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The Jülich-Bonn coupled-channel framework is extended to K+Λ photoproduction. The spectrum
of nucleon and ∆ resonances is extracted from simultaneous fits to several pion-induced reactions in
addition to pion, eta and K+Λ photoproduction off the proton. More than 40,000 data points up to
a center-of-mass energy of E ∼ 2.3 GeV including recently measured double-polarization observables
are analyzed. The influence of the γp→ K+Λ channel on the extracted resonance parameters and
the appearance of states not seen in other channels is investigated. The Jülich-Bonn model includes
effective three-body channels and guarantees unitarity and analyticity, which is a prerequisite for a
reliable determination of the resonance spectrum in terms of poles and residues.
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I. INTRODUCTION

The excitation spectrum of baryons provides a con-
nection between Quantum Chromodynamics and experi-
ment in the low and medium energy regime of the strong
interactions, where a perturbative treatment of QCD
is not feasible. For many years, elastic and charge-
exchange πN scattering was the main source of infor-
mation for studying the N∗ and ∆∗ spectrum in the tra-
ditional partial-wave analyses [1–3]. Compared to quark
model predictions [4, 5] or lattice simulations [6–12], how-
ever, the number of resonances seen in πN scattering
is much smaller, a situation referred to as the “missing
resonance problem” [13]. In recent years, the experi-
mental study of reactions other than πN elastic scat-
tering was given much attention at photon-beam facil-
ities like ELSA, JLab or MAMI. High-quality data for
cross sections, single- and double polarization observ-
ables are nowadays available for different final states [14–
16] and will in the near future allow the determination
of the photoproduction amplitude from a “complete ex-
periment” [17], a set of eight carefully chosen observ-
ables that resolve all discrete ambiguities up to an overall
phase [18, 19]. Although experimental data with realistic
uncertainties require more than eight observables [20–22],
it is possible to perform a truncated partial-wave anal-
ysis with less than eight [23, 24]. In this respect, the
photoproduction of KY final states offers the advantage
that the recoil polarization is accessible through the self-
analyzing weak decay of the hyperon. A complete set
which always includes beam-recoil or target-recoil mea-
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surements is, thus, easier to realize. See also Ref. [25] in
this context in which the question is addressed of how
precise data have to be to discriminate between models.

Kaon photoproduction holds the promise to reveal
resonances not seen in pion or eta production. The
strangeness channels KΛ and KΣ might be the dom-
inant decay modes of states that couple only weakly
to πN or ηN , especially at energies farther away from
the πN threshold. The data situation for the reaction
π−p → K0Λ is much better than in other pion-induced
channels. In the coupled-channel fit of pion-induced re-
actions of Ref. [26] the inclusion of the K0Λ final state
data led to strong evidence of the N(1710)1/2+ reso-
nance. Yet, despite a small amount of data points avail-
able for the spin-rotation parameter β [27], the quality
of the polarization data does not permit an unambiguous
determination of the amplitude [26]. The study of kaon
photoproduction is, thus, a vital step towards establish-
ing the baryon excitation spectrum and could contribute
to solving the missing resonance puzzle.

Theoretical studies of kaon photoproduction have been
pursued using a variety of different approaches. The en-
ergy region not far away from threshold can be stud-
ied in the framework of chiral perturbation theory [28].
Yet, as shown in Ref. [29, 30] SU(3) ChPT converges
rather slowly in the hadronic sector. Another method
uses unitarized chiral interactions [31, 32]. In Ref. [33]
a chiral quark model is applied to predict amplitudes
for eta and kaon production. Single-channel isobar mod-
els [34–36] and multi-channel K-matrix approaches [37–
42] cover a broad energy range and are able to analyse a
large amount of data. To this purpose, the real disper-
sive parts of the intermediate states are often neglected
which allows for a flexible and effective parametrization
of the amplitude although certain S-matrix principles are
difficult to implement.
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Based on effective Lagrangians, dynamical coupled-
channel (DCC) approaches preserve, or at least approx-
imate, theoretical constraints of the S-matrix like two-
and three-body unitarity, analyticity, left-hand cuts and
complex branch points. This ensures a reliable determi-
nation of the resonance spectrum in terms of complex
pole positions and residues. DCC approaches provide
a particularly suited tool for a simultaneous analysis of
multiple channels over a wide energy range. A DCC anal-
ysis including kaon photoproduction was performed in
Refs. [43–45]. Other notable approaches to kaon pho-
toproduction comprise kaon-MAID [46], the Regge-plus-
resonance parametrization of Refs. [47, 48] and the anal-
ysis of Ref. [49] using an effective Lagrangian model.

In the present study we extend the Jülich-Bonn DCC
approach to the γp → K+Λ channel. The Jülich-Bonn
model was developed over the years [26, 50–53] start-
ing with Ref. [54] and includes in its most recent form
the pion-induced reactions πN → πN , π−p → ηn,
K0Λ, K0Σ0, K+Σ− and π+p → K+Σ+, in addition to
pion and eta photoproduction off the proton [55]. Re-
cently, the Jülich-Bonn approach was also extended to
the hidden-charm and hidden-beauty sector to explore
the possibility of dynamically generated resonances in the
4 GeV and 11 GeV energy regime [56].

The paper is organized as follows: In Sec. II we give
a short introduction to the Jülich-Bonn framework. A
detailed description of the hadronic interaction can be
found in Ref. [26] while the parametrization of the pho-
toproduction amplitude is developed in Ref. [53]. Sec. III
includes numerical details and fit results and the ex-
tracted resonance spectrum is discussed in Sec. IV.

II. FORMALISM

The Jülich-Bonn (JüBo) model was originally devel-
oped to describe πN interaction. A simultaneous anal-
ysis of the reactions πN → πN , ηN , KΛ and KΣ was
achieved in Ref. [26]. The hadronic scattering poten-
tial is derived from an effective Lagrangian using time-
ordered perturbation theory (TOPT) and is iterated in a
Lippmann-Schwinger equation, which automatically en-
sures two-body unitarity. Two-to-three and three-to-
three body unitarity is approximately fulfilled and the
ππN channels are parameterized as ρN , σN and π∆.
Those channels are included dynamically in the sense
that the ππ and πN subsystems fit the respective phase
shifts [51]. The amplitude is inspired by the Amado
model [57] although the correct proof of three-body uni-
tarity has been provided only recently [58]. Moreover,
there it was shown that the amplitude, although formu-
lated in terms of isobars and spectators, can be entirely
re-formulated in terms of on-shell two-body amplitudes,
their continuation below two-body thresholds, and real-
valued three-body forces.

Note also that the large ππN inelasticities in the light
baryon sector represent one of the main obstacles to in-

terpret lattice QCD calculations performed in a small cu-
bic volume (see, e.g., Ref. [10]). As three-body unitarity
identifies the the imaginary parts of the amplitude in the
infinite volume (when all particles are on-shell), it can be
used to determine and correct for the leading power-law
finite-volume effects arising from the three-body on-shell
condition [59].

The JüBo approach respects analyticity; left-hand cuts
and the correct structure of real and complex branch
points [60] as well as the real, dispersive contributions of
intermediate states are taken into account. More details
on the analytic properties of the scattering amplitude are
given in Ref. [51].

In Ref. [61] a field-theoretical description of pseu-
doscalar meson photoproduction that fulfils the gener-
alized off-shell Ward-Takahashi identity and uses an ear-
lier version of the JüBo model as final-state interaction is
presented. In the present study we follow a different ap-
proach and approximate the photoproduction kernel by
energy-dependent polynomials while the hadronic final-
state interaction is given by the JüBo model in its cur-
rent version [26]. This semi-phenomenological framework
is more flexible than the technically rather involved co-
variant treatment of Ref. [61] and is especially suited to
analyse the large amounts of data nowadays available for
meson photoproduction. While no information on the
underlying microscopic photoexcitation process can be
gained, the good analytic properties of the hadronic T -
matrix allow for a well defined extraction of the resonance
spectrum. This approach is similar to the GWU/DAC
CM12 framework of Ref. [62]. Its integration into the
JüBo formalism and the application in an analysis of pion
photoproduction can be found in Ref. [53]. In Ref. [55]
the analysis was extended to eta photoproduction.

In the following we briefly describe the main ingredi-
ents of the framework. For a detailed description of the
JüBo approach the reader is referred to Refs. [26, 53].

The hadronic scattering process of a meson and a
baryon is described by the following scattering equation:

Tµν(q, p′, Ecm) = Vµν(q, p′, Ecm)

+
∑
κ

∞∫
0

dp p2 Vµκ(q, p, Ecm)Gκ(p,Ecm)Tκν(p, p′, Ecm) .

(1)

This equation is formulated in partial-wave basis and the
indices µ, ν and κ denote the outgoing, incoming and
intermediate meson-baryon channels, respectively. Ecm
stands for the scattering energy in the center-of-mass
frame while q ≡ |~q | (p′ ≡ |~p ′|) indicates the modulus
of the outgoing (incoming) three-momentum. Note that
the latter can be on- or off-shell.

In case of channels with stable particles the propagator
Gκ is of the form

Gκ(p,Ecm) = 1
Ecm − Ea(p)− Eb(p) + iε

, (2)
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where Ea =
√
m2
a + p2 and Eb =

√
m2
b + p2 are the on-

mass-shell energies of the intermediate particles a and b
in channel κ with masses ma and mb. Eq. (2) applies
to κ = πN , ηN , KΛ, or KΣ; for channels with unstable
particles, i.e. ρN , σN and π∆, the propagator has a
more complex form [51, 63].

