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Abstract Studies of the nucleon resonance electroexcitation amplitudes in
a wide range of photon virtualities offer unique information on many facets
of strong QCD behind the generation of all prominent excited nucleon states
of distinctively different structure. Advances in the evaluation of resonance
electroexcitation amplitudes from the data measured with the CLAS detector
and the future extension of these studies with the CLAS12 detector at Jef-
ferson Lab are presented. For the first time, analyses of π0p, π+n, ηp, and
π+π−p electroproduction off proton channels have provided electroexcitation
amplitudes of most resonances in the mass range up to 1.8 GeV and at photon
virtualities Q2 < 5 GeV2. Consistent results on resonance electroexcitation
amplitudes determined from different exclusive channels validate a credible
extraction of these fundamental quantities. Studies of the resonance electroex-
citation amplitudes revealed the N∗ structure as a complex interplay between
the inner core of three dressed quarks and the external meson-baryon cloud.
The successful description of the ∆(1232)3/2+ and N(1440)1/2+ electrocou-
plings achieved within the Dyson-Schwinger Equation approach under a trace-
able connection to the QCD Lagrangian and supported by the novel light front
quark model demonstrated the relevance of dressed quarks with dynamically
generated masses as an active structural component in baryons. Future ex-
periments with the CLAS12 detector will offer insight into the structure of
all prominent resonances at the highest photon virtualities Q2 < 12 GeV2

ever achieved in exclusive reactions, addressing the most challenging problems
of the Standard Model on the nature of hadron mass, quark-gluon confine-
ment, and the emergence of nucleon resonance structures from QCD. A search
for new states of hadron matter, the so-called hybrid-baryons with glue as a
structural component, will complete the long term efforts on the resonance
spectrum exploration.
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1 Introduction

The studies of nucleon resonances represent a particularly important avenue
in the challenging adventure of exploring strong interaction dynamics in the
regime of large quark-gluon running coupling [1]. Studies of the excited nucleon
(N∗) structure offer unique opportunities to explore many facets of strong
QCD dynamics as it generates various excited nucleons with different quantum
numbers of distinctively different structure [2,3].

Studies of the nucleon resonance electroexcitation amplitudes (γvpN∗ elec-
trocouplings) within the framework of different quark models have demon-
strated that almost all quark models are capable of reasonably describing the
nucleon elastic form factors by adjusting their parameters, but they predict a
distinctively different evolution of the γvpN∗ electrocouplings with photon vir-
tualities Q2 for excited nucleon states [4–11]. Comparisons of the experimental
results on the γvpN∗ electrocouplings for all prominent resonances with the
quark model expectations shed light on the distinctive features in the structure
of excited proton states of different quantum numbers. In particular, analyses
of the γvpN∗ electrocouplings within the quark models [7–9] have revealed the
structure of excited nucleons as a complex interplay between the inner core
of three dressed quarks (or quark model constituent quarks) and the exter-
nal meson-baryon cloud. These findings from quark models were supported
by the conceptually different Argonne-Osaka dynamical coupled channel ap-
proach employed for a global analysis of exclusive meson photo-, electro-, and
hadroproduction amplitudes [12].

Particular interest to the comparative studies of the structure for the chiral-
parity-partner resonance pairs was boosted by the outcome from the explo-
ration of the quark distribution amplitudes (DA) for the ground-state nucleon
and its chiral excited N(1535)1/2− partner. These studies were carried out
by combining Lattice QCD and Light Cone Sum Rule approaches [13,14] con-
strained by the CLAS results on N(1535)1/2− electrocouplings [16]. They
revealed pronounced differences between the quark DAs of the ground-state
nucleon and its chiral partner, the N(1535)1/2− resonance. Marked differences
also exist between these DAs and that of the N(1440)1/2+ resonance [15]. In
the case of chiral symmetry, relevant for the pQCD-regime, quark distributions
in two chiral-parity-partners should be related just by chiral rotation. Further-
more, a lack of convincing evidences for the chiral parity partners in the N∗

spectrum in general suggests that the chiral symmetry gets broken in the
strong QCD regime. A comparative study of the resonance electrocouplings
for the chiral partner resonance pairs will allow us to explore the evolution
from current to dressed quarks in the resonance structure and to shed light on
the mechanisms of dynamical chiral symmetry breaking (DCSB), which are
behind the generation of the dominant part of hadron mass [17].
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Advances in the continuous-QCD Dyson-Schwinger equation (DSE) ap-
proach make it possible for the first time to explore the strong QCD dy-
namics behind the generation of the dominant part of hadron mass [18,19]
from the results on the nucleon elastic form factors and the Q2-evolution of
the resonance electrocouplings. Recently, the momentum dependence of the
dressed quark mass was evaluated starting from the QCD-Lagrangian within
the DSE approach, as the solution of the gap equation tower, with only ΛQCD

as an adjustable parameter [20,21]. The results are shown in Fig. 1 (green
band) together with the parameterization of the quark mass momentum depen-
dence with parameters fit to the data on the meson and baryon spectra (solid
line) [21]. The dressed quark mass function elucidates how the almost mass-
less current QCD-quark at momenta above 2.0 GeV becomes a fully dressed
constituent-like quark of ≈400 MeV mass at momenta below 0.5 GeV.

