2012 at the Large Hadron Collider8 (LHC)

accelerator at the European Organization for Nuclear Research (CERN) in Geneva,

Switzerland both the ATLAS [20] and Compact Muon Solenoid (CMS) experiment [21]

independently detected the Higgs boson.

More information on physics beyond the SM can be found in [6–8].

2.5 Theory of Qweak

The Qweak experiment [22] performed a precision measurement of the weak charge of

the proton, Q
p
W. The Standard Model predicts a small value for Q

p
W ≈ 0.07. Because

this value is so small, a precise measurement of Q
p
W provides an attractive indirect

way of looking for physics beyond the Standard Model.

Using the integrated output signal from the main detectors, the measured asymme-

try, Amsr was calculated from the helicity-dependent difference over the sum of the

cross section (σ)

Amsr =
σ+ − σ−
σ+ + σ−

, (2.40)

This then is used with Eq. 2.41 and the value of Q2 to calculate Q
p
W [23].

In order to measure Q
p
W, we must measure the parity-violating asymmetry from

scattering electrons of different helicities from a proton. The parity-violating asymmetry

is related to the weak charge of the proton through the following equation9:

Aep =
−GFQ

2

4πα
√

2

{
Q

p
W +B(θ,Q2)Q2

}
(2.41)

where, α is the fine structure constant, Q2 is the four-momentum transfer squared,

and B(θ,Q2) are higher-order corrections due to hadronic effects. Because of the

relationship between Q2 and the asymmetry, it is important that both the asymmetry

8
These are often referred to as the “energy frontier” rather than the “precision frontier”.

9
This is sometimes written in terms of the reduced asymmetry, Aep/A0. Here A0 = −GFQ

2
/4πα

√
2,

then Aep/A0 = Q
p
W +B(θ,Q

2
)Q

2
.
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and Q2 be measured precisely. The determination of Q2 for the Qweak experiment is

one of the major topics of this dissertation.
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Chapter 3

Qweak Experiment Apparatus

3.1 Jefferson Lab Overview

The Qweak experiment was executed in experimental Hall C at the Thomas Jefferson

National Accelerator Facility (Jefferson Lab or simply JLab) in Newport News, Virginia.

At the time of the Qweak experiment JLab had three experimental halls; A, B, and

C. The halls are at the end of the Continuous Electron Beam Accelerator Facility

(CEBAF) which has two antiparallel linear accelerators (linacs) that deliver the electron

beam to each of the experimental halls. The electrons are accelerated in each linac

consisting of 20 superconducting radio-frequency (RF) cryogenically cooled modules

(cryomodules). The cryomodules operate at 1497 MHz, with an average accelerating

gradient of 8.4 MV m−1 [24]. The two linacs are connected via bending magnets that

allow the electron beam to travel up to 5 times around, for a maximum beam energy

of 6 GeV; upon leaving the accelerator the electron beams are separated and sent to

their respective halls. An illustration of the layout of CEBAF is in Fig. 3.1. More

information on CEBAF can be found in Refs. [24, 25].

The Qweak experiment utilized Hall C, requiring the two standard Hall C spectrom-

eters be moved out of the way of the custom experimental apparatus used in the Qweak

experiment, which is described in Sec. 3.3.
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The electron beam is used 

to generate a beam of high 

energy photons in Hall D.

These, in turn, produce the

exotic particles being studied.

Magnets in the arcs steer 

the electron beam from one 

straight section of the

tunnel to the next for up to 

five-and-a-half orbits.

A refrigeration plant provides liquid

helium for ultra-low-temperature,

superconducting operation.

The electron beam can be delivered to these

three experimental halls for simultaneous

research by teams of physicists.

The electron beam begins its first

orbit at the injector.  At nearly the

speed of light, the electron beam

circulates up to 5 1/2 orbits

around the 7/8 mile track in

22 millionths of a second.

Each linear accelerator - or linac - 

uses superconducting technology

to drive electrons to higher and 

higher energies. 

HOW CEBAF WORKS
The Continuous Electron Beam Accelerator Facility

Aug. 2016

Find out more at www.jlab.org

Figure 3.1: Cartoon describing how CEBAF works. Hall D was added after the Qweak

experiment ran [26].

3.2 Qweak Experiment Requirements

Since the Qweak experiment is aimed at making a precise measurement of Q
p
W, the Qweak

Collaboration must consider how to minimize all sources of experimental uncertainty.

For all precise measurements a crucial necessity is to have large statistics and the

Qweak experiment is no different. In turn, the Qweak experiment experiment required

2 years on the floor with about 15 months of data taking at JLab, a high beam current,

a thick target, and an efficient detection system covering a large acceptance.

The Qweak experiment required an electron beam that is highly polarized, and it is

important that the polarization be measured precisely. The polarization of the beam

was determined through both Møller and Compton polarimetry1 during the Qweak

experiment. The Møller measurement is invasive to an experiment where the Compton

measurement is not. They have very different systematic uncertainties therefore these

two can be used as a cross-check for each other.

1
Møller and Compton polarimetry are explained in Chap. 6.
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As mentioned in Chap. 2, in order to make the measurement of Q
p
W, the helicity

difference over the sum of the cross section is needed. In order to achieve this, the

helicity of the beam must be reversed throughout the experiment2; this was done at

960 Hz.

The momentum transfer (Q2) is also crucial as can be seen in Eq. 2.41, as it

multiplies Q
p
W, and therefore needs to be measured as precisely as possible. The SM

prediction of Q
p
W is at Q2 = 0, but in an electron-scattering experiment this is not

practical. A small Q2 experiment suppresses the second term in Eq. 2.41 (the “B”

term) therefore the Qweak experiment was designed to have a low Q2, which needed to

be measured precisely.

For more details on the requirements of the Qweak experiment see [27].

3.2.1 Integration Mode vs. Tracking Mode

The Qweak experiment had two data-taking “modes”: the integration mode, which was

the main part of the experiment, and tracking mode which was used to measure Q2.

During the main part of the experiment the beam current was a large as 180µA [28];

at this current individual electrons can not be detected without significant deadtime

and pileup. The electrons came into the detectors at such a rate that the signals from

individual electrons overlapped each other, as illustrated in Fig. 3.2. This means that

in order to get the total signal seen by the main detector (MD) bars from the electrons

the signal must be integrated over the helicity window.

The overlap in the signal of the electron make it impossible for the tracking

chambers to be used during this time, as they need to be able to distinguish between

different electrons, and would trip off from being overloaded, as is illustrated in Fig. 3.2.

Therefore in order to track individual electrons, the beam current was decreased to

currents between 50 pA and 200 nA [28], depending on the particular study. At these

currents the tracking chambers are not overloaded, so tracking the path of an individual

2
This can be done by flipping the spin of the electron while the momentum stays the same;

the other option would be to change the momentum while the spin stays constant. The latter is a
impractical as it would require changing the direction of the accelerator.
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time0 100 ns

µA

. . .

Integration mode

time0 100 ns

µA

Tracking Mode

Figure 3.2: Data collection for integration mode (top) compared to tracking mode
(bottom) [29]. During integration mode electrons go through the MD so fast information
on them individually can’t be gathered, therefore requiring integration of the signal (in
red on top). In event mode this is not the case, and individual events can be recorded.

electron can be found, as explained in Sec. 3.3.5.

3.3 Qweak Experiment Apparatus

The Qweak experiment ran at JLab for two years, finishing in May 2012. The Qweak

experiment (see Fig. 3.3) used a 89% polarized 1.16 GeV electron beam scattering off a

liquid hydrogen target (LH2). Collimators were used to select the elastically scattered

electrons with a low Q2. They also defined an area of acceptance that corresponds to

the solid angle acceptance associated with the main detector bars (MDs). Following

three collimators there was the Qweak toroidal magnet (QTor) which was used to select

the elastically scattered electrons and direct them to the main detector bars.

During specific points in the experiment the beam current was decreased and drift

chambers were placed in the paths of the scattered electrons for the tracking part

of the experiment. There were horizontal drift chambers (HDCs) between the set

of collimators near the target, and right before the MDs there was a set of vertical

drift chambers (VDCs) and a trigger scintillator. These are the elements that will be

concentrated on here, as they are most relevant for the Q2 analysis.



CHAPTER 3. QWEAK EXPERIMENT APPARATUS 21

Figure 3.3: Layout of the Qweak experiment, with the tracking system inserted, which
is labeled in red. The electron beam (red) comes in from the left, hitting the LH2

target. The scattered events travel through collimators and the toroidal magnetic field,
finally reaching the main detectors. During the tracking measurements the horizontal
drift chambers were placed after the initial collimators and the vertical drift chambers
were placed right before the main detectors.

Figure 3.3 shows a schematic of the experimental setup during the tracking period

of the experiment. A full description of the Qweak experiment’s layout and operating

principle can be found in [28].

3.3.1 Target

The Qweak experiment used a liquid hydrogen target, which was 34.4 cm long and

held ≈ 58 L of liquid, which was cooled to 20 K. The 180µA beam deposited 2.1 kW

in the target. The entrance and exit windows to the target were made of Al, and

were 0.097 mm and 0.64 mm thick respectively. The beam was rastered uniformly over

a 4 mm× 4 mm area on the target entrance window to help prevent damage to the

windows and boiling of the LH2 [28].
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3.3.2 The QTor Magnetic Spectrometer

The Qweak experiment used a normal conducting toroidal magnet (QTor) which was

centered around the beam line and sat 6.5 m downstream of the target between the

tracking chambers, as seen in Fig 3.4. This was used to select and direct the elastic

ep scattered electrons on to the center of the MDs, as seen in Fig. 3.5. Background

processes like inelastic scattering were deflected away from the MDs, which reduced

the asymmetries measured by the MDs for those interactions [28].

Figure 3.4: Picture of the Qweak experiment during the installation. The target is on
the left, followed by two lead collimators, one on each side of the man in the photo. A
third collimator sits right in front of the large frame in the center of the photo is the
QTor magnetic with its eight coils. After QTor on the right three of the eight quartz
main detector bars are visible.

3.3.3 Collimators

The Qweak experiment had three lead antimony (95.5% Pb, 4.5% Sb) collimators, each

with eight holes for the electrons to travel through to the MDs. The first and third

collimator had the primary purpose of reducing backgrounds. They were located 74 cm
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Figure 3.5: Scattered electron tracks, found using the VDCs, projected to a typical
MD. The x̂-axis is the horizontal direction and the ŷ-axis is the vertical direction and
the color scale is the relative flux. The “moustache” shape illustrates the focusing of
the electrons on the MDs due to the QTor magnetic field.

and 3.82 m downstream of the target respectively. The second or primary collimator

defined the acceptance of the scattered electrons, 49% in φ with an acceptance in θ of

5.8° to 10.2° and 6.6° to 11.6° on the upstream and downstream sides of the collimator

respectively, therefore, there was a total θ acceptance of 6.6° to 10.2°. All three of

these collimators can be seen in Fig. 3.4. For more information see [28].

3.3.4 Main Detectors

The Qweak experiment used 8 main detector (MD) Cherenkov bars laid out in the shape

of an octagon to use symmetry to help decrease false asymmetries from a transverse

component in the beam polarization and shifts in the beam position and angle that

could be helicity correlated. Figure 3.6 shows how the MDs are numbered in the Qweak

experiment.

Cherenkov radiation happens when a charged particle travels through a medium at

a speed faster than the speed of light in that medium. This creates a light cone which

is illustrated in Fig. 3.73.

Each MD consisted of two 100 cm× 18 cm× 1.25 cm non-scintillating artificial

quartz bars glued together [28]. The lack of scintillation of the artificial quartz bars

makes them relatively insensitive to neutral backgrounds [30]. Another way soft neutral

backgrounds like low energy photons were suppressed through the use of the 2 cm Pb

3
This is analogous to a sonic boom.
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Figure 3.6: The numbering scheme of the MDs in the Qweak experiment viewed from
upstream.

Figure 3.7: Illustration of Cherenkov Radiation: As a particle (in gray) travels through
a medium faster than the speed of light in the medium, it creates a light cone behind
it.

pre-radiator installed in front of each MD. These also increased the light yield in the

MDs by creating a shower of electrons and photons which then travels into the MDs.

Each side of the MDs had a 130 mm photomultiplier tube (PMT) attached to

it. These collected the photons created by the electrons in the MDs and read them

out as an analog signal; this was then converted into a digital signal by a low-noise

Analog-to-Digital Converter (ADC). A full description of the MDs can be found in

Peiqing Wang’s dissertation [30].

3.3.5 Tracking Chambers

During the tracking mode part of the Qweak experiment there were three different

detectors that were added into the experiment to gather information on the path of
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the scattered electrons, as illustrated in Fig. 3.8. In order to not overload the tracking

detectors, the beam current was lowered to between 50 pA and 200 nA [28]. As the

electrons travel to the MDs, the first type of tracking chambers are the horizontal drift

chambers (HDCs), and the second set of chambers were the vertical drift chambers

(VDCs), followed directly by the trigger scintillator. The trigger scintillator, which

was placed right after the VDCs, was used for timing and triggering, to know when we

had an electron travel through the VDCs to the main detectors. There were only two

sets of tracking chambers for each case, which were able to be rotated so they could

cover all eight MDs. All of the tracking chambers were also able to move in and out of

the path of the scattered electrons, in for tracking mode and out for integration mode.

Figure 3.8: Path the electrons take from the target to the main detector bars with
tracking system in place. After scattering off the target they travel through the HDCs,
followed by the QTOR magnet and finally through the VDCs.

3.3.5.1 Horizontal Drift Chambers

The HDCs were built by Virginia Tech, and were placed upstream of the QTor magnet,

between a set of collimators. Two chambers made up a “package” which was then placed

in an octant. Two packages, 180°, apart were then located in opposite octants. This

pair of packages were placed on a rotator such that they were able to be rotated to take

measurements in all eight octants. Each HDC had a transverse size of 28 cm× 38 cm

and consisted of six wire planes, giving 12 wire planes in each package. The six wire

planes were oriented in the order of XUV and X’U’V’ where the U, V wires were at

a ± 53.1° angle to the X wires [28, 31]. The HDCs were used to take the measured

scattered electrons and project them back to the target, therefore determining the

scattering angle of these electrons. A full description of the HDCs can be found in

Juliette Mammei’s dissertation [31].



3.3. QWEAK EXPERIMENT APPARATUS 26

3.3.5.2 Vertical Drift Chambers

The VDCs were built at William & Mary and were located right before the main

detector bars. Like with HDCs, the VDCs are made in pairs, where a pair is called a

package and were placed on a rotator so they could be placed in all eight octants. An

individual VDC had a dimension of 204.5 cm× 53.2 cm× 10.2 cm with 2 wire planes,

each with 279 wires [28]. The two wire planes were oriented in the order of UV

where the UV wires were ± 26.56° from the long axis of the VDC [28, 32]. A full

description of the VDC system can be found in John Leckey’s [32] and Josh Hoskins’

dissertations [33].

3.3.5.3 Trigger Scintillators

Besides the HDCs and the VDCs the tracking mode of the experiment included a pair

of trigger scintillators. Built by George Washington University, they each consisted of

a 218.45 cm× 30.48 cm× 1.00 cm piece of plastic scintillator [34] one for each package.

Connected to the same rotating apparatus used for the VDCs, they were situated in

front of the main detectors but behind the VDCs. The trigger scintillator were used as

a timing apparatus in event mode, this allowed for precisely knowing when an electron

went through the VDCs. By having the time in which a scattered electron traveled

through the VDCs, and using this as a reference time, the time of the hit on the wires

in the drift chambers is then related to the distance of the electron’s path from the

given wire. These distances can then be used to find the path of the electron through

the HDCs and VDCs [35]. A full description of the Trigger Scintillators can be found

in Katherine Myers’ dissertation [34].

3.3.6 Beam Position Monitors

The Beam Position Monitors (BPMs), were placed at various locations along the

beamline, and were used in the main experiment to correct for false asymmetries due

to beam motion. They consisted of two +/- pairs of stripline detectors placed at 90°
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with respect to each other. In total there were 23 placed in the Hall C beam line,

however 4 or 5 of them that were 1.5 m to 10.5 m upstream of the target were used

to calculate the beam position and angle [28, 35]. During the tracking part of the

experiment there were studies where the beam positions and angles were deliberately

changed. During these studies these BPMs were used to tell where the beam was with

respect to its nominal position and what angle the beam came into the target. Since

the BPMs only work at high beam current (1µA to 180µA) this was done by raising

the beam current, temporarily measuring the beam position and angle, then lowering

it to take the tracking measurement.

3.3.7 Beam Current Monitors

To measure the beam current, RF cavity Beam Current Monitors (BCMs) were used.

They were located 16 m, 13.4 m, and 2.7 m upstream of the target and provided a

stable, low noise and continuous (non-invasive) measurement of the beam current.

They were used to normalize the beam current in the asymmetry analysis part of the

Qweak experiment [28]. For more information on the BCMs see [28].

3.3.8 Luminosity Monitors

There were two sets of Luminosity monitors (Lumis) placed around the beamline.

The upstream Lumis were placed before the primary collimator and the downstream

Lumis 17 m downstream of the target. The four upstream Lumis were designed to

be primarily sensitive to Møller scattering electrons with a scattering angle of ≈ 5°.

They were 7 cm× 27 cm× 2 cm in size and made of similar quartz to the MDs, with

the short side positioned radially to the beamline. The eight downstream lumis were

mainly sensitive to Møller and Mott scattering electrons at a scattering angle of ≈ 0.5°.

They were made of similar quartz to the MDs, 4 cm× 3 cm× 1.3 cm, in size with a 45°

taper at one end, and like the MDs had a 2 cm Pb pre-radiator in front to suppress

low-energy backgrounds. For more information on the Lumis see [28].
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Chapter 4

Tracking Mode: Data and

Simulation Analysis

A crucial component in the measurement of Q
p
W is the momentum transfer to the

proton from the electron (Q2), as seen in Eq. 2.41. Therefore it is important to make

as precise of a measurement of Q2 as possible.

Throughout this chapter there are direct comparisons between data and simulation.

However, one will see that there is not an exact agreement between the simulation of

and data for the scattering angle, θ and therefore Q2. The primary cause for this is

because the position and angle of the HDCs has not yet been properly calibrated and

implemented in the track reconstruction software. The originally surveyed geometry of

the HDCs was found to be inadequate. This was determined through projecting tracks

back to a thin solid target, where it was found that different octants yielded different

target positions. Work on this discrepancy is continuing by collaborator Anna Lee [36].