The scattering potential Vµν is constructed of t- and
u-channel exchanges of known mesons and baryons and
s-channel processes that account for genuine resonances
(see Ref. [26] for a complete list of t- and u-channel ex-
changes). In addition, contact diagrams are included that
absorb physics beyond the explicit processes. Those con-
tact interaction preserve the analytic properties ensured
by the t-, u- and s-channel interactions. The potential
can, thus, be decomposed into three parts,

Vµν = V NP
µν + V P

µν + V CT
µν

≡ V NP
µν +

n∑
i=0

γaµ;i γ
c
ν;i

Ecm −mb
i

+ 1
mN

γCT;a
µ γCT;c

ν . (3)

The non-pole part of the potential, V NP, comprises all t-
and u-channel exchange diagrams, while V P includes all
s-channel resonances and the vertex functions γcν;i (γaµ;i)
describe the creation (annihilation) of a resonance i in
channel ν (µ) with bare mass mb

i . A compilation of all
exchange processes included in the approach as well as
explicit formulas for exchange potentials and resonance
vertex functions are given in Refs. [26, 52]. The vertex
functions of the contact diagrams γCT;a

µ (γCT;c
ν ) have the

same functional form as the resonance vertex functions.
All parts of the scattering potential include free param-
eters that are fitted to data. Details will be given in
Sec. III B.

Similar to the potential V , the scattering matrix of
Eq. (1) can be decomposed into a pole and a non-pole
part, a decomposition widely used in the literature,

Tµν = TP
µν + TNP

µν (4)

with

TNP
µν = V NP

µν +
∑
κ

V NP
µκ GκT

NP
κν . (5)

The pole part TP can be evaluated from the non-pole
TNP:

TP
µν = Γaµ;iDij Γcν;j (6)

with the resonance propagator Dij and the dressed cre-
ation (annihilation) vertex Γcµ;i (Γaµ;i),

Γcµ;i = γcµ;i +
∑
ν

γcν;iGν T
NP
νµ ,

Γaµ;i = γaµ;i +
∑
ν

TNP
µν Gν γ

a
ν;i . (7)

The indices i and j label the s-channel states or a con-
tact diagram in a given partial wave. In case of two s-
channel resonances with bare masses mb

1 and mb
2 (indices

i, j ∈ {1, 2}) plus one contact term (indices i, j = 3), the
dressed vertex functions and the resonance propagator
are of the form

Γaµ = (Γaµ;1,Γaµ;2,Γaµ;3), Γcµ =

Γcµ;1
Γcµ;2
Γcµ;3

 ,

D−1 =

Ecm −mb
1 − Σ11 −Σ12 −Σ13

−Σ21 Ecm −mb
2 − Σ22 −Σ23

−Σ31 −Σ32 mN − Σ33


(8)

where Σ is the self-energy:

Σij =
∑
µ

γcµ;iGµ Γaj;µ . (9)

It should be noted that the unitarization of Eq. (1)
can lead to dynamically generated poles also in TNP. As
outlined in Ref. [26] the decomposition of Eq. (4) is of nu-
merical advantage since the evaluation of the pole part
of the amplitude is much less time-consuming than the
evaluation of the non-pole part. It is, thus, possible to ap-
ply an effective, nested fitting workflow [26]. Other than
that, we do not attribute any physical meaning to bare
resonance masses or coupling, but neither to their dressed
counterparts of Eq. (7) because the dressing is scheme-
dependent and the above decomposition into pole and
non-pole part is not unique. See Sec. 4.6 of Ref. [26] and
Ref. [50] for an in-depth discussion. The only physically
well-defined resonance properties are the pole positions
and residues of the full amplitude.

The inclusion of the γN channel is carried out using
the semi-phenomenological approach of Ref. [53]. The
photoproduction multipole amplitude is given by

Mµγ(q, Ecm) = Vµγ(q, Ecm)

+
∑
κ

∞∫
0

dp p2 Tµκ(q, p, Ecm)Gκ(p,Ecm)Vκγ(p,Ecm) ,

(10)

where M stands for an electric or magnetic multipole,
the index γ stands for the initial γN channel and µ (κ)
denotes the final (intermediate) meson-baryon pair. Tµκ
is the hadronic half-off-shell matrix of Eq. (1) with the
off-shell momentum p and the on-shell momentum q. In
the present study µ = πN , ηN and KΛ while the sum
over κ additionally includes the π∆ channel.

The photoproduction kernel Vµγ is parametrized as

Vµγ(p,Ecm) = αNP
µγ (p,Ecm) +

∑
i

γaµ;i(p) γcγ;i(Ecm)
Ecm −mb

i

,

(11)
where αNP simulates the coupling of the γN channel
to the non-resonant part of the amplitude and the ver-
tex function γcγ;i describes the coupling of the photon
to a resonance i. The hadronic vertex function γaµ;i in
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Eq. (11) is exactly the same as in the hadronic scatter-
ing potential of Eq. (3) to ensure the cancellation of the
poles in Eq. (11). This formulation also allows to ex-
cite background and resonances independently without
spoiling Watson’s theorem. In analogy to the hadronic
case, it is possible to express the photoproduction am-
plitude in terms of a dressed photon vertex [53]. Yet,
no physical meaning can be assigned to that quantity for
the same reasons given before. The well-defined quan-
tities are the residues of photoproduction multipoles at
the poles, sometimes referred to as photocouplings [53].

The bare photon couplings γcγ;i and αNP are approxi-
mated by energy-dependent polynomials PP and PNP:

αNP
µγ (p,Ecm) =

γ̃aµ(p)
√
mN

PNP
µ (Ecm)

γcγ;i(Ecm) = √mNP
P
i (Ecm) . (12)

The vertex function γ̃aµ is equal to γaµ;i but independent
of the resonance number i. The polynomials P read ex-
plicitly:

PP
i (Ecm) =

`i∑
j=1

gP
i,j

(
Ecm − Es
mN

)j
e−λ

P
i (Ecm−Es)

PNP
µ (Ecm) =

`µ∑
j=0

gNP
µ,j

(
Ecm − Es
mN

)j
e−λ

NP
µ (Ecm−Es)

. (13)

In Eq. (13), gP(NP) and λP(NP) > 0 are multipole-
dependent free parameters that are adjusted in fits to
experimental data. The upper limits of the summation
li and lµ are chosen as demanded by the data. In the
present study, li, lµ ≤ 3 is sufficient to achieve a good fit
result. The expansion point Es is chosen to be close to
the πN threshold, i.e. Es = 1077 MeV.

III. RESULTS

A. Data base

In Tab. I we give an overview of the data analysed in
the current study. We include available data for the re-
actions πN → ηN , KΛ and KΣ up to Ecm ∼ 2.3 GeV.
For the elastic πN channel we fit to the WI08 energy-
dependent solution of the GWU/INS SAID partial-wave
analysis [64]. In case of pion and eta photoproduction off
the proton the data listed in Tab. I represent the major
part of the world database up to an energy of 2.3 GeV, in-
cluding recently published polarization observables such
as Refs. [87–94].

For kaon photoproduction, the self-analyzing weak de-
cay of the hyperons facilitates the measurement of the
recoil polarization. Accordingly, more data on P but also
on the beam-recoil observables Cx,z and Ox,z are avail-
able. Those observables are important to constrain the

resonance spectrum and represent a major step towards
a complete experiment. Recently, the CLAS Collabo-
ration published very accurate data on the polarization
observables Σ, T , Ox and Oz [79] which are included in
our fit. Note that in Ref. [79] not only the K+Λ but
also the K+Σ0 final state was measured. An analysis of
KΣ photoproduction within the JüBo framework is in
progress.

The data situation for the differential cross section in
γp → K+Λ is ambiguous. While more than 5,500 data
points are available in the energy range considered in the
present study, not all of them are compatible and sys-
tematic discrepancies beyond that of angle-independent
normalization factors can be observed between different
experiments. See, e.g., the discussion of inconsistencies
between CLAS and SAPHIR data in Refs. [95–97]. We
therefore decided to use only the CLAS measurement
by McCracken et al. [66] and the recent MAMI data
by Jude et al. [65] and do not include the differential
cross sections of Refs. [67, 69, 81, 98]. Yet, the com-
parison of the fit to the entire world data can be found
online [86]. The comparison reveals how problematic the
data situation is because, e.g., at intermediate energies
(Ecm ≈ 1.7 − 1.9 GeV) some data show a fall-off at ex-
treme forward angles while other continue rising in the
forward direction. For the polarization observables, on
the other hand, no severe inconsistencies occur and all
available data are included. References to all data con-
sidered in the present analysis can be found online [86].

As can be seen in Tab. I the number of available data
points for the different observables and reactions varies
considerably. In order to achieve a good fit result for
observables with only a few data points, as e.g. Cx in
γp→ π0p, individual weights are applied in the χ2 min-
imization.

