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Abstract

The unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sec-

tions in 3He(e, e′π±)X have been measured for the first time in Jefferson Lab exper-

iment E06-010 performed with a 5.9 GeV e− beam on a 3He target. The experiment

focuses on the valence quark region, covering a kinematic range 0.12 < xbj < 0.45,

1 < Q2 < 4 (GeV/c)2, 0.45 < zh < 0.65, and 0.05 < Pt < 0.55 GeV/c. The extracted

SIDIS differential cross sections of π± production are compared with existing phe-

nomenological models while the 3He nucleus approximated as two protons and one

neutron in a plane wave picture, in multi-dimensional bins. Within the experimen-

tal uncertainties, the azimuthal modulations of the cross sections are found to be

consistent with zero.

In this dissertation, the studies for the unpolarized SIDIS differential cross sec-

tions are presented. The dissertation will start with the introduction on the physics

related to SIDIS, then the experiment E06-010 will be described, followed by the

data analysis. The results of the unpolarized SIDIS differential cross sections will be

shown afterwards with discussions.

In addition to the work on the unpolarized SIDIS, the author also updated the

approximated formalism for radiative effects (REs) for inclusive scattering channels

(lifted the energy peaking approximation of the formalism). This updated formalism

and a detailed discussion of the approximations in different formalisms of REs are

presented in the appendix.
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(Etot/Phrs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 The spectra of positively charged hadrons (left panel), and negatively
charged hadrons (right panel), with different CT cuts. . . . . . . . . . 78

4.6 The CT spectra of positively charged hadrons (left panel), and nega-
tively charged hadrons (right panel). . . . . . . . . . . . . . . . . . . 78

4.7 The decomposition of the spectrum of positively charged hadrons
without CT cuts. The black line is the spectrum without CT cuts.
The blue line is the pion spectrum. The red line is the proton spec-
trum. The green line is the sum of blue and red line. . . . . . . . . . 79

4.8 Particles detected by the BigBite spectrometer. The positively charged
particles (blue dots), the negatively charged particles (red dots) and
the neutral particles (black dots) are shown together in the top left
panel. The neutral particles are shown in the top right panel. The
positively and negatively charged particles are shown in the bottom
left and right panels, respectively. The densities of the particles in the
top right, and bottom panels are shown in color scales. . . . . . . . . 81

xiv



4.9 Particles detected by the BigBite spectrometer in the elastic ep runs at
1.23 GeV beam energy. The positively charged particles (blue dots),
the negatively charged particles (red dots) and the neutral particles
(black dots) are shown together in each panel. In each panel, the cut(s)
applied to the data, and the fraction of the negatively (positively)
charged particles denoted by RN (RP ) are presented. . . . . . . . . . 82

4.10 The 2D plot of preshower channel (channelPS) vs. ETS/Pbb. . . . . . . 83

4.11 A 2D plot of Pbb vs. ETS/Pbb in the left panel. The ETS/Pbb distribu-
tion in the range 1.3 < Pbb < 1.5 GeV (between the two black lines),
and the corresponding Gaussian fit are shown in the right panel. . . . 84

4.12 Events and the lepton PID cut in a 2D plot of Pbb vs. ETS/Pbb. The
PID cut is represented by the black lines. . . . . . . . . . . . . . . . . 85

4.13 2D plot of Pbb vs. channelPS, and the preshower spectrum of events
selected by the ETS/Pbb cut for leptons. . . . . . . . . . . . . . . . . . 86

4.14 2D plot of Pbb vs. channelPS, and the preshower spectrum of pion
events, selected by ETS/Pbb < 0.45 or ETS/Pbb > 1.55. . . . . . . . . . 86

4.15 2D plot of Pbb vs. channelPS, and the preshower spectrum of events
selected by the ETS/Pbb cut for leptons, requiring a pion is detected
by the HRS in coincidence. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 2D plot of Pbb vs. channelPS, and the preshower spectrum of positively
charged particles in the RP runs. . . . . . . . . . . . . . . . . . . . . 90

4.17 The shape comparison between the preshower spectra from the pos-
itively charged particles in the RP runs (black line), and from the
negatively (red line) and positively (blue line) charged particles in the
production runs. The spectra in the right panel (five channels per
bin) are re-binned from the ones in the left panel (one channel per
bin). The spectra were scaled to have the same number of events in
the channels between 100 and 200, while the shapes were intact. . . . 91

4.18 2D plot of Pbb vs. channelPS, and the preshower spectrum of positively
charged particles in the production runs. . . . . . . . . . . . . . . . . 92

4.19 The π+ (π−) SIDIS production channels with and without the random-
coincidence-background subtraction is presented in the left (right)
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xv



4.20 The ETS spectra in four typical blocks. The black lines represent the
spectra without any PID cut. The red lines represent the spectra with
the ETS/Pbb PID cut for leptons. . . . . . . . . . . . . . . . . . . . . 95

4.21 The flow of the Monte Carlo simulation. . . . . . . . . . . . . . . . . 98

4.22 The flow of an event going through the BigBite model. . . . . . . . . 102

4.23 The comparisons between the out-of-plane (dx) and in-plane (dy) an-
gles from the data and the expansion. In each panel the X (Y) axis
represents the variable from the expansion (data). The relation of the
variables (varX = varY ) is represented by the black diagonal lines in
each panel. The red dots represent the 2D comparisons. . . . . . . . . 103

4.24 The difference between the out-of-plane (dx) and in-plane (dy) angles
from the data and the expansion. In each panel, the X axis represents
the difference of the variables δ(var), and the Y axis represents the
number of events. The mean value (µ) and the root-mean-square
(RMS) value are presented in each panel. . . . . . . . . . . . . . . . . 104

4.25 A 2D Sieve plot from the data is presented in the left panel. The
correlations of the target variables (var(Data) vs. var(Expansion))
are presented in the right top and right bottom panels. . . . . . . . . 105

4.26 The ETS/Pbb distributions and the Gaussian fits using the elastic ep
data. No preshower cut is applied to the data in the left panel. A
preshower cut channelPS > 300 is applied to the data in the right
panel. The black lines represent the data, and the red lines represent
the Gaussian fits. The Gaussian width σ and the constant RE from
the two fits are presented on each panel. . . . . . . . . . . . . . . . . 106

4.27 The ratios of events in BigBite (model) momentum bins. Each marker
represents a ratio with a specific ETS cut in the simulations. . . . . . 107

4.28 The momentum Pbb (two left panels) and invariant mass Wbb (two
right panels) comparisons between the data and the simulations of
the 1.23 (two top panels) and 2.4 GeV (two bottom panels) elastic
ep scattering. The black solid circles are from the data. The red
solid squares are from the simulations. The error bars represent the
statistical uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvi



4.29 The scattered electron momentum (Phrs), the polar angle (θhrs) and
the azimuthal angle (φhrs) comparisons of the 3He inclusive DIS chan-
nel in the HRS between the data and the simulation (Sim). The error
bars represent statistical uncertainties. The black solid circles are from
the data. The red solid squares are from the simulation. . . . . . . . 109