Fig. 1 Momentum dependence of the dressed quark dynamical mass inferred from the
QCD-Lagrangian within the DSE approach as the solution of the gap equation tower [20,
21] (green band) and its parameterization (solid line) with parameters fit to the data on the
meson and baryon spectrum [21].

The Higgs mechanism accounts just for mass of the current quark, rele-
vant at large quark momenta, with the contribution less than 2% to the fully
dressed quark mass and, consequently, to the measurable hadron mass. Ac-
counting for <2% of the physical hadron mass, the Higgs mechanism is almost
irrelevant in the real world of hadrons. More than 98% of the measurable
hadron mass is generated by the strong interaction in the regime of large
(comparable with unity) quark-gluon running coupling. As soon as the run-
ning quark-gluon coupling becomes larger than ≈ 1/3, a sharp increase of the
dressed quark mass takes place as the manifestation of the DCSB mechanism
(see Fig. 1) [17]. Furthermore, the running quark mass also signals the emer-
gence of quark confinement, being responsible for the violation of reflection
positivity by the dressed-quark propagator, characterised by a length-scale of
≈ 0.5 fm [22]. Mapping out the dressed quark mass function addresses the most
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challenging open problems of hadron physics on the nature of hadron mass and
quark-gluon confinement. It makes the exploration of the dressed quark mass
function from the experimental data on nucleon elastic form factors and res-
onance electrocouplings particularly important for the understanding of the
strong QCD dynamics behind hadron generation.

The momentum dependence of the dressed quark mass cannot be probed
directly, since it is impossible to produce dressed quarks in isolation because
of quark-gluon confinement. Theory input is needed in order to relate ex-
perimental results on the Q2-evolution of the nucleon elastic form factors and
nucleon resonance electrocouplings to the dressed quark mass function. DSE is
capable of relating resonance electrocouplings to the dressed quark mass func-
tion under a traceable connection to the QCD-Lagrangian. However, relating
resonance electrocouplings and dressed quark properties involves elements of
modeling, which needs to be checked. Consistent results on the dressed quark
mass function based on the experimental data on nucleon elastic form factors
and on the electrocouplings of most of the prominent resonances with differ-
ent quantum numbers and distinctively different features in their structure,
analyzed independently, will validate the credible access to this key ingredient
of strong QCD.

The insight into strong QCD dynamics offered by the exploration of the
nucleon resonance structure for all prominent excited proton states makes
these studies the central direction in contemporary hadron physics. It is an
absolutely needed and important part of the efforts to achieve one of the
major objective in the US 2015 Nuclear Physics Long Range Plan [23] “...
using electrons to unfold the quark and gluon structure of hadrons and nuclei
and to probe the Standard Model”.

The advances in extracting nucleon resonance electrocouplings from the
CLAS exclusive meson electroproduction data off protons will be presented in
this paper, as well as their impact on exploration of strong QCD dynamics.
The future extension of these studies in the upcoming experiments with the
CLAS12 detector in the 12-GeV era at Jefferson Lab will be outlined.

2 Evaluation of nucleon resonance electrocouplings from exclusive
meson electroproduction data with CLAS

Nucleon resonance electroexcitation can be described by the γvpN∗ electro-
couplings A1/2(Q

2), A3/2(Q
2), and S1/2(Q

2) for transversely and longitudinaly
polarized photons, respectively. All details on the γvpN∗ electrocoupling defi-
nitions and their relations to the N → N∗ transition form factors can be found
in Ref. [4]. Studies on the resonance electrocoupling evolution with photon vir-
tuality Q2 offer insight into the internal structure of the excited nucleon states.
The A1/2(Q

2), A3/2(Q
2), and S1/2(Q

2) electrocouplings are extracted by fit-
ting the experimental data on all measured observables of exclusive meson
electroproduction channels within reaction models that are capable of rea-
sonably reproducing all available experimental data. Both nucleon resonances
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excited in the real/virtual-photon-proton s-channel and complex non-resonant
mechanisms contribute to the full amplitude of any exclusive meson electro-
production channel. In order to access the resonance parameters, the resonant
contributions to the full amplitudes should be isolated by employing reaction
models. Currently, this is the only viable option for exclusive electroproduc-
tion processes. The credibility of the resonant contribution isolation and the
resonance parameter extraction can be checked through the comparison of the
resonance electrocouplings extracted independently from the data of different
exclusive channels. The non-resonant contributions in different exclusive chan-
nels are entirely different. Instead, the resonance electrocouplings extracted
from different exclusive channels should be the same, since resonance electroex-
citation amplitudes cannot be affected by their hadronic decays. Consistent
results on the γvpN∗ electrocouplings obtained from independent analyses of
different exclusive channels validate the extraction of these fundamental quan-
tities. For this reason, the studies of resonance electroexcitation in different
exclusive meson electroproduction channels are of particular importance for
the extraction of the γvpN∗ electrocouplings.

Detailed studies of resonance electroexcitation in exclusive meson electro-
production off nucleons became feasible only after the experiments in Hall B at
Jefferson Lab with the CLAS detector [2]. The CLAS detector has produced
the dominant part of the available worldwide data on all meson electropro-
duction channels off the nucleon relevant in the resonance region for Q2 up
to 5.0 GeV2. The results available from CLAS are summarized in Table 1.
The numerical data on all observables measured with the CLAS detector are
stored in the CLAS Physics Database [24]. These data were obtained with
almost complete coverage of the final state phase space, which is of particular
importance for extraction of the resonance parameters.