B. Numerical details

The JüBo approach features the following free param-
eters: hadronic couplings in the vertex functions γν;i and
bare masses of the s-channel resonances in Eq. (3), cou-
pling constants of the contact diagrams in V CT

µν and the
parameters connected directly to the photoproduction
amplitude, i.e. gP(NP) and λP(NP) in Eq. (13). More-
over, each t- and u-channel diagram in V NP is multiplied
by a form factor and the cut-off parameters in those
form factors are treated as free parameters. The cou-
pling constants of the exchange diagrams, on the other
hand, are related to known couplings via SU(3) flavor
symmetry. If this is not possible, the couplings are also
fitted to data. See Ref. [26] for more details. In the
present study, however, we refrain from fitting the pa-
rameters tied to V NP because the numerical evaluation
of the non-resonant part of the scattering matrix, TNP,
is very time-consuming. This is a critical point when fit-
ting several tens of thousands of data as in case of meson
photoproduction. Instead we use the values determined
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Reaction Observables (# data points) # data p./channel

πN → πN PWA GW-SAID WI08 [64] (ED solution) 3,760

π−p→ ηn dσ/dΩ (676), P (79) 755

π−p→ K0Λ dσ/dΩ (814), P (472), β (72) 1,358

π−p→ K0Σ0 dσ/dΩ (470), P (120) 590

π−p→ K+Σ− dσ/dΩ (150) 150

π+p→ K+Σ+ dσ/dΩ (1124), P (551) , β (7) 1,682

γp→ π0p dσ/dΩ (10743), Σ (2927), P (768), T (1404), ∆σ31 (140),

G (393), H (225), E (467), F (397), Cx′
L

(74), Cz′
L

(26) 17,564

γp→ π+n dσ/dΩ (5961), Σ (1456), P (265), T (718), ∆σ31 (231),

G (86), H (128), E (903) 9,748

γp→ ηp dσ/dΩ (5680), Σ (403), P (7), T (144), F (144), E (129) 6,507

γp → K+Λ dσ/dΩ (2478) [65, 66], P (1612) [66–78], Σ (459) [68, 79–82],

T (383) [79, 83, 84], Cx′ (121) [85], Cz′ (123) [85], Ox′ (66) [83], Oz′ (66) [83]

Ox (314) [79], Oz (314) [79] 5,936

in total 48,050

TABLE I. Data included in fit. A full list of references to the different experimental publications can be found online [86].

in Ref. [26] in a DCC analysis of pion-induced reactions.
Note that we still vary the hadronic contact terms V CT

µν ,
i.e., we allow for changes in the hadronic background
apart from changes of the hadronic and photonic reso-
nance couplings, and the photoproduction background.

From the 12 genuine s-channel, isospin I = 1/2 and
10 genuine I = 3/2 resonances considered in the present
study we get 134 hadronic fit parameters. Those are, for
each resonance, one bare mass and the couplings to the
channels πN , ρN , ηN , π∆, KΛ and KΣ as allowed by
isospin. In addition, we fit the cut-off parameter of the
nucleon which is included as an explicit s-channel state
in the P11 partial wave. In contrast, the bare mass and
coupling of this state are not free parameters but undergo
a renormalization process such that the nucleon pole po-
sition and residue to the πN channel match the physical
values, i.e. E0 = mN = 938 MeV and fπNN = 0.964 [99].
The renormalization procedure is described in the ap-
pendix of Ref. [55]. For each partial wave one contact
term is included that may couple to the πN , ηN , π∆,
KΛ and KΣ channel. In practice, the π∆ coupling is
only switched on in the P13 wave. This amounts to 60 fit
parameters from the contact terms. In case of the fit pa-
rameters tied directly to the photoproduction amplitude,
g

P(NP)
j and λP(NP), the upper limit of the summation in

Eq. (13) is chosen as demanded by the data but restricted
to j < 4. In the present study we have 566 non-zero pa-
rameters.

In total, 760 parameters are adjusted to more than
48,000 points of experimental data in simultaneous fits of
all pion- and photon-induced reactions. A systematic re-
duction of the number of parameters could be performed
in the future using model selection techniques [100]. Yet,
we consider the large number of free parameters tied to
non-resonant contributions an advantage; if that number
were too small one would need superfluous resonances
making up for missing flexibility of the approach. False-
positive resonance signals would be the consequence.
We perform a χ2 minimization using MINUIT on the
JURECA supercomputer at the Jülich Supercomputing
Centre. The code is parallelized in energy; in a typical
fit 200-300 processes run in parallel for up to 12 hours.

We estimate the uncertainties of the extracted reso-
nance parameters from re-fits based on re-weighted data
sets. To this purpose we individually increase the weight
of each of the five pion-induced reactions that are in-
cluded with experimental data (π−p→ ηn, K0Λ, K0Σ0,
K+Σ− and π+p → K+Σ+) and of the four photon-
induced reactions (γp → π0p, π+n, ηp, K+Λ), impos-
ing that the new χ2 without a re-fit does not deviate
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from the best χ2 by more than 25 %. After adjusting all
free parameters anew the re-fitted χ2 should not deviate
from the best χ2 by more than 20 % and the new solu-
tion evaluated with the original weights should yield a χ2

close to the original one. The maximal deviations of the
resonance parameters of the re-fits from the values of the
best fit constitutes the errors quoted in Tabs. II, III and
IV.

While this procedure represents only a qualitative esti-
mate of relative uncertainties and the absolute size of the
errors is not well determined, it still allows to asses the
relative size among the different resonance states. A sta-
tistically rigorous error analysis including the study of the
propagation of statistical and systematic uncertainties
from experimental data to partial waves and resonance
parameters is beyond the scope of this work; one reason
is that the correct inclusion of systematic uncertainties
along the lines of the SAID approach. i.e., allowing for
angle-independent normalization factors, is not yet fully
implemented for all data. Adding systematic and statis-
tical uncertainties in quadrature is not an option because
systematic errors are not necessarily Gaussian and, more
importantly, induce correlations between data. Even if
one allows for multiplicative normalization factors to ac-
count for systematic uncertainties, the d’Agostini bias is
a problem [101], in particular if different experiments are
fitted simultaneously [102].

Moreover, in almost all analysis efforts including the
present one, elastic πN scattering is not fitted in form
of experimental data but in form of partial-wave ampli-
tudes such as the GWU-SAID solution [64]. In Ref. [103]
the covariance matrices and other fit properties of the
SAID single-energy solution are provided. This allows
to perform correlated χ2 fits of the SAID partial-wave
amplitudes in a statistically meaningful way such that
the contribution to the χ2 from πN scattering is very
close to the true one that one would obtain from fitting
to the data. This method has not yet been included in
this analysis. Another constraint from elastic πN scat-
tering is provided by Roy-Steiner equations [104, 105].
Crossing-symmetry and t-channel analyticity is used to
construct a πN amplitude that fulfills these important
S-matrix principles. In future analyses the low-energy
part of the JüBo approach could be matched to these
new results.

Compared to other analyses, our determination of the
uncertainties is somewhere in the middle ground. None
of the above problems have ever been fully and consis-
tently addressed, also because of unavoidable weighting
factors for certain data sets. As discussed, the SAID ap-
proach treats systematic uncertainties better, but pion
and photon-induced reactions are never fitted simultane-
ously as done in this approach.

Another question is that of model selection and the
significance of resonance signals for the determination of
a minimal resonance content compatible with data. In
that respect, see Ref. [100] where the so-called least ab-
solute shrinkage and selection operator (LASSO) [106]

was used in an analysis of low-energy pion photoproduc-
tion to select the simplest amplitude. Refs. [47, 48] ap-
ply Bayesian evidence to determine the most probable
resonance content from kaon photoproduction data. The
Bonn-Gatchina group applies mass scan techniques to
search for new resonances and in the SAID approach res-
onances are dynamically generated if required by data.
In the present approach we insert only one additional
bare resonance state by hand, a N(1900)3/2+ that can,
of course, change its mass, width and branching ratios in
the fit. Additional resonances can still appear through
dynamical generation, very similarly as in the SAID ap-
proach, if kaon photoproduction data together with all
the other data require them.

C. Fit results

In Figs. 1 to 6 we show selected fit results for the reac-
tion γp→ K+Λ. In Fig. 7 a comparison of the predicted
total cross section with experimental data is shown. Note
that these data and also the corresponding differential
cross sections were not included in the fit. The discrep-
ancies between the theoretical prediction and the data in
Fig. 7, thus, reflect the inconsistencies between the dif-
ferent experimental measurements as the fit result gives
a good description of the differential cross section by the
CLAS collaboration [66] in Figs. 1 and 2. As discussed
before, part of these data discrepancies may originate
from different extrapolations of the cross section to the
forward direction.

The definition of the beam-recoil polarizations Ox and
Oz are given in the Appendix, for all other observables
the reader is referred to Ref. [53].

Fig. 8 represents the K+Λ photoproduction multipoles
from the present study and for comparison the BG2014-
02 solution from the Bonn-Gatchina partial-wave analy-
sis [107]. Since there is not yet a complete experiment for
KΛ photoproduction and, other than in pion or eta pho-
toproduction, no beam-target polarizations are available,
significant differences between the two solutions are not
surprising. In Ref. [108] it was shown for the case of π0p
photoproduction that multipole amplitudes from differ-
ent analyses converge indeed to similar solutions if more
high-quality polarization data are available.

Fit results for all other pion- and photon-induced re-
actions in the present analysis as well as πN and ηN
multipoles and πN elastic partial-wave amplitudes can
be found online [86].

IV. RESONANCE SPECTRUM

A. Resonance Parameters

The resonances are defined as poles in the complex en-
ergy plane of unphysical Riemann sheets of the scattering
amplitude. The corresponding residues account for the
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couplings of the resonances into the different channels.
In principle, poles can appear on different sheets except
for the physical sheet of the lowest channel, but of phys-
ical interest are usually only those on the sheet that is
closest to the physical axis. We select this so-called sec-
ond sheet by rotating the right-hand cuts of all channels
in the direction of the negative imaginary energy axis.
A reliable determination of the resonance parameters re-
quires the correct structure of branch points associated
with the opening of inelastic channels. A detailed discus-
sion of the analytic properties of the scattering amplitude
can be found in Ref. [51]. See also Ref. [60] where the
importance of complex branch points related to channels
with unstable particles like π∆, ρN or σN is stressed.