This still allows the comparison between data and simulation for the sensitivities of

Q2 to the many variables explored in this chapter.

The dedicated tracking periods during November 2011, January 2012 and May

2012 of the Qweak experiment were used to measure and calculate the uncertainty

on Q2. During these tracking periods the studies in this chapter were accomplished,
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which included changing the beam raster size, position, and angle, along with a scan

of different QTor currents. Other tracking periods in January 2011, March 2011 were

used for initial commissioning of the tracking system, and no results from these times

are presented here. In addition there was an April 2012 tracking period which had a

higher beam energy for an ancillary measurement.

Determination of the Q2 for the Qweak experiment was done through reconstruction

software used for both the data and the Qweak simulation. The track reconstruction

software takes the information gathered about the electron’s path in the HDCs, which

gives the scattering angle. Then the software extrapolates or “swims” that electron

track through the magnetic field of QTor, to match up with the measured path of the

electron in the VDCs, which gives the scattered electron energy. Given the scattering

angle from the HDCs and the scattered electron energy one can verify that the electron

was elastically scattered. Details on the track reconstruction software can be found in

Siyuan Yang’s dissertation [35].

4.1 Qweak Experiment Simulation

The Qweak experiment’s simulation was written with GEANT4 C++ libraries [37]. Its

detailed geometry of the Qweak experiment includes a realistic QTor magnetic field,

surveyed positions of the main detectors, but assumes ideal locations of the collimators.

It can be used both with and without the VDCs and HDCs. When the tracking

chambers are in the simulation the output from the simulation can be analyzed using

the same track reconstruction software as the tracking data.

The detailed geometry includes not just the main detectors, but also the beam line,

VDCs, HDCs, collimators, shielding, QTor magnet, supporting structures, and their

materials. The LH2 target is included along with the other targets such as Al targets

that were used for different studies that are beyond the scope of this dissertation.

While this dissertation is concentrated on elastic scattering off of LH2, the simulation

however is not limited to just this. It includes elastic scattering off of 27Al, Møller
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scattering, inelastic scattering off the LH2 (N → ∆ resonance), and inelastic and

quasi-elastic scattering off of 27Al. The simulation also generates and tracks the optical

photons created by the Cherenkov effect in the MDs, and determines their signals as

seen by the PMTs.

4.2 Measured Q2 vs. Interaction Q2

For elastic scattering the square of the four-momentum transfer, Q2 can be found by:

Q2 = 2E2 (1− cos θLab)

1 + E
mp

(1− cos θLab)
(4.1)

where E is the energy of the incoming electron right before the interaction, mp is the

mass of the proton, and θLab is the scattering angle in the lab. Using the HDCs the

electron trajectory can be projected back to the target, which provides θLab and the

interaction vertex.

While θLab can be determined by the HDCs alone, additional information is required

to determine if the electron was elastically scattered. The momentum of the scattered

electron is used to isolate the elastically scattered electrons from electrons scattered

though other processes. The VDCs are used to isolate elastic electrons due to their

placement after QTOR and right before the main detector bars. Therefore using both

the HDCs and the VDCs together allows θLab for the elastically scattered electrons to

be found.

The scattering angle that is determined by the projection from the HDCs to the

target isn’t necessarily the scattering angle at the interaction; rather, it is the scattering

angle we can see, θvisible. After the electron scatters off the proton, it travels through

the the target and from the target to the HDCs, where it can scatter or interact with

other matter. When the HDCs project the electron back to the target to measure the

scattering angle the projection doesn’t necessarily match the actual interaction point,

so the observed scattering angle, θvisible, therefore is not θphysical of the interaction.
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Similarly the energy at the interaction point is estimated from the incoming beam

energy and an average expected loss due to traveling in the target used in Eq. 4.1.

What is needed for the Qweak experiment is the Q2 at the interaction point, or

Q2
physical. However what is measured directly from the HDCs and VDCs is a visible

Q2, Q2
visible these are not the same as seen in Eq. 4.2.

Q2
visible = 2E2

est
(1− cos θvisible)

1 + Eest
mp

(1− cos θvisible)
6= Q2

physical (4.2)

The only way to get to the physical values, θphysical and Q2
physical is through com-

parison of data and the GEANT4 simulation of the Qweak experiment. By comparing

the values in Eq. 4.2 to the equivalent variable in the GEANT4 simulation, as seen in

Eq. 4.3, the variables for the interaction point can be extracted.

Q2
visible,G4 = 2E2

G4

(
1− cos θvisible,G4

)
1 + EG4

mp

(
1− cos θvisible,G4

) (4.3)

Matching Q2
visible (Eq. 4.2) and Q2

visible,G4 (Eq. 4.3) when the GEANT4 simulation

is analyzed in the same way as the data, then the GEANT4 simulation will give the

Q2
physical at the interaction vertex.

Direct comparison between Q2
visible and Q2

visible,G4 is not included here. Anna

Lee is working on the “pointing” of the HDCs and her work will be included in her

dissertation.

4.3 Kinematics Validations Using Tracking Data

Tracking data were also used to test various parts of the Qweak apparatus, to see how

they differ from the ideal design and see the effects these differences have on the overall

experiment. By using the Qweak simulation and changing an aspect of the experimental

setup in the simulation the effect of that change can also be seen, and in some cases

compared to tracking data. As mentioned at the beginning of this chapter we don’t
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expect the data and simulation to have agreement in the average Q2 value, however

the sensitivities should be in agreement.

4.3.1 Target Properties

The Qweak target has a few different properties that can affect Q2. It’s length and

location influence the scattering angle of the electrons that reach the MDs. Also, any

boiling in the target and variation in the energy loss in the target can affect the energy

of the electron both before and after the scattering vertex, and thus affect Q2.

4.3.1.1 Target Location

The target location is an important component to determine the angle with which

an electron scatters from the target. The target’s cold motion, i.e. the change in

position due to the cooling of the target adds an uncertainty to the position of the

target. Taking into account the cold motion of the target there is a 0.2 cm uncertainty

on the location of the target [38], as determined by the JLab survey group.
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Figure 4.1: Q2 vs. changes in location of the target along the beam in MDs 3 (blue
circles) and MD 7 (red triangles) [39] as determined from the simulation1. Here and in
following figure the uncertainties on each data point are the statistical error on the
means of each Q2 distribution.
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In principle the effect of the target location on the scattering angle can be calculated

by simple geometry, however this is exactly true only in the case of a point target.

Therefore for the long LH2 target the effect on the uncertainty on Q2 from uncertainty

in the target location can best be investigated through the use of the simulation.

Through changing the location on the target around the nominal in the simulation

the target position’s effect on Q2 can be found, as seen in Fig. 4.1. The average of

the two simulated dependencies was used to determine the sensitivity of Q2 to the

target position, dQ
2
/dzTarget, yielding 0.143 m(GeV2) cm−1. The 0.2 cm uncertainty on

the target position correlates to a 0.029 m(GeV2) or 0.117% uncertainty on Q2.

4.3.1.2 Target Boiling

As the electrons travel through the target they deposit energy into the target through

various scattering processes, which can cause a change in density in the target i.e.

boiling of the LH2 of the target. During the integrating mode of the Qweak experiment,

with the beam current of 180µA, the density reduction due to the target boiling was

0.8± 0.2% [40, 41].

Boiling in the target will cause a decrease in the density of the target, therefore

an increase in the prescattering electron energy as it travels through less LH2 than if

there is no boiling. Boiling could happen throughout the whole length of the target

i.e. “bulk boiling”. However, target boiling could alternatively take place primarily at

one or both of the windows on the target, causing “film boiling”, where a pocket (or

film) is created where the LH2 is not the same density as the rest of the target. This

has a different impact on Q2, as the location of the interaction in the target changes

Q2. The interactions at the upsteam end of the target have a lower Q2 than those at

the downstream end of the target, as seen in Fig. 4.2.

By excluding interactions that take place within a certain distance of either

end of the target in the simulation, we can estimate the effect of film boiling on

1
For this plot and other plots like this “Prob” is the probability, the variables of the fit are defined

through the general linear equation: y = p0 + p1× x.
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Figure 4.2: Simulated Q2 over the LH2 target length. Interactions at the upsteam end
of the target have a lower Q2 (smaller scattering angle) than those at the downstream
end of the target.

Q2. Conservatively it was chosen a distance of 1% (3.44 mm) of the target length,

corresponding to 0.8± 0.2% density loss. Cutting out the 3.44 mm from the upstream

end of the target shifts Q2 by +0.09% and for the downstream end of the target a shift

in Q2 of −0.10% was found. Therefore target boiling leads to a ±0.1% uncertainty on

Q2.In comparison bulk boiling would have an order of magnitude smaller effect on Q2.

4.3.2 Beam Properties

Various properties of the electron beam during the Qweak experiment were important

to look at. These include the position and angle at which the beam came into the

target and the size to which the beam was rastered on the target. These properties can

vary over time, especially between long down periods, and how these changes effect

the experiment, mainly the Q2, needed to be investigated and understood.

The JLab accelerator and the Qweak experiment have different coordinate systems

and for most of the tracking analysis this is irrelevant. However, in the beam position

and angle studies this matters, because the beam was deliberately moved in the x̂ and
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ŷ directions. The JLab accelerator coordinate system has the beam moving in the

−ẑ direction while the Qweak experiment2 coordinate system has the beam moving

in the +ẑ direction. Therefore the Qweak experiment coordinate system has a parity

transformation for the x̂ and ẑ directions from the JLab accelerator coordinate system

as illustrated in Fig. 4.3. All of the analysis related to the beam position and angle

results will be shown using the JLab accelerator coordinate system.

+x̂

+ŷ

+ẑ e−

JLab

+x̂

+ŷ

+ẑ

e−

Qweak experiment

Figure 4.3: The JLab accelerator and Qweak experiment’s coordinate systems. The
beam direction is illustrated in red, it travels in the −ẑ in the accelerator coordinate
system and the +ẑ in the Qweak experiment coordinate system.

4.3.2.1 Raster Size

As stated in Sec. 3.3.1, the beam was rastered uniformly over a 4 mm× 4 mm area.

During tracking runs the raster could be varied without damaging the target because

of the lower beam current, therefore during this time the effect of the raster on Q2

can be investigated. Rastering the beam over a uniform area by modest amounts is

not expected to change Q2. For a sequence of tracking runs the raster was varied

from 1 mm× 1 mm to 5 mm× 5 mm in sequential steps of 1 mm in each direction. The

extracted Q2 for these runs is shown in Fig. 4.4.

There is no evidence of a change in Q2 due to change in the raster size,

dQ
2
/d(Raster Size) is 0.005± 0.008 m(GeV2) mm−2 and 0.001± 0.008 m(GeV2) mm−2 for

MDs 1 and 5 respectively. Assuming a maximum possible raster difference of ±1 mm

2
This is also the coordinate system used in the GEANT4 simulation.
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Figure 4.4: The effect of changing the raster size on Q2 in MDs 1 (blue circles) and
MD 5 (red triangles) from tracking data.

between tracking and parity mode and a maximum change in Q2 due to the raster of

the maximum slope with one sigma, the uncertainty on Q2 is 0.054% due to the raster

size. The simulation results confirm this result.

4.3.2.2 Beam Position

The position at which the beam impinges on the target can affect the Q2 values in

individual MDs. If the beam is closer to one MD the scattering angle (θ) and Q2 for

that MD will decrease and therefore both will increase in the opposite MD. Due to the

symmetric layout of the detectors in the Qweak experiment, this increase and decrease

in individual bars should, to first order, cancel between opposite pairs. However

symmetry-breaking imperfections in the actual apparatus will spoil this cancellation.

During the tracking mode there were dedicated runs where the position of the

center of the beam on the target was changed. These changes were from −2 mm to

2 mm from the nominal beam position in steps of 1 mm in both the x̂ and ŷ direction

independently. Moving the beam only took place in the x̂ and ŷ direction and not along

the diagonal (45° to the x̂ and ŷ directions) due to time constraints. For the GEANT4
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Figure 4.5: x̂ Beam Position Scans for MDs 1 (blue circles) and 5 (red triangles) from
tracking data (top) and from GEANT4 (bottom).
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Figure 4.6: x̂ Beam Position Scans for MDs 3 and 7 from GEANT4.

simulation the beam was moved in the same way as was done in the experiment with

the same MDs.

As expected, when the beam position is varied along the axis joining two opposite

detectors (e.g. along the x̂ for MD 1 and MD 5, or along the ŷ axis for MD 3 and MD

7, see Fig. 3.6), the Q2 in one MD increases and that in the other MD decreases. This

can be seen in both the data and simulation in Figs. 4.5 and 4.7. The simulation and

data agree, as expected.

When the beam moves in one direction and Q2 is measured in the MDs that are

perpendicular to the beam motion (i.e. moving the beam in the ŷ direction and

measuring Q2 in MDs 1 and 5), it would be expected that Q2 wouldn’t change. The

measured Q2 for both simulation and data in this case is seen in Figs. 4.6 and 4.8, and

is consistent with a slope of zero, within errors, as expected.

The slopes for all of these cases are shown in Table 4.1. When moving the beam in

either the x̂ or ŷ direction and measuring Q2 in the MDs that are centered on that

axis, the data and simulations agree quite well. In opposite MDs there is an increase

of Q2 in one and decrease of Q2 in the other, which cancel out within errors.

In the MD 1 and MD 5 data taken during the ŷ position scan, the slope agrees with
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Figure 4.7: ŷ Beam Position Scans for MDs 3 (red triangles) and 7 (blue circles) from
tracking data (top) and from GEANT4 (bottom).



4.3. KINEMATICS VALIDATIONS USING TRACKING DATA 40

 Position [mm] 
1− 0.5− 0 0.5 1 1.5 2

)]2
 [m

(G
eV

2
 Q

23.8

23.9

24

24.1

24.2

24.3

24.4

24.5

24.6  / ndf 2χ  1.559 / 2

Prob   0.4586

p0        0.01293± 24.33 

p1        0.01065±0.01433 − 

 / ndf 2χ  1.559 / 2

Prob   0.4586

p0        0.01293± 24.33 

p1        0.01065±0.01433 − 

 / ndf 2χ  2.679 / 2

Prob   0.262

p0        0.01293± 24.04 

p1        0.01041±0.009005 − 

 / ndf 2χ  2.679 / 2

Prob   0.262

p0        0.01293± 24.04 

p1        0.01041±0.009005 − 

 vs. Y Beam Position2Q
 / ndf 2χ  1.559 / 2

Prob   0.4586

p0        0.01293± 24.33 

p1        0.01065±0.01433 − 

 / ndf 2χ  2.679 / 2

Prob   0.262

p0        0.01293± 24.04 

p1        0.01041±0.009005 − 

Main Detector 1

Main Detector 5

Data

 Position [mm] 
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

)]2
 [m

(G
eV

2
 Q

25

25.02

25.04

25.06

25.08

25.1

25.12

25.14

25.16

25.18

25.2

25.22  / ndf 2χ  15.72 / 7

Prob   0.02778

p0        0.007633±  25.1 

p1        0.006802± 0.001518 

 / ndf 2χ  15.72 / 7

Prob   0.02778

p0        0.007633±  25.1 

p1        0.006802± 0.001518 

 / ndf 2χ  7.223 / 7

Prob   0.406

p0        0.007584± 25.08 

p1        0.006806±05 −4.982e− 

 / ndf 2χ  7.223 / 7

Prob   0.406

p0        0.007584± 25.08 

p1        0.006806±05 −4.982e− 

 vs. Y Beam Position2Q
 / ndf 2χ  15.72 / 7

Prob   0.02778

p0        0.007633±  25.1 

p1        0.006802± 0.001518 

 / ndf 2χ  7.223 / 7

Prob   0.406

p0        0.007584± 25.08 

p1        0.006806±05 −4.982e− 

Main Detector 1

Main Detector 5

GEANT4

Figure 4.8: ŷ Beam Position Scans for MDs 1 (blue circles) and 5 (red triangles) from
tracking data (top) and from GEANT4 (bottom). For discussion of the small slopes
see text.
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Direction MD
dQ

2

dx̂ or dQ
2

dŷ

(
m(GeV

2
)

mm

)
Data GEANT4

x̂

Both −0.006± 0.005 0.005± 0.005
1 0.090± 0.007 0.125± 0.007
5 −0.101± 0.007 −0.115± 0.007

Both — 0.001± 0.005
3 — 0.007± 0.007
7 — −0.005± 0.007

ŷ

Both −0.012± 0.007 0.001± 0.005
1 −0.009± 0.010 0.000± 0.007
5 −0.014± 0.010 0.002± 0.007

Both −0.007± 0.005 0.085± 0.005
3 −0.115± 0.006 −0.109± 0.007
7 0.115± 0.006 0.126± 0.007

Table 4.1: Comparison of the slopes of the fits from the beam position scans for tracking
data and simulation. “Both” refers to the Q2 average between the two opposite MDs.

zero within 2σ, however the possible deviation from a zero slope could be due to the

beam not staying constant in x̂ during this scan. Assuming that is true, a shift of only

139µm in x̂ would explain this. A shift of this magnitude would not be unreasonable,

as it is smaller than the intrinsic (or “unrastered”) beam profile, ≈200µm [28].

Taking the maximum average slope between two opposite MDs with a 1σ uncer-

tainty, (0.012 m(GeV2) mm−1 and 0.011 m(GeV2) mm−1 for x̂ and ŷ beam position

respectively) the average of opposite MDs of slopes and the uncertainty on the beam

position from the neutral axis the uncertainty on Q2 due to the beam position can be

found. Based on optical surveys of the BPMs pre- and post-experiment, it was found

that the BPMs were not measured to be reproducible to better than 1.5 mm, which is

taken to be the uncertainty on the absolute beam position [42–44].