Different approaches have been developed for the extraction of the γvpN∗

electrocouplings from the measured obervables, including the reaction models
for independent studies of different exclusive meson electroproduction chan-
nels and global multi-channel analyses of photo-, electro-, and hadroproduction
data within the coupled channel approaches. For the first time, the preliminary
results on the ∆(1232)3/2+ and N(1440)1/2+ electrocouplings have become
available at Q2 up to 5.0 GeV2 from the 8-channel global analysis of photo-
, electro-, and hadroproduction data. These important breakthrough results
were reported at the NSTAR2017 Conference by Argonne-Osaka group [25].
However, the results from the global multi-channel analyses are currently lim-
ited to the two lowest excited nucleon states. So far, most of the results on
the γvpN∗ electrocouplings have been extracted from independent analyses of
π+n, π0p, and π+π−p exclusive electroproduction data off the proton.

A total of nearly 160,000 data points (d.p.) on unpolarized differential
cross sections, longitudinally polarized beam asymmetries, and longitudinal
target and beam-target asymmetries for πN electroproduction off protons
were obtained with the CLAS detector at W < 2.0 GeV and 0.2 GeV2

< Q2 < 6.0 GeV2. The data have been analyzed within the framework of two
conceptually different approaches: a unitary isobar model (UIM) and disper-
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Table 1 Observables for exclusive meson electroproduction off protons that have been
measured with the CLAS detector in the resonance excitation region and stored in the
CLAS Physics Database [24]: CM-angular distributions for the final mesons ( dσ

dΩ
); beam,

target, and beam-target asymmetries (ALT ′ , At, Aet); and recoil hyperon polarizations (P ′,
P 0).

Hadronic W -range Q2-range Measured observables
final state GeV GeV2

π+n 1.10-1.38 0.16-0.36 dσ
dΩ

1.10-1.55 0.30-0.60 dσ
dΩ

1.10-1.70 1.70-4.50 dσ
dΩ

, ALT ′

1.60-2.00 1.80-4.50 dσ
dΩ

π0p 1.10-1.38 0.16-0.36 dσ
dΩ

1.10-1.68 0.40-1.15 dσ
dΩ

, ALT ′ , At, Aet

1.10-1.39 3.00-6.00 dσ
dΩ

ηp 1.50-2.30 0.20-3.10 dσ
dΩ

K+Λ 1.62-2.60 1.40-3.90 dσ
dΩ

1.62-2.60 0.70-5.40 P ′, P 0

K+Σ0 1.62-2.60 1.40-3.90 dσ
dΩ

1.62-2.60 0.70-5.40 P ′

π+π−p 1.30-1.60 0.20-0.60 Nine single-differential
1.40-2.10 0.50-1.50 cross sections
1.40-2.00 2.00-5.00

sion relations (DR) [16,26,27]. The UIM describes the πN electroproduction
amplitudes as a superposition of N∗ electroexcitations in the s-channel and
non-resonant Born terms, including π, ρ, and ω t-exchange contributions. The
latter are reggeized, which allows for a better description of the data in the
second- and third-resonance regions. The final-state interactions are treated as
πN rescattering in the K-matrix approximation [16,27]. In the DR approach,
dispersion relations allow for the computation of the real parts of the invari-
ant amplitudes that describe the πN electroproduction from their imaginary
parts, which are determined mostly by the resonant contributions [27]. Both
approaches provide a good and consistent description of the πN data in the
range of W < 1.7 GeV and Q2 < 5.0 GeV2, resulting in χ2/d.p. < 2.9. Differ-
ences between the γvpN∗ electrocoupling values extracted by employing the
UIM and DR approaches offer the systematic uncertainty estimate related to
the use of the reaction models.

The π+π−p electroproduction data from CLAS [28–30] provide informa-
tion on nine independent single-differential and fully-integrated cross sections
binned in W and Q2 in the mass range W < 2.0 GeV and at photon virtuali-
ties of 0.25 GeV2 < Q2 < 5.0 GeV2. The analysis of these data have allowed
us to develop the JM reaction model [31–33] with the goal to extract reso-
nance electrocouplings, as well as the π∆ and ρp hadronic decay widths. This
model incorporates all relevant reaction mechanisms in the π+π−p final-state
channel that contribute significantly to the measured electroproduction cross
sections off protons in the resonance region, including the π−∆++, π+∆0,
ρ0p, π+N(1520)3/2−, π+N(1685)5/2+, and π−∆(1620)3/2+ meson-baryon
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channels, as well as the direct production of the π+π−p final state without
formation of intermediate unstable hadrons. The contributions from well es-
tablished N∗ states in the mass range up to 2.0 GeV were included into the
amplitudes of the π∆ and ρp meson-baryon channels by employing a unita-
rized version of the Breit-Wigner ansatz [32]. The JM model provides a good
description of the π+π−p differential cross sections at W < 2.0 GeV and
0.2 GeV2 < Q2 < 5.0 GeV2 with χ2/d.p. < 3.0 accounting for only the sta-
tistical uncertainties of the data. The quality of the description of the CLAS
data suggests the unambiguous and credible separation between the resonant
and non-resonant contributions achieved by fitting the CLAS data [33]. The
credible isolation of the resonant contributions makes it possible to determine
the resonance electrocouplings along with the π∆ and ρN decay widths from
the resonant contributions by employing for the description of their amplitudes
the unitarized Breit-Wigner ansatz [32] that fully accounts for the unitarity
restrictions on the resonant amplitudes.