4.30 The scattered electron momentum (Phrs), the polar angle (θhrs) and
the azimuthal angle (φhrs) comparisons of the H2 inclusive DIS channel
in the HRS between the data and the simulations (Sim1 and Sim2).
Different algorithms for the internal radiative effect were applied in
Sim1 and Sim2, as described in the text. The error bars represent
statistical uncertainties. The black solid circles are from the data.
The red solid squares are from the simulation. . . . . . . . . . . . . . 110

4.31 The scattered electron momentum (Pbb), the polar angle (θbb) and the
azimuthal angle (φbb) comparisons of the 3He inclusive DIS channel in
the BigBite between the data and the simulation (Sim). The error bars
represent statistical uncertainties. The black solid circles are from the
data. The red solid squares are from the simulation. . . . . . . . . . . 112

4.32 The ratio RR in the θhrs bins, with different angle cuts applied to
the HRS. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.33 The ratio RR in the φhrs bins, with different angle cuts applied to
the HRS. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.34 The ratio RR in the θhrs bins, with different momentum cuts applied
to the HRS. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.35 The ratio RR in the φhrs bins, with different momentum cuts applied
to the HRS. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.36 The comparisons between the Phrs spectra under a series of HRS-PID-
cut sets and the corresponding data corrections. . . . . . . . . . . . . 122

xvii



4.37 The ratio RR in the θbb bins, with different φbb cuts applied to the
BigBite. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.38 The ratio RR in the φbb bins, with different θbb cuts applied to the
BigBite. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.39 The ratio RR in the θbb bins, with different momentum cuts, in the
high momentum range, applied to the BigBite. The left (right) panel
represents the π+ (π−) SIDIS production channel. The error bars in
the plots represent the statistical uncertainties. . . . . . . . . . . . . . 125

4.40 The ratio RR in the φbb bins, with different momentum cuts, in the
high momentum range, applied to the BigBite. The left (right) panel
represents the π+ (π−) SIDIS production channel. The error bars in
the plots represent the statistical uncertainties. . . . . . . . . . . . . . 125

4.41 The ratio RR in the θbb bins, with different momentum cuts applied to
the BigBite. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.42 The ratio RR in the φbb bins, with different momentum cuts applied to
the BigBite. The left (right) panel represents the π+ (π−) SIDIS pro-
duction channel. The error bars in the plots represent the statistical
uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.43 The ratio RR in the Pbb bins, with different ETS cuts applied to the
data and the simulation. The left (right) panel represents the π+ (π−)
SIDIS production channel. The error bars in the plots represent the
statistical uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.44 The comparisons between the Pbb spectra under a series of BigBite-
preshower cuts and the corresponding data corrections. . . . . . . . . 128

4.45 The 2D comparisons between the original and smeared xbj, zh and φh. 130

5.1 The correlations between xbj and other kinematic variables in experi-
ment E06-010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xviii



5.2 The SIDIS differential cross sections (defined in text) comparison be-
tween the data and the simulation in pseudo-1D xbj bins. The red
solid circles are from the data and the black open circles are from the
quark-parton model. The error bar of each point represents the sta-
tistical uncertainty, mostly smaller than the markers. The error band
on the bottom of each panel represents the experimental systematic
uncertainty. The left and right panels are for π+ and π− production
channel, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 The SIDIS differential cross section ratio σπ
+

/σπ
−

comparison between
the data and the model in pseudo-1D xbj bins. The red solid circles
are from the data and the black open circles are from the quark-
parton model. The error bar of each point of data represents the
statistical uncertainty. The error bars for the model parameterization
uncertainty are smaller than the marker size. The error band on the
bottom represents the systematic uncertainty of the data. . . . . . . . 138

5.4 (color online). The differential cross sections in 2D bins: the π+ SIDIS
production channel. The red circles are from the data, the black solid
lines are from the model [10], the blue dashed lines are from the model
[5] and the green dotted lines are from the model [4]. The error bars
represent the statistical uncertainties of the data. The error band
on the bottom of each panel represents the experimental systematic
uncertainty. The xbj range of each plot is presented at the bottom of
the panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 (color online). The differential cross sections in 2D bins: the π− SIDIS
production channel. The definitions of the markers, the lines and the
bands are the same as the figure above for π+ channel. . . . . . . . . 141

5.6 The differential cross sections in 3D bins: the π+ SIDIS production
channel. The red circles are from the data, the black solid lines are
from the model [10], the blue dashed lines are from the model [5] and
the green dotted lines are from the model [4]. The error bars represent
the statistical uncertainties of the data. The error band on the bottom
of each panel represents the experimental systematic uncertainty. The
Pt (in unit of GeV) and xbj ranges of each plot are presented at the
top and the bottom of the panel, respectively. . . . . . . . . . . . . . 143

5.7 The differential cross sections in 3D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are
the same as the figure above for the π+ channel. . . . . . . . . . . . . 144

xix



5.8 The differential cross sections in 3D bins: the π+ SIDIS production
channel. The red circles are from the data, the black solid lines are
from the model [10], the blue dashed lines are from the model [10]
with F cosφh

UU and F cos 2φh

UU setting to zero. The error bars represent the
statistical uncertainties of the data. The error band on the bottom of
each panel represents the experimental systematic uncertainty. The
Pt (in unit of GeV) and xbj ranges of each plot are presented at the
top and the bottom of the panel, respectively. . . . . . . . . . . . . . 145

5.9 The differential cross sections in 3D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are
the same as the figure above for the π+ channel. . . . . . . . . . . . . 146

5.10 Results of B in 3D bins from the A · (1−B · cosφh) fit. The red solid
circles and black open circles represent the results in the π+ and π−

production channels, respectively. . . . . . . . . . . . . . . . . . . . . 147

5.11 Fitting contours with the functional form of the total unpolarized
SIDIS cross section (refer to the text). The top panel is for the fitting
results using the 2D bins (10 × 10) data, the bottom panel for the
3D bins (2 × 5 × 10). The central values of the fitting are the black
crosses. The three contours from the smallest to the largest in each
panel correspond to δχ2 = 1, 2.3 and 6.2, respectively. . . . . . . . . . 148

5.12 Fitting contours with the functional form of the non-modulated un-
polarized SIDIS cross section (F cosφh

UU and F cos 2φh

UU set to zero: refer to
the text). The top panel is for the fitting results using the 2D bins
(10 × 10) data, the bottom panel for the 3D bins (2 × 5 × 10). The
central values of the fitting are the black crosses. The three contours
from the smallest to the largest in each panel correspond to δχ2 = 1,
2.3 and 6.2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.13 The differential cross sections in 2D bins: the π+ SIDIS production
channel. The red circles are from the data. The black solid lines
are from the model including the structure functions FUU , F cosφh

UU and
F cos 2φh

UU with parameters 〈k2
⊥〉 and 〈p2

⊥〉 from stand-alone data fitting.
The blue dashed lines are from the model including only the structure
functions FUU with parameters 〈k2

⊥〉 and 〈p2
⊥〉 from fitting the data of

this work only. The error bars represent the statistical uncertainties
of the data. The error band on the bottom of each panel represents
the experimental systematic uncertainty. The xbj range of each plot
is presented at the bottom of the panel. . . . . . . . . . . . . . . . . . 153

xx



5.14 The differential cross sections in 2D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are
the same as the figure above for π+ channel. . . . . . . . . . . . . . . 154

A.1 Each step in the integrations of POLRAD (green rhombus), MT 2D
integration (blue solid circles), and MT peaking integrations (red
squares) for one example event. The central kinematics of the event
as in Table A.1 is represented by the black empty circle. . . . . . . . 164

xxi



List of Abbreviations and Symbols

Symbols

~k three-vector of k.