Since beam motion in the x̂ direction is independent of the movement in the ŷ

direction, the total uncertainty on Q2 due to the beam position is the quadrature sum

of the uncertainty measuring Q2 in MDs along or perpendicular to the axis of the

beam motion. This, coupled with the 1.5 mm uncertainty on the beam position, leads

to a 0.14% uncertainty on Q2.
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4.3.2.3 Beam Angle

As with the beam position, the angle with which the beam arrives at the target was also

varied during dedicated tracking runs. The x̂ beam angle was varied from −300µrad

to 300µrad in steps of 300µrad in the data. In the simulation, in both x̂ and ŷ, the

beam angle was varied from −600µrad to 600µrad. As stated before, and as with the

other direct comparisons between data and simulation, absolute Q2 values may not be

in agreement. Like with the beam position, the data and simulation were compared,

the dependencies of Q2 on beam angle are found to be similar as seen in Figs. 4.9,

4.10, 4.11 and 4.12.

All of the slopes are summarized in Table 4.2 and cancel between opposite MDs.

Therefore the beam angle does not have a significant impact on Q2 and is therefore

not a contributing uncertainty on Q2 (� 0.1%).

Direction MD
dQ

2

dθx̂
or dQ

2

dθŷ

(
m(GeV

2
)

µrad

)
in units of 10−5

Data GEANT4

x̂

Both 0.20 ± 4.21 0.70 ± 2.0
1 31.7 ± 5.77 44.4 ± 2.82
5 −31.3 ± 6.13 −43.0 ± 2.83

Both — 1.12 ± 1.98
3 — 0.199± 2.80
7 — 2.04 ± 2.86

ŷ

Both — 3.69 ± 1.99
1 — 4.56 ± 2.76
5 — 2.81 ± 2.84

Both — 0.55 ± 2.02
3 — −42.7 ± 2.85
7 29.2 ± 2.44 43.8 ± 2.86

Table 4.2: Comparison of the slopes of the fits from the beam angle scans for data and
simulation. “Both” refers to the Q2 average between the two opposite MDs.
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Figure 4.9: x̂ Beam Angle Scans for MDs 1 (blue circles) and 5 (red triangles) with
tracking data (top) and from GEANT4 (bottom).
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Figure 4.10: x̂ Beam Angle Scans for MDs 3 (red triangles) and 7 (blue circles) from
GEANT4.
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Figure 4.11: ŷ Beam Angle Scans for MDs 1 (blue circles) and 5 (red triangles) from
GEANT4.

4.3.2.4 Beam Energy

During the Qweak experiment the beam energy was measured. The uncertainty on

this measurement contributes to the uncertainty on Q2, because of the relationship



CHAPTER 4. TRACKING MODE: DATA AND SIMULATION ANALYSIS 45

rad] µ Angle [
600− 400− 200− 0 200 400 600

)]2
 [m

(G
eV

2
 Q

24

24.1

24.2

24.3

24.4

24.5

24.6

24.7  / ndf 2χ  10.39 / 3

Prob   0.01556

p0        0.01018± 24.33 

p1       05− 2.437e± 0.0002918 

 / ndf 2χ  10.39 / 3

Prob   0.01556

p0        0.01018± 24.33 

p1       05− 2.437e± 0.0002918 

 vs. Y Beam Angle2Q
 / ndf 2χ  10.39 / 3

Prob   0.01556

p0        0.01018± 24.33 

p1       05− 2.437e± 0.0002918 

Main Detector 7

Data

rad] µ Angle [
600− 400− 200− 0 200 400 600

)]2
 [m

(G
eV

2
 Q

24.6

24.7

24.8

24.9

25

25.1

25.2

25.3

25.4

25.5

25.6  / ndf 2χ  5.349 / 3

Prob   0.148

p0        0.00946± 25.22 

p1       05− 2.847e±0.000427 − 

 / ndf 2χ  5.349 / 3

Prob   0.148

p0        0.00946± 25.22 

p1       05− 2.847e±0.000427 − 

 / ndf 2χ  10.03 / 3

Prob   0.01829

p0        0.009477± 25.11 

p1       05− 2.86e± 0.0004378 

 / ndf 2χ  10.03 / 3

Prob   0.01829

p0        0.009477± 25.11 

p1       05− 2.86e± 0.0004378 

 vs. Y Beam Angle2Q
 / ndf 2χ  5.349 / 3

Prob   0.148

p0        0.00946± 25.22 

p1       05− 2.847e±0.000427 − 

 / ndf 2χ  10.03 / 3

Prob   0.01829

p0        0.009477± 25.11 

p1       05− 2.86e± 0.0004378 

Main Detector 3

Main Detector 7

GEANT4

Figure 4.12: ŷ Beam Angle Scans for MDs 3 (red triangles) and 7 (blue circles) with
tracking data (top) and from GEANT4 (bottom).
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between EB and Q2. At various points in the tracking periods this was measured

invasively through the use of three position sensitive 3-wire scanners placed in the Hall

C arc [28]. Figure 4.13 shows the relative beam energy3 during part of the experiment,

showing that beam energy was very stable throughout Qweak. The beam energy was

measured to be 1158.4± 1.1 MeV for Run 2 (see Sec. 4.4.1), which correlates to a

0.19% uncertainty on Q2.

Mean     1158
Std Dev    0.04007

Beam Energy [MeV]
1156.6 1156.8 1157 1157.2 1157.4 1157.6 1157.8 1158 1158.2 1158.4

0

20
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310× Mean     1158
Std Dev    0.04007

Beam Energy

Figure 4.13: Stability of the beam energy during part of the Qweak experiment.

4.3.3 QTor Magnet Properties

As stated earlier, the QTor magnet focuses the electrons on the MD bars, therefore

it is important to investigate aspects of QTor’s magnetic field. How well the QTor

current (which determines the overall strength of the field) is known will contribute

to an uncertainty on Q2. This was investigated both through a specific study taken

during a tracking period in the Qweak experiment and with the simulation.

As mentioned in Chap. 3, the Qweak apparatus was built to be symmetric, this

assumes that the magnetic field is identical (in r, θ, and φ) in each of the 8 octants.

The reality however is that QTor’s field varies from octant to octant, this variation’s

3
The relative beam energy, measured non-invasively, is known at JLab as the “Tiefenbach” energy.
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effect on Q2 can only be investigated with the simulation.

4.3.3.1 Magnetic Field Strength Scan

During the experiment the current at which QTor ran was chosen such that the

elastically scattered electrons would be focused onto the main detector bars. By

changing this current to different values, different sets of electron tracks can be focused

on the detectors, thereby changing the Q2 of the detected tracks. An extraction of

the average Q2 from elastic scattering for all eight of the MDs in the simulation for a

range of QTor currents from 8000 A to 9000 A is shown in Fig. 4.14.

8000 8200 8400 8600 8800 9000

QTor Current [A]

25.0
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26.0

26.5
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Q
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)2
]

Q2 vs. QTor Current

Figure 4.14: Q2 for elastic scattered electrons vs. QTor current from 8000 A to 9000 A
averaged over all eight MDs, from the simulation. The Qweak experiment used a current
of 8900 A.

During the Qweak experiment a similar scan of QTor current was performed, from

8800 A to 9100 A, which is shown in Fig. 4.15. The data are fitted with a quadratic

dependence to help guide the eye. Comparing this to Fig. 4.14, we see a similar

dependence over this small range in QTor current.

Looking at a smaller range in QTor current near the set current of around 8900 A

used in the Qweak experiment, we can use a linear fit. This is done for a current
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Figure 4.15: Q2 vs. QTor current in the tracking data over the QTor scan for currents
from 8800 A to 9100 A. In MD 1 (blue circles), MD 5 (red triangles), and the average
of the two MDs (black squares). All of these have a quadratic fit to help guide the eye.
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Figure 4.16: Q2vs. QTor current for tracking data (red triangles: average of MD 1
and 5) and GEANT4 (blue circles). The error bars on the simulation are included but
are less than or equal to the size of the plotting symbols.

range of 8820 A to 9060 A in the data and 8820 A to 9000 A in simulation, as shown

in Fig. 4.16. As explained in the beginning of this chapter, the discrepancy in the
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absolute values between the data and simulation is likely due to the inability to achieve

agreement between the visible scattering angle in data and simulation. The fit for the

data leads to a slope of −1.62± 0.07× 10−3 m(GeV2) A−1 and a very similar value of

−1.42± 0.05× 10−3 m(GeV2) A−1 for the simulation. There was a ±10 A uncertainty

on the absolute calibration of the QTor current; along with the slope from the fit to

the data, this leads to a 0.066% uncertainty on Q2 [45].

4.3.3.2 Magnetic Field Sector Rotation Study

As described in Sec. 3.3.4, the MDs were set up to use symmetry as a way to help

reduce false asymmetries. However, QTor’s field, as actually constructed and mapped

via a 3-axis mapper, is not perfectly symmetric [46]. The imperfect symmetry of the

magnetic field can lead to an MD dependent variation in Q2. However, imperfections

in the locations of the MDs or in the primary collimator can also lead to variations in

Q2 in a given MD. To isolate the effect due to the magnetic field we need to use the

simulation, since the physical magnet cannot be rotated in the apparatus. By rotating

the QTor’s magnetic field map [28] included in the Qweak simulation the full effect that

the magnetic field has in each MD can be seen.
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Figure 4.17: Rotation of each octant of QTor’s magnetic field, relative to the MD. The
MD number is written inside the MD in black and the QTor octant is written in blue
outside the MD. From left to right, rotations of QTor of 0.0°, −45.0°, and −90.0°.

Three simulations were run, each with the QTor field rotated by a different angle

around the beam axis, 0.0°, −45.0°, and −90.0°; the scheme of these rotations are

illustrated from left to right in Fig. 4.17. When rotating QTor section or octant
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Figure 4.18: Simulated results. On the top, the Q2 for each section in QTor is plotted
vs. MD number. On the bottom the Q2 for each octant in QTor is plotted vs. QTor
octant. In both figures, the black circles correspond to where there is no rotation in
the magnetic field. The blue diamonds correspond to where there is a −45° rotation in
the magnetic field. The red squares correspond to where there is a −90° rotation in
the magnetic field. These are illustrated from left to right in Fig. 4.17.
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into various MDs placed in their survey locations, Q2 will change in each of these

MDs, to that of the counterclockwise adjacent MD for each step of −45° that is taken.

Each octant of QTor, regardless of what MD it is rotated into, should result in a

consistent value of Q2 for that octant of QTor, with any variations only being due

to the differences in the MDs. This is consistent with what is found through use of

the simulation as seen in Fig. 4.18; the variation in the bottom figure is due to the

small variation between the MD locations. There is a spread in Q2 over all the MDs

of 0.156 m(GeV2) with an RMS of 0.051 m(GeV2). Rather than assuming that the

field map is 100% accurate, the conservative assumption is made that the MD to MD

variation in the field map is about the same as the variation that the real field has. By

assuming that this amount of variation (RMS) is realistic and randomly distributed

the average effect of this is RMS/
√

8, giving an 0.018 m(GeV2) or 0.072% uncertainty

on Q2.

4.3.4 Main Detector and Primary Collimator

The location of both the MDs and the primary collimator and it’s holes, and any

imperfections in those holes can affect Q2. The effects on Q2 from these are only able

to be studied through the simulation.

The standard GEANT4 simulation has the locations of the MDs and primary

collimators as determined from survey. These locations were varied to study the

sensitivity of Q2 to the collimator and MDs positions. Changes in both of these will

cause changes in the distribution of scattered electrons on the MDs. The primary

collimator defines the acceptance, therefore any changes in these holes will impact the

acceptance, specifically the scattering angle which has a direct relationship with Q2.

4.3.4.1 Position of Main Detectors

The positions of the MDs didn’t end up being their ideal positions in the actual,

as-constructed apparatus due to tolerances in their support structure. The effect of

this can only could be studied with the Qweak simulation similar to the imperfections
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of the QTor field discussed in the previous section. The ideal location of the main

detectors places them at the same location along the ẑ-axis from the target and radial

distance from the center of the MD array. The maximum difference between the ideal

and the surveyed positions [47] were in MD 1 in the ẑ and radial direction, and were

1.215 cm and 0.446 cm with an RMS of 0.645 cm and 0.293 cm respectively.

The impact on Q2 of changing the MD locations to their ideal location, from that

which was in the experiment is illustrated in Fig. 4.19. The change in location does

not have significant impact on the Q2 seen in each MD, all agreeing within errors.

Rather than rely on the survey positions and their claimed precision, the conservative

choice to use the size of the difference in Q2 between the ideal and surveyed locations

as the uncertainty on Q2, this gives a 0.006 m(GeV2) or a 0.024% uncertainty on Q2.
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Figure 4.19: The simulated Q2 measured in each MD, for the MDs in their ideal
locations (black circles) and their surveyed positions (blue squares). The variation
in Q2 due to non-ideal locations of the MDs is seen to be very modest. The MD
dependence is due to the magnetic field imperfections.
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4.3.4.2 Primary Collimator Location

The primary collimator location has a simple contribution to Q2 based on geometry,

for a point-like target, and the assumption that the MDs accepts all the events that

make it through the collimator,

dQ2

Q2 = 2
dθ

θ
= 2

√(
dR

R

)2

+

(
dL

L

)2

(4.4)

where R is the effective radius of the collimation system, and L is the separation

between target and primary collimator. The uncertainty in effective radius determined

by survey is dR = 0.5 mm. The location of the primary collimator sets L = 2.72 m and

dL = 0.5 mm, then dL/L = 0.02% also determined by survey [28, 48–51].

Figure 4.20: The primary collimator was shifted in the simulation around the beam
line (gray circle), radially (left) and azimuthally (right). Note: the figures do not show
the actual shape of the collimator aperture.

If the location of the primary collimator is slightly off from the ideal position this

will effect θ and consequently Q2. The only way to look beyond the simple geometric

estimate with a point-like target of this effect is to change the primary collimator

location through the simulation. The primary collimator holes were moved in the

simulation from −8 mm to 8 mm in steps of 4 mm, both radially and azimuthally, as

illustrated in Fig. 4.20.

Moving the collimator holes radially should be similar to moving the beam position,

so Q2 would be expected to have a linear relationship with the radial shift of the colli-

mator hole location. In contrast, making an azimuthal shift should have a symmetric
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effect around the nominal location, which is what is seen illustrated in Fig. 4.21. The

azimuthal shift is tiny and and its effect is negligible compared to the radial shifts.
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Figure 4.21: The primary collimator shifts effect on Q2. Blue circles are for radial
shifts, and red triangles are for azimuthal shifts.4

Making the radial shift leads to a slope of 0.1005± 0.0005 m(GeV2) mm−1, assum-

ing the survey radial shift of 0.5 mm [50, 51] the change in Q2 from just the radial shift

is 0.0503 m(GeV2) or 0.202%. Combining this with the distance between the target

and the primary collimator leads to a total of 0.206% uncertainty on Q2 from the

primary collimator location.

4.3.4.3 Primary Collimator Imperfections

In the previous section the effect on Q2 of moving the location of the primary collimator

holes was examined. However, this does not look at what happens if the shape of the

collimator holes are not exactly as designed. Imperfections in the collimator aperture

can be investigated by studying the effect on Q2 of cutting events on the tracking data

which arise from tracks close to the edges of the holes in the primary collimator. This

is different from the study in the previous section because rather than moving the

4
For the azimuthal shift fit the variables are defined through the general quadratic equation:

y = p0 + p1× x+ p2× x2.
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whole collimator hole, this moves just one of the edges. This analysis would change

the face area of the collimator hole.

Figure 4.22 shows the projection of tracks through the primary collimator for

package one. Using this distribution and making cuts on it azimuthally and radially

allows one to show how imperfections of the collimator holes affect Q2.
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Figure 4.22: Projection from tracking data of detected electrons to the primary
collimator. The shape of the collimator hole is clearly visible.

The maximum size of the collimator imperfection as determined by survey is

±0.5 mm [50, 51]. Changing the outer radial edge changes Q2 by 0.033% and the

azimuthal edges changes Q2 by 0.056%. Both of these are independent, therefore there

is a 0.065% uncertainty on Q2 due to collimator imperfections. As might be expected,

the collimator’s effect on Q2 is dominated by the location of the inner radial edge (see

Sec. 4.3.4.2). Fig 4.22 illustrates that the inner radial edge has the highest rate and

therefore small changes to its location will have a larger impact than any other edge of

the collimator hole.
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4.3.5 Radiative Corrections

The GEANT4 simulation includes external bremsstrahlung but ignores internal brems-

strahlung in the interactions. Tracking data includes both internal and external

bremsstrahlung. What we wish to report is the Q2 and Aep at the vertex which doesn’t

include either of these, as illustrated in Fig. 4.23. Since the GEANT4 simulation

is used to determine the central Q2 value only external bremsstrahlung needs to be

corrected for.

This can be corrected for by running two simulations, one with the external

bremsstrahlung turned on and the other with it off, and looking at the shift in the

Q2 between the two simulations. The difference in Q2 between these simulations

(i.e. the effect of external bremsstrahlung) is 0.11 m(GeV2), which leads to a +0.44 %

correction on Q2 [52]. A conservative 50% error is assigned to this or 0.22%.

GEANT4 Reported

Figure 4.23: Cartoon for the radiative correction. GEANT4 doesn’t include internal
bremsstrahlung, but does include external bremsstrahlung (one diagram for which is
illustrated in the left). On the right there is no external or internal bremsstrahlung
which is what is reported for the Q2 of the Qweak experiment.

An earlier simulation using GEANT3 gave almost exactly the same result; they

differed by 0.1% on the central value of Q2. To be conservative we chose to add this

discrepancy in quadrature with the 0.22% uncertainty from above to yield 0.242%.

4.3.6 Q2 Uncertainty Synopsis

The compilation of the results from all the studies in Sec 4.3 determines a total

uncertainty on Q2, as listed in Table 4.3, of 0.446 %. The proposal for the Qweak
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experiment had a goal for the uncertainty on Q2 = 0.5 %, which was met. The Q2

uncertainty is dominated by systematic uncertainties and not statistics.

Source Error (%)
Running Total

(Quadrature)(%)

Statistics 0.03 0.03
LH2 Target Location 0.117 0.121
Target Boiling 0.1 0.157
Raster Size 0.054 0.166
Beam Position 0.141 0.218
Beam Energy 0.19 0.289
Absolute B-Field 0.066 0.296
QTor Field Map 0.072 0.305
MD locations 0.024 0.306
Primary Collimator Location 0.206 0.369
Primary Collimator Imperfections 0.065 0.375
Radiative Corrections 0.242 0.446

Total (Quadrature Sum) — 0.446

Table 4.3: The final uncertainties on the Q2 measurement.