Table 2 Resonance electrocouplings available from the analyses of the CLAS data on
exclusive meson electroproduction off protons in the resonance region.

Exclusive Excited proton Coverage over Q2 for extracted
channel state γvpN∗ electrocouplings, GeV2

π+n, π0p ∆(1232)3/2+ , 0.16-6.00
N(1440)1/2+ , N(1520)3/2− , N(1535)1/2− 0.30-4.16

π+n N(1675)5/2− , N(1680)5/2+ , N(1710)1/2+ 1.60-4.50
ηp N(1535)1/2− 0.20-2.90

π+π−p N(1440)1/2+ , N(1520)3/2− 0.25-1.50
∆(1620)1/2− , N(1650)1/2− , N(1680)5/2+ 0.50-1.50
∆(1700)3/2− , N(1720)3/2+ , N ′(1720)3/2+

Table 2 summarizes the available CLAS results on the γvpN∗ electrocou-
plings. The resonance electrocouplings have been obtained from various CLAS
data sets in the exclusive channels: π+n and π0p at Q2 < 5.0 GeV2 in the mass
range up to 1.7 GeV, ηp at Q2 < 4.0 GeV2 in the mass range up to 1.6 GeV,
and π+π−p at Q2 < 1.5 GeV2 in the mass range up to 1.8 GeV [4,16,26,
32,33]. The numerical data on the resonance electrocouplings from CLAS can
be found in Ref. [34]. The computer code for interpolation/extrapolation over
Q2 in the range of Q2 up to 5.0 GeV2 of the CLAS results on resonance
electrocouplings is available on the web page of Ref. [35]. Consistent results
for the γvpN∗ electrocouplings of the N(1440)1/2+ and N(1520)3/2− reso-
nances, which have been determined in independent analyses of the dominant
meson electroproduction channels πN and π+π−p, shown in Fig. 2 (left) and
(middle), demonstrate that the extraction of these fundamental quantities is
reliable. Studies of the major exclusive electroproduction channels off protons
πN and π+π−p offer complementary information on the N∗ electrocouplings.
For low lying excited nucleon states in the mass range up to 1.6 GeV that decay
preferentially to the πN final states, the data on single-pion exclusive electro-
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Fig. 2 (Color Online) A1/2 γvpN∗ electrocouplings of the N(1440)1/2+ (left), A3/2 γvpN∗

electrocouplings of the N(1520)3/2− (middle), and S1/2 γvpN∗ electrocouplings of the

∆(1620)1/2− (right) from analyses of the CLAS electroproduction data off protons in the
πN [16,26] (red circles in the left and middle panels) and π+π−p channels [32,33] (green
triangles in the left and middle panels). The right panel shows the ∆(1620)1/2− electrocou-
plings obtained from analyses of π+π−p electroproduction data off protons [33] carried out
independently in three intervals of W : 1.51 GeV → 1.61 GeV (green squares), 1.56 GeV →

1.66 GeV (magenta circles), and 1.61 GeV → 1.71 GeV (red triangles). The photocouplings
were taken from the RPP [36] (blue filled triangles) and the CLAS data analysis [37] of πN
photoproduction (blue filled squares).

production drive the extraction of these resonance electrocouplings. However,
studies the ηp and π+π−p channels are needed in order to validate the γvpN∗

electrocoupling extraction from πN electroproduction.

The CLAS data for the π+π−p channel play a critical role in the ex-
traction of the γvpN∗ electrocouplings of higher-lying nucleon excited states
(M > 1.60 GeV), which decay preferentially to the ππN final states, e.g.
∆(1620)1/2−, ∆(1700)3/2−, N(1720)3/2+, and the N ′(1720)3/2+ candidate
state. Right now, the electrocouplings of these states can only be determined
from the data in the π+π−p exclusive electroproduction channel off protons,
while the πN channels do not have enough sensitivity to the electrocouplings
of the aforementioned resonances.

We have developed special procedures to test the reliability of the γvpN∗

resonance electrocouplings extracted from the charged double pion electropro-
duction data. In this case, we carried out the extraction of the resonance pa-
rameters, independently fitting the CLAS π+π−p electroproduction data [28]
in overlapping intervals of W . The non-resonant amplitudes in each of the W -
intervals are different, while the resonance parameters should remain the same
as they are determined from the data fit in different W -intervals, see Fig. 2
(right). The consistent results on these electrocouplings from the independent
analyses in different W -intervals strongly support their reliable extraction. The
tests described above demonstrated the capability of the models to provide re-
liable information on the γvpN∗ resonance electrocouplings from independent
analyses of the data on exclusive πN and π+π−p electroproduction.

Exclusive KY (KΛ, KΣ) electroproduction channels offer an independent
source of the information on electrocouplings of resonances in the mass range
of M > 1.6 GeV. Moreover, the KY exclusive photoproduction channels have
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demonstrated particular sensitivity to the contributions from the new so-called
“missing” baryon states [2,38,39]. The current status in resonance electroexci-
tation studies on strangeness electroproduction data with CLAS was reviewed
in a contribution to these Proceedings [40]. CLAS has provided sufficient exper-
imental information for the extraction of the γvpN∗ resonance electrocouplings
from KY exclusive electroproduction data off protons, but the reaction models
capable of describing these data with the quality needed to extract the reso-
nance parameters are still not available. The development of reaction models
capable of determining resonance electrocouplings from exclusive KY elec-
troproduction data is urgently needed to foster the exploration of high-lying
nucleon resonances in different exclusive meson electroproduction channels, as
well as for the search for new baryon states in combined studies of exclusive
photo- and electroproduction data.