α Electromagnetic fine structure constant.

k⊥ Intrinsic transverse momentum of a parton in a hadron.

p⊥ Transverse momentum of the fragmenting hadron with respect
to a parton.

φh The azimuthal angle between the lepton plane and the hadron
plane in a semi-inclusive scattering process.

Abbreviations

ADC Analog to digital converter.

BCC Bin-centering correction.

BCM Beam current monitor.

BPM Beam position monitor.

CEBAF Continuous electron beam accelerator facility.

CT Coincidence time.

DAQ Data acquisition.

DIS Deep-inelastic scattering.

DXS Differential cross section.

EPR Electron paramagnetic resonance.

ERM Equivalent radiator method.

xxii



HRS High resolution spectrometer.

NMR Nuclear magnetic resonance.

OPE Operator product expansion.

PID Particle identification.

QED Quantum electrodynamics.

QCD Quantum chromodynamics.

RMS Root mean square.

RP Reversed polarity.

SIDIS Semi-inclusive deep-inelastic scattering.

ppm Part per million.

xxiii



Acknowledgements

My collaborators and I acknowledge the outstanding support of the JLab Hall A

staff and the Accelerator Division in accomplishing this experiment. This work was

supported in part by the U. S. National Science Foundation, and by Department

of Energy (DOE) contract number DE-AC05-06OR23177, under which the Jefferson

Science Associates operates the Thomas Jefferson National Accelerator Facility. This

work was also supported in part by the U.S. Department of Energy under Contract

DE-FG02-03ER41231 and the National Natural Science Foundation of China No.

11120101004.

xxiv



1

Introduction

The strong interaction, one of the four fundamental interactions in nature, is de-

scribed by Quantum Chromodynamics (QCD) in the framework of the Yang-Mills

gauge theory, as a part of the standard model of particle physics [11, 12]. An im-

portant feature of QCD is the asymptotic freedom, which means the strong coupling

constant αS decreases with increasing energy scale [13, 14]. At very high energy,

αS becomes so small that the quarks behave almost like free particles. This feature

has been verified by the high-energy scattering experimental data [15], and the 2004

Nobel Prize of physics was awarded to Gross, Politzer and Wilczek for the discovery

of asymptotic freedom in the theory. A plot of αS as a function of the energy scale

(Q) is presented in Fig. 1.1.

In the low energy regime, QCD confinement emerges, which means the quarks

and gluons are confined inside bound states, forming hadrons such as nucleons and

mesons. In this region, αS becomes large, and the perturbative expansion is inval-

idated. Although some nonperturbative methods, such as the lattice gauge theory

and the Dyson-Schwinger equation approach, were developed during last decades, it

is still a challenging task to calculate all hadronic properties from the first principles

1



QCD αs(Mz) = 0.1181 ± 0.0013

pp –> jets
e.w. precision fits (NNLO)  

0.1

0.2

0.3

αs (Q
2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

October 2015

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.1: The strong coupling constant αS as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αS is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO. The figure is from [1].

of QCD. The understanding of QCD in the confinement regime can be enhanced via

the study of the nucleon structure.

Nucleons (protons and neutrons), are building blocks of more than 99% of the

visible universe, and the study of their structure is a rich subject, e.g., probing the

charge, magnetic-moment, quark-momentum and quark-spin distributions inside the

nucleon, and studying the nucleon spin and mass compositions. In the following part

of this chapter, we first introduce several important studies of the nucleon structure

as milestones of this subject in history.

Nucleons were thought as point-like particles until a sizable anomalous magnetic

moment of the proton was measured by Stern et al. in 1933 [16]. This discovery was

the first evidence for a proton not being point-like, and a Nobel Prize was awarded
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for it in 1943.

In 1955, Hofstadter et al. measured the electromagnetic form factors of the proton

via the elastic electron-proton scattering process with a 1 GeV electron beam [17]. A

Nobel Prize was awarded for this study in 1961. In the elastic scattering, the nucleon

stays intact other than a finite recoil, and the charge and current distributions inside

the nucleon can be studied. A graphical illustration for probing the nucleon structure

at this level is presented in Fig. 1.2.

𝑒−

Figure 1.2: Probing the nucleon structure in the elastic channel. The blue lines
with arrows represent the incoming and outgoing leptons (electrons). The violet wavy
line represents the virtual photon. The partially transparent blue disk represents the
nucleon being probed.

In 1964, Gell-Mann et al. introduced the concept of quarks and postulated that

a proton consists of three quarks [18] for the study of hadron spectroscopy and

classification. A spin-3
2

baryon Ω− was predicted as a member of the ground-state

decuplet in the classification model, and was later discovered at Brookhaven National

Laboratory [19]. A Nobel Prize was awarded for this model in 1969.

In 1969, Friedman, Kendall, Taylor, and their collaborators carried out the first

deep-inelastic scattering (DIS) experiment with 7 to 17 GeV beam electrons and a

liquid hydrogen (proton) target [20, 21]. This study led to decades of DIS experiments

probing many aspects of the nucleon structure. In the DIS process, the target nucleon
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is shattered into fragments, and its substructures at the parton (quark and gluon)

level can be probed. A Nobel Prize was awarded to Friedman, Kendall and Taylor

for their pioneering study of the DIS process in 1990. A graphical illustration for

this level of probing is presented in Fig. 1.3.

𝑒𝑒−

Figure 1.3: Probing the nucleon structure in the DIS process. The blue lines with
arrows represent the incoming and outgoing leptons (electrons). The violet wavy line
represent the virtual photon. The black empty circle represents the nucleon (proton)
being probed. The blue, green and red solid disks represent the valence quarks in
the nucleon. The small black solid disks represent the sea quarks. The curly lines
represent the interaction mediated by the gluons.

In the late 1980s, the European Muon Collaboration (EMC) carried out a DIS

experiment with polarized beam muons at 100, 120 and 200 GeV, and a solid ammo-

nia target in which the protons were polarized by the dynamic nuclear polarization

(DNP). In this experiment, the quark-helicity contribution to the proton spin was

measured for the first time, and was found to be only 6% with a large uncertainty

[22, 23]. This discovery shocked the physics community, since it severely deviated

from the picture of the naive quark model in which the proton spin is due to the

quark spins only. With more theoretical considerations and more experimental data,

the current value of the fraction of quark helicity contributions to the nucleon spin
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is around 30% with significantly improved accuracy [24, 25, 26]. The contradiction

between the naive quark model and the polarized DIS measurement is known as the

“proton spin crisis” [27, 28].

While recent studies indicate that the contribution from the gluon helicities may

be sizable [29], there is still a large unidentified component in the nucleon spin. It

was pointed out in the early 1990s by Ma that the quark orbital angular momentum

(OAM) is non-negligible due to the mechanism of Melosh-Wigner rotations [30, 31,

32].