The simulation statistics which gave 0.03 % uncertainty on Q2 required ≈ 62.5 d

of computing time on the JLab scientific computing farm. Each simulation in the

previous sections needed anywhere between half or the same amount of simulations,

using at least 8.6 yr of computing time.

Aside from the radiative corrections, the dominant sources of uncertainty are the

primary collimator location, the target position along the beam line, beam energy,

and the beam position. Three of these depend heavily on physical measurements of

different aspects of the Qweak experiment.

Spending more time to further lower the uncertainty on Q2 would have little effect

on the final result, as the uncertainty on the weak charge is dominated by other

contributions, which are discussed in Sec. 5.2.
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4.4 Q2 Determination

The asymmetry data were taken in two separate running periods, Run 1 and Run

2, which had slightly different experimental conditions, and which were separated by

a 6 month pause. The central value of Q2 was taken from the GEANT4 simulation

(Q2
G4) and then corrected for each Run individually, and for the different light yield of

the electrons traveling though different parts of the main detector bars, which will be

discussed in Secs. 4.4.2 and 4.6.1.

The simulations used the Qweak experiment’s Run 2 configuration without the

tracking chambers in because they slightly change the Q2 value, providing a Q2 value

that is not equal to the main experiment. For electrons that travel through the main

detectors and leave light which reaches the PMTs there is a Q2 distribution as seen in

Fig. 4.24. For Run 2 the central Q2
G4 from the simulation is 24.595± 0.007 m(GeV2).

The statistical precision of this simulation thus provides a 0.03% uncertainty to Q2.
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Figure 4.24: The Q2 distribution from GEANT4 simulation for Qweak’s Run 2 configu-
ration.

In order to get the Q2 for Run 1 (Q2
Run 1) and Run 2 (Q2

Run 2), corrections to the

simulation value need to be made. These can be divided into two different corrections:
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corrections due to differences between the conditions of the simulation and the data,

and corrections due to differences in conditions between Run 1 and Run 2. These are

discussed in the following sections.

4.4.1 Simulation to Data Correction for Run 2

Correcting for the difference between the simulations and the data was done by

comparing at the Run 2 conditions for data and the simulation. The simulations

were done in advance of knowing the final target position and beam energy. Because

these are small effects and the simulations take a significant amount of time, updated

simulations were not run. Table 4.4 shows the difference between the data and the

simulation for the target position, beam current, and QTor current.

Property
Data GEANT4

Run 1 Run 2 Run 1 Run 2

Target Position5 (cm) −652.466 −652.856 −652.67 −653.075
Beam Energy (MeV) 1161.09 1158.38 1159.65 1157.48
QTor Current (A) 8920.10 8899 8920.10 8899

Table 4.4: Differences between the Run 1 and Run 2 configurations in the Qweak

experiment and its GEANT4 simulation.

The Run 2 data has a beam energy that is 0.08% higher than was used for the

simulation. Since dQ
2
/Q2 ∝ 2(dEB/EB) (Eq. 4.1) the effect the beam energy has on Q2

is doubled, therefore the difference in beam energy increases the Q2
Run 2 by 0.16% from

the Q2
G4.

In both the data and the simulation the target position changes between Run

1 and Run 2. For both the data and the simulation the difference in the target

position is ≈ 0.40 cm, and the difference between the data and the simulation are

also approximately the same, with the largest for Run 2 at 0.219 cm. The position of

the target affects Q2 by 0.583 % cm−1 as seen in Sec. 4.3.1.1. Therefore the 0.219 cm

difference in target positions leads to a 0.128% increase in Q2
Run 2 from Q2

G4.

5
The target position is measured relative to the center of QTor.
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A total increase of 0.288% from the Q2
G4 is required to correct for the differences

in the beam energy and target position between the simulation and data.

4.4.2 Extraction of Q2 for Run 1

Correcting for the difference between Run 1 and Run2 can be done similarly to

correcting the simulation to data for Run 2. The beam energy for Run 1 is 0.233%

higher than Run 2 in the data; as in the last section, since dQ
2
/Q2 ∝ 2(dEB/EB) (Eq. 4.1)

this means Q2
Run 1 is 0.467% higher than Q2

Run 2. Between Run 1 and Run 2 the

difference in the target position is ≈ 0.40 cm, combining this with the target position

affects on Q2 by 0.583 % cm−1 as seen in Sec. 4.3.1.1, means there the Q2
Run 1 has a

0.234% increase from Q2
Run 2. The change in the strength of QTor’s magnetic field

between Run 1 and Run 2 was calculated with a different beam energy therefore a

0.15% decrease in Q2
Run 1 from Q2

Run 2 as determined from tracking data [53].

Combining each of these Q2
Run 1 is 0.55% higher than Q2

Run 2. The Run 1 simulation

gives results consistent with this difference.

4.5 Final Q2

The Q2
Run 2 is 0.288% higher than 24.595 m(GeV2) due to the beam energy and target

position differences between the simulation and data. Also since GEANT4 includes

external bremsstrahlung therefore an additional 0.49% increase in the 24.595 m(GeV2)

also must be added, as discussed in Sec. 4.3.5. Therefore Q2
Run 2 is,

Q2
Run 2 = 24.595 m(GeV2)× 1.00288× 1.0049

= 24.787 m(GeV2) .

(4.5)

The Q2
Run 1 is 0.55% higher than Q2

Run 2 due to the differences in the beam energy,
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target position, and QTor current. Thus Q2
Run 1 is,

Q2
Run 1 = 24.787 m(GeV2)× 1.0055

= 24.923 m(GeV2) .

(4.6)

Finally, applying the 0.446% uncertainty, the Q2
Run 1 and Q2

Run 2 are 24.923± 0.111

m(GeV2) and 24.787± 0.111 m(GeV2), respectively.

4.6 Asymmetry Correction from Tracking

While the tracking system was mainly used for measuring the Q2, it was also used to

make some corrections to the main asymmetry measurement. These corrections are

(i) a lightweighting correction, which is due to the differences in the amount of light

reaching the PMTs at different places across the MDs (ii) correcting for the acceptance

of the Qweak experiment and (iii) the effects of measuring over a range Q2 while the

final result required a single average Q2.

4.6.1 Lightweighting Correction

The amount of light detected by the PMTs at the end of each MD changes depending

on where the electron passes through the bar, as illustrated in Fig. 4.25. In order to

accurately determine the optical response of the MDs, tracking data is used to measure

the light yield and Q2 across the MD. Electrons passing through the ends of a bar have

more total light detected by the PMTs than for those in the center of the bar, this

affects the Q2 which is reconstructed from the tracking data as illustrated in Fig. 4.26.

Lightweighting means that each entry in the Q2 distribution is weighted proportionally

to the summed amount of the light seen in the two PMTs. This can be quantified by

the ratio of calculated Q2 with lightweighting, Q2
LW and without lightweighting, Q2,

RDet.

RDet =
Q2

Q2
LW

(4.7)
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This has a 0.9895± 0.0021 effect on the Q2 value [54]. The largest effects that

contribute to this uncertainty are inefficiencies in the reconstruction of the tracks

in the HDCs and VDCs, and variations between repeated measurements in different

tracking periods.
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Figure 4.25: The distribution of the light yield across the MD as seen in the tracking
data by each individual PMT for a typical MD bar. There is a higher light yield on
the side of the bar where the PMT is, the discontinuity in the center of the bar is
where the two 1 m quartz bars are glued together. The fits are there to help guide
one’s eye [55].

4.6.2 Acceptance Correction

The Qweak experiment makes an average measurement of the asymmetry over the range

of Q2,
〈
A(Q2)

〉
, however the final result that we wish to quote is the asymmetry at

an average Q2, A
(
〈Q2〉

)
. To correct for this, an acceptance correction factor (Racc) is
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Figure 4.26: The distribution of the total light yield across the MD (top) and Q2

(bottom), plotted vs. position of the electron track along the bar, for a typical detector
bar in the tracking data.

defined,

Racc =

〈
A(Q2)

〉
A
(
〈Q2〉

) . (4.8)

By using the GEANT4 simulation,
〈
A(Q2)

〉
can be found like Q2 in Fig. 4.24 for each

MD. From the GEANT4 simulation Q2 has an approximate range of 12.8 m(GeV2) to

48.5 m(GeV2), and the asymmetry has an approximate range of −548 ppb to −96.9 ppb.

Then for each MD
〈
A(Q2)

〉
can be calculated with the corresponding Q2 from each

one and Eq. 2.41. Averaging this ratio in all eight MDs gives Racc = 0.977 with a

statistical uncertainty of 0.001. Conservatively the “B” term in Eq. 2.41 is known

to within 10% of itself providing a 0.002 uncertainty on Q2. Combining these, the

acceptance correction factor is Racc = 0.977± 0.002 [56].
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Chapter 5

Final Result from the Qweak

Experiment

5.1 Uncertainties on Aep

The analysis of the asymmetry data is not the topic of this dissertation. The various

corrections and sources of uncertainty were the responsibility of other collaborators

(aside from R
Q

2), and so will be only briefly described in the following.

The raw asymmetry, Araw, was first corrected for a number of false asymmetries

as shown in Eq. 5.1, and then corrected for various experimental backgrounds, beam

polarization, and multiplicative corrections as shown in Eqs. 5.2 and 5.3. All of these

are defined in [22], and only the largest are outlined here.

Amsr = Araw +AT +AL +ABCM +ABB +Abeam +Abias (5.1)

Aep = Rtot

Amsr/P −
∑

i=1,3,4 fiAi

1−
∑4

i=1 fi
(5.2)

Rtot = RRCRDetRaccRQ2 (5.3)
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The highest sources of systematic uncertainties were due to beam current monitor-

ing (ABCM), beamline background asymmetries (ABB), beam asymmetries (Abeam),

prescattering bias (Abias), beam polarization (P ), target windows (Ab1), and the

kinematics (R
Q

2), which are summarized in Table 5.1.

Source

Run 1 Run 2

Error Fractional Error Fractional
(ppb) (%) (ppb) (%)

BCM Normalization: ABCM 5.1 25 2.3 17
Beamline Background: ABB 5.1 25 1.2 5
Beam Asymmetries: Abeam 4.7 22 1.2 5
Rescattering Bias: Abias 3.4 11 3.4 37
Beam Polarization: P 2.2 5 1.2 4
Target Windows: Ab1 1.9 4 1.9 12
Kinematics: R

Q
2 1.2 2 1.3 5

Total of Others 2.5 6 2.2 15

Combined in Quadrature 10.1 — 5.6 —

Table 5.1: Final quadrature systematic uncertainties for sources with fractional contri-
butions ((σi/σtot)

2) of ≥5% to Aep on either Run 1 or Run 2.

ABCM: The integrated signal for each helicity window is normalized to the

integrated beam current during that helicity window. This is to eliminate any variation

in the detector signals caused by any difference in current. The beam current was

measured non-invasively with two BCMs in Run 1 and three BCMs in Run 2. The

uncertainty was determined by comparing the results from the different BCMs.

ABB: Secondary events can scatter off of the beamline or the tungsten collimator

as they travel to the MDs. These events come from mostly low-energy neutrals

and contribute only a small amount to the signal but were observed to have a large

asymmetry. The contribution of these events to the MD signals was determined in

special dedicated runs in which the main signal was blocked at the first collimator.

The asymmetry of this background was monitored using the luminosity monitors. For

more details see Emmanouil Kargiantoulakis’ dissertation [57].

Abeam: The beam asymmetries are from non-vanishing fluctuations in the helicity-



5.1. UNCERTAINTIES ON Aep 66

correlated beam properties, these properties were transverse position and angle1 and

beam energy. These were monitored continuously throughout the Qweak experiment

using the BPMs. The sensitivity of the asymmetry to such fluctuations was calibrated

by a system that deliberately varied these beam properties periodically. More details

on the beam asymmetries can be found in Josh Hoskins’ [33] and Donald Jones’

dissertations [58].

Abias: An unforeseen feature of the MDs was caused by the use of the Pb pre-

radiator. The electron spin when it arrives at the MD is not purely longitudinal, but

has a transverse component due to spin precession in the QTor magnet. Due to the

transverse component of the electron’s spin a left-right difference in the scattering

probability will occur as it scatters off the Pb. This difference is parity-conserving and

particularly large for the low-energy electrons in the electromagnetic shower in the

Pb. The PMT at each end of MD measures a different amount of light across the bar

as seen in Fig. 4.25. Therefore the two PMTS on a MD will measure a difference in

the asymmetry, which should cancel when averaged for a perfect detector. Imperfect

cancellation was modeled using simulation and input from the tracking data and was

found to be small, with Abias = 4.3± 3.0 ppb.

P : Details on the beam polarization analysis with the Møller polarimeter can

be found in Josh Magee’s dissertation [59] and with the Compton polarimeter in

Amrendra Narayan’s [60] and Juan Carlos Cornejo’s dissertations [61]. In Run 1 only

the Møller polarimeter was used for determining the beam polarization, because the

Compton polarimeter was being commissioned. However, in Run 2 both polarimeters

were functional and their results were in excellent agreement and were combined.

Ab1: Al has a parity-violating asymmetry which is about an order of magnitude

larger than that of the proton, therefore, like with the beam beamline background,

any small contribution from electrons that scattered from the Al windows of the target

to the overall signal will be a significant contribution to the asymmetry measurement.

1
The beam travels in the ẑ direction, therefore the direction transverse to the beam are the x̂ and

ŷ directions.
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Over the course of the Qweak experiment dedicated time was taken in order to make a

measurement of this asymmetry using a thin solid Al target. To determine the fraction

of the light yield in the MDs that arises from Al (≈ 2.5%), dedicated low current runs

were taken in tracking mode with an evacuated target; details can be found in Josh

Magee’s dissertation [59].

R
Q

2: The final of the largest sources of uncertainty is from the kinematics which

is discussed in this dissertation.

5.2 Final Qp
W

The final result for the Qweak experiment has been submitted for publication. The

measured asymmetry was Aep = −226.5± 9.3 ppb at Q2 = 24.8 m(GeV2). Table 5.2

summarizes the measured Aep for Run 1, Run 2 and the combination of the two

Runs. Both Run 1 and Run 2 have excellent agreement. Figure 5.1 shows the

reduced asymmetry plot for all parity-violating electron scattering experiments on

proton targets [22, 62–73]. This allows us to extract the value for the weak charge of

Q
p
W = 0.0719± 0.0045.

Property Asymmetry Uncertainty (ppb)

(ppb) Statistical Systematic Total

Run 1 −223.5 15.0 10.1 18.0
Run 2 −227.2 8.3 5.6 10.0

Run 1 and 2 combined −226.5 7.3 5.8 9.3
with correlations

Table 5.2: Final asymmetries Aep and their statistical, systematic and total uncertain-
ties for Run 1 and Run 2 and their combined values.

When compared to the SM prediction, Q
p
W = 0.0708± 0.0003, it is seen that these

are in good agreement.

While this result is in good agreement with the SM prediction it can also be used

to put a limit on the mass of a hypothetical particle exchanged in the scattering

process which is not predicted by the SM. Assuming an effective coupling for this



5.3. POSSIBLE IMPROVEMENTS TO Q2 68

0.4
 

  
 

0.3
  

  
 

0.2
 

  
 

0.1
 

  
 

0.0

[GeV/c]Q 22
0.0         0.1        0.2         0.3         0.4        0.5         0.6

■

■

■

■

▲

▲

▲
◆

✖

●  This Experiment
◆   Qweak 2013
■    HAPPEX
✖   SAMPLE
▲   PVA4
●   G0
 SM (prediction) A

   
/A

  �
 Q

    
� 

    
  B

 (  
   ,

θ 
= 

0)
W

Q
Q

p
0

2
2

ep

Data Projected to Forward-Angle Limit0.14
 

0.12
 

0.10
 

0.08
 

0.06

Figure 5.1: The reduced asymmetry Aep/A0 = Q
p
W +B(θ = 0, Q2)Q2 vs. Q2. The solid

line represents a global fit to the complete set of previous parity-violating electron
scattering experiments, the yellow band indicates the fit uncertainty. The arrowhead
at Q2 = 0 indicates the Standard Model prediction for Q

p
W = 0.0708± 0.0003, which

agrees well with the intercept of the fit (Q
p
W = 0.0719± 0.0045). The inset zooms

in on the region around this experiment’s result at 〈Q2〉 = 24.8 m(GeV2), where the
upper datum is from an analysis of a short commissioning Run of the Qweak experiment
results [22], and the lower datum is from the full experiment reported here.

particle, g, lower limits for the mass of this hypothetical particle are given as Λ±/g [74].

The present result sets these lower limits at 7.5 TeV and 8.4 TeV for Λ+/g and Λ−/g,

where the two limits correspond to the upper and lower bounds of the experimental

uncertainty.

More information on the final result of the Qweak experiment and physics beyond

the SM reach can be found in the upcoming paper.

5.3 Possible Improvements to Q2

As discussed in Chap. 4 a final calibration of the HDC geometry is still underway. This

is essential for an absolute measurement of the scattering angle for the tracking data.
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Without this calibration the target location had to be determined by survey alone.

The original Qweak experiment proposal included Gas Electron Multiplier (GEM)

chambers as part of the tracking system [27]. The GEMs would have been placed

1 m downstream of the target and would have had a 100µm position resolution which

is better than the measured HDC resolution of 150µm to 200µm [28]. With this

resolution and location they would have been the ideal way to improve the precision

of the scattering angle measurement. Without these, only the HDCs were used for

the scattering angle determination, which, as stated, limited the precision of the Q2

measurement. Unfortunately, the GEMs were not available for the Qweak experiment.

While what the tracking system measures is the Q2 for the LH2 and the Al walls,

the Q2 for LH2 alone is what is required. During parts of the tracking periods the

target was emptied and partially filled with H2 gas. The plan was to use these tracking

runs to be able to subtract the contribution to Q2 from the Al walls. Only a few runs

where taken in these conditions. Ideally more runs would have been taken, and so

again, we relied on simulation for this correction.

Throughout the tracking periods during the Qweak experiment there were some

studies that would have been very helpful to have had, had the time been available.