The CLAS Collaboration keeps gradually extending the kinematic coverage
of the experimental data on π+n, π0p, and π+π−p electroproduction off pro-
tons over W and Q2 with the goal to determine electrocouplings of high-lying
nucleon resonances (M > 1.6 GeV) in a wide range of photon virtualities up to
5.0 GeV2. New data on π+π−p exclusive meson electroproduction off protons
at 1.4 GeV < W < 2.0 GeV and 2.0 GeV2 < Q2 < 5.0 GeV2 has been re-
cently published [30]. A good description of these data was achieved within the
framework of the JM reaction model with χ2/d.p. < 1.6. The analysis of these
data within the JM model demonstrated that the resonance contributions to
all nine one-fold differential cross sections have distinctively different shapes
in comparison with the non-resonant contributions and the relative resonance
contribution increases with Q2 (see Fig. 3), offering promising prospects for
the extraction of the resonance electrocouplings. In the near term future, we
are expecting to obtain γvpN∗ electrocouplings for most excited nucleon states
in the mass range up to 2.0 GeV and Q2 < 5.0 GeV2 from independent studies
on πN and π+π−p exclusive electroproduction off protons.

3 Resonance electrocouplings as a window into excited nucleon
structure and strong QCD dynamics

Experimental results on the γvpN∗ electrocouplings offer insight into excited
nucleon structure and the dynamics of strong QCD. Studies of the strong
QCD dynamics behind the generation of resonance structure require multi-
prong approaches. This includes continuum DSE and lattice QCD studies of
the resonance structure starting from the QCD Lagrangian, as well as differ-
ent quark models capable of describing the structure of many excited nucleon
states, but by employing phenomenological parameterization for the N∗ gen-
eration mechanisms without a close connection to the QCD-Lagrangian.

Due to the rapid progress in the field of DSE studies of excited nucleon
states [3,17–19], the first evaluations of the magnetic p → ∆(1232)3/2+ form
factors and the N(1440)1/2+ resonance electrocouplings starting from the
QCD Lagrangian have recently become available. The p → ∆(1232)3/2+ mag-
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Fig. 3 (Color Online) Description of the experimental data on π+π−p electroproduction
off protons at 1.4 GeV < W < 2.0 GeV and 2.0 GeV2 < Q2 < 5.0 GeV2 [30] achieved within
the framework of the JM model. (Left) Preliminary results on the description of the fully
integrated cross section at 3.5 GeV2 < Q2 < 4.0 GeV2. (Right) Representative example for
the description of the nine one-fold differential cross sections at W=1.69 GeV in the same
Q2-interval. Thick black solid, red solid, and blue dashed curves show the computed full,
resonant, and non-resonant contributions, respectively. Only statistical data error bars are
shown in the plots.

netic form factor and A1/2 electrocoupling of the N(1440)1/2+ resonance com-
puted in Refs. [18,19] are shown in Fig. 4. These evaluations are applicable
at photon virtualities where the contributions of the inner quark core to the
resonance electrocouplings are much larger than those from the external me-
son baryon cloud. In this range of photon virtualities, the evaluations [18,19]
offer a good description of the experimental results on the p → ∆(1232)3/2+

transition form factors and the N(1440)1/2+ resonance electrocouplings.

Analysis of the CLAS results [16] on the magnetic p → ∆(1232)3/2+ form
factor within DSE demonstrated for the first time that the masses of dressed
quarks are in fact running with quark momentum as predicted by the DSE
computations of the dressed quark mass function starting from the QCD-
Lagrangian. The DSE evaluation of the magnetic p → ∆(1232)3/2+ form fac-
tor was carried out by employing the simplified contact qq-interaction (dashed
lines in Fig. 4 (left)) and with the most advanced realistic qq-interaction [20,
21] (solid lines in Fig. 4 (left)). The contact qq-interaction produces a dynam-
ically generated dressed quark mass of ≈400 MeV that is momentum inde-
pendent. DSE computations with a realistic qq-interaction [20,21] predict a
momentum dependent quark mass as shown in Fig. 1. The DSE results with
a frozen quark mass overestimate the CLAS data at Q2 > 1.5 GeV2. The dis-
crepancies are increasing with Q2. Instead, by employing a quark mass that
is running with momentum (with the parameterization shown in Fig. 1), the
DSE computations offer a good description of the experimental results on the
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p → ∆(1232)3/2+ magnetic form factor in the entire range of photon virtual-
ities 0.8 GeV2 < Q2 < 7.0 GeV2 where the experimental results are available.
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Fig. 4 (Color Online) Insight into the resonance structure and strong QCD dynamics from
the experimental results on the magnetic p → ∆(1232)3/2+ transition form factor (left)
[16] and the A1/2 electrocoupling of the N(1440)1/2+ resonance (right) [16,32,33]. The red
dashed and blue solid curves in the left panel correspond to the computation of the magnetic
p → ∆(1232)3/2+ transition form factor starting from the QCD-Lagrangian within DSE
by employing a simplified contact qq-interaction (frozen quark mass) and a realistic qq-
interaction (running quark mass), respectively [18]. In the right panel the DSE computation
of the A1/2 electrocoupling of the N(1440)1/2+ resonance with a realistic qq-interaction and
the same running quark mass as employed in the successful evaluations of nucleon elastic and
magnetic p → ∆(1232)3/2+ form factors is shown by the dashed line [19]. The result from
a novel light front quark model [7,8], which incorporates a momentum dependent dressed
quark mass, is shown by the solid line. The shadowed area represents the meson-baryon
cloud contribution inferred from the experimental results on the A1/2 electrocoupling of the

N(1440)1/2+ resonance and the DSE evaluation [19] of the quark core contribution.