In order to understand the nucleon spin, different spin sum rules have been

proposed, in which the nucleon spin is decomposed into the angular momenta of

quarks and gluons. The most intuitive decomposition of the nucleon spin is the

Jaffe-Manohar sum rule [33], expressed as

J = Sq + Lq + Sg + Lg, (1.1)

where J is the nucleon angular momentum, Sq is the spin angular momentum of the

quarks, Lq is the OAM of the quarks, Sg is the spin angular momentum of the gluons,

and Lg is the OAM of the gluons. While the Jaffe-Manohar sum rule provides a full

decomposition and the operator in each term satisfies the commutation relation of

the angular momentum algebra SU(2), all the operators except Sq are not obviously

gauge independent, and thus may not be directly measurable.

Considering the gauge-invariance, Ji proposed a different sum rule in 1997 (Ji′s

sum rule) [34]:

J = Sq + Lq + Jg, (1.2)

where J , Sq, and Lq are the nucleon angular momentum, the spin angular momentum

of the quarks, and the OAM of the quarks, repectively. The Jg term represents the

total angular momentum of the gluons, which is not decomposed into a spin term and
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an OAM term. While every term in Ji′s sum rule is gauge-invariant, the operators Lq

and Jg do not satisfy the commutation relation of the angular momentum algebra.

Apart from the two discussed above, many other versions of nucleon-spin decom-

position were derived in recent years. All the decomposition versions are generally

categorized into the canonical decomposition, e.g. Jaffe-Manohar sum rule, and the

kinetic decomposition, e.g. Ji′s sum rule. The main difference between the two cat-

egories is the definition of the OAM terms. It is important to connect and compare

each term to experimental observables. To discuss about the observables, we first

express the state vector |ψ〉 of a nucleon as

|ψ〉 =
∑
i

Ai|ψi : N,Sq, Lq, Sg, Lg〉, (1.3)

where Ai is the amplitude of the ith state |ψi : N,Sq, Lq, Sg, Lg〉. The quantities

Sa and La denote the spin and OAM of the partons in a state, where a = q (g)

represents the quantities of the quarks (gluons). Using Eq. (1.1) as an example, the

total spin of the nucleon can be decomposed as

1

2
= 〈ψ|Jz|ψ〉 = 〈ψ|Sq,z|ψ〉+ 〈ψ|Lq,z|ψ〉+ 〈ψ|Sg,z|ψ〉+ 〈ψ|Lg,z|ψ〉, (1.4)

where the nucleon spin is in the z direction, and the subscript z represents the z

component of an operator. The contribution from the quark spin can be expressed

as

〈ψ|Sq,z|ψ〉 =
∑
i

|Ai|2〈ψi|Sq,z|ψi〉. (1.5)

This contribution is directly related to the polarized collinear parton distribution

functions (PDFs):

〈ψ|Sq,z|ψ〉 =
1

2

∫ 1

0

dx∆Σ(x) =
1

2

∑
j

∫ 1

0

dx[f+
j (x)− f−j (x)], (1.6)
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where f+
j (f−j ) represents the collinear PDF of quarks with flavor j (j = u, d, s,

ū, d̄, s̄) and the same (opposite) helicity as the nucleon′s. Currently, |ψ〉 cannot

be directly measured, but some quantifies related to |ψ〉, such as the PDFs, can be

accessed experimentally. To illustrate the experimental measurability, it is useful to

take a look into the distribution functions describing the nucleon structure.

A unified framework of parton distributions in nucleons is provided by the Wigner

distribution [35, 36], which is a five-dimensional quantum phase space distribution.

The Wigner distribution is a function of the longitudinal momentum fraction x,

the intrinsic transverse momentum kT , and the intrinsic transverse coordinate bT .

It is related to the generalized transverse-momentum-dependent parton distribu-

tion (GTMD) via a transverse Fourier transformation. The transverse-momentum-

dependent (TMD) PDF is obtained by integrating the Wigner distribution over bT ,

and the impact parameter dependent distribution (IPD) is obtained by integrating

over kT . The IPD is related to the generalized parton distribution (GPD) via a

transverse Fourier transformation. The TMD PDFs and the GPDs provide three-

dimensional descriptions of nucleons, and they play important roles in understanding

nucleon spin structures. The collinear (one-dimensional) PDF is obtained by inte-

grating out all the transverse variables. Fig. 1.4 gives a graphical illustration of the

distribution functions introduced above.

The five-dimensional quantities (the Wigner distribution and the GTMD) pro-

vides full information of a parton inside a nucleon, but is not accessible experimen-

tally. The three-dimensional distributions can be probed experimentally, and provide

important information of the nucleon structure, namely, the GPDs can be measured

via the deeply virtual Compton scattering (DVCS) and exclusive meson production

[37], and the TMD PDFs can be probed via the semi-inclusive DIS (SIDIS) process

and the Drell-Yan process [38]. The distributions containing less information than

7



𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 𝑭𝑭(𝒙𝒙,𝚫𝚫𝑻𝑻,𝒌𝒌𝑻𝑻) 𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 𝐝𝐝𝐖𝐖𝐝𝐝𝐝𝐝𝐖𝐖𝐖𝐖𝐝𝐝𝐝𝐝𝐝𝐝𝐖𝐖𝐝𝐝𝐖𝐖 𝝆𝝆(𝒙𝒙,𝒃𝒃𝑻𝑻,𝒌𝒌𝑻𝑻)

𝐆𝐆𝐆𝐆𝐆𝐆 𝒇𝒇(𝒙𝒙,𝒌𝒌𝑻𝑻)

𝚫𝚫𝑻𝑻 = 0

𝐆𝐆𝐆𝐆𝐆𝐆 𝑯𝑯(𝒙𝒙,𝚫𝚫𝑻𝑻) 𝐈𝐈𝐆𝐆𝐆𝐆 𝑯𝑯(𝒙𝒙,𝒃𝒃𝑻𝑻)

�𝒅𝒅𝟐𝟐𝒌𝒌𝑻𝑻

𝐆𝐆𝐆𝐆𝐏𝐏 𝒇𝒇(𝒙𝒙) 𝐏𝐏𝐝𝐝𝐖𝐖𝐅𝐅 𝐟𝐟𝐟𝐟𝐟𝐟𝒕𝒕𝒕𝒕𝒕𝒕 𝑭𝑭(𝚫𝚫𝑻𝑻) 𝐂𝐂𝐂𝐂𝐟𝐟𝐖𝐖𝐖𝐖𝐖𝐖 𝐝𝐝𝐖𝐖𝐖𝐖𝐝𝐝𝐖𝐖𝐝𝐝𝐝𝐝 𝝆𝝆(𝒃𝒃𝑻𝑻)

�𝒅𝒅𝒙𝒙

𝐂𝐂𝐂𝐂𝐟𝐟𝐖𝐖𝐖𝐖𝐖𝐖 𝒈𝒈

�𝒅𝒅𝟐𝟐𝒌𝒌𝑻𝑻

�𝒅𝒅𝟐𝟐𝒌𝒌𝑻𝑻 𝚫𝚫𝑻𝑻 = 0

𝚫𝚫𝑻𝑻 = 0
�𝒅𝒅𝟐𝟐𝒃𝒃𝑻𝑻

�𝒅𝒅𝒙𝒙 �𝒅𝒅𝒙𝒙

Fourier Transformation (FT)

FT

FT

Figure 1.4: From Wigner distribution to charge: descriptions of the nucleon struc-
ture.

the three-dimensional ones can also be measured, namely, the form factors can be

measured via the elastic lepton-hadron scattering, and the collinear PDFs can be

measured via the inclusive DIS process.