The analytic continuation of the amplitude to the sec-
ond Riemann sheet is carried out following the method of
contour deformation of the momentum integration devel-
oped in Ref. [51], and to calculate the residues we apply
the formalism illustrated in the appendix of Ref. [52].
Definitions of the normalized residue and branching ra-
tios can be found in Ref. [26]. The coupling of the γN
channel to a given resonance is characterized indepen-
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FIG. 6. Beam-recoil polarization Cx′ (above) and Cz′ (be-
low) of the reaction γp → K+Λ. Data: CLAS (Bradford et
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FIG. 8. Electric and magnetic multipoles for the reaction γp → K+Λ. (Red) solid lines: JüBo2017 (this solution). (Black)
dashed lines: BG2014-02 solution [107].

dently of the hadronic final state by the so-called photo-
coupling at the pole Ãhpole with

Ãhpole = Ahpolee
iϑh . (14)

The definition of Ãhpole and its decomposition into elec-
tric and magnetic multipoles is given in Appendix C of
Ref. [53]. Note that this definition of the photocoupling
agrees with the definition of Ref. [109].

The pole positions and residues for the isospin I = 1/2
and 3/2 resonances are given in Tabs. II and III. In ad-
dition to the values extracted from the fit result of the
present study (“JüBo2017”) we also show the values of
the JüBo2015 analysis [55] for comparison. The latter
study included pion and eta photoproduction besides sev-
eral pion-induced reactions, but not the γp → K+Λ re-
action.

The association of the states found in this analysis
with PDG names is clear in most cases but not so clear,
e.g., for the N(2060)5/2− which has a pole more than
100 MeV below the PDG value. Comparing the dif-

ferences in pole positions, possible uncertainties in the
naming of the states should be apparent. We list the
estimated PDG values for pole positions and elastic πN
residues if available. Note that in Tabs. II, III we ab-
breviate the PDG expression for those estimates due to
limited space. E.g., the PDG expression for the real part
of the Roper pole position “1360 to 1385 (≈ 1370) OUR
ESTIMATE” is converted to the space-saving form of
“1370+15

−10 ”. Also note that estimates are only provided
by the PDG for resonances rated with three or four stars.
For resonances with less stars we estimate the parame-
ters from the corresponding PDG entries “above the line”
to have a point of comparison. The PDG entries for
the “normalized residues” all originate from the BnGa
group [110, 111]. In Tab. III the π∆ channel labeled (6)
corresponds to |J − L| = 1/2 and the one labeled (7) to
|J−L| = 3/2. For easier comparisons, the corresponding
orbital angular momenta L are denoted in brackets. See
Sec. 4 of Ref. [26] for details on the angular momentum
structure of the coupled channels and a discussion of the
meaningfulness of quoting residues or branching ratios
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for the effective ππN channels.
In Tab. IV the photocouplings at the pole can be found.

Again, we show in addition the values extracted in the
JüBo2015 analysis to highlight the changes induced by
KΛ photoproduction.

The uncertainties for all quoted values are in general
asymmetrically distributed around the best fit as the ta-
ble shows; sometimes the best fit lies even at the bor-
der of the uncertainty interval. As discussed in Sec. III B
these values indicate relative uncertainties among the res-
onances. The absolute values are inaccessible to us fol-
lowing the discussion there. In light of this it becomes
clear why the uncertainties are in general considerably
smaller than in other studies quoted in the PDG [112].
This does not suggest higher precision of the current re-
sults but indicates that different criteria for the uncer-
tainty determination are used by different groups. Ac-
cessing the absolute uncertainties following rigorous sta-
tistical criteria remains a challenge for the field.

B. Discussion of specific resonances

The 2015 extension of the JüBo approach to eta pho-
toproduction did not require the inclusion of additional
bare s-channel states and no new dynamically generated
poles were observed. The situation is different in the
present study of KΛ photoproduction. As will be ex-
plained in this section, it was necessary to include a sec-
ond genuine resonance in the P13 partial wave and we see
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FIG. 10. Partial wave content of the total cross section of
the reaction π−p → K+Σ− on a logarithmic scale (very
small partial waves not shown). Data: empty triangles down:
Ref. [119]; filled circles: Ref. [127]; filled triangles down:
Ref. [123]; filled triangles left: Ref. [131]; empty triangles
up: Ref. [134]; filled squares: Ref. [132]; filled diamonds:
Ref. [133]. For filled triangles up and filled triangles right
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evidence of a new dynamically generated pole in the D15
partial wave.

For the discussion of specific resonance parameters we
always refer to the values quoted in Tab. II, III and IV.
In Figs. 9 and 10 we show the dominant partial waves in
the total cross sections of the reactions π−p→ K0Λ and
K+Σ− that are also relevant for the following discussion.

S11 : The S11 partial wave features two resonance
state, the well known N(1535)1/2− and N(1650)1/2−.
The pole positions of both states are very similar to
the values obtained in previous JüBo analyses [26, 55]
and fit in the estimated PDG ranges [112], the real
part of the pole position of the N(1650)1/2− being only
4 MeV above the estimated upper limit. The influence
of the K+Λ photoproduction data, not included in ear-
lier JüBo studies, on the residues and photocouplings of
the N(1535)1/2− is small, which is no surprise as this
state lies below the KΛ threshold and is known to cou-
ple strongly to ηN . In contrast, the couplings of the
N(1650)1/2− into the KY channels are sizeable. Still,
compared to earlier JüBo studies, which included data
on πN → KΛ, KΣ, major changes in the extracted val-
ues are not observed. The normalized residues seem to
be already well determined by the data on pion-induced
KY production. Also, the photocoupling at the pole is
similar to the value extracted in the 2015 analysis of pion
and eta photoproduction [55].

P11 : The Roper resonance N(1440)1/2+ is dynami-
cally generated from the interplay of the t- and u-channel
exchanges in the JüBo approach. Since the fit parame-
ters of the corresponding diagrams were not altered in
the present study and the new K+Λ data enter the fit at
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TABLE II. Properties of the I = 1/2 resonances: Pole positions E0 (Γtot defined as -2ImE0), elastic πN residues
(|rπN |, θπN→πN ), and the normalized residues (

√
ΓπNΓµ/Γtot, θπN→µ) of the inelastic reactions πN → µ with µ = ηN ,

KΛ, KΣ. Resonances with italic numbers in the parentheses are not identified with a PDG state; subscript (a): dynamically
generated. We show the results of the present study JüBo2017 (“2017”) and for comparison the results of fit B of the JüBo2015
analysis [55] (“2015-B”) and the estimates of and from the Particle Data Group [112] (“PDG”), if available.

Re E0 −2Im E0 |rπN | θπN→πN
Γ1/2
πNΓ1/2

ηN

Γtot
θπN→ηN

Γ1/2
πNΓ1/2

KΛ
Γtot

θπN→KΛ
Γ1/2
πNΓ1/2

KΣ
Γtot

θπN→KΣ

[MeV] [MeV] [MeV] [deg] [%] [deg] [%] [deg] [%] [deg]

fit
N(1535) 1/2− 2017 1495+2

−0 112+0
−1 23+0.3

−0.4 −52+1
−3 51+0

−1 105+3
−0 6.0+0

−1.5 −44+29
−1 5.7+0.1

−1.5 −86+6
−0

2015-B 1499 104 22 −46 51 112 5.0 32 5.0 −69
PDG 1510± 20 170± 80 50± 20 −15± 15 43± 3 −76± 5 — — — —

N(1650) 1/2− 2017 1674+3
−0 130+9

−0 29+4
−0 −53+2

−5 18+3
−0 28+2

−3 17+1
−0 −59+1

−2 21+1
−1 −67+2

−2

2015-B 1672 137 37 −59 21 48 20 −54 26 −74
PDG 1655± 15 135± 35 35± 15 70+10

−20 29± 3 134± 10 23± 9 85± 9 — —
N(1440) 1/2+

(a) 2017 1353+3
−1 213+2

−0 62+0
−2 −100+6

−1 8.6+0.2
−0.7 −29+7

−0 4.8+0
−0.4 129+5

−1 2.1+0.2
−0.2 87+5

−17

2015-B 1355 215 62 −98 7.8 −27 16 145 2.7 113
PDG 1370+15

−10 180+15
−20 46± 6 −90± 10 — — — — — —

N(1710) 1/2+ 2017 1731+1
−6 157+0

−6 1.5+0
−0.1 178+3

−6 1.6+0.3
−0.1 −137+3

−43 10+0.3
−0.3 52+3

−2 1.4+0
−0.1 −79+15

−9

2015-B 1651 121 3.2 55 16 −180 12 −32 0.4 −43
PDG 1720± 50 230± 150 8+7

−3 − 12± 4 0± 45 17± 6 −110± 20 — —
N(1750) 1/2+

(a) 2017 1750+1
−1 318+0

−3 2.9+2.1
−0.7 100+22

−7 0.7+0.2
−0.3 −31+6

−24 1.0+0.1
−0.1 164+10

−9 3.2+0.2
−0.4 29+5

−10

2015-B 1747 323 14 −144 0.2 138 0.4 86 1.6 −55
N(1720) 3/2+ 2017 1689+4

−0 191+0
−3 2.3+0.1

−1.4 −57+2
−20 0.3+0

−0.2 139+7
−28 1.5+0

−0.9 −66+4
−26 0.6+0

−0.4 26+0.3
−58

2015-B 1710 219 4.2 −47 0.7 106 1.1 −70 0.2 79
PDG 1675± 15 250+150

−100 15± 8 −130± 30 3± 2 — 6± 4 −150± 45 — —
N(1900) 3/2+ 2017 1923+1

−1 217+10
−13 1.6+0.5

−0.7 −61+121
−0 1.1+0

−0.7 −10+76
−3 2.1+0.2

−1.2 1.7+86
−0 10+1

−6 −34+73
−1

PDG 1920± 20 130 to 300 4± 2 −20± 40 5± 2 70± 60 7± 3 135± 25 4± 2 110± 30
N(1520) 3/2− 2017 1509+3