Remarkably, a good description of the experimental results on the p →

∆(1232)3/2+ transition form factors and the N(1440)1/2+ resonance electro-
couplings is achieved with a momentum dependence of the dressed quark mass
that is exactly the same as the one employed in the previous evaluations of the
elastic electromagnetic nucleon form factors [18]. This success strongly sup-
ports: a) the relevance of dynamical dressed quarks with properties predicted
by the DSE approach [3,20,21], as constituents of the quark core for the struc-
ture both of the ground and excited nucleon states and b) the capability of the
DSE approach [18,19] to map out the dressed quark mass function from the
experimental results on the Q2-evolution of the nucleon elastic and p → N∗

electromagnetic transition form factors, or rather γvpN∗ electrocouplings.

The γvpN∗ electrocouplings of many excited nucleon states in mass range
up to 1.7 GeV were evaluated within a novel light front quark model (LFQM) [7,
8]. This model accounts for the contributions from both the meson-baryon
cloud and the quark core, and incorporates the parameterized momentum de-
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Fig. 5 (Color Online) Contributions from the meson-baryon cloud (dashed magenta)
and quark core (solid black) to the A1/2 electrocouplings of the N(1520)3/2− (left) and

N(1675)5/2+ resonances evaluated within the framework of the Argonne-Osaka approach
[41] (absolute values) for the meson-baryon cloud and the hQCM-model [42] for the quark
core.

pendent quark mass with parameters adjusted to the data on the Q2-evolution
of the nucleon elastic form factors. It was found that the implementation of
the momentum dependent dressed quark mass is absolutely needed in order to
reproduce the behavior of the nucleon elastic form factors at Q2 > 2.0 GeV2.
A successful description of the electrocouplings of most resonances in the mass
range up to 1.7 GeV was achieved with the same momentum dependent quark
mass used for the successful description of the nucleon elastic form factors. A
typical example for the description of the A1/2 N(1440)1/2+ electrocouplings
is shown in Fig. 4 (right) by the solid line. A successful description of the
γvpN∗ electrocouplings for most excited nucleon states in mass range up to
1.7 GeV offers support for the running dressed quark mass from a framework
conceptually different than the DSE approach.

The analysis of the CLAS results on the γvpN∗ electrocouplings of most
excited nucleon states in the mass range up to 1.7 GeV has revealed the N∗

structure for Q2 < 5.0 GeV2 as a complex interplay between an inner core
of three dressed quarks and an external meson-baryon cloud [2,4,25,7,8,19].
The credible DSE evaluation of the quark core contributions to the electrocou-
plings of the N(1440)1/2+ state [19] has allowed us to infer the meson-baryon
cloud contributions to this resonance as the difference between the experimen-
tal data on the resonance electrocouplings and the quark core electroexcitation
amplitudes computed from DSE and as shown by the shadowed area in Fig. 4
(right). The relative contributions of the quark core and the meson-baryon
cloud depend strongly on the quantum numbers of the excited nucleon state.
The quark core becomes the dominant contributor to the A1/2 electrocou-
plings of the N(1440)1/2− and N(1520)3/2− resonances at Q2 > 2.0 GeV2,
as can be seen in Fig. 4 (right) and Fig. 5 (left), respectively. These elec-
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trocouplings offer almost direct access to the dressed quark contributions for
Q2 > 2.0 GeV2. Instead, the electrocouplings of the N(1675)5/2− state, shown
in Fig. 5 (right), are dominated by meson-baryon cloud contributions, which
allows us to explore this component from the electrocoupling data. The rel-
ative contributions of the meson-baryon cloud to the electrocouplings of all
resonances studied with CLAS decrease with Q2 in a gradual transition to-
wards quark core dominance at photon virtualities above 5.0 GeV2.

4 Future studies of nucleon resonances with the CLAS12 detector

After completion of the Jefferson Lab 12 GeV Upgrade Project, the commis-
sioning run for the CLAS12 detector in the upgraded Hall B started success-
fully at the end of 2017‘[43]. CLAS12 will be the only foreseable facility world-
wide capable of studying nucleon resonances in the still unexplored ranges of
the smallest photon virtualities 0.05 GeV2 < Q2 < 0.5 GeV2 and the highest
photon virtualities up to 12 GeV2 ever achieved in exclusive reaction measure-
ments [2,3,44].

The studies of nucleon resonances at small photon virtualities are driven by
the search for new states of baryon matter, the so-called hybrid-baryons [45].
Small Q2 is preferential for the observation of these new states that contain
three dressed quarks and, in addition, glue as a structural component. The
LQCD studies of the N∗ spectrum starting from the QCD Lagrangian [46]
predict several such states in the mass range from 2.0 GeV to 2.5 GeV af-
ter reducing the predicted hybrid mass values by the differences between the
experimental results on the masses of the known lightest N∗ of the same spin-
parities as for the expected hybrid baryons and their values from LQCD.