In the next chapter, various ways of probing the nucleon structure will be dis-

cussed. The formalism of the inclusive lepton-hadron scattering processes and the

SIDIS process will be presented. More details regarding the TMD PDFs, and the

motivation of the study in this dissertation will be also presented.
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2

Physics Motivation

The most direct approach to investigate the hadron/nucleon structure is to carry

out an anatomy with certain types of experimental probes. The electromagnetic

probes include the lepton-hadron scattering, and the Drell-Yan process [38]. In the

lepton-hadron scattering, the lepton scatters from the hadron (or its constituents)

by exchanging one or more virtual photons. In the Drell-Yan process, a quark and

an antiquark from two hadrons annihilate electromagnetically, and produce a lepton-

antilepton pair. The final state particles in both of these processes carry the informa-

tion of the hadron structure. There are also strong-interaction and weak-interaction

probes in different processes, which are used to study various features of the hadrons.

In this dissertation, we focus on the lepton-hadron scattering processes.

Different aspects of the hadron/nucleon structure can be studied by the lepton-

hadron scattering with virtual photons carrying different energies. At low lepton

beam energies, the virtual photons carry low energies, and the elastic scattering

process dominates. The distributions of the charge and magnetic moment inside the

nucleon can be studied in this process.
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With higher beam energies, the inelastic processes become dominant. In these

processes, the target nucleon is either excited to a resonance state or shattered into

fragments, and the particles in the final state are no longer the same as in the initial

state. The DIS process provides the access to the quark and gluon distributions

inside the nucleon and has significantly enhanced our understanding of the nucleon

structure in the past decades.

In the inclusive DIS process, the collinear PDFs can be studied via the mea-

surements of the structure functions F1, F2, g1 and g2. In the SIDIS process, the

information of the 3D momentum distributions and the momentum-spin correlations

of the partons inside the nucleon can be accessed via the study of the TMD PDFs.

These studies will enhance our understanding of the nucleon spin composition and

the QCD dynamics.

In this chapter, the inclusive and the semi-inclusive scattering processes and the

related theoretical formalisms will be presented first. Then a discussion of the TMD

PDFs and the TMD factorization will be presented. The simple quark-parton model

widely used in the SIDIS phenomenology and a review of the typical phenomenolog-

ical studies will be presented afterwards. Lastly, the motivation of the study in this

dissertation will be discussed.

2.1 Inclusive scattering processes

In the inclusive scattering process, an incoming lepton scatters from a target nucleus

or a beam ion and only the scattered lepton is detected. This process can be expressed

as

L(l) +N(P )→ L′(l′) +X(PX), (2.1)

where L is the incoming lepton, N is the target nucleus/nucleon or the beam ion, L′

is the scattered lepton being detected, and X represents the final state particles not

10



being detected. The variables in the parentheses are the corresponding four-momenta

of the particles.

2.1.1 Inclusive scattering on a structureless particle

The differential cross section of an electron scattering from an unpolarized structure-

less spin-1
2

particle with mass M can be expressed with the one-photon-exchange

approximation as

dσ

dΩ
=

α2

4p2β2 sin4 θ
2

(1− β2 sin2 θ

2
+ δ), (2.2)

where α is the electromagnetic fine structure constant, β is the speed of the incoming

electron, p is the momentum of the incoming electron, and θ is the polar angle of the

scattered electron. The δ term is defined as

δ =
1

2E2M2
M(
√
M2 + p2 −M)(2E2 −m2

e), (2.3)

where E is the energy of the incoming electron, and me is the mass of the electron.

This term vanishes in the limit of M →∞. All the kinematical variables are defined

in the target rest frame. In many cases, the Mott cross section is defined in the limits

of M →∞ and me → 0 as (
dσ

dΩ

)
Mott

=
α2 cos2 θ

2

4E2 sin4 θ
2

. (2.4)

2.1.2 Inclusive elastic scattering

The differential cross section of the elastic electron-proton (ep) scattering is expressed

as (
dσ

dΩ

)
Elastic

=
α2

4E2 sin4 θ
2

E ′

E

(
G2
E + τG2

M

1 + τ
cos2 θ

2
+ 2τG2

M sin2 θ

2

)

=

(
dσ

dΩ

)
Mott

E ′

E

(
G2
E + τG2

M

1 + τ
+ 2τG2

M tan2 θ

2

)
, (2.5)
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where τ = Q2/4M2, E ′ is the energy of the scattered electron, M is the proton mass,

and Q2 = −(l− l′)2 = 4EE ′ sin2 θ
2

is the transferred four-momentum squared. Using

energy-momentum conservation in the elastic process, E ′ can be expressed as

E ′ =
E

1 + 2 E
M

sin2 θ
2

. (2.6)

The quantities GE(Q2) and GM(Q2) are the electromagnetic form factors, which

reflect the electric charge and the magnetic moment distributions inside the proton.

It is observed that when a particle with internal structures is probed by the elastic

scattering, non-vanishing form factors will enter the amplitude and give additional

factors to the Mott cross section.

The form factors GE(Q2) and GM(Q2) are functions of Q2, and are usually in-

terpreted as the Fourier transformation of the electric charge and magnetic moment

distributions inside the nucleon in the Breit frame. More details of the interpretations

of the form factors can be found in [39].

2.1.3 Inclusive inelastic scattering

The variables needed in the description of the inclusive inelastic scattering processes

are listed below.

• The momentum-transfer squared isQ2 = −q2 ,where q = l−l′ is the momentum-

transfer four-vector.

• The Bjorken scaling factor is defined as xbj = Q2/(2P · q) and represents the

fraction of the nucleon’s longitudinal momentum carried by the parton.

• The invariant mass of X is defined as W =
√

(P + q)2.

In the modest Q2 region, the target nucleon may be excited to a resonance state

with invariant mass W ≈ Mresonance. With large enough Q2, the W spectrum be-

comes a smooth distribution instead of the resonance peaks. The DIS refers to the

12



inelastic scattering process with large Q2 and W in the smooth distribution region

(usually W > 2 GeV/c2). There is no longer a simple expression for the energy of

the scattered lepton as in the elastic scattering process. The unpolarized inelastic

inclusive differential cross section is expressed as

(
dσ

dΩdE ′

)
inelastic

=

(
dσ

dΩ

)
Mott

[
W2(ν,Q2) + 2W1(ν,Q2) tan2 θ

2

]
, (2.7)

where ν = E −E ′ is the transferred energy in the target rest frame, W1 and W2 are

the structure functions. In the literature, it is also expressed in a different way:

(
dσ

dΩdE ′

)
inelastic

=

(
dσ

dΩ

)
Mott

[
2

M
F1(xbj, Q

2) tan2 θ

2
+

1

ν
F2(xbj, Q

2)

]
, (2.8)

where the structure functions are F1(xbj, Q
2) = MW1(ν,Q2) and F2(xbj, Q

2) =

νW2(ν,Q2).

The differences between the differential cross sections with opposite beam or

target polarizations (∆σb or ∆σt) are determined by the polarized structure functions

g1 and g2 while the contribution from F1 and F2 are cancelled. The ∆σb and ∆σt

can be calculated from the product of the antisymmetric parts of the leptonic tensor

and the hadronic tensor as in [40].