−2 98+2
−1 33+3

−3 −16+4
−19 3.7+0.3

−0.3 85+2
−16 0.8+0.2

−0.1 83+23
−20 3.0+0.8

−0.2 −28+2
−19

2015-B 1512 89 37 −6 2.6 95 6.9 158 4.9 −41
PDG 1510± 5 110+10

−5 35± 3 −10± 5 — — — — — —
N(1675) 5/2− 2017 1647+7

−1 135+5
−4 28+0.5

−1.1 −22+1.8
−0.5 9.1+0

−1.8 −45+3
−0 0.7+0.1

−0.1 −91+5
−1 2.3+0.1

−0.1 −175+9
−1

2015-B 1646 125 24 −22 4.4 −43 0.1 100 3.1 −175
PDG 1660± 5 135+15

−10 27± 5 −25± 6 — — — — — —
N(2060) 5/2−(a) 2017 1924+1

−1 201+2
−1 0.4+0

−0.1 172+4
−8 0.2+0.1

−0.1 109+19
−1 2.2+0.1

−0.1 −86+1
−2 3.1+0.1

−0.2 86+1
−2

PDG 2070± 50 385± 50 22± 10 −110± 30 5± 3 40± 25 1± 0.5 — 4± 2 −70± 30
N(1680) 5/2+ 2017 1666+1

−3 81+0
−2 29+0.2

−0.6 −12+0
−1 1.7+0.2

−0.3 145+1
−0 0.9+0

−0.1 −77+1
−1 < 0.1 −33+156

−5

2015-B 1669 100 34 −19 2.7 136 0.1 90 0.4 148
PDG 1675+5

−10 120+15
−10 40± 5 −10± 10 — — — — — —

N(1990) 7/2+ 2017 2152+9
−3 225+17

−3 0.2+0
−0 92+4

−6 0.4+0.1
−0.1 −9.1+1.3

−4.2 1.4+0.3
−0 −13+1

−4 1.5+0.3
−0 −18+2

−4

2015-B 1738 188 4.3 −70 1.3 −82 2.2 −111 0.5 24
PDG 1965± 80 250± 60 6± 5 30± 130 — — — — — —

N(2190) 7/2− 2017 2084+6
−1 281+1

−5 20+0
−2 −31+1

−0 1.2+0.3
−0.3 140+0

−1 3.7+0
−0.3 −47+1

−0 0.3+0.9
−0.2 124+2

−0

2015-B 2074 327 35 −40 1.6 129 0.5 −51 1.3 −69
PDG 2075± 25 450+70

−50 50+20
−25 0+30

−30 — — 3± 1 20± 15 — —
N(2250) 9/2− 2017 1910+14

−39 243+24
−49 0.4+0

−0.1 −56+24
−1 0.9+0.1

−0.1 −80+21
−0.4 < 0.1 −96+20

−1 0.2+0
−0.2 −110+18

−1

2015-B 2062 403 8.2 −64 1.7 −89 0.6 −101 0.2 70
PDG 2200± 50 450± 100 25± 5 −40± 20 — — — — — —

N(2220) 9/2+ 2017 2207+2
−87 659+15

−125 91+9
−38 −68+13

−3 0.3+0.3
−0.1 −109+14

−3 < 0.1 31+0
−150 1.0+0.3

−0.6 44+16
−3

2015-B 2171 593 62 −59 0.4 −101 0.7 62 0.9 −128
PDG 2170+30

−40 480± 80 45± 15 −50+15
−10 — — — — — —
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TABLE III. Properties of the I = 3/2 resonances: Pole positions E0 (Γtot defined as -2ImE0), elastic πN residues
(|rπN |, θπN→πN ), and the normalized residues (

√
ΓπNΓµ/Γtot, θπN→µ) of the inelastic reactions πN → KΣ and πN → π∆

with the number in brackets indicating L of the π∆ state. Subscript (a): dynamically generated. We show the results of the
present study JüBo2017 (“2017”) and for comparison the results of fit B of the JüBo2015 analysis [55] (“2015-B”) and the
estimates of and from the Particle Data Group [112] (“PDG”), if available.

Pole position πN Residue KΣ channel π∆, channel (6) π∆, channel (7)

Re E0 −2Im E0 |rπN | θπN→πN
Γ1/2
πNΓ1/2

KΣ
Γtot

θπN→KΣ
Γ1/2
πNΓ1/2

π∆
Γtot

θπN→π∆
Γ1/2
πNΓ1/2

π∆
Γtot

θπN→π∆

[MeV] [MeV] [MeV] [deg] [%] [deg] [%] [deg] [%] [deg]

fit
∆(1620) 1/2− 2017 1601+3

−1 66+7
−0 16+2.6

−0.4 −106+0.2
−2.2 31+0.2

−4.9 −103+1
−1 — — 57+0

−4 (D) 103+0
−1

2015-B 1600 65 16 −104 22 −105 — — 57 105
PDG 1600± 10 130± 10 17+3

−2 −100± 10 — — — — 42± 6 −90± 20
∆(1910) 1/2+ 2017 1798+1

−4 621+35
−0 81+10

−58 −87+18
−0 5.1+0

−2.2 −96+16
−42 53+6

−36 (P) 126+15
−0 — —

2015-B 1799 648 90 −83 1.9 −123 58 131 — —
PDG 1855± 25 350± 150 30+15

−10 130± 50 7± 2 −110± 30 24± 10 85± 35 — —
∆(1232) 3/2+ 2017 1215+1

−3 97+1
−1 48+0.4

−0.3 −40+1
−1

2015-B 1218 91 46 −36
PDG 1210± 1 100± 2 51± 2 −46± 1

∆(1600) 3/2+
(a) 2017 1579+17

−0 180+30
−0 11+3

−3 −162+29
−12 13+1

−6 −21+31
−9 31+0.5

−15 (P) 37+29
−11 0.6+0.4

−0.5 (F) −56+14
−103

2015-B 1552 350 23 −155 13 −5.6 31 31 1.3 29
PDG 1510± 50 275± 75 25± 15 180± 30 — — 15± 4 30± 35 1± 0.5 —

∆(1920) 3/2+ 2017 1939+65
−76 838+0

−38 26+0
−9 96+13

−22 14+1
−2 146+5

−13 2.7+0.7
−0.3 (P) 31+15

−1 0.6+0.2
−0.2 (F) −115+26

−60

2015-B 1715 882 38 146 17 −35 6.9 131 1.3 −115
PDG 1900± 50 300± 100 20± 6 −100± 70 9± 3 80± 40 20± 8 −105± 25 37± 10 −90± 20

∆(1700) 3/2− 2017 1667+20
−8 305+18

−27 22+4
−2 −8.6+9.1

−23 0.7+1.5
−0.3 176+32

−120 4.8+1.4
−0.6 (D) 169+6

−20 38+11
−3 (S) 146+7

−23

2015-B 1677 305 24 −7.3 1.1 −147 5.4 166 39 151
PDG 1650± 30 230± 70 25± 15 −20± 20 — — 12± 6 −160± 30 25± 12 135± 45

∆(1930) 5/2− 2017 1663+7
−36 263+14

−62 5.1+1.7
−0.7 −112+19

−4 2.5+0.5
−0.4 −27+6

−12 17+4
−1 (D) 68+16

−1 0.2+0.2
−0 (G) −134+33

−15

2015-B 1836 724 34 −155 4.3 −0.5 15 30 0.9 121
PDG 1900± 60 270+90

−95 14± 6 −30+20
−10 — — — — — —

∆(1905) 5/2+ 2017 1733+32
−15 435+233

−31 21+0
−20 110+23

−70 0.5+0
−0.5 −4.3+175

−170 3.6+0
−3.4 (F) −117+247

−62 15+0
−15 (P) −61+171

−59

2015-B 1795 247 5.3 −89 0.1 −155 0.9 64 8.7 72
PDG 1820± 15 280+20

−15 20± 5 −50+20
−70 — — — — 19± 7 10± 30

∆(1950) 7/2+ 2017 1850+34
−3 259+16

−45 34+13
−7 −48+24

−22 1.4+1
−0.4 −106+28

−22 35+16
−9 (F) 119+26

−20 1.7+0.6
−0.4 (H) −103+44

−15

2015-B 1874 239 56 −33 3.1 −87 54 131 3.3 −97
PDG 1880± 10 240± 20 52± 8 −32± 8 5± 1 −65± 25 12± 4 — — —

∆(2200) 7/2− 2017 2290+0
−132 388+86

−118 33+71
−21 −32+31

−107 1.0+0
−1 118+30

−135 7.0+17
−4.1 (G) −103+264

−64 53+94
−30 (D) 137+31

−101

2015-B 2142 486 17 −56 0.5 −103 2.2 −151 23 107
PDG 2100± 50 340± 80 8± 3 −70± 40 — — — — — —

∆(2400) 9/2− 2017 1783+53
−33 244+135

−59 7.2+5.4
−3.2 −78+17

−13 0.5+0.4
−0.2 9.1+6

−3 19+5
−4 (G) −95+20

−16 1.6+0.1
−0.9 (I) −18+90

−0

2015-B 1931 442 13 −96 0.9 25 18 −110 1.2 −1.0
PDG 2120± 200 600± 440 16± 12 −80± 75 — — — — — —

energies far above the Roper, the pole position and elastic
πN residue are very stable when compared to previous
JüBo studies. They are also close to the values given by
the PDG.