These could also be used to further bench mark the simulation. Since the GEMs were

not part of the Qweak experiment’s apparatus they couldn’t be used as a check for

the HDCs calculation of the scattering angle. Another approach to be able to do this

would be by blocking areas of one of the collimator octants. If a block with holes in

specific places is placed into a collimator octant, the path of the electrons and their

scattering angle is then known, and the reconstruction can be checked and calibrated2.

In Sec. 4.3.4.3 cuts were made to the data on the distribution to see how any

imperfections that the collimator might have would effect the Q2. While this is done

with the data, it is done in the data anlysis not during the data taking. Taking time to

block part of the collimators while taking tracking data might have provided a better

2
This technique is commonly used in Hall A at JLab and is known as a “sieve-slit” collimator

calibration.
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understanding of this effect and allow for checking the effect found in the data analysis.

Another example where more data would have been useful is the beam position

and angle scan; these scans were only done with MDs (1, 3, 5 and 7) along the x̂ and ŷ

directions, which were compared to the simulation as seen in Secs. 4.3.2.2 and 4.3.2.3.

However it would have been useful to also have the done these scans with MDs (2,

4, 6, and 8) 45° to the x̂ and ŷ directions. For the scans where a direct comparison

between the data and simulation were able to be done, there was only one beam scan

which could be used. There was also an incomplete scan in the case of the beam ŷ

angle with MDs 3 and 7 only MD 3 was working. Rather than just having a single

scan, there would have been a benefit to having several of these scans, not just as a

check on the simulation but also as a check on the scans themselves.

It would have been beneficial to have BPMs that would be able to measure the

beam position at the beam currents used during tracking periods.

It should be noted that Q2 was not measured at the same conditions as the

asymmetry due to the factor of 106 difference in the beam current. To deal with this

concern the Qweak experiment did include a focal-plane scanner which had the goal of

attaining a profile of the electrons on the face of one of the MDs in both tracking and

integration parts of the experiment. The profiles were successfully compared up to a

beam current of ≈ 50µA however the scanner was not able to attain a profile at the

full beam current of 180µA [75].

Possible causes of a change in Q2 with beam current are few. The location of the

collimator and MDs, the QTor current do not change with beam current. However,

target boiling would be impacted by a change in the beam current, this was looked at

in Sec. 4.3.1.2 and provided a 0.1% uncertainty on Q2.



71

Chapter 6

Electron Beam Polarimetry

6.1 Theory of Møller Scattering

Møller scattering (see Fig. 6.1) refers to elastic electron-electron scattering (e−e− →

e−e−). It is a purely quantum electrodynamics (QED) process which was first calculated

by Christian Møller in 1932 [76]. Since then it has been calculated with improved

accuracy using the developments of new techniques in quantum field theory. Møller

scattering has both a large cross section and a large theoretical asymmetry or analyzing

power, or difference in the measured cross section for changes in the polarization of

the beam or target, when both initial state electrons are polarized along the same axis.

This analyzing power (Azz) is shown in Eq. 6.1, where the spin of the electrons of the

beam is denoted by ↑ and ↓ and the target is denoted by ⇑ ,

Azz =
σ↑⇑ − σ↓⇑
σ↑⇑ + σ↓⇑

. (6.1)

The analyzing power is energy independent making it a good way to measure the

polarization of the electron beam.

The polarized differential cross section, (dσ/dΩ)zz, for Møller scattering is dependent

upon the relative longitudinal polarizations of the electrons in the beam and the

1
Mandelstam variables are defined as s = (p1 + p

′
1)

2
, t = (p2 − p1)

2
, u = (p

′
2 − p1)

2
, where for

particles 1 and 2, p1, p2 and p
′
1, p
′
2 are the incoming and outgoing four-momentum respectively.
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Figure 6.1: Lowest-order Feynman Diagrams for Møller Scattering. Møller Scattering
happens through the t and u channel of the Mandelstam variables1.

target, as seen in Eq. 6.2. Given the polarization of the electron beam (P zb ) and

target electrons (P zt ) respectively, where Azz is the analyzing power, and dσ0/dΩ is the

unpolarized differential cross section [2, 77], we have

(
dσ

dΩ

)
zz

= [1 + P zb P
z
t Azz(θCM )]

dσ0

dΩ
. (6.2)

The unpolarized differential cross section at high energy2 depends on the center of

mass scattering angle θCM (but not the azimuthal angle φCM ) as shown in Eq. 6.3,

dσ0

dΩ
=

[
α(4− sin2 θCM )

2meγ sin2 θCM

]2

, (6.3)

where α is the fine structure constant, me is the mass of the electron, and γ is the

relativistic Lorentz transformation factor. Finally Azz for both electrons polarized in

the same directions in the relativistic limit is independent of energy and only depends

on θCM as shown in Appendix C.2, specifically for longitudinally polarized electrons

this is

Azz(θCM ) =
− sin2 θCM (8− sin2 θCM )

(4− sin2 θCM )2 . (6.4)

For Møller scattering the maximum analyzing power, Amaxzz , is −7/9 at 90° as shown in

Fig. 6.2. Møller scattering is an ideal way to measure the polarization of an electron

2
For EB � me , for details see Appendix C.2. The EB > 100 MeV which are used in the HMolPol

analysis qualify as high energy.
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beam because of the energy independence of Azz and large Amaxzz .
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Figure 6.2: Møller scattering analyzing power vs. θCM . The analyzing power is −7/9

at θCM = 90°.

6.2 Theory of Compton Scattering

Compton scattering (see Fig. 6.3) refers to electron-photon (e−γ → e−γ) scattering,

which can also be used to find the polarization of an electron beam. This is achieved

by scattering circularly polarized photons off of polarized electrons. At tree level

�
e−

γ

γ

e−

s-channel

�
e−

γ

e−

γ

u-channel

Figure 6.3: Lowest-order Feynman Diagrams for Compton Scattering. Compton
Scattering happens through the s and u channel of the Mandelstam variables1.

the differential cross section (dσ/dρ), when integrating over the azimuthal angle φ,
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for longitudinally polarized electron beam with opposite momentum to the polarized

photons is [78]

dσ

dρ
=

dσ0

dρ
∓ PePγ cos θe

dσ1

dρ
, (6.5)

where dσ0/dρ is the unpolarized, dσ1/dρ is the longitudinally spin-dependent cross

sections, Pe and Pγ are the polarization of the electron and photon respectively, and

θe is the spin of the electron with respect to its momentum (the ẑ direction). If the

longitudinal component of the photon’s spin is parallel to its direction of motion then

the negative sign is chosen for the second term. The unpolarized cross section and

longitudinally spin-dependent part of the cross section are

dσ0

dρ
= 2πr2

0a

{
ρ2(1− a)2

1− ρ(1− a)
+ 1 +

[
1− ρ(1 + a)

1− ρ(1− a)

]2
}
, (6.6)

and

dσ1

dρ
= 2πr2

0a

{[
1− ρ(1 + a)

][
1− 1

1− ρ(1− a)

]2
}
. (6.7)

Here r0 is the classical radius of the electron3, ρ = kγ/kmaxγ the ratio of the scattered

photon energy to the maximum scattered photon energy in the lab frame, and a is

defined as,

a =
1

1 +
4kγ0EB
me

, (6.8)

where kγ0 is the initial momentum of the photon in the lab frame and EB is the

electron beam energy. The maximum scattering energy for the photon happens in the

case where the photon is back-scattered in the lab frame and is given by,

kmaxγ =
4aE2

Bkγ0

m2
e

(6.9)

which is known as the Compton edge. The Compton edge correspond to the photon

energy where the analyzing power (Al) is at a maximum, and where ρ = 1. The

3
Classical electron radius or, r0 = e

2/4πε0me , is the radius of a sphere with charge e, when its
electrostatic potential is equal to me [79].
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analyzing power can be found by taking the ratio of Eqs. 6.6 and 6.7,

Al =

dσ1
dρ

dσ0
dρ

. (6.10)

Both the polarized and the unpolarized cross-sections are dependent upon energy, and

these energy dependencies don’t cancel when taking the ratio. Therefore the analyzing

power is energy dependent. At the Compton edge the analyzing power becomes

Al

∣∣∣
ρ=1

= Amaxl = −(a− 1)2

1 + a2 , (6.11)

where it can be seen that Al still depends on a, thus Al is dependent on the beam

energy (EB) and the intial momentum of the photon (kγ0).

6.3 Existing Polarimeter Technology

JLab, along with other laboratories past, present, and future which run parity-violating

electron scattering experiments require knowledge about the polarization of the electron

beam. Ideally a perfectly polarized electron beam is desired for electron scattering

experiments. However, in reality this not possible due to engineering and physics

limitations in producing 100% polarized electrons from polarized photons. For any

polarized electron scattering experiment how much of the beam is actually polarized

needs to be taken into account in the final calculation, so the precision with which the

beam polarization is measured is important.

The Qweak experiment reached a 0.6% [59] absolute measurement of the beam

polarization and the future MOLLER experiment will require a 0.4% measurement to

reach their systematic uncertainty goal [80]. In the past at JLab, Mott polarimeters,

Møller polarimeters, and/or a Compton polarimeters, have been used to determine the

beam polarization. Often multiple polarimeters are used at the same time to provide

a redundant and more precise calculation of the beam polarization.

In order to find the polarization of the electron beam via a polarimeter of choice,
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one must consider the relationship between the measured asymmetry, Amsr, and the

analyzing power. For Møller scattering this relationship is completely independent of

the beam energy, as shown in Eq. 6.4, while for Compton scattering this is dependent

upon the beam energy, as seen in Eqs. 6.6, 6.7 and 6.10. Using Amsr, the polarization

of the target, and the analyzing power, the P zb can be found using Eqs. 6.12 and 6.14

for Møller (AMøller
msr ) and Compton (ACompton

msr ) scattering respectively.

AMøller
msr = P zb P

z
t Azz(θCM ) , (6.12)

so

P zb =
AMøller
msr

P zt Azz(θCM )
, (6.13)

and

ACompton
msr = P zb PγAl , (6.14)

so

P zb =
ACompton
msr

PγAl
. (6.15)

6.3.1 Møller Polarimeters

Present-day Møller polarimeters use magnetized ferromagnetic materials like iron (Fe)

as the target, often at magnetic saturation. The target is placed in the beam line

during times in the experiment that are dedicated to measuring the beam polarization.

This is dedicated time because the target limits the beam current that can be used.

High beam currents can melt a hole through the target or cause heating which in turn

will depolarize the target. The target also degrades the beam properties making it

unusable for the experiment.

The theoretical Møller scattering cross section assumes the scattering between

two free electrons, which works for H, however for targets like Fe which has multiple

electrons it is not the case. When such a target is placed in a magnetic field, the

electrons in filled shells generally do not align with the field, so the polarization only
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arises due to a fraction of electrons. The fraction of these electrons which align with the

field is what determines the polarization of the target. A source of uncertainty arises

from the binding energy and the inter-atomic motion that the inner shell electrons

are subject to, meaning that the assumption of the target electron being free can’t be

made. These two effects will cause an over estimation of the calculated polarization of

the beam, which is known as the Levchuk effect [81]. With a target that has only one

electron there is no Levchuk effect, as there are no inner shell electrons.

Figure 6.4: JLab’s Hall A Møller polarimeter layout. The magnetic optics consisting of
four quadruples focusing elements followed by a dipole bending element are shown. [82]

After the target, Møller polarimeters tend to have a series of magnetic elements

to direct the scattered electrons away from the beam line and to focus the scattered

electrons on to a detector. These magnetic optics also help select out the electrons

that scatter closest to θCM = 90° where the Azz is maximized as discussed in Sec. 6.1.

Occasionally, Møller polarimeters will also include collimators to help with the selection
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and limiting of the detector acceptance. Figure 6.4 shows the layout of the Møller

polarimeter in Hall A of JLab.

6.3.2 Compton Polarimeters

A Compton polarimeter uses polarized photons, which occasionally interact with the

electron beam causing a small number of the electrons to scatter off the photons

into a nearby detector. This is an example of a non-invasive polarimeter, like the

Hydro-Møller, but unlike any existing solid target Møller polarimeters. Figure 6.5

shows the layout of the Compton polarimeter in Hall C. For a Compton polarimeter

to work, the electron beam must be directed into the path of the polarized photons. A

few of the electrons will then interact with some of the photons, both will scatter, and

then either the electrons or the photons would be detected or both. The electrons in

the beam that don’t interact then will continue down the beamline to the experiment’s

target.

Dipole Dipole 

Photon 
Detector 

Laser Table 

Electron 
Detector 

Backscattered 
Photons 

Scattered 
Electrons Fabry-Perot 

Optical Cavity 

                                                                                                                                                                                                                                                                                                                           

Dipole Dipole 

Figure 6.5: Schematic of JLab’s Hall C Compton polarimeter [58]. The path of the
beam is in red, it is directed from the beamline into the path of the laser by two
dipoles and then back to the beamline by another two dipoles. The scattered electrons
bend more when traveling through the first dipole after the laser then the ones that do
not interact with the laser; the electron detector is placed in the path of the scattered
electrons. The photon detector is placed directly behind the dipole to detect the
scattered photons.
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6.4 Advantages of a Hydro-Møller

The Hydro-Møller has some characteristics that are similar to either a Fe Møller

polarimeter or a Compton polarimeter, but takes the best from both of these existing

technologies, for example simultaneous measurement, and an energy independent

analyzing power. Table 6.1 list various characteristics of these three polarimeters.

The relative uncertainties on the measured asymmetry for the existing Hall C

Møller polarimeter that are limited by the Fe target include: the Levchuck effect

(0.33%), target temperature (0.14%), Fe spin polarization (0.25%) and high-current

extrapolation (0.50%); these contribute 0.66% to the overall systematic uncertainty of

0.84% [59]. The Hydro-Møller eliminates these contributions.

6.5 Future Needs for Precision Polarimetry

Two future parity violating experiments specifically are interested in using the Hydro-

Møller: the P2 and MOLLER experiments. Each of these are briefly discussed in this

section.

6.5.1 The P2 Experiment

The P2 Experiment [84] is planned to run at the new Mainz Energy Recovery Supercon-

ducting Accelerator (MESA) at Johannes Gutenberg University, Mainz, in Germany.

By making a measurement of Aep , it aims to determine sin2 θW to a precision of

0.13%, which will improve on the Qweak experiment’s measurement. The planned

parameters the P2 experiment will require are similar to what Qweak used. To meet

the experiment’s proposed figure of merit the following conditions are required: 10 000

hours of beam, a low Q2 value (4.5× 10−3 GeV2), a highly polarized beam of >85%,

a high current beam (150µA), and 155 MeV beam energy. One big difference between

the P2 and Qweak experiments will be the spectrometer magnet used to select out

the elastically scattered electron from the target scattering flux. P2 will be using a

solenoid magnet compared to Qweak’s toroidal magnet. In order to reach their precision
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they must know the beam polarization to better than 0.5%. One method which they

have to measure the beam polarization is through an invasive double Mott polarimeter.

The other will be via the Hydro-Møller, which will be vital for achieving this desired

precision on their beam polarization. The technology of the Hydro-Møller is ideal for

this application due to it being a continuous and non-invasive measurement of the

beam’s polarization.

6.5.2 The MOLLER Experiment

The MOLLER experiment [80], is planned to run at JLab making use of the 12 GeV

upgrade. It will measure the weak charge of the electron, Q
e
W, via Møller scattering.

The goal is to measure Q
e
W to 2.3% relative precision, which will improve on the results

found by the SLAC E158 experiment which ran in 2002 and 2003 [19]. The experiment

plans to use an 11 GeV electron beam with a polarization of 85% and current of

85µA; the Qweak experiment showed that this should be attainable. Like the P2 and

Qweak experiments, the MOLLER experiment will use a low Q2 value, designed to be

5.6× 10−3 GeV2. In order to reach the desired precision on Q
e
W the beam polarization

has to be measured to a precision of 0.4%. Employing existing technology in Hall A,

both Møller and Compton polarimeters will allow independent measurements of the

beam polarization. The former is well understood but invasive so would be used during

certain dedicated times during beam delivery. The latter is noninvasive therefore can

be run simultaneously. In addition it also allows for independent determination of

the beam polarization via separate analysis of the scattered electrons and photons.

While the two of these combined should be able to reach the desired precision on the

beam polarization, the Hydro-Møller would provide another continuous noninvasive

measurement of the beam polarization, through Møller scattering.
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Chapter 7

Concept and Design of the

Hydro-Møller

7.1 Hydro-Møller Concept

Here the concept of the Hydro-Møller is introduced, which will be a new Møller

polarimeter that uses H gas as a target rather than an Fe target. Compared to the

target of the Møller polarimeter discussed in Sec. 6.3.1, the Hydro-Møller’s target will

use H gas stored in a ultra-cold magnetic trap, which will provide a 100% polarization

of the atomic electrons in the H gas. A diagram of the proposed apparatus can be seen

in Fig. 7.1 [1, 2]. The Hydro-Møller target will be placed into the beam line, upstream

of the target of the main experiment. First the H2 will be dissociated into H, then it

will be cooled down to 0.3 K and pumped into the storage cell. The H gas will be kept

in the storage cell at 0.3 K and will be contained within a solenoidal magnetic field. In

order to keep the H gas polarized, the magnetic field will have to be very strong; the

proposed strength is 8.0 T as can be seen in Fig. 7.1 [1, 2]. Vacuum pumps will be

placed right before and after the H target of the polarimeter in order to maintain the

beam line upstream and downstream of the target as close to vacuum conditions as

possible. The storage cell itself will have a thin coating of superfluid 4He, which will

aid in maintaining the polarization and atomic state of the hydrogen gas.
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Figure 7.1: Schematic of the Hydro-Møller [1, 2]. The dissociator (green) is feeding
the H gas into the storage cell (red) enveloped by the 8.0 T solenoid magnetic (blue).

7.2 Electron Polarization States of Atomic Hydrogen

One crucial requirement for the Hydro-Møller is the polarization of the H. While H

is the most abundant element in the universe it does not exist in its atomic form on

Earth, rather it prefers to form bonds with other atoms. Because of this, H2 will

have to be dissociated into atomic hydrogen; this will be discussed in Sec. 7.3.1. Once

atomic hydrogen atoms are created they must be polarized and have a long lifetime.

The electrons and protons in the ground state of H split into four different eigenstates

as shown in Table 7.1, where the spins are denoted by ↑ and ↓ for the proton and ↑

and ↓ for the electron. The basic Hamiltonian, H , for a hydrogen atom is shown in

Eq. 7.1.