The antisymmetric part of the leptonic tensor is

L(A)
µν = mεµναβs

αqβ, (2.9)

where m is the electron mass, sα is the beam-spin four-vector, qβ is the momentum-

transfer four-vector, and εµναβ is the totally antisymmetric tensor. The antisymmet-

ric part of the hadronic tensor is

W (A)
µν = 2Mεµναβq

α[MSβG1 + (P · qSβ − S · qP β)
G2

M
], (2.10)
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where M is the target mass, Sβ is the target-spin four-vector, and P is the target

four-momentum. The polarized structure functions are G1 = g1/(M
2ν) and G2 =

g2/(Mν2).

The difference between the polarized differential cross sections with opposite tar-

get polarizations (∆σt) is calculated in [40], and the one with opposite beam polar-

izations (∆σb) can be calculated in a similar way as

∆σb =
8α2mE ′

Q4E

[
MG1(q · S q · s+Q2 S · s)

+G2(Q2/M)(P · q S · s− q · S P · s)
]
, (2.11)

where s (S) is the beam (target) polarization four-vector. In the target rest frame,

the four-vectors in Eq. (2.11) can be expressed explicitly as

kµ = E(1, 0, 0, 1),

k′µ = E ′(1, sin θ cosφ, sin θ sinφ, cos θ),

qµ = kµ − k′µ,

sµ =
E

m
(1, 0, 0, 1),

Sµ = (0, sinα cos β, sinα sin β, cosα), (2.12)

where the definition of the angles are shown in Fig. 2.1.

Substituting Eq. (2.12) into Eq. (2.11), the following expression can be obtained:

∆σb = −4α2E ′

Q2E
[MG1(E cosα + E ′ cos Θ)

+2EE ′G2(cos Θ− cosα)] , (2.13)

where Θ, the relative angle between k̂ and Ŝ, is defined as

cos Θ = sin θ cosφ sinα cos β + sin θ sinφ sinα sin β + cos θ cosα

= sin θ sinα cosφrela + cos θ cosα, (2.14)
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Figure 2.1: Definition of the angles.

where φrela = φ− β is the azimuthal angle of the scattered electron with respect to

the target polarization.

Experimental data with the parallel-target-polarization (α = 0◦) and the perpendicular-

target-polarization (α = 90◦) are usually combined to access g1 and g2. For α = 0◦,

∆σb is expressed as

∆σ|| = − 4α2E ′

Q2EMν
[g1(E + E ′ cos θ)− 2xbjMg2], (2.15)

and for α = 90◦, it is expressed as

∆σ⊥ = − 4α2E ′2

Q2EMν
sin θ cosφrela[g1 +

2E

ν
g2]. (2.16)

It should be noted that there are negative signs in ∆σ|| and ∆σ⊥ as one subtracts

anti-parallel beam polarization sµ = −E
m

(1, 0, 0, 1) from parallel beam polarization

sµ = E
m

(1, 0, 0, 1) while the target polarization Sµ = (0, sinα cos β, sinα sin β, cosα)

is fixed. As one can readily see from Eq. (2.11), flipping the target spin direction by
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S ′ = −S will change the signs of ∆σ|| and ∆σ⊥. In the parallel target polarization

(α = 0◦), the target spin is flipped by changing α to 180◦. In the perpendicular

target polarization (α = 90◦), the target spin is flipped by a 180◦ change of φrela.

In the simple quark-parton model, the structure functions F1(xbj, Q
2), F2(xbj, Q

2)

and g1(xbj, Q
2) can be expressed in terms of the PDFs as

F1 =
1

2

∑
q

e2
q(f

q
1 + f q̄1 ), (2.17)

F2 = xbj
∑
q

e2
q(f

q
1 + f q̄1 ), (2.18)

g1 =
1

2

∑
q

e2
q(g

q
1L + gq̄1L), (2.19)

wheref1 is the unpolarized PDF and gq1L = f q↑1 − f
q↓
1 is the longitudinally polarized

PDF. The twist-2 contribution to the structure function g2 can be obtained through

the Wandzura-Wilczek relation [41]:

g2 = −g1 +

∫ 1

xbj

dy

y
g1(y). (2.20)

At the Bjorken limit Q2 → ∞ and ν → ∞, the structure functions F1 and F2

depend only on xbj. This feature is known as the Bjorken scaling [42]. In general,

the structure functions and the PDFs also depend on Q2. With the QCD factor-

ization theorem, the PDFs at different factorization scales (usually chosen as Q2)

are connected via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-

tion equations [43, 44, 45, 46]. By fitting the world data in a broad kinematic range,

the PDFs have been extracted and saved in global databases such as unpolarized

PDF sets CTEQ [47] and MSTR [48] and polarized PDF sets DSSV [49] and GRSV

[50]. The Q2 dependence of the PDFs in the databases follows the DGLAP evolution

equations.
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2.2 Semi-inclusive scattering process

The semi-inclusive scattering process with the DIS kinematics is known as SIDIS,

and will be discussed in detail. The SIDIS process provides access to the TMD PDFs

and paves the way to a more detailed understanding of the nucleon structure. The

SIDIS process, in which a leading hadron is detected in addition to the detection of

the scattered lepton, can be expressed as

L(l) +N(P )→ L′(l′) +H(Ph) +X(PX), (2.21)

where L is the incoming lepton, N is the target nucleon, L′ is the scattered lepton

being detected, H is the detected hadron, and X represents the final state particles

not being detected. The variables in the parentheses are the four-momenta. A

graphic illustration of the SIDIS process is presented in Fig. 2.2.

y

z

x

hadron plane

lepton plane

l0
l S?

Ph

Ph?
φh

φS

Figure 2.2: The SIDIS process and the angle definitions. The figure is from [2].

The variables needed to describe the SIDIS process are listed below.
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• The variables related to the incoming and scattered leptons are: q = l − l′,

Q2 = −q2, xbj = Q2/(2P · q), y = (P · q)/(P · l), and W =
√

(P + q)2.

• The ratio of the energy carried by the detected hadron H and by the virtual

photon is defined as

zh = (P · Ph)/(P · q). (2.22)

• The transverse momentum of the detected hadron with respect to the virtual

photon is defined as

Pt =
~q · ~Ph
|~q|

. (2.23)

• The missing mass W ′ is defined as

W ′ =
√

(q + P − Ph)2 =
√
P 2
X . (2.24)

• The azimuthal angle φh between the lepton plane and the hadron plane is

defined following the “Trento Conventions” [2], as in Fig. 2.2. In the target

rest frame, this convention is expressed as the following:

cosφh =
q̂ ×~l
|q̂ ×~l|

· q̂ ×
~Ph

|q̂ × ~Ph|
,

sinφh =
(~l × ~Ph) · q̂
|q̂ ×~l||q̂ × ~Ph|

, (2.25)

where q̂ = ~q/|~q|.