Besides the nucleon whose parameters are renormal-
ized to match the physical values [55], another bare s-

channel pole is included in the P11 partial wave. We
associate this state with the N(1710)1/2+. It was in-
cluded in the JüBo approach for the first time in Ref. [26]
to improve the description of the pion-induced ηN and
KΛ channels. In the present study, the coupling to KΛ
is the dominant one, while the ηN residue, which was
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TABLE IV. Properties of the I = 1/2 (left) and I = 3/2 resonances (right): photocouplings at the pole (Ahpole, ϑh) according
to Eq. (14). Resonances with italic numbers in the parentheses are not identified with a PDG state; subscript (a): dynamically
generated. We show the results of the present study JüBo2017 (“2017”) and for comparison the results of fit B of the JüBo2015
analysis [55] (“2015-B”).

A1/2
pole ϑ1/2 A3/2

pole ϑ3/2 A1/2
pole ϑ1/2 A3/2

pole ϑ3/2

[10−3 GeV−1/2] [deg] [10−3 GeV−1/2] [deg] [10−3 GeV−1/2] [deg] [10−3 GeV−1/2] [deg]

fit fit

N(1535) 1/2− 2017 106+2
−1 −1.6+2

−0.1 ∆(1620) 1/2− 2017 19+5
−4 15+4

−3

2015-B 106 5.2 2015-B 14 26

N(1650) 1/2− 2017 51+2
−1 −1.4+1.3

−2.6 ∆(1910) 1/2+ 2017 −238+135
−14 −87+21

−14

2015-B 59 −14 2015-B −321 −141

N(1440) 1/2+
(a) 2017 −90+13

−0 −33+17
−1 ∆(1232) 3/2+ 2017 −120+3

−2 −14+1
−2 −236+4

−2 0.5+0.3
−0.8

2015-B −60 −23 2015-B −117 −6.6 −226 2.8

N(1710) 1/2+ 2017 −14+2
−0 −23+182

−6 ∆(1600) 3/2+
(a) 2017 −54+17

−8 −36+25
−6 −46+15

−4 −8.5+26
−10

2015-B −20 97 2015-B −230 −42 −332 109

N(1750) 1/2+
(a) 2017 −11+4

−3 11+10
−21 ∆(1920) 3/2+ 2017 35+6

−9 −89+9
−35 77+3

−14 −26+15
−24

2015-B −5.0 144 2015-B 192 −134 522 67

N(1720) 3/2+ 2017 48+7
−17 30+5

−19 −27+15
−4 −11+22

−7 ∆(1700) 3/2− 2017 191+30
−13 14+16

−20 244+52
−6 −5.8+17

−15

2015-B 39 5.3 −32 −114 2015-B 123 1.1 124 22

N(1900) 3/2+ 2017 34+1
−12 −20+59

−6 109+8
−56 12+15

−8 ∆(1930) 5/2− 2017 159+73
−60 8.7+2.5

−24 97+29
−3 69+15

−15

2015-B 270 −147 153 81

N(1520) 3/2− 2017 −35+6
−4 −10+3

−4 77+9
−8 8.6+2.6

−10.5 ∆(1905) 5/2+ 2017 59+181
−0 11+159

−76 −125+67
−228 28+130

−65

2015-B −31 −17 75 1.7 2015-B 53 89 −30 80

N(1675) 5/2− 2017 38+3
−0 17+0.2

−9 52+15
−8 −11+5

−2 ∆(1950) 7/2+ 2017 −68+10
−19 −49+20

−15 −95+21
−22 −53+30

−16

2015-B 32 36 51 −9.3 2015-B −68 −19 −84 −19

N(2060) 5/2−(a) 2017 6.7+0.5
−1.1 82+2

−24 16+1
−3 50+9

−3 ∆(2200) 7/2− 2017 110+115
−31 49+34

−60 57+41
−28 −84+33

−31

2015-B 106 −23 157 −60

N(1680) 5/2+ 2017 −8.0+0.8
−1.0 −42+8

−27 95+5
−0.4 −28+0

−11 ∆(2400) 9/2− 2017 14+77
−7 58+31

−35 22+23
−18 89+36

−46

2015-B −22 −28 102 −11 2015-B 34 −117 54 −75

N(1990) 7/2+ 2017 −22+12
−36 13+162

−74 −41+35
−34 11+158

−75

2015-B −29 −113 −33 −141

N(2190) 7/2− 2017 −23+10
−3 70+6

−34 53+9
−1 −82+9

−3

2015-B −41 −21 85 −22

N(2250) 9/2− 2017 −41+7
−4 −20+14

−54 20+13
−2 −74+15

−45

2015-B −26 154 119 −42

N(2220) 9/2+ 2017 536+36
−399 69+9

−53 −445+29
−326 82+7

−37

2015-B 135 114 −82 139

the largest in previous analyses [26, 55], is much smaller.
Moreover, the inclusion of the γp→ K+Λ channel in the
present analysis results in a mass 80 MeV higher than
in JüBo2015. With E0 = 1731 − i 78.7 MeV the pole
position is now within the estimated range of the PDG.
We conclude that this state plays an important role in
the KΛ photoproduction process. This is also reflected in
the M1− multipole in Fig. 8 where the pronounced dips in
the real and the imaginary parts, also found in the Bonn-
Gatchina analysis, originate from the N(1710)1/2+.

We find another dynamically generated pole in the P11
wave that is not identified with any resonance listed in
the PDG. This pole at E0 = 1750−i 159 MeV was already
seen in previous JüBo studies [26, 55]. The coupling to
the KΛ channel has increased in this fit compared to
the 2015-B solution. Yet, clear evidence is difficult to
claim because the pole position is very far in the complex
plane and almost behind the pole of the N(1710)1/2+

resonance.
P13 : In the JP = 3/2+ partial wave we include the
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N(1720)3/2+ as an explicit s-channel resonance. This
state was already present in all previous JüBo studies.
In the present analysis, however, in order to achieve a
good fit result in the γp → K+Λ channel it was neces-
sary to introduce a second genuine s-channel state, the
N(1900)3/2+. It was observed in several other publi-
cations that this resonance plays an important role in
the kaon photoproduction process, e.g., by the Bonn-
Gatchina Group [39, 40, 113] or in the effective La-
grangian model of Ref. [114]. The N(1900)3/2+ is also
included in the ANL-Osaka analysis [44] and the Gießen
model [41, 115]. In the present analysis the N(1900)3/2+

has a mass of 1923 MeV and a width of about 217 MeV
which is in agreement with the estimated range of the
pole position by the PDG. It couples predominantly to
KΛ and even more to theKΣ channel. This is reflected in
Fig. 10 where the pronounced peak in the π−p→ K+Σ−
total cross section at Ecm ∼ 1.9 GeV is induced by the
P13 partial wave. We expect that the N(1900)3/2+ will
play a crucial role also in KΣ photoproduction. An anal-
ysis within the JüBo approach including this channel is
in progress.

The inclusion of the N(1900)3/2+ also results in a
change in the pole position of the N(1720)3/2+ which
has been rather stable in previous JüBo analyses. Com-
pared to the JüBo2015-B value of E0 = 1710− i 109 MeV
the new pole position E0 = 1689 − i 95 MeV now lies
within the estimated range of the PDG.

D13 : In addition to the well established N(1520)3/2−,
which couples only weakly to KΛ, we observe a second
pole in the D13 partial wave. This dynamically gener-
ated state was already present in the JüBo analysis of
2012, where only pion-induced reactions were taken into
account. It has a mass of 1968 MeV, i.e. it lies in the en-
ergy regime of the 3-star PDG state N(1875)3/2−. Since
its width is very broad, −2 ImE0 > 800 MeV, we do
not include this state in our compilation of resonances in
Tab. II. However, this pole seems to be responsible for the
form of the E2− and M2− KΛ multipoles in Fig. 8. More-
over, as can be seen in Fig. 9, D13 becomes the dominant
partial wave in the total cross section of π−p→ K0Λ at
energies Ecm > 2 GeV. It remains to be seen if further
evidence for this state can be obtained in the analysis of
KΣ photoproduction.

D15 : The 4-star N(1675)5/2− is included as an ex-
plicit s-channel resonance. Its parameters are very simi-
lar to the ones found in previous JüBo studies and close to
the PDG values. Since the coupling of this resonance to
KΛ is comparatively small, major changes in the param-
eters compared to previous JüBo studies do not occur.