H = Aî· ŝ+ geµB ~B· ŝ− gpµN ~B· î . (7.1)

Here A is the hyperfine splitting energy for the ground state, î is the spin of the

proton, ŝ is the spin of the electron, µB and µN are the Bohr and nuclear magnetons

respectively, ge and gp are the spin g-factors for the electron and proton respectively,

and ~B is the magnetic field in the ẑ direction.
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State Wave Function Energy

|d〉 |↑ ↑〉 A− µ+B
High Energy

|c〉 sin θ · |↓ ↑〉+ cos θ · |↑ ↓〉 A
(
− 1 + 2

√
1 + (

µ−B
2A )2

)
|b〉 |↓ ↓〉 A+ µ+B

Low Energy
|a〉 sin θ · |↑ ↓〉 − cos θ · |↓ ↑〉 A

(
− 1− 2

√
1 + (

µ−B
2A )2

)
Table 7.1: Eigenstates and energies for atomic H.

From this Hamiltonian the energies associated with each of the states can be found

(see Appendix B). Table 7.1 lists these energies using the following definitions: µ+ and

µ− are defined as µ+ ≡ −geµB + gpµN and µ− ≡ −geµB − gpµN . For the mixed states,

|a〉 and |c〉 the mixing angle, θ is determined by Eq. 7.2,

tan 2θ =
A

~γeγpB
, (7.2)

where, ~ is the reduced Planck constant, and γe and γp are the gyromagnetic ratios of

the electron and proton, respectively [85, 86].

Figure 7.2: The splitting of energy levels for H for the four states in Table 7.1, for low
magnetic fields (0 T to 0.2 T) on the left, and high magnetic fields (0 T to 10 T) on
the right [1, 2]. Here kB is the Boltzman constant therefore the y-axis is in units of
temperature.

As shown in Fig. 7.2, for H at the proposed temperature of 0.3 K and solenoid

strength of 8.0 T, the H gas will predominantly populate the |a〉 and |b〉 states. For

H in the ground state, using Eq. 7.2 and for A = 5.884× 10−6 eV, the angle θ can

be found to be tan 2θ ≈ 0.05 T
B(T) . Then in a solenoid of 8.0 T, tan 2θ ≈ 0.006. Then it



CHAPTER 7. CONCEPT AND DESIGN OF THE HYDRO-MØLLER 85

follows that cos θ ≈ 0.999, therefore most of the H populates the |↓ ↓〉 and |↓ ↑〉 spin

states, meaning almost all of the electrons are in the same spin state.

7.3 Requirements on the Hydrogen Gas Target

There are many aspects that need to be investigated in order to accomplish building

the Hydro-Møller. One of these is the dissociation of H2 to H; this is outside the scope

of this dissertation, but a brief history of this is provided in Sec. 7.3.1.

To make the Hydro-Møller feasible the atomic H gas must have a long lifetime.

The lifetime can be limited by depolarization as well as recombination into H2. By

changing the environment through decreasing the temperature and also polarizing

the H in a strong magnetic field the lifetime can be greatly increased. This was first

shown in 1980 by I. F. Silvera and J. T. M. Walraven where the H had a lifetime of up

to 532 s (8.87 min) [87]. The lifetime of the H gas can be affected by thermal escape

through the magnetic field gradient and recombination of the H gas both within the

volume and from interactions on the surface of the storage cell [1, 2, Sec. 2.3].

The H gas can be contaminated by unpolarized sources, which can come from

atoms or molecules. The contamination can be from the H atoms through their high

energy |c〉 and |d〉 states. Other possible sources of contamination are H2 molecules

and their excited states, He, and other residual gases in the storage cell [1, 2, Sec. 2.5].

Finally, the electron beam will have an impact on the H gas, as it travels through

to the main experiment. This impact can be from the H gas heating by ionization

energy and H gas excitation, and depolarization by the ionization losses. Other impacts

include the heat load of the beam on the cell and depolarization by the radio-frequency

(RF) electromagnetic radiation of the beam [1, 2, Chap. 3].

Some resources for more information on each of these and the dissociation of H2

can be found in [2, 85–100].
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7.3.1 Dissociation of Diatomic Hydrogen

The Hydro-Møller will need polarized atomic hydrogen gas which has a long lifetime;

this has successfully been done for many years, and a detailed summary and description

of this work through 1986 can be found in [88].

RF dissociation of H2 has been done at room temperature by J. T. M. Walraven

and I. F. Silvera [97]. Liquid-nitrogen and liquid-helium RF dissociation along with

the confinement of the produced atomic hydrogen was first shown by S. B. Crampton

et al. and W. N. Hardy et al. respectively [89, 93, 101].

At low temperatures dissocation has been done by feeding H2 inside of a dissociator

placed in a Dewar. RF pulses are injected into the Dewar. The frequency of the RF

pulses are chosen based on the strength of an external magnetic field. This frequency

is determined by the transition between the hyperfine states; this is discussed in more

detail in [86].

Figure 7.3: Schematic of the apparatus used by S. B. Crampton et al. [89]. H2 is fed
in from the top of the dissociator (A) which is placed in a liquid-nitrogen Dewar (B),
the H is then stored in the bulb at the bottom (E) which is immersed in liquid helium.

For the Hydro-Møller design, the dissociator is above the target cell and the H gas

is placed in the beam line, as shown in Fig. 7.1. This is unlike the early linear designs
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which had the H gas fed into a cell at the end of the dissociator, e.g. Fig. 7.3 [89].

In the early 1990s T. Roser et al. and W. A. Kaufman et al. worked on the

development of an atomic H beam [102, 103] shown in Fig. 7.4. The schematic of

Hydro-Møller apparatus has a similar design. Unlike the previous dissociators and

storage cells, this design is closer to what would be needed at JLab and MAMI.

The vertical section is the dissociator, where the H is produced by an RF dissociator.

The horizontal section consists of a high-field solenoid magnet similar to the design

for the Hydro-Møller (see Fig. 7.1). Instead of a storage cell, it has a mixing chamber

from which the polarized H beam exits the apparatus.

Figure 7.4: Schematic of the apparatus used for creating electron polarized H beam
at the University of Michigan [102, 103]. H2 is fed into the top of the dissociator,
traveling down to the outlet the H2 is cooled, dissociated into H atoms, and polarized
before exiting on the right, creating a polarized H beam.

More details on spin-polarized atomic hydrogen can be found in [88].
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Chapter 8

The Hydro-Møller Simulation:

HMolPol

8.1 HMolPol Simulation

A general-purpose Monte-Carlo simulation was written for the Hydro-Møller polarime-

ter. It was needed in order to determine possible detector systems, backgrounds, rates,

and study feasibility. Using GEANT4 C++ libraries [37], the HMolPol simulation was

written for the Hydro-Møller. HMolPol uses GDML [104] for the geometry implemen-

tation, which allows the simulation to be used easily with different geometries and

targets if needed. This will allow easy changes to reflect the specific target, simple

detectors, or magnetic optics of the Hydro-Møller at JLab or Johannes Gutenberg

University, Mainz. Presently, HMolPol includes the atomic H gas target, detector(s),

and magnetic optics modeled after the JLab Hall A Fe Møller magnetic system.

8.1.1 Primary Generator

For each event that occurs in HMolPol, the Møller scattered and recoiling electrons

are generated. Their generation is at a uniform random point within the length of the

H gas in the target for given beam raster in x̂ and ŷ direction of where the electron

beam was. This raster was set to 0.0 mm× 0.0 mm for all of the simulations that are
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included in this dissertation. The angles at which the Møller electrons scattered are

chosen isotropically, points are chosen randomly on a sphere in the center of mass

frame. Specifically the θCM scattering angle is randomly selected by taking the arccos

of a randomly chosen value between cos 0° to cos 180° for a θCM range of 0° to 180°, or

within a specified range in θCM stated at the beginning of a run. Likewise, the φCM

scattering angle was generated uniformly over the range 0° to 360°, or within a specified

range in φCM stated at the beginning of a run. The momentum of both primary Møller

electrons is totally determined, as the φCM angle for the two primaries differ by 180°

and the θCM angle for the two primaries total 180°. Along with the momentum of

both particles their lab scattering angles, θLab and φLab are also determined by the

appropriate boost from CM to Lab frames. Using Eqs. 6.3 and 6.4 and the variables

determined above, the un-polarized differential cross-section and the analyzing power

is calculated.

8.1.2 Atomic Hydrogen Target

The physical dimensions of the H target in the simulation are defined by the proposal

for this polarimeter by E. A. Chudakov and V. G. Luppov [1, 2]. Figure 7.1 shows

the layout of the Hydro-Møller target for the Monte Carlo. The target consists of a

cylindrical 40.0 cm long copper storage cell with an inner radius of 2.0 cm and an outer

radius of 3.0 cm.

Based on calculations done in the proposal for the Hydro-Møller the H gas is

concentrated only in the center of the target [1, 2]. Figure 8.1 shows the predicted

relative density and the relative difference in the magnetic field strength compared

to the central value. From this, an effective length can be chosen for the HMolPol

target of 20.0 cm where the density of H gas and the strength of the magnetic field are

approximately constant. The H gas is placed in the center of this cell with a length of

20.0 cm. The 8.0 T solenoidal field is generated by GEANT4 and is ideal and located

around just the H gas. All the properties of the H gas in HMolPol are summarized in

Table 8.1. Figure 8.2 shows the target from HMolPol; the Cu cell is in gray and the H
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Figure 8.1: Left: plot of the relative differences of the magnetic field strength of the
solenoid with respect to the field at the center. Right: relative gas density in the target
along the solenoid’s axis [1, 2]. Both the field strength and the density of the H gas
can be taken to be constant for Z from −10 cm to 10 cm giving an effective length of
20.0 cm for both of these.

gas is in green.

Property of H gas Value

Length (cm) 20.0
Radius (cm) 2.0
Temperature (K) 0.3

Number Density (cm−3) 3× 1015

Pressure (Torr) 1× 10−15

Table 8.1: The parameters used for the H gas in HMolPol.

8.1.3 Detectors

HMolPol has been written to allow simulations of various types of detectors. Two have

been used for initial studies. The first is the “Dummy detector”, or DummyDet, which

consists of a single thin cylindrical plane of kryptonite1 whose center is placed 7.47 m

downstream of the center of the target, corresponding to the distance between the

target and detector in the present Møller polarimeter in Hall A [105]. The second type

of detector, the “LeftRight detector” or LeftRightDet, is a set of detectors which are

equal in size and placed equal distance from the beam center along the x̂-axis. As the

1
Kryptonite, is a special GEANT4 material that immediately kills every particle track that hits

an object made of it.
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Top View
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Side View

Upstream View

Figure 8.2: The target as implemented in the HMolPol simulation. The H gas is in
green, and the Cu storage cell is in gray.

simulation develops, the type of detector(s) used, their material, shape, and location

can be optimized for the Hydro-Møller apparatus.

8.1.4 Input/Output

The information stored about the particles as they travel through a detector is called

a hit. Each detector type stores the information about the hits in all detectors of that

type in the simulation. For a simulation that has more than one detector of the same

type, all the hits for all the detectors of that type are stored in the same branch, which

includes individual detector names and detector IDs. Using these, information about

specific detectors of a type can easily be obtained. Each hit stores information about

where it happened at that point; these include the momentum of the particle, where

the interaction took place and what primary particle the hit is associated with.

Depending upon the detector configuration, one can detect either “primary 1” or

“primary 2”, or both of the primary electrons. Ideally, detecting both of the primary

electrons in coincidence would be done during an experiment to suppress backgrounds

such as Mott scattering (i.e. ep scattering). However, due to the size of the DummyDet,

all of the primary electrons generated in these simulations are detected for every event,
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therefore all events will have a coincidence between two primaries. Because of this,

the analysis in this dissertation has been done by looking purely at primary one, and

thus no information is lost. In the case of using LeftRightDet, this is not necessarily

the case and all three cases must be looked at separately.

8.1.5 Hall A Magnetic Optics

Since in Hall A at JLab there is an existing Møller polarimeter, it would be ideal if

the same magnetic optics were able to be used for the Hydro-Møller. In order to study

this, the existing magnetic optics from Hall A have been added to HMolPol.

The Hall A optical system consists of four quadrupole magnets and one dipole

magnet as seen in Fig. 6.4. The size, distances between the magnets and the target,

and their rotations were placed in HMolPol [105, 106]. All simulations made with the

Hall A magnetic optics used the locations summarized in Table 8.2.

Hall A Magnet Location (m) Pitch (°) Yaw (°) Roll (°)

Quadrupole 1 0.683 −0.010 0.033 −44.980
Quadrupole 2 1.336 −0.024 0.038 −44.957
Quadrupole 3 2.022 0.011 −0.015 −44.996
Quadrupole 4 2.677 0.019 −0.067 −45.023

Dipole 4.165 0.025 −0.007 0.035

Table 8.2: The locations of the Hall A magnets from the center of the H gas target to
the center of the magnet placed in HMolPol and rotation angles around the center of
the magnet [105, 106]. The quadrupoles and dipole have an aperture of approximately
10 cm.

The field for each magnet is associated with the volume, which is generated by

GEANT4 and is an ideal field existing only within the volume. They do not include

fringe field effects. Figure 8.3 shows the implementation of the JLab Hall A magnetic

optics in HMolPol.
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Top view

Isometric view

Side view

Upstream view

Figure 8.3: The Hall A magnetic optics as implemented in HMolPol. The four
quadrupoles are in magenta, and the dipole in purple. In the top, side and isometric
views, the electron beam travels from left to right, first passing through the four
quadrupoles, followed by the dipole. The electron beam travels out of the page in the
upstream view.

8.2 HMolPol Analysis

As discussed in Sec. 6.1, for Møller scattering at θCM = 90°, the Azz is at a maximum.

The Azz is near it maximum within ±15° of 90° (see Fig 8.4). Thus, Monte Carlo

events were thrown over a θCM range from 75° to 105° and a φCM range from 0° to

360°.

For this analysis only hits from the primary electrons are considered, as a way to

isolate the hits that are not from secondaries. Secondaries would be of interest in a

more sophisticated simulation aimed at investigating the details of detector response.

To eliminate hits from secondaries created outside of the detector that make it into the

detector, any hit used must be from an electron created in the target. Only the first

hit which is from a primary electron created in the target is used, and this is referred

to as the “näıve” primary.

The following sections discuss the initial analysis of simulations to both bench mark

the Monte Carlo, and to gather information on basic aspects for the appropriate beam

energies for MAMI and JLab, and the effect of the JLab Hall A Magnetic Optics. Both
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Figure 8.4: The normalized differential cross section with respect to θCM on the right
axis in red and the Azz on the left axis in black, vs. θCM for Møller scattering. The
blue shaded region illustrates the θCM range used in the HMolPol simulations. Over
this range both the Azz and the cross section can be considered constant. Ideally the
range in θCM that would be detected with the Hydro-Møller would be smaller than
the range of θCM for generated events in these simulations.

analyses look at the distribution of θCM on the face of the DummyDet. Section 8.2.1

examines the σ0, Azz, and the rate for different beam energies. Finally, Sec. 8.2.2

investigates how the JLab Hall A magnetic optics affect the distribution of θCM on

the face of the DummyDet. These initial analyses can help with future simulations

and analysis of possible designs of detectors and magnetic optics.

8.2.1 Beam Energy Scan

Multiple simulations were run at different beam energies with the only geometry being

the target and the DummyDet. The impact of the beam energy on the cross section,

σ0, analyzing power, Azz, and the unpolarized rate normalized to the beam current,

R̃0 was examined and the results are summarized in Table 8.3. Four beam energies

were chosen for the simulation, similar to what one would find at MAMI: 100 MeV,

150 MeV, 200 MeV, and 250 MeV, and five beam energies for Hall A at JLab: 2.2 GeV,

4.4 GeV, 6.6 GeV, 8.8 GeV, and 11.0 GeV. The unpolarized rate normalized to the
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beam current, R̃0 is calculated using the luminosity normalized to the beam current,

L̃ and Azz,

R̃0 = L̃ σ0 . (8.1)

The rate, R then can be found from the following equations,

R = IB [1 + P zt P
z
b Azz(θ)] R̃0

= IB [1 + P zt P
z
b Azz(θ)] L̃ σ0 .

(8.2)

The full calculation of the rate can be found in Appendix D.1.

The Azz is only dependent on θCM , so it is the same over all these energies.

However, σ0 and therefore R̃0 does have an energy dependence, which decreases as

the beam energy increases, as seen in Table 8.3. The rate can influence the type of

detector material and the design of a detector system that is developed.

EB (MeV) σ0 (µb) −Azz R̃0 (HzµA−1)

100 6290 0.752 2350
150 4200 0.752 1570
200 3110 0.752 1180
250 2520 0.752 944

EB (GeV) σ0 (µb) −Azz R̃0 (HzµA−1)

2.2 287 0.752 108
4.4 144 0.752 53.8
6.6 95.7 0.752 35.9
8.8 71.8 0.752 26.9

11.0 57.4 0.752 21.5

Table 8.3: The unpolarized cross section, σ0, analyzing power, Azz, and rate due to
the unpolarized cross section, only normalized to beam current, R̃0 for various beam
energies. On the top are beam energies in MeV, which are similar to energies that
would be used at MAMI. On the bottom are beam energies in GeV which are similar
to that available at JLab.
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Figure 8.5: The θCM distribution on the face of DummyDet for näıve primary hits from
primary electron 1 for various beam energies similar to MAMI. Here the horizontal
axis is the X hit position (−1 m to 1 m), vertical axis is the Y hit position (−1 m to
1 m), and color axis is the θCM angle (70° to 110°).
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Figure 8.6: The radius of the distribution on the face of DummyDet for näıve primary
hits from primary electron 1 for various beam energies similar to MAMI, vs. θCM .
Here the horizontal axis is θCM angle (70° to 110°), vertical axis is the radius (0.3 m
to 1.0 m), and the color axis is the relative number of hits.
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Figure 8.7: The θCM distribution on the face of DummyDet for näıve primary hits from
primary electron 1 for various beam energies similar to JLab, from left to right and top
to bottom 2.2 GeV, 4.4 GeV, 6.6 GeV, 8.8 GeV, and 11.0 GeV. Here the horizontal axis
is the X hit position (−0.25 m to 0.25 m), vertical axis is the Y hit position (−0.25 m
to 0.25 m), and color axis is the θCM angle (70° to 110°).