• The azimuthal angle φS between the lepton plane and the spin vector is illus-

trated in Fig. 2.2.
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The SIDIS differential cross section can be expressed as a contraction between

the leptonic tensor Lµν and the hadronic tensor W µν as [51]

dσ

dxbjdydzhdφSdP 2
t dφh

=
α2y

8zhQ4
2MW µνLµν . (2.26)

The leptonic tensor is defined as [51]

Lµν = 2(lµl
′
ν + l′µlν − l · l′gµν) + 2λeεµνρσl

ρlσ′. (2.27)

The hadronic tensor is defined as [51]

W µν =
1

(2π)3

1

2M

∑
X

∫
d3PX

2P 0
X

δ(4)(q + P − PX − Ph)

×〈P |Jµ(0)|h,X〉〈h,X|Jν(0)|P 〉, (2.28)

where Jµ(ξ) is the electromagnetic current divided by the elementary charge and a

sum is implied over the polarizations of all hadrons in the final state. The hadronic

tensor, at the leading order of the 1/Q expansion, can be expressed as a convolu-

tion of the correlation functions Φ for the quark distributions, and ∆ for the quark

fragmentation [51]

W µν =
zh
M

∑
q

e2
qxbj

∫
d2k⊥d

2p⊥δ
(2)(p⊥ + zhk⊥ −Pt)

×Tr[Φ(xbj, k⊥)γµ∆(zh, p⊥)γν ], (2.29)

where k⊥ is the intrinsic transverse momentum of the parton, and p⊥ is the transverse

momentum of the fragmenting hadron with respect to the parton. In general, Φ can

be expressed as [51]

Φ(xbj, k⊥) =
∑
i

Ai(xbj, k⊥)Ôi, (2.30)
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where Ai(xbj, k⊥) represents the factor for the ith operator Ôi. Each operator Ôi has

a unique Lorentzian structure and spin dependence, and the ith type of the TMD

PDFs is defined as Ai(xbj, k⊥) times a coefficient based on a certain convention.

Similarly, the TMD FFs are defined in the expansion of ∆. More details regarding

the definitions of the TMD PDFs and the TMD FFs, and the explicit forms of the

operators can be found in [51].

The differential cross section of the SIDIS process can be expressed in terms of

18 structure functions, which are categorized based on the beam and target polar-

izations, and the azimuthal angular dependence [51]:

dσ

dxbjdydzhdφSdP 2
t dφh

=
α2

2Q2xbjy

y2

2(1− ε)

×
{
FUU,T + εFUU,L +

√
2ε(1 + ε) cosφhF

cosφh

UU

+ε cos 2φhF
cos 2φh

UU + λe
√

2ε(1− ε) sinφhF
sinφh

LU

+S||

(√
2ε(1 + ε) sinφhF

sinφh

UL + ε sin 2φhF
sin 2φh

UL

)
+S||λe

(√
1− ε2FLL +

√
2ε(1− ε) cosφhF

cosφh

LL

)
+|~S⊥|

[
sin(φh − φS)(F

sin(φh−φS)
UT,T + εF

sin(φh−φS)
UT,L )

+ε sin(φh + φS)F
sin(φh+φS)
UT + ε sin(3φh − φS)F

sin(3φh−φS)
UT

+
√

2ε(1 + ε) sinφSF
sinφS

UT

+
√

2ε(1 + ε) sin(2φh − φS)F
sin(2φh−φS)
UT

]
+|~S⊥|λe

[√
1− ε2 cos(φh − φS)F

cos(φh−φS)
LT

+
√

2ε(1− ε) cosφSF
cosφS

UT

+ +
√

2ε(1− ε) cos(2φh − φS)F
cos(2φh−φS)
LT

}
, (2.31)
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where ε = (1− y)/(1− y + y2/2), and λe is the lepton beam helicity. The quantities

S|| and S⊥ are defined by decomposing the covariant target spin vector S as in the

following expressions:

S|| =
S · q
P · q

M√
1 + γ2

, (2.32)

Sµ⊥ = Sµ − S||
P µ − qµM2/P · q

M
√

1 + γ2
, (2.33)

where γ = 2Mxbj/Q.

2.3 TMD PDFs and TMD factorization

The TMD PDFs are functions of the transverse momentum of the partons in the

nucleon, in addition to the longitudinal momentum fraction xbj. While there are

different models addressing the functional forms of the transverse momentum depen-

dence of the TMD PDFs [52], the Gaussian ansatz is most widely used in the phe-

nomenological studies of the world data of SIDIS and e+e− annihilation [4, 5, 10, 53].

The twist is widely used in categorizing the TMD PDFs and the terms in the

expression of the SIDIS cross section. One of the generally used definitions is ac-

cording to the powers of (mass/Q) in a term, and the twist of a term with a factor

(mass/Q)t−2 is defined to be t [54]. The lowest twist (leading twist) is t = 2.

At the leading twist, there are eight TMD PDFs for a nucleon [55, 56]. These eight

TMD PDFs are presented in Fig. 2.3 according to the nucleon and quark polariza-

tions. In this figure, U, L and T represent no polarization, longitudinal polarization

and transverse polarization, respectively. Only three leading-twist collinear PDFs do

not vanish, and they can be obtained by integrating out the transverse momentum

of the three TMD PDFs on the diagonal in Fig. 2.3, namely the unpolarized (f1),

the helicity (g1), and the transversity (h1).
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Figure 2.3: The eight leading twist TMD PDFs with different nucleon and quark
polarizations.

Definitions of the twist-2, twist-3 and twist-4 TMD PDFs in the simple parton-

model picture, can be found in [51]. The TMD PDFs and SIDIS cross sections

beyond the simple quark-parton model can be better understood with a closer look

into the formalism of TMD factorization.

The Collins-Soper-Sterman (CSS) formalism of factorization was proposed by

Collins et al. in the 1980s [57, 58, 59]. An updated version of the CSS formalism

was later developed [60]. The CSS formalism involves the TMD PDFs and the TMD

FFs with the evolution equations and has properties like the universality. In the

CSS formalism the cross section is separated into a W term and a Y term. The pure

TMD-factorization term (W ) dominates in the qT � Q region, and the term using the
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collinear factorization (Y ) provides the necessary corrections in the qT & Q region.

Lots of theoretical efforts have been put in the details of the evolution, and the CSS

formalism is still being updated to properly relate the experimental measurements

to the TMD theory [61].

A full description of the TMD factorization and the CSS formalism is beyond the

scope of this dissertation. In the following, key features of the TMD factorization

closely related to the SIDIS phenomenology are discussed.

The SIDIS cross section in the simple parton-model picture is a hard partonic

subprocess folded with the TMD PDFs and the TMD FFs. Following [62], the

hadronic tensor in Eq. (2.28) can be expressed as

W µν =
∑
q

|Hq(Q)2|µν
∫
d2k⊥d

2p⊥δ
(2)(p⊥ + zhk⊥ −Pt)

×fq(xbj, k⊥)Dq(zh, p⊥), (2.34)

where |Hq(Q)2|µν is the hard partonic subprocess γ∗q → q for a virtual photon γ∗

scattering off a quark q. This simple form in Eq. (2.34) allows the TMD PDF

fq(xbj, k⊥) and the TMD FF Dq(zh, p⊥) to have simple probabilistic interpretations.

The TMD PDF fq(xbj, k⊥) represents the probability density to find a quark of flavor

q with momentum fraction xbj and transverse momentum k⊥ inside the nucleon. The

TMD FF Dq(zh, p⊥) is the probability density to find a hadron fragmenting from

a quark. Longitudinally, the hadron carries a fraction zh of the virtual photon’s

momentum and it has a transverse momentum p⊥ from the fragmentation process.