In the experiment with CLAS12, we will search for the hybrid signal as the
presence of extra states in the conventional resonance spectrum of JP =1/2+,
3/2+ in the mass range from 2.0 GeV to 2.5 GeV from the data on exclusive
KY and π+π−p electroproduction off protons [45]. The hybrid nature of the
new baryon states will be identified by looking for the specific Q2 evolution
of their electrocouplings. We expect a specific behavior of the hybrid state
electrocouplings with Q2 because one might imagine that the three quarks in
a hybrid baryon should be in a color-octet state in order to create a color-
less hadron in combination with the glue constituent in a color-octet state.
Instead, in regular baryons, dressed quarks should be in a color-singlet state,
so pronounced differences for quark configurations in the structure of conven-
tional and hybrid baryons should results in a peculiar Q2 evolution of hybrid
baryon electrocouplings. The sound theoretical predictions for the evolution
of hybrid-resonance electrocouplings with photon virtualities are critical for
hybrid-baryon identification. They represent an urgently needed part of the
theory support for the hybrid-baryon search with CLAS12.

The studies on N∗ structure at low Q2 over the spectrum of all prominent
resonances will also complete the long term efforts on the search for the new
“missing” baryon states. The description of the photo- and electroproduction
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data in the entire range of Q2 employing a Q2 independent resonance mass, as
well as Q2 independent total and partial hadronic decay widths, will validate
the presence of new states in the baryon spectrum in a nearly model inde-
pendent way. The extension of amplitude analysis [38,39,47,48] and coupled
channel analysis [49] methods that were successfully employed in the studies
of exclusive meson photoproduction to the electroproduction off protons is of
particular importance for the success of the aforementioned efforts.

Exploration of the excited nucleon state structure in exclusive πN , KY ,
and π+π−p electroproduction off protons at 5.0 GeV2 < Q2 < 12.0 GeV2 [50–
52] are scheduled in the first year of running with the CLAS12 detector. For
the first time, the electrocouplings of all prominent nucleon resonances will
become available at the highest photon virtualities ever achieved in the stud-
ies of exclusive electroproduction. These distance scales correspond to the still
unexplored regime for N∗ electroexcitations where the resonance structure is
dominated by the quark core with almost negligible meson-baryon cloud contri-
butions. The foreseen experiments offer almost direct access to the properties
of dressed quarks inside N∗ states of different quantum numbers. Consistent
results on the dressed quark mass function derived from independent analyses
of the data on the γvpN∗ electrocouplings of the resonances with distinctively
different structure, such as radial excitations, spin-isospin flip, and orbital ex-
citations, will validate the credible access to this fundamental ingredient of
strong QCD from the experimental data. The expected data on the γvpN∗

electrocouplings will provide for the first time access to the dressed quark
mass function in the range of quark momenta up to 1.5 GeV, where the tran-
sition from the quark-gluon confinement to the pQCD regimes of the strong
interaction takes full effect, as is shown in Fig. 1. Exploring the dressed quark
mass function at these distances will allow us to address the most challenging
open problems of the Standard Model on the nature of >98% of hadron mass
and quark-gluon confinement [3,44].

The future prospects for the evaluation of the nucleon resonance electrocou-
plings within lattice QCD [53] suggest the possibility to employ the CLAS12
results for the exploration of the baryon structure emergence from first prin-
ciples of QCD. Quark models will remain vital for the exploration of the res-
onance structure over the full spectrum of excited nucleon states accessible
with the CLAS12 data.

The success of the program on nucleon resonance studies requires syner-
gistic efforts between experimentalists, reaction model phenomenologists, and
hadron structure theorists. Studies of the nucleon resonance spectrum and
structure represent a direction of key importance in the broad worldwide ef-
forts focused on the exploration of strong QCD dynamics. Indeed, as remarked
at the turn of this century [54]: ”[baryons and their resonances] must be at
the center of any discussion of why the world we actually experience has the
character it does.” This is a primary motivation for our efforts.

Acknowledgements This work was supported by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The author is



Title Suppressed Due to Excessive Length 15

grateful for many stimulating and fruitful discussions on different topics of this paper with
I.G. Aznauryan, V.D. Burkert, D.S. Carman, R.W. Gothe, K. Hicks, K. Joo, T-S. H. Lee,
and C.D. Roberts.

References

1. D. Binosi et al., Phys. Rev. D 96, 054026 (2017).
2. V.D. Burkert, The 11th International Workshop on the Physics of Excited Nucleons -

N*2017, (2017). See these proceedings.
3. C.D. Roberts, The 11th International Workshop on the Physics of Excited Nucleons -

N*2017, (2017). See these proceedings.
4. I.G. Aznauryan and V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).
5. V.D. Burkert and C.D. Roberts, arXiv:1710.025240 [nucl-ex] (2017).
6. I.G. Aznauryan, Phys. Rev. C 76, 025212 (2007).
7. I. G. Aznauryan and V. D. Burkert, Phys. Rev. C 85, 055202 (2012).
8. I.G. Aznauryan and V. D. Burkert, Phys. Rev. C 95, 065207 (2017).
9. I.T. Obukhovsky et al., Phys. Rev. D 84, 014004 (2011).