CHAPTER 8. THE HYDRO-MØLLER SIMULATION: HMOLPOL 99

2.2 GeV
70 75 80 85 90 95 100 105 110

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1

10

210

310

4.4 GeV
70 75 80 85 90 95 100 105 110

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1

10

210

310

6.6 GeV
70 75 80 85 90 95 100 105 110

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1

10

210

310

8.8 GeV
70 75 80 85 90 95 100 105 110

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1

10

210

310

11 GeV
70 75 80 85 90 95 100 105 110

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1

10

210

310

 for Naive Primary 1 on the DummyDetCMθRadius vs. 

]° [CMθ

R
ad

iu
s 

[m
]

# 
of

 H
its

Figure 8.8: The radius of the distribution on the face of DummyDet for näıve primary
hits from primary electron 1 for various beam energies similar to JLab, vs. θCM . Here
the horizontal axis is θCM angle (70° to 110°), vertical axis is the radius (0.04 m to
0.22 m), and the color axis is the relative number of hits.
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8.2.1.1 θCM Distribution

Due to the range of θCM and φCM that the simulated events are thrown over, it is

expected that on the plane of DummyDet the näıve primaries will be distributed in

a circle with a hole in the center, or a donut. Figures 8.5 and 8.7 illustrate this for

näıve primary hits from primary electron 1; the inside of the donut has the smaller

θCM angles which increase towards the outer part of the donut. This observation also

shows that Azz is independent of EB, as seen in Eq. 6.4 in the center of mass frame,

as the θCM distribution for the näıve primaries on the DummyDet will not change as

the beam energy changes.

However, once boosted into the lab frame, the angular dependence (θLab) of Azz

becomes dependent on the EB (see Appendix C.1). Thus for a given θCM the radius

of where the primary electron lands on the face of the DummyDet will change due to

EB; this is illustrated in Figs. 8.5 and 8.7, and is most easily seen in Figs. 8.6 and 8.8,

for näıve primary hits from primary electron 1.

8.2.2 Hall A Magnetic Optics

Multiple simulations were run to investigate how the Hall A magnetic optics would

work with the solenoid magnetic field required for the HMolPol target. A beam energy

of 11 GeV was chosen because it is the beam energy of interest for the proposed

MOLLER experiment [80]. For these simulations the angle range in φCM was changed

to −5° to 5°; this corresponds to the angle range that the Fe Hall A Møller polarimeter

detects, as noted in the Hydro-Møller proposal [1, 2].

As explained in Sec. 8.1.1, HMolPol randomly chooses the scattering angles for the

primary electron 1 and then calculates the scattering angles for primary electron 2.

These simulations have a small φCM angle range that is generated for primary electron

1, causing hits on DummyDet in the +x̂ direction, while primary electron 2 will cause

hits in the −x̂ direction. Because of this, both of the primaries must be looked at in

this case to get the full distribution of hits on DummyDet, unlike in Sec. 8.2.1.
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For these simulations four separate configurations of magnetic optics were consid-

ered. For all of these configurations, the dipole was always off. The H target and

the quadrupoles are varied between being on and off as described in Table 8.4. The

four quadrupoles were set to “nominal” values for EB = 11 GeV; these were −5.79 kG,

−5.79 kG, 3.39 kG, and 5.79 kG for quadrupoles 1 through 4, respectively; these were

found using Fig. 8.9 [107].
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Figure 8.9: Hall A Møller polarimeter’s quadrupoles settings. Reproduced from [107].

Configuration
Magnetic Field

H Target Quadrupoles Dipole

1 Off Off Off
2 Off On Off
3 On Off Off
4 On On Off

Table 8.4: The status of magnetic fields for the Hall A magnetic optic simulations. For
the H target “on“ is 8.0 T, and for the four Hall A quads “on” is the nominal values.

8.2.2.1 θCM Distribution

Configuration 1 doesn’t have any magnetic fields in the simulation, therefore the

electrons travel straight to the dummy detector without any change in direction.
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Figure 8.10: The θCM distribution on the face of the DummyDet näıve primaries
coincidence hits, for Møller electrons generated over −5° to 5° for the 4 different
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This is considered the baseline configuration, and should show two symmetric parts

of the donut seen in Sec. 8.2.1.1. However, there is no expectation that the other

configurations will lead to the same distribution. This distribution, is symmetric (see

Fig. 8.10) given the symmetric range in θCM and φCM that events are generated over.

Configuration 2 only includes the set of four quadrupole magnets. Since quadrupoles

focus along one axis while defocusing in the other, the quadrupoles are set up such

that, for each pair, the scattered electrons are focused. Due to the focusing effects of

the quadrupoles it is expected that there would be little difference between this and

the first configuration. The results for configuration 2 can be seen in Fig. 8.10.

Configuration 3 only contains the target solenoid magnetic field. When a charged

particle travels through the magnetic field, if it has a component that is perpendicular

to the field lines, the particle will spiral around the field lines. The effect of the charged

particles (in this case electrons) spiralling around the field lines will be expected to be

some dispersion or “wings” in the detected distribution on the face of the DummyDet

compared to configuration 1 (see Fig. 8.10). However this is not apparent in Figs. 8.5

and 8.7 because the range in φCM that is generated over is 0° to 360°, which covers

up this effect. Since these are electrons and therefore are negatively charged, these

“wings” will be on the top part of the +x̂ distribution and on the bottom part of the

−x̂ half of the distribution2.

Configuration 4 is the most realistic configuration because it has both the target

solenoid field and the Hall A quadrupoles on. Compared to configuration 3 the effect of

just the Hall A quadrupoles (i.e. Configuration 2) in the detected distribution on the

face of the DummyDet, this change is most noticeable in the “wings” (see Fig. 8.10).

Specifically, the “wings” are smaller here than in configuration 3, but in comparing

this to configuration 1 or 2, it is seen that they are still present. The two parts of the

distributions that didn’t have the “wings” in configuration 3, are different in the other

configurations. In the +x̂ distribution the “wing” on the top of the distribution is

2
For a positively charged particle these “wings” be on the bottom part of the +x̂ distribution and

on the top part of the −x̂ half of the distribution.
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“squished” down towards the Y hit position, likewise on for “wing” on the bottom part

of the −x̂ distribution. Both of these effects cause the distribution to cover a smaller

area on the DummyDet then in configuration 3.

Using these distributions some inferences about the design of possible detectors

can be made. In the configurations 1 and 2, small symmetric detectors would be

reasonable. However, for the other two configurations, especially configuration 3, small

symmetric detectors may not be ideal. Larger detectors would be needed to account

for the “wings” as they would change with EB. The “wings” also may sway away from

a simple detector geometry like a rectangle in favor of shape that is closer to a fraction

of dounut. Since the target solenoidal magnetic is a necessity, only configurations 3

and 4 are a realistic possibility. It is possible that one could farther improve the hit

distribution for configuration 4 by optimizing the magnetic optics from the default

Hall A design.

8.2.2.2 Radius vs. θCM

The radius of the hits for the various θCM angles gives another view on the θCM

distribution on the DummyDet seen in Fig. 8.10. Here configurations 1, 2, and 3

have the same distribution as seen in Fig. 8.11. In these instances the minimum

radius, rmin ≈ 0.054 m and maximum radius, rmax ≈ 0.097 m leads to a difference of

∆r ≈ 0.043 m. Also each for θCM there is a constant range of radii over which that

θCM will be on the detector.

However, configuration 4 is different in a few ways from the other configurations.

The minimum and maximum radii are larger then in the previous configurations.

For this configuration rmin ≈ 0.057 m and rmax ≈ 0.098 m, which yields a decrease

∆r ≈ 0.041 m. Also seen in this configuration, especially at large θCM , there is a larger

range of radii at each given θCM . This follows on what was seen in Fig. 8.10, the

“squishing” of the “wings”.
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Figure 8.11: The radius vs. θCM distribution of näıve primaries coincidence hits, for
Møller electrons generated over −5° to 5° for the 4 different magnetic configurations.
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8.2.2.3 φ Angle Rotation

As explained in Secs. 8.1.1, the two primaries are 180° apart in φCM . When the

interaction takes place within a magnetic field, specifically a solenoid, the primary

electrons will rotate around the magnetic field lines. This causes them to reach the

detector with a separation φLab that is not always going to be 180°. However, if

θCM = 90° then regardless of where the interaction takes place in the target’s solenoid

the separation in φLab for the two primary electrons will be 180°.

This separation between the two primary electrons on the face of the DummyDet

ζ = φLab1 −φLab2 , provides more information on the “wings” that are seen in Fig. 8.10.

Figure 8.12 shows the relationship between ζ of the two primary electrons and θCM

for each configuration. In configurations 1 and 2, where the target solenoid field is off,

ζ is always 180°. Taking configuration 2 where the quadropoles are on and comparing

it to configuration 1 where there are no magnetic fields, shows again the cancellation

effect each pair of quadrupoles has.

In configuration 3, the “wings” seen in Fig. 8.10 are more apparent. For θCM = 90°

case, ζ = 180° is always expected, where for other values of θCM , however, ζ varies.

When θCM < 90°, the minimum difference in the φLab is ζmin ≈ 177.2° and maximum

is ζmax = 180° with an overall range of ∆ζ = 2.8°. When θCM > 90°, the minimum

is ζmin ≈ 180° and maximum is ζmax ≈ 182.8° with an overall range of ∆ζ = 2.8°.

Considering the entire θCM range, the seperation between the two primary electrons

varies over a range of ∆ζTot ≈ 5.6°.

In configuration 4, like configuration 3 when θCM = 90°, ζ = 180°, always as

expected, where for other values of θCM , however, ζ varies. However, unlike in

configuration 3, this rotation is not just in one direction for either θCM < 90° or

θCM > 90°, but in both. Here when θCM < 90°, the minimum is ζmin ≈ 178.4° and

maximum is ζmax ≈ 181° with an overall range of ∆ζ = 2.6°. When θCM > 90°,

the minimum is ζmin ≈ 179.2° and maximum is ζmax ≈ 181.8° with an overall range

of ∆ζ ≈ 2.6°. Then the overall range over which the angle is rotated is therefore,
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∆ζTot ≈ 3.4°. In this configuration, ∆ζTot has improved (i.e. reduced) 2.2° from

configuration 3, therefore the quadropoles serve to mitigate the effect of the solenoid

on the angle range generated for these simulations.

8.3 Next Stages in HMolPol Development

Section 8.2.1.1 shows that for the energies used in these simulations, the scattered

electrons have a maximum radius of less then 1 m at 7.47 m from the center of the

target, which decreases as the EB increases, as seen in Figs. 8.5 and 8.7. The hits are

distributed evenly as seen in Figs. 8.6 and 8.8, leading to a detector design of a donut

shape surrounding the beamline. In practice, however, this introduces other issues

including: this can lead to problems with the experiment the Hydro-Møller is used

for and other beamline components, an increase in backgrounds, and dimension issues

with the needed detector inner radius being the size of the beamline.

How the target solenoid and the JLab Hall A quadrupoles influence the distribution

of hits on the DummyDet is presented in Sec. 8.2.2. It is clear that the Hall A quads

do help make the area of the distribution of the hits on the detector smaller, which is

encouraging from a practical perspective. Using a coincidence detector system would

help with reducing backgrounds, but with the H target there is a range in the difference

in φLab angles over which the hits can be apart. Unlike in the simulations, in reality

there is no restriction in the angles which the Møller interactions take place, and since

there is a range in the difference in φLab angles over which the hits can be apart,

a segmented coincidence detector may be the best choice to make sure the events

detected are true coincidences. Simulation will be needed to look at various possible

designs like this, and to help select the materials of any detector system.

Future JLab Hall A simulations need to be done to compare the Fe Møller polarime-

ter with the HMolPol geometry for the Hydro-Møller, which can be accomplished by

switching the H target with the solenoid out for the Fe target. Comparing this with

Configuration 2 will allow one to see if any differences arise due to the target material.
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face of the DummyDet näıve primaries from primary 1 , for Møller electrons generated
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Changing the strengths of the quadrupoles to match any differences between what

was used in these simulations and the actual values at 11 GeV, along with other beam

energies, will require more simulations. Simulations should be done to investigate if

these quadrupole’s strengths are the ideal ones to use with the Hall A geometry or if

the event distribution on the detectors improves with different values.

In Sec. 8.2.2 the only magnetic of the Hall A magnetic optics that was not included

is the dipole; simulations will have to be done with this magnetic field on. The dipole

will primarily bend the electrons down away from the beamline, but will also cause

spreading based on the electron’s energy. One other aspect of the all the magnetic

fields (target and Hall A optics) that is not included is their fringe fields. The effect of

these on the hit distribution on the detector will have to be investigated, as this can

have impact on any detector design.

Future simulations will also have to be done looking to see if there is any change

to the distribution with a target that has more accurate density and magnetic field

strengths of the target as seen in Fig. 8.1.

The majority of simulations in this dissertation concentrate only on the present JLab

Hall A Fe Møller polarimeter, however HMolPol was specifically designed such that it

can easily be adapted to other places like MAMI though changing of the geometry,

magnets, and detectors along with targets, both H or different material. MAMI and

other labs will have to run simulations to investigate their Møller polarimeter system.

All of the simulations have been done with the DummyDet, and as stated in

Sec. 8.1.3 and 8.1.4 the other type of detector geometry LeftRightDet is already

in HMolPol which can be implemented. This detector geometry will need to be

investigated, in a similar way to the initial studies in this dissertation, and in follow

up studies that have been laid out in this section.

Other studies that are needed include: how the target solenoid impacts the electron

beam transport and beam spot size, the effect of backgrounds such as Mott Scattering

and scattering from the beam pipe and other materials, and what the critical apertures

are in the magnetic optics.
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Chapter 9

Conclusion

The Qweak experiment made a measurement of Q
p
W at a Q2 = 24.8± 0.1 m(GeV2). It

measured Q
p
W to be 0.0719± 0.0045 which agrees with the prediction of the Standard

Model of particle physics. This result sets a lower limit of 7.5 TeV for Λ+/g, where g is

coupling and Λ is the mass of a hypothetical particle exchanged in ep scattering not

in the Standard Model.

An efficient modular Monte Carlo was developed for Møller polarimeters, HMolPol.

Using HMolPol, initial feasibility studies for a novel Atomic Hydrogen Møller Polarime-

ter, Hydro-Møller, were done.
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Appendix A

Q
2

Derivation

A.1 Q2 Derivation

The four-momentum transfer1, Q2 = −q2, for scattering of an electron off of a proton

is shown in Fig. A.1.

e(~p)

e
′
(~p
′
)

θLab

~q
mp

~P
′

Figure A.1: An electron scattering off a proton. The electron comes in from the left
with a momentum of ~p, scattering off the stationary proton in red with a mass mp , at

an angle θLab with a final momentum of ~p′.

The relationship between the initial and final proton momentum, the electron’s

1
In fixed-target scattering experiments, Q

2
is use rather than q

2
, because Q

2
is always a positive

quantity.
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initial and final momentum, and the momentum transfer are as follows:

P ′ = P + q = mp + q (A.1a)

p = q + p′ (A.1b)

q = p− p′ , (A.1c)

where p is the four-momentum of the incoming electron, p′ is the four-momentum of

the outgoing electron, P is the four-momentum of the proton initially or mp as it is

at rest, P ′ is the final four-momentum of the proton, and q is the four-momentum

transferred from the electron to the proton.

Then using p2 = p′2 = me
2, q2 can be determined as

q2 = (p− p′)2

= p2 + p′2 − 2p · p′

= me
2 +me

2 − 2~p · ~p′

= 2me
2 − 2p · p′

= 2me
2 − 2

[
(T +me)(T +me)− ~p · ~p′

]
= 2me

2 − 2
[
TT ′ +me

2 +me(T + T ′)− ~p · ~p′
]

= 2
[
~p · ~p′ − TT −me(T + T ′)

]
,

(A.2)

where the kinetic energy, T and T ′ are defined by p0 = T + me and p′0 = T ′ + me

respectively.

Since, ~p · ~p′ = |~p|
∣∣∣~p′∣∣∣ cos θLab, Q

2 is

Q2 = −2
[
|~p| ·

∣∣∣~p′∣∣∣ cos θLab − TT
′ −me(T + T ′)

]
(A.3)

Finally, T ′ can be found through using the recoil factor of the proton, η by through

the following,

T ′ =
T

η
(A.4)



APPENDIX A. Q2 DERIVATION 113

where,

η = 1 + 2
T

mp
sin2

(
θLab

2

)
. (A.5)

A.2 Q2 Derivation: Relativistic Limit

Taking the relativistic limit, one can simplifyQ2 from Eq. A.2 into the more recognizable

forms seen in Eq. A.23. For the Qweak experiment E = 1159.65 MeV� me , therefore

the electron mass is negligible, this means that p0 = T+me ≈ E and p′0 = T ′+me ≈ E
′

the incoming and outgoing electron energy respectively. This means the last term in

Eq. A.2 can be neglected, therefore

Q2 ≈ 2
(
EE′ − ~p · ~p′

)
. (A.6)

Likewise, ~p · ~p′ can be simplified,

p2 = me
2

= 0

= (E, ~p)2

= E2 − |~p|2

(A.7)

finally,

|~p|2 = E2 (A.8)

by the same reasoning, ∣∣∣~p′∣∣∣2 = E′2 . (A.9)

Finally by combining Eqs. A.8 and A.9,

~p · ~p′ = |~p|2 ·
∣∣∣~p′∣∣∣2 cos θLab

= EE′ cos θLab .

(A.10)
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Finally, using Eqs. A.6 and A.10, Q2 becomes:

Q2 = 2EE′(1− cos θLab) (A.11a)

= 4EE′ sin2

(
θLab

2

)
. (A.11b)

A.3 Q2 Elastic Scattering in the Relativistic Limit

It can be useful to write Q2 in terms of only one of the energy variables. By using

Bjorken scaling variable, x and ν this can be achieved.

By using Eqs. A.1c, A.7 and A.9, the energy that is transferred to the proton, ν is

ν = E − E′ . (A.12)

Also the initial and final four-momentum, of the proton is as follows:

P =
(
mp ,~0

)
(A.13a)

P ′ =
(
mp + ν, ~P ′

)
(A.13b)

Bjorken x is defined as

x ≡ −q2

2P · q

=
Q2

2P · q
.