In addition to the N(1675)5/2− we observe another
pole in the D15 partial wave at E0 = 1924 − i 100 MeV
that couples predominantly to KΛ and KΣ. This dy-
namically generated pole was not seen in older JüBo cal-
culations. Although the parameters of the pole found
here differ from the 2 star PDG state N(2060)5/2−
seen in several other analyses, we identify the new pole
with the latter state. The impact of the N(2060)5/2−

becomes apparent in the γp → K+Λ multipoles E2+
and M2+ where the pronounced peak and dip around
E = 1900 MeV in Fig. 8 originate from the N(2060)5/2−
while the N(1675)5/2− is hardly visible at all. The sit-
uation is similar in the cross sections for π−p → K0Λ
and K+Σ− in Figs. 9 and 10: the D15 content exhibits
a distinct resonance-like structure at the pole position of
the N(2060)5/2−.

F15 : One explicit s-channel resonance is included in
this partial wave, the N(1680)5/2+ rated with 4 stars by
the PDG. While the real part of the pole position found
in the present analyses is in agreement with the PDG
value and previous JüBo studies, the width is reduced
by about 20 MeV. Although the residue of this state into
the KΛ channel is small, the inclusion of the γp→ K+Λ
channel induces this change in the resonance parameters
via coupled-channel effects. The changes in the widths
are reflected in the photocoupling at the pole which is
much smaller in the present analysis than in JüBo2015.

F17 : Compared to JüBo2015, the present value of the
pole position of the N(1990)7/2+ is closer to the value of
the Bonn-Gatchina analysis of E0 = 2030± 65− i (120±
30) MeV [110]. In contrast to our observation in pre-
vious analyses, where we concluded that is was hard to
determine the properties of the N(1990)7/2+ [26, 55],
the current data base with KΛ photoproduction helps
to fix its pole position with smaller relative uncertainty.
The photocouplings at the pole, however, still show larger
variations.

G17 : The N(2190)7/2− is included as an explicit s-
channel resonance. It couples predominantly to the πN
channel and has a mass of 2084 MeV which is close to
the PDG value and comparable to values found in pre-
vious JüBo analyses. The width, on the other hand, is
reduced in the present fit: −2 ImE0 = 281 MeV com-
pared to about 327 MeV in JüBo2015 and 450 MeV the
estimate of the PDG. This also results in much smaller
photocouplings A1/2 and A3/2.

G19, H19 : One genuine s-channel resonance is in-
cluded in the G19 and in the H19 partial waves. We
identify those states with the N(2250)9/2− and the
N(2220)9/2+. Both resonances exhibit large uncertain-
ties in their parameters and couple very weakly to KΛ.
Still, in case of the N(2250)9/2− the inclusion of the
γp → K+Λ channel leads to a lower and considerably
narrower pole position compared to JüBo2015. The
N(2220)9/2+ has a large elastic πN residue and is very
broad. In view of the fluctuations that are typical for
higher lying, broad resonances, the parameters of the
N(2220)9/2+ found in the present study are compara-
ble to earlier JüBo solutions.

Isospin I=3/2 resonances: Since the KΛ final state
couples only to resonances with isospin I=1/2 one might
expect that the inclusion of the γp → K+Λ channel
would not induce major changes in the spectrum of ∆
resonances. On the other hand, in the present analysis
the whole data base was refitted, including the mixed-
isospin channels with πN and KΣ final states. Accord-
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ingly, adjustments of the I=1/2 resonances required to
describe the γp→ K+Λ channel will result in changes in
the parameters of ∆ states in order to maintain a good
description of the pion- and photon-induced πN channel
and the pion-induced K+Σ− and K0Σ0 channels.

Most of the well established ∆ resonances are similar
to previous JüBo results. Still, we observe, in general,
larger uncertainties than in case of the I = 1/2 states.
This is based on the fact that a large part of the current
data base stems from reactions that do not couple to
isospin I = 3/2, i.e. reactions with ηN and KΛ final
states. We expect that the uncertainties will be reduced
once the analysis is extended to KΣ photoproduction.

One of the most striking differences to earlier results
is the width of the dynamically generated ∆(1600)3/2+

which is reduced by almost a factor of two compared to
the JüBo2015-B result. This applies also to the elastic
πN residue. The modulus of the photocoupling at the
pole A

1/2
pole is more than four times smaller, A3/2

pole even
more than seven times. The photocouplings are now in
good agreement with the values found in a recent Bonn-
Gatchina analysis [111].

The ∆(1232)3/2+ changes its pole position slightly by
(3 − i 2.5) MeV and moves closer to the PDG values.
The third pole in the P33 partial wave, the ∆(1920)3/2+,
is very broad and shows large uncertainties which are
typical for a state this far from the physical axis.

In the J = 5/2 partial waves an interplay between
the ∆(1930)5/2− and the ∆(1905)5/2+ seem to oc-
cur: the former state was very broad in fit B of the
JüBo2015 solution, while it is now much more nar-
row. The ∆(1905)5/2+, on the other hand, is much
broader now and was more narrow in JüBo2015. Note-
worthy is also the large uncertainty in the width of the
∆(1905)5/2+. As a consequence, also the photocouplings
at the pole show large variations since the pole position
enters the definition of Ãhpole in Eq. (14). As the maximal
value of the width in the determination of uncertainties
was extracted from a re-fit with increased weight on the
π+p→ K+Σ+ reaction (see Sec. III B for methodology),
we expect that the extension of the analysis to KΣ pho-
toproduction will help to fix the parameters of this state.

The resonances with higher spin are often less sta-
ble. Nonetheless, the changes in the pole position of
the ∆(2400)9/2− are worth mentioning: E0 = 1783 −
i 122 MeV compared to E0 = 1931 − i 221 MeV in fit B
of the JüBo2015 solution.

In addition to the states listed in Tab. III we see indi-
cations of a dynamically generated pole in the P31 partial
wave at ReE0 ∼ 2200 MeV. We expect that the inclusion
of the KΣ photoproduction channels in future analyses
will give more information on the ∆ resonance spectrum.

V. CONCLUSION

Kaon photoproduction promises to shed light on the
so-called “missing-resonance-problem” and reveal reso-

nances that are not observed in non-strange channels as,
e.g., γN → πN or ηN . Moreover, the self-analyzing
decay of the hyperons facilitates the measurement of re-
coil polarization observables which are indispensable for
a complete set of observables. To extract the baryon
spectrum, coupled-channel approaches provide an espe-
cially suited tool as they combine several reactions with
different initial and final states in a simultaneous analy-
sis.

In the present study, the Jülich-Bonn dynamical
coupled-channel approach was extended toKΛ photopro-
duction and includes now the photon-induced reactions
γp → π0p, π+n, ηp and K+Λ in addition to the pion-
induced reactions πN → πN , π−p → ηn, K0Λ, K0Σ0,
K+Σ− and π+p→ K+Σ+. More than 40,000 data points
from differential cross sections, single and double polar-
ization observables up to Ecm ∼ 2.3 GeV were analyzed
in simultaneous fits to all reactions, and the spectrum
of nucleon and ∆ resonances in terms of pole positions,
residues and photocouplings at the pole was determined.

We find all states rated with 4 stars by the PDG and
most of the 3-star states and compare our results to ear-
lier Jülich-Bonn studies and the estimates of the PDG.
While most of the well-established resonances are simi-
lar to previous studies, we observe noticeable changes in
the pole positions of the N(1710)1/2+ and N(1720)3/2+,
which move closer to the PDG values. Moreover, the
extension to kaon photoproduction required one addi-
tional s-channel resonance, the N(1900)3/2+, that was
not needed to achieve a good fit result in pion or eta pho-
toproduction. The mass and the width found here are in
good agreement with the PDG values. In addition, we
observe a new dynamically generated pole in the D15
partial wave with significant couplings to the KΛ and
KΣ channels and see indications of further dynamically
generated states in the D13 and P31 wave.

Uncertainties of the resonance parameters were esti-
mated from several re-fits to re-weighted data sets. The
pole positions of the nucleon resonances show only small
variations with the exception of the broad J = 9/2 states,
while the ∆ resonances are in general less stable. We
expect that the latter observation will change once the
analysis is extended to the mixed-isospin KΣ photopro-
duction channels.

In summary, the central findings of this study are the
confirmation of the N(1900)3/2+ and N(2060)5/2− res-
onances although the latter state appears with a pole
position significantly different from the PDG value. In
addition, many resonances move closer to their PDG val-
ues and hints for new states were found. To establish
these states KΣ photoproduction will be analyzed in the
future.

ACKNOWLEDGMENTS

We thank J. Haidenbauer, K. Nakayama, D. Ireland,
T. Jude, R. Schumacher, I. Strakovsky, U. Thoma and



16

D. Watts for useful discussion and for providing data.
The authors gratefully acknowledge the computing time
granted on the supercomputer JURECA at Jülich Su-
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Appendix A: Beam-recoil asymmetries

In Ref. [53] the observables used in the present study
are defined in terms of four amplitudes Fi that are con-

nected to the photoproduction amplitude M of Eq. (10)
via a multipole decomposition. Note that our Fi slightly
differ from the CGLN amplitudes of Ref. [116]. In the
following we give the definition of the beam-recoil polar-
izations Ox and Oz which were not presented in Ref. [53]:

dσ

dΩOx = −Im
[
(F2 − F3)F ∗1 + (F2 sin2 θ + F1 cos θ)F ∗4

]
× sin θ ,

dσ

dΩOz = −Im [F ∗1 F4 − (F3 + F4 cos θ)F ∗2 ] sin2 θ .

For all other observables, the decomposition of the Fi
into multipoles and definitions of the coordinate frame,
the reader is referred to Ref. [53].
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and H. Haberzettl, Phys. Rev. C 95, 015206 (2017)
[arXiv:1611.04434 [nucl-th]].