10. T. Gutsche, V. E. Lyubovitskij, and I. Schmidt arXiv:1712.08410 [hep-ph] (2017).
11. M.M. Giannini and E. Santopinto, Chin. J. Phys. 53, 020301 (2015).
12. N. Suzuki, T. Sato, and T-S. H. Lee, Phys. Rev. C 82, 045206 (2010).
13. V.M. Braun et al., Phys. Rev. D 89, 094511 (2014).
14. I.V. Anikin et al., Phys. Rev. D 92, 014018 (2015).
15. C. Mezrag et al., arXiv:1711.09101 [nucl-th] (2017).
16. I. Aznauryan et al., Phys. Rev. C 80, 055203 (2009).
17. C.D. Roberts, Few Body Syst. 58, 5 (2017).
18. J. Segovia et al., Few Body Syst. 55, 1185 (2015).
19. J. Segovia et al., Phys. Rev. Lett. 115, 171801 (2015).
20. D. Binosi et al., Phys. Rev. D 95, 031501 (2017).
21. Chen Chen et al., arXiv:1711.03142 [nucl-th] (2017).
22. C.D. Roberts, J. Phys. Conf Ser. 706, 022003 (2016).
23. The 2015 Long Range Plan for Nuclear Science,

https://science.energy.gov/∼/media/np/nsac/pdf/2015LRP/2015 LRPNS 091815.pdf
24. CLAS physics database, http://clasweb.jlab.org/physicsdb.
25. H. Kamano, The 11th International Workshop on the Physics of Excited Nucleons -

N*2017, (2017). See these proceedings.
26. K. Park et al. (CLAS Collaboration), Phys. Rev. C 91, 045203 (2015).
27. I.G. Aznauryan, Phys. Rev. C 68, 065204 (2003).
28. M. Ripani et al. (CLAS Collaboration), Phys. Rev. Lett. 91, 022002 (2003).
29. G.V. Fedotov et al. (CLAS Collaboration), Phys. Rev. C 79, 014204 (2009).
30. E.L. Isupov et al. (CLAS Collaboration), Phys. Rev. C 96, 025209 (2017).
31. V.I. Mokeev et al., Phys. Rev. C 80, 045212 (2009).
32. V.I. Mokeev et al. (CLAS Collaboration), Phys. Rev. C 86, 055203 (2012).
33. V.I. Mokeev et al., Phys. Rev. C 93, 025206 (2016).
34. Nucleon Resonance Photo-/Electrocouplings Determined from Analyses of

Experimental Data on Exclusive Meson Electroproduction off Protons,
https://userweb.jlab.org/∼mokeev/resonance electrocouplings/

35. Fit of the Resonance Electrocouplings, https://userweb.jlab.org/∼isupov/couplings/
36. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, no. 10, 100001 (2016).
37. M. Dugger et al. (CLAS Collaboration), Phys. Rev. C 79, 065206 (2009).
38. A.V. Anisovich et al., Eur. Phys. J. A48, 15 (2012).
39. A.V. Anisovich et al., Eur. Phys. J. A50, 129 (2014).
40. D.S. Carman, The 11th International Workshop on the Physics of Excited Nucleons -

N*2017, (2017). See these proceedings.
41. B. Julia-Diaz et al., Phys. Rev. C 77, 045205 (2008).
42. E. Santopinto and M.M. Giannini, Phys. Rev. C 86, 065202 (2012).
43. See CLAS12 webpage at http://www.jlab.org/Hall-B/clas12-web.
44. I.G. Aznauryan et al., Int. J. Mod. Phys. E22, 1330015 (2013).



16 Victor I. Mokeev (for the CLAS Collaboration)

45. A. D’Angelo, V.D. Burkert, D.S. Carman, E. Golovatch, R. Gothe, V. Mokeev, A Search
for Hybrid Baryons in Hall B with CLAS12, JLab Experiment E12-09-003.

46. J.J. Dudek and R.G. Edwards, Phys. Rev. D 85, 054016 (2012).
47. V. Mathieu, G. Fox, and A. P. Szczepaniak, Phys. Rev. D 92, 074013 (2015).
48. I. Strakovsky et al., EPJ Web Conf. 73, 04003 (2014).
49. H. Kamano, S.X. Nakamura, and T-S. H. Lee, Phys. Rev. C 88, 035209 (2013).
50. V.D. Burkert, P. Cole, R. Gothe, K. Joo, V. Mokeev, P. Stoler, Nucleon Resonance

Studies with CLAS12, JLab Experiment E12-09-003.
51. D.S. Carman, R. Gothe, V. Mokeev, Exclusive N∗

→ KY Studies with CLAS12, JLab
Experiment E12-06-108A.

52. D.S. Carman, R. Gothe, V. Mokeev, Nucleon Resonance Structure Studies Via Exclusive
KY Electroproduction at 6.6 GeV and 8.8 GeV, JLab Experiment E12-16-010A.

53. R. Briceno, The 11th International Workshop on the Physics of Excited Nucleons -
N*2017, (2017). See these proceedings.

54. N. Isgur, Why N∗ are important, Proceedings of the NSTAR2000 Conference, 16-19
Feb 2000, Newport News, USA, 403, Editors: V.D. Burkert, L.Elouadrhiri, J.J. Kelly,
R.C. Minehart, World Scientific, 2001.