(A.14)

Using Eqs. A.1c, A.7, A.9 and A.13a, P · q is

P · q =
(
mp ,~0

)
·
(
p− p′

)
= mp

(
p0 − p

′
0

)
= mp

(
E − E′

)
.

(A.15)
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It follows that Bjorken x becomes

x =
Q2

2P · q

=
Q2

2mp

(
E − E′

)
=

Q2

2mpν
.

(A.16)

For elastic scattering x = 1, or

1 =
Q2

2mpν
. (A.17)

Then Q2 can also be written as

Q2 = 2mpν

= 2mp

(
E − E′

)
.

(A.18)

Therefore for elastic scattering Q2 can written independent of θLab as

Q2 = 2mp

(
E − E′

)
. (A.19)

Using Eq. A.19, the electron’s energy, E and E′ can be determined:

E′ = E − Q2

2mp
(A.20a)

E = E′ +
Q2

2mp
(A.20b)

Finally using Eqs. A.11a and A.20,

Q2 = 2EE′(1− cos θLab)

= 2E

(
E − Q2

2mp

)
(1− cos θLab)

=

(
2E2 − EQ2

mp

)
(1− cos θLab) .

(A.21)
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Then Q2 for elastic scattering can found independently of E′,

Q2 = 2E2 (1− cos θLab)

1 + E
mp

(1− cos θLab)
.

Similarly, Q2 for elastic scattering can found independently of E,

Q2 = 2E′2
(1− cos θLab)

1− E
′

mp
(1− cos θLab)

. (A.22)

Therefore, there are 4 equivalent expressions for Q2, one that is true all the time,

Eq. A.11 and three that are valid only for elastic scattering, Eqs. 4.1, A.18 and A.22,

which are summarized in Eq. A.23.

Q2 = 2EE′(1− cos θLab)

Q2 = 2mp(E − E′)

Q2 = 2E2 (1− cos θLab)

1 + E
mp

(1− cos θLab)

Q2 = 2E′2
(1− cos θLab)

1− E
′

mp
(1− cos θLab)

(A.23)
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Appendix B

Eigenstates and Energies of

Atomic Hydrogen

In Sec. 7.2, the Hamiltonian, H , for a hydrogen atom in an external magnetic field,

~B is given in Eq. 7.1,

H = Aî· ŝ+ geµB ~B· ŝ+ gpµN ~B· î .

Since the magnetic field and the electron (ŝ) and proton (̂i) spins are both in the

ẑ direction, this can be rewritten with raising and lowering operators for the spin

operators as

H = A

(
i+s− + i−s+

2
+ izsz

)
+ geµBBsz + gpµNBiz . (B.1)
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Using the good quantum numbers for this system, the total spin of the atom and

Clebsch-Gordon coefficients, the eigenvectors of the system can be found; they are,

|0 0〉 =
1√
2

(|↑ ↓〉 − |↓ ↑〉) ,

|1 -1〉 = |↓ ↓〉 ,

|1 0〉 =
1√
2

(|↑ ↓〉+ |↓ ↑〉) ,

|1 1〉 = |↑ ↑〉 .

(B.2)

Here ↑ and ↓ are for the electron’s spin, and ↑ and ↓ are the proton’s spin. Solving

this Hamiltonian is easiest through a matrix with a basis of {|↑ ↑〉 , |↑ ↓〉 , |↓ ↑〉 , |↓ ↑〉}.

By adopting this basis, the rewritten Hamiltonian can also be written as a matrix,

with six nonzero elements. The zero elements are from the limits of the raising and

lowering operators. This means all non-diagonal elements except for 〈↓ ↑|H |↑ ↓〉 and

〈↑ ↓|H |↓ ↑〉 are zero. The diagonal elements of the matrix will only have terms that

contribute to it directly from terms that have the ẑ component of the spin. This gives

a Hamiltonian matrix of,



A
4 −

B
2 µ+ 0 0 0

0 −A
4 −

B
2 µ−

A
2 0

0 A
2 −A

4 + B
2 µ− 0

0 0 0 A
4 + B

2 µ+


, (B.3)

where µ+ and µ− are defined as µ+ ≡ −geµB + gpµN and µ− ≡ −geµB − gpµN . This

gives energies of

E(mf ) = −gpµNBmf −
A

4
± A

2

√
1 + 2mfx+ x2 , (B.4)
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where mf is the total spin of the system and x ≡ −µ−BA . This means the energies for

the eigenstate of the system are as follows:

Eigenstate Energy

1√
2
(|↑ ↓〉 − |↓ ↑〉) A

(
−1− 2

√
1 + (

µ−B
2A )2

)
|↓ ↓〉 A+ µ+B

1√
2
(|↑ ↓〉+ |↓ ↑〉) A

(
−1 + 2

√
1 + (

µ−B
2A )2

)
|↑ ↑〉 A− µ+B

. (B.5)
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Appendix C

Analyzing Power for Møller

Scattering

C.1 Lab Frame Analyzing Power Derivation

In the Center of Mass (CM) frame, the Møller reaction is shown in Fig. 6.2. The

analyzing power (Azz) of this reaction was shown in Eq. 6.4

Azz(θCM ) =
− sin2 θCM (8− sin2 θCM )

(4− sin2 θCM )2 .

Figure 6.2 is a plot of how the Azz changes with the center of mass scattering angle,

θCM . The maximum analyzing power (Amaxzz ) of −7/9 is at θCM = 90°. In the lab

frame before the collision, the four momenta of the two particles are very well defined.

The first electron comes in with the beam energy (EB) and moves with momentum,

pL, and the second electron is at rest. In the initial state the four momentum for each

electron then is:

1 : (EB, 0, 0, pL)

2 : (me, 0, 0, 0)

(C.1)
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with pL =

√
E2
B −m

2
e. Then the Lorentz invariant is

ECM =

√
(E1 + E2)2 − (~p1 + ~p2)2, where E1, E2, p1, and p2 are the energies and

momenta for the first and second electron respectively. For this situation the ECM is

ECM =

√
2m2

e + 2EBme . (C.2)

The velocity of the CM in the lab frame is

βCM =
pL

EB +me

=

√
E2
B −m

2
e

EB +me
,

(C.3)

so it follows then that the γCM factor is

γCM =
EB +me√

2m2
e + 2EBme

. (C.4)

In the CM frame the four-momentum vectors are, where 1 and 2 denote the initial

state and 3 and 4 are the final state,

1 :

(
ECM

2
, 0, 0,

pCM
2

)
2 :

(
ECM

2
, 0, 0,−pCM

2

)
3 :

(
ECM

2
, 0,

pCM
2

sin θCM cosφ3,
pCM

2
cos θCM

)
4 :

(
ECM

2
, 0,

pCM
2

sin (π − θCM ) cosφ4,
pCM

2
cos (π − θCM )

)
.

(C.5)

It follows then that the momentum in the CM frame is

pCM =

√
E2
CM − 4m2

e . (C.6)
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The scattered electrons go off back to back to each other so φ3 = 0 and φ4 = π. The

scattered particles’ four momenta simplify to

3 :

(
ECM

2
, 0,

pCM
2

sin θCM ,
pCM

2
cos θCM

)
4 :

(
ECM

2
, 0,−pCM

2
sin θCM ,−

pCM
2

cos θCM

)
.

(C.7)

In the Lab frame the scattering is described in Fig. C.1. Boosting into the lab frame

e−

e−

θLab3

θLab4

Figure C.1: Scattering electrons in the Lab frame.

gives:

3:

(
γCM

[ECM
2
− βCM

pCM
2

cos θCM

]
, 0,

pCM
2

sin θCM , γCM

[pCM
2

cos θCM − βCM
ECM

2

])

4:

(
γCM

[ECM
2

+ βCM
pCM

2
cos θCM

]
, 0,

− pCM
2

sin θCM , γCM

[
− pCM

2
cos θCM − βCM

ECM
2

])
(C.8)

It follows then that the relationships between the θLab and the θCM angles are:

tan θLab3 =
pCM

2 sin θCM

γCM (pCM2 cos θCM − βCM
ECM

2 )

tan θLab4 =
−pCM

2 sin θCM

γCM (−pCM
2 cos θCM − βCM

ECM
2 )

(C.9)
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For Amaxzz , the angles become:

tan θLab3 = − pCM
γCMβCMECM

tan θLab4 =
pCM

γCMβCMECM

(C.10)

Figure C.2 is a graph of the Azz as a function of θLab for various beam energies. At

the Amaxzz the electrons scatter at equal and opposite angles in the lab frame.

C.2 Energy Independence of the Analyzing Power

The relevant analyzing power, Azz (beam and target both polarized in the ẑ direction)

is energy independent, despite the fact that the cross-section for Møller scattering

at tree level is energy dependent. This section will demonstrate this is true for the

relativistic limit of the Azz and provides the expression for the other analyzing powers

where the beam and target are polarized in other combinations of directions. The total

analyzing powers (Aij) for a beam traveling in the ẑ direction, where x̂ is perpendicular

to the plane of scatter, and ŷ = [x̂× ẑ] are:

Azz = τ(ξ, θCM )
[
4ξ(2ξ − 1)− (ξ − 1)(ξ + 3) sin2 θCM

]
(C.11a)

Axx = τ(ξ, θCM )
[
4ξ + (ξ − 1)(ξ + 3) sin2 θCM

]
(C.11b)

Ayy = τ(ξ, θCM )
[
4(2ξ − 1)− (ξ − 1)2 sin2 θCM

]
(C.11c)

Azx = Axz = τ(ξ, θCM )(ξ − 1)
√

2(ξ + 1) sin 2θCM (C.11d)

Axy = Ayx = Ayz = Azy = 0 (C.11e)

where

−τ(ξ, θCM ) =
sin2 θCM

4ξ2(1 + 3 cos2 θCM ) + (ξ − 1)2(4 + sin2 θCM ) sin2 θCM
(C.11f)

and where θCM is the center of mass scattering angle, and following the notation in

the literature ξ = EB/me = γ is the energy of the incident electron normalized to the
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Figure C.2: Møller scattering analyzing power vs. θLab. Azz is shown for various beam
energies appropriate for Jefferson Lab and for the MAMI accelerator at the Johannes
Gutenberg University, Mainz. The beam energies shown are 200 MeV in blue circles,
2 GeV in red square, 11 GeV in black triangle.
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mass of the electron [108]. For the relativistic limit ξ � 1 all factors to the order of ξ2

or higher are negligible. Therefore Eqs. C.11 become:

Azz = τ(ξ, θCM )ξ2(8− sin2 θCM ) (C.12a)

Axx = τ(ξ, θCM )ξ2 sin2 θCM (C.12b)

Ayy = τ(ξ, θCM )− ξ2 sin2 θCM (C.12c)

Azx = Axz = τ(ξ, θCM )2ξ sin θCM cos θCM (C.12d)

Axy = Ayx = Ayz = Azy = 0 (C.12e)

where

−τ(ξ, θCM ) =
− sin2 θCM

ξ2(4− sin θCM
2)2 (C.12f)

Finally switching back to γ, these can be simplified to:

Azz =
− sin2 θCM (8− sin2 θCM )

(4− sin2 θCM )2 (C.13a)

Axx =
− sin4 θCM

(4− sin2 θCM )2 (C.13b)

Ayy =
sin4 θCM

(4− sin2 θCM )2 (C.13c)

Azx = Axz =
2 sin3 θCM cos θCM

γ(4− sin2 θCM )2 (C.13d)

Axy = Ayx = Ayz = Azy = 0 (C.13e)

which are what are commonly seen in the literature [109, 110].
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Appendix D

Hydro-Møller: Expected Event

Rates

D.1 Expected Event Rates

Finding the rates for Møller scattering is important for the design of the detector

system. For a typical Møller polarimeter the acceptance on the detectors is selected

to be a small range of θCM angle around 90°, where Azz is maximum, as shown in

Fig. 6.2.

The scattering rate, R, is proportional to the luminosity, L , and the cross section

σ of an interaction,

R = L σ , (D.1)

or using the differential cross section dσ
dΩ and integrating over the solid angle dΩ,

R =

∫
L

dσ

dΩ
dΩ . (D.2)

The luminosity is a product of the flux of the beam, Nb and the areal number of

scattering centers in the given target, Nt,

L = NbNt . (D.3)
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By using the definition of an Ampere, the flux of the beam over the beam current, Ñb

can be found

Ñb = 6.2415× 1012 Hz

µA
(D.4)

where Ñb = NbIB where IB is the beam current. The number of scattering centers in

a target is given by

Nt =
ρaNA

Ma
, (D.5)

where NA is Avogadro’s number, MA is the average mass of the target nuclei in atomic

mass units and ρA is the areal density of the target taking into account the number

of scattering centers per atom. For a cryogenic target like the Hydro-Møller target,

the areal density can be broken down into the length of the target, l and the volume

density of the target, ρV by ρA = lρV
1.

For the Hydro-Møller target with an effective length, l of 20.0 cm and ρV of

3× 1015 cm−3 [1, 2], the luminosity divided by the beam current, L̃ where L = L̃ IB ,

is

L̃ = 0.374
Hz

µAµb
(D.6)

Both the analyzing power and the unpolarized cross section can be considered constant

over a suitably small range of θCM as shown in Fig. 8.4. However, for this a constant

analyzing power will be considered, but the unpolarized cross section will be integrated

over. For a range in φ inclusive from 0 to 2π and a range in θCM inclusive from 75° to

105°, the solid angle covered is

∫
dΩ = 31.140 sr . (D.7)

Here we consider two different beam energies, 2 GeV to 11 GeV, corresponding to the

low and high beam energies of the JLab accelerator, post upgrade. With an Hydro-

Møller with target beam polarization, P zt of 100% [1, 2], and a beam polarization P zb

1
The target consist of H, therefore has one electron, otherwise ρV would need to take the number

of electrons (Z) into account. Thus in general ρA = ZlρV .
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from experienced during the Qweak experiment of 89% [22], then the polarized cross

sections for the low beam energy, dσ
dΩL

and high beam energy, dσ
dΩH

become,

σL = 97.253µb (D.8a)

σH = 17.680µb . (D.8b)

For the beam current, IB from Qweak experiment of 180µA, combining the values

for luminosity over the current in Eq. D.6, and the differential cross sections for both

beam energies Eq. D.8, the rates for the low beam energy RL and high beam energy,

RH become

RL = 6.556 kHz (D.9a)

RH = 1.192 kHz . (D.9b)

For the proposed MOLLER experiment the IB is lower, 80µA.

These are rates that suggest that with high precision polarimetry can be done in a

reasonable short time assuming a fairly efficient detector system.

D.2 Experimental Time Required per Measurement

From the rates found in Appendix D.1, how long it would take to reach a relative

statistical precision on the beam polarization would be useful to estimate.

For Møller scattering, the relationship of the measured asymmetry (Amsr) to the

polarization of the target (P zt ), beam (P zb ), and Azz is given in Eq. 6.12,

Amsr = P zb P
z
t Azz(θCM ) .

Assuming an ideal world, there is no backgrounds, 100% detection the relative statistical
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uncertainty on Amsr is the same as P zb ,

dAmsr

Amsr
=

dP zb
P zb

. (D.10)

Therefore time it takes to make a statistical measurement on Amsr will be the same

for P zb in this ideal case2,3.

Using the integrated output signal from the main detectors, the measured asym-

metry, Amsr was calculated from the helicity dependent sum of the cross section

(σ).

Eq. 2.40, can be written in terms of the number of electrons counted in each helicity

state (n+ and n−) rather than the cross section,

Amsr =
n+ − n−
n+ + n−

. (D.11)

Using this the statistical uncertainty on n+ and n− can be propagated through to

Amsr.

(dAmsr)
2 = dn+

2

(
∂Amsr

∂n+

)2

+ dn−
2

(
∂Amsr

∂n−

)2

(D.12)

The two partial derivatives from Eq. D.12 are,

∂Amsr

∂n+
=

2n−

(n+ + n−)2 (D.13a)

∂Amsr

∂n−
=

−2n+

(n+ + n−)2 . (D.13b)

Then substituting Eq. D.13 into Eq. D.12,

(dAmsr)
2 = dn+

2

(
2n−

(n+ + n−)2

)2

+ dn−
2

(
−2n+

(n+ + n−)2

)2

. (D.14)

Like in Appendix D.1 where Amaxzz in calculating σ0, here the relationship between

2
Azz has no uncertainty as it is the theoretical, and P

z
t has no statistical uncertainty.

3
While the relative statistical uncertainty on Azz and P

z
t would be same the absolute statistical

uncertainty will different, dAmsr = A
max
zz dP

z
t .
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n+, n− and ntot can be found

n− = 8n+ (D.15a)

ntot = 9n+ . (D.15b)

Likewise,

dn+ =
√
n+ (D.16a)

dn− =
√

8n+ (D.16b)

dntot = 3
√
n+ . (D.16c)

Substituting Eqs. D.15 and D.16 into Eq. D.12,

(dAmsr)
2 =

32

81ntot
. (D.17)

Thus4,

dAmsr =
4
√

8

9
√
ntot

. (D.18)

In order to get a calculate dAmsr/Amsr from Eq. D.18, one must assume that a value

of Amsr based on the average Azz for the range in θCM in which the measurement is

made, in this case Amaxzz . Therefore,

dAmsr

Amsr
=

4
√

8

7
√
ntot

. (D.19)

For a 0.5% statistical uncertainty on the Amsr, ntot is,

ntot = 26122.4 . (D.20)

Finally, for the rates in Eq. D.9 the time (t) it would take to make a 0.5% statistical

4
If one assumes that Amsr is small then n+ ≈ n− thus ntot ≈ 2n+ one will get the usual

dAmsr = 1/√n
tot

as one would expect.
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measurement on P zb is

tL = 3.98 sec (D.21a)

tH = 21.91 sec . (D.21b)

The time it will actually take to make a measurement of this statistical precision

will increase due to any change in the angle coverage of the detectors5. As stated

earlier this calculation also assumes that this is a detector with 100% efficiency, and

there are no backgrounds.

5
The angles range used in Appendix D.1 is φ ∈ [0, 2π] and θCM ∈ [75°, 105°].
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