[25] J. Nys, J. Ryckebusch, D. G. Ireland and D. I. Glazier,
Phys. Lett. B 759, 260 (2016) [arXiv:1603.02001 [hep-
ph]].

[26] D. Rönchen et al., Eur. Phys. J. A 49, 44 (2013)
[arXiv:1211.6998 [nucl-th]].

[27] K. W. Bell et al., Nucl. Phys. B 222, 389 (1983).
[28] S. Steininger and U.-G. Meißner, Phys. Lett. B 391, 446

(1997) [nucl-th/9609051].
[29] J. Bijnens, H. Sonoda and M. B. Wise, Nucl. Phys. B

261, 185 (1985).
[30] M. Mai, P. C. Bruns, B. Kubis and U.-G. Meißner, Phys.

Rev. D 80, 094006 (2009) [arXiv:0905.2810 [hep-ph]].
[31] N. Kaiser, T. Waas and W. Weise, Nucl. Phys. A 612,

297 (1997) [hep-ph/9607459].
[32] B. Borasoy, P. C. Bruns, U. G. Meißner and R. Nißler,

Eur. Phys. J. A 34, 161 (2007) doi:10.1140/epja/i2007-

http://inspirehep.net/record/718071
http://inspirehep.net/record/36156/export/hlxe
http://inspirehep.net/record/946125
http://inspirehep.net/record/897355
http://inspirehep.net/record/1208316
http://inspirehep.net/record/1208316
http://inspirehep.net/record/1208313
http://inspirehep.net/record/1215094
http://inspirehep.net/record/1489636
http://inspirehep.net/record/1480367
http://inspirehep.net/record/1628655
https://inspirehep.net/record/1221750
http://inspirehep.net/record/1208322
http://inspirehep.net/record/811001
http://inspirehep.net/record/426469
http://inspirehep.net/record/419976
http://inspirehep.net/record/873588
http://inspirehep.net/record/873588
https://inspirehep.net/record/853408
http://inspirehep.net/record/1342962
http://inspirehep.net/record/1338451
http://inspirehep.net/record/1338451
http://inspirehep.net/record/1497800
http://inspirehep.net/record/1426539
http://inspirehep.net/record/1426539
http://inspirehep.net/record/1204813
https://inspirehep.net/record/423645
https://inspirehep.net/record/213031
https://inspirehep.net/record/213031
http://inspirehep.net/record/820717
https://inspirehep.net/record/421375


17

10492-4 [arXiv:0709.3181 [nucl-th]].
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[103] M. Döring, J. Revier, D. Rönchen and R. L. Workman,

Phys. Rev. C 93, 065205 (2016) [arXiv:1603.07265 [nucl-
th]].

[104] M. Hoferichter, J. Ruiz de Elvira, B. Kubis
and U.-G. Meißner, Phys. Rept. 625, 1 (2016)
[arXiv:1510.06039 [hep-ph]].

[105] M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-
G. Meißner, Phys. Rev. Lett. 115, 192301 (2015)
[arXiv:1507.07552 [nucl-th]].

[106] R. Tibshirani, J. R. Stat. Soc. B 58, 267 (1996).
[107] E. Gutz et al. [CBELSA/TAPS Collaboration], Eur.

Phys. J. A 50, 74 (2014) [arXiv:1402.4125 [nucl-ex]].
[108] A. V. Anisovich et al., Eur. Phys. J. A 52, 284 (2016)

[arXiv:1604.05704 [nucl-th]].
[109] R. L. Workman, L. Tiator and A. Sarantsev, Phys. Rev.

C 87, 068201 (2013) [arXiv:1304.4029 [nucl-th]].
[110] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov,

A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 48 15
(2012) [arXiv:1112.4937 [hep-ph]].

[111] V. Sokhoyan et al. [CBELSA/TAPS Collaboration],
Eur. Phys. J. A 51, 95 (2015) Erratum: [Eur. Phys.
J. A 51, 187 (2015)] [arXiv:1507.02488 [nucl-ex]].

[112] C. Patrignani et al. [Particle Data Group], Chin. Phys.
C 40, 100001 (2016) and 2017 update.

[113] V. A. Nikonov, A. V. Anisovich, E. Klempt,
A. V. Sarantsev and U. Thoma, Phys. Lett. B 662 245
(2008) [arXiv:0707.3600 [hep-ph]].

[114] T. Mart and M. J. Kholili, Phys. Rev. C 86 022201
(2012) [arXiv:1208.2780 [nucl-th]].

[115] R. Shyam, O. Scholten and H. Lenske, Phys. Rev.
C 81, 015204 (2010) doi:10.1103/PhysRevC.81.015204
[arXiv:0911.3351 [hep-ph]].

[116] G. F. Chew, M. L. Goldberger, F. E. Low and
Y. Nambu, Phys. Rev. 106, 1345 (1957).

[117] R. D. Baker, J. A. Blissett, I. J. Bloodworth,
T. A. Broome, G. Conforto, J. C. Hart, C. M. Hughes
and R. W. Kraemer et al., Nucl. Phys. B 141, 29 (1978).

[118] T. O. Binford, M. L. Good, V. G. Lind, D. Stern,
R. Krauss and E. Dettman, Phys. Rev. 183, 1134
(1969).

[119] O. I. Dahl, L. M. Hardy, R. I. Hess, J. Kirz, D. H. Miller
and J. A. Schwartz, Phys. Rev. 163, 1430 (1967)
[Erratum-ibid. 183, 1520 (1969)].

[120] L. Bertanza, P. L. Connolly, B. B. Culwick, F. R. Eisler,
T. Morris, R. B. Palmer, A. Prodell and N. P. Samios,
Phys. Rev. Lett. 8, 332 (1962).

[121] T. M. Knasel, J. Lindquist, B. Nelson, R. L. Sum-
ner, E. C. Swallow, R. Winston, D. M. Wolfe and
P. R. Phillips et al., Phys. Rev. D 11, 1 (1975).

[122] L. L. Yoder, C. T. Coffin, D. I. Meyer and K. M. Ter-
williger, Phys. Rev. 132, 1778 (1963).

[123] O. Goussu, M. Sene, B. Ghidini, S. Mongelli, A. Ro-
mano, P. Waloschek and V. Alles-Borelli, Nuovo Cim.
A 42, 606 (1966).

[124] J. J. Jones, T. Bowen, W. R. Dawes, D. A. Delise,
E. W. Jenkins, R. M. Kalbach, E. I. Malamud and
K. J. Nield et al., Phys. Rev. Lett. 26, 860 (1971).

[125] O. Van Dyck, R. Blumenthal, S. Frankel, V. Highland,
J. Nagy, T. Sloan, M. Takats and W. Wales et al., Phys.
Rev. Lett. 23, 50 (1969).

[126] J. Keren, Phys. Rev. 133, B457 (1964).
[127] F. Eisler et al., Nuovo Cim. 10, 468 (1958).
[128] D. H. Miller, A. Z. Kovacs, R. McIlwain, T. R. Palfrey,

and G. W. Tautfest, Phys. Ref. 140, B360 (1965).
[129] A. Baldini, V. Flamino, W. G. Moorhead, and D. R.

O. Morrison, Total Cross Sections of High Energy Par-
ticles: Landolt-Börnstein, Numerical Data and Func-
tional Relationships in Science and Technology, edited
by H. Schopper (Springer- Verlag, New York, 1988), Vol.
12a.

[130] D. H. Saxon, R. D. Baker, K. W. Bell, J. A. Blis-
sett, I. J. Bloodworth, T. A. Broome, J. C. Hart and
A. L. Lintern et al., Nucl. Phys. B 162, 522 (1980).

[131] D. W. Thomas, A. Engler, H. E. Fisk and R. W. Krae-
mer, Nucl. Phys. B 56, 15 (1973).

[132] M. L. Good and R. R. Kofler, Phys. Rev. 183, 1142
(1969).

[133] J. C. Doyle, F. S. Crawford and J. A. Anderson, Phys.
Rev. 165, 1483 (1968).

[134] F. S. Crawford, Jr. et al., Phys. Rev. Lett. 3, 394 (1959).

http://inspirehep.net/record/1310837
https://inspirehep.net/record/1305316
https://inspirehep.net/record/1377412
https://inspirehep.net/record/1377412
https://inspirehep.net/record/1353126
https://inspirehep.net/record/1380628
https://inspirehep.net/record/1445034
https://inspirehep.net/record/1515540
https://inspirehep.net/record/684210
https://inspirehep.net/record/727316
https://inspirehep.net/record/818581
https://inspirehep.net/record/693404
http://inspirehep.net/record/920582
https://inspirehep.net/record/1494092
http://inspirehep.net/record/839825
https://inspirehep.net/record/1432727
https://inspirehep.net/record/1432727
https://inspirehep.net/record/1399197
https://inspirehep.net/record/1385325
https://inspirehep.net/record/1281716
https://inspirehep.net/record/1449117
http://inspirehep.net/record/1228361
http://inspirehep.net/record/1082451
https://inspirehep.net/record/1382191
http://inspirehep.net/record/756592
http://inspirehep.net/record/1127520
http://inspirehep.net/record/837184

	The impact of K+ photoproduction on the resonance spectrum
	Abstract
	Introduction
	Formalism
	Results
	Data base
	Numerical details
	Fit results

	Resonance Spectrum
	Resonance Parameters
	Discussion of specific resonances 

	Conclusion
	Acknowledgments
	Beam-recoil asymmetries
	References