It is more complicated when the evolution is included in the TMD factorization.

Firstly, there are divergences beyond the standard ultra-violet divergences associated

with the renormalizations. The regularization of these divergences brings complica-

tions to the definitions of the TMD PDFs and the TMD FFs. In addition, there is

an additional soft factor to take into account the effect from the soft gluons. With
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this factor in Eq. (2.34), there can no longer be a simple parton-model picture.

The CSS formalism was applied to the SIDIS processes in a few different methods.

One of the methods developed by Ji et al. [63] formulates the spin-independent SIDIS

structure function as

F (xbj, zh, Pt, Q
2) =

∑
q

e2
q

∫
d2k⊥d

2p⊥d
2l⊥δ

(2)(p⊥ + zhk⊥ + l⊥ −Pt)

×fq(xbj, k⊥, µ2, xbjζx, ρ)Dq(zh, p⊥, µ
2, ζz/zh, ρ)

×S(l⊥, µ
2, ρ)H(Q2, µ2, ρ), (2.35)

where µ is a renormalization scale, ρ a gluon rapidity cutoff parameter. x2
bjζ

2
x =

ζ2
z/z

2
h = Q2ρ. H represents the contribution of the parton hard scattering. The

explicit soft factor, S, is from soft-gluon radiation.

Efforts have been taken to retain both the essential elements of TMD factorization

(the evolution and the soft factor) and the resemblance to Eq. (2.34) for an intuitive

physical picture. A typical approach of this type can be found in [62] formulating

the hadronic tensor as

W µν =
∑
q

|Hq(Q)2|µν
∫
d2k⊥d

2p⊥δ
(2)(p⊥ + zhk⊥ −Pt)

×fq(xbj, k⊥;µ; ζF )Dq(zh, p⊥;µ; ζD) + Y µν , (2.36)

where ζF = 2M2x2
bje

2(yN−ys) and ζD = 2(M2
h/z

2
h)e

2(ys−yh). yN and yh are the rapidi-

ties of the nucleon and the produced hadron, respectively. The ys is an arbitrary

low-rapidity cutoff parameter. The soft factor S in Eq. (2.35) is absorbed in the

definitions of the TMD PDF fq(xbj, k⊥;µ; ζF ) and the TMD FF Dq(zh, p⊥;µ; ζD).

The Y term accounting for the corrections in the large Pt range is included as well.
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2.4 TMD PDFs and SIDIS in the simple quark-parton model

In the simple quark-parton model, part of the evolution effect (beyond the collinear

evolution), the soft factor, the cutoffs and the Y correction term are neglected,

and the structure functions of the SIDIS process can be obtained by the simple

convolution of the TMD PDFs and the TMD FFs. This simple model is often called

naive x-z factorization or generalized parton-model (GPM) [62]. In general, the

convolution is defined as [51]

C[wfD] =
∑
q

e2
qxbj

∫
d2k⊥d

2p⊥δ
(2)(p⊥ + zhk⊥ −Pt)

×w(k⊥, p⊥)fq(xbj, k⊥)Dq(zh, p⊥). (2.37)

In Eq. (2.37), the unpolarized TMD PDF fq(xbj, k⊥) and the unpolarized TMD FF

Dq(zh, p⊥) in the conventional notation, are used to represent a certain TMD PDF

and a certain TMD FF in general.

The Gaussian ansatz is widely used in the parameterizations of the TMD PDFs

and the TMD FFs [3, 4, 5, 10]. For example, the unpolarized TMD PDF fq(xbj, k⊥)

and the unpolarized TMD FF Dq(zh, p⊥) are often parameterized as

fq(xbj, k⊥) = f cq (xbj)e
−k2
⊥/〈k

2
⊥〉/(π〈k2

⊥〉), (2.38)

Dq(zh, p⊥) = Dc
q(zh)e

−p2⊥/〈p
2
⊥〉/(π〈p2

⊥〉). (2.39)

The phenomenological parameters, 〈k2
⊥〉 and 〈p2

⊥〉, are the Gaussian widths to de-

scribe the transverse momentum distributions.

The unpolarized SIDIS differential cross section is obtained by removing the
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polarization-dependent terms in Eq. (2.31) and is expressed as

dσ

dxbjdydzhdφSdP 2
t dφh

=
α2

2Q2xbjy

[
(1 + (1− y)2) · FUU

+2(2− y)
√

1− y · F cosφh

UU cosφh

+2(1− y) · F cos 2φh

UU cos 2φh

]
. (2.40)

The structure function FUU involves a convolution of the unpolarized TMD PDF

fq(xbj, k⊥) and the unpolarized TMD FF Dq(zh, p⊥). The structure function F cosφh

UU

at the lowest twist (twist-3) consists of a Cahn contribution and a Boer-Mulders

contribution. The structure function F cos 2φh

UU consists of a twist-2 Boer-Mulders con-

tribution and a twist-4 Cahn contribution. The Cahn contributions involve the

convolution of the unpolarized TMD PDF fq(xbj, k⊥) and the unpolarized TMD FF

Dq(zh, p⊥). The Boer-Mulders contributions involve the convolution of the Boer-

Mulders TMD PDF ∆fq↑(xbj, k⊥) = −h⊥1 (xbj, k⊥) · k⊥/Mp and the Collins TMD

FF ∆Dq↑(zh, p⊥) = 2p⊥ · H⊥1 (zh, p⊥)/(zhMh). A unit vector is defined for conve-

nience as h ≡ Pt/|Pt|. The structure functions are given below with the momentum

conservation condition Pt = zhk⊥ + p⊥.

FUU =
∑
q

e2
qx

∫
d2k⊥fq(xbj, k⊥)Dq(zh, p⊥), (2.41)

F cosφh

UU |Cahn = −2
∑
q

e2
qx

∫
d2k⊥

k⊥ · h
Q

fq(xbj, k⊥)Dq(zh, p⊥), (2.42)

F cosφh

UU |BM =
∑
q

e2
qx

∫
d2k⊥

k⊥
Q

Pt − zhk⊥ · h
p⊥

×∆fq↑(xbj, k⊥)∆Dq↑(zh, p⊥), (2.43)
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F cos 2φh

UU |BM =
∑
q

e2
qx

∫
d2k⊥

Ptk⊥ · h + zh[k
2
⊥ − 2(k⊥ · h)2]

2k⊥p⊥

×∆fq↑(xbj, k⊥)∆Dq↑(zh, p⊥), (2.44)

F cos 2φh

UU |Cahn = 2
∑
q

e2
qx

∫
d2k⊥

2(k⊥ · h)2 − k2
⊥

Q2
fq(xbj, k⊥)Dq(zh, p⊥). (2.45)

The parameterizations of the Boer-Mulders TMD PDF and the Collins TMD FF

usually involves more parameters compared with the unpolarized TMD PDF and

the unpolarized TMD FF in Eqs. (2.38) and (2.39). The parameterization of the

Boer-Mulders TMD PDF in [5] is expressed as

∆fq↑(xbj, k⊥) =
√

2e
∆fq↑(xbj)k⊥
π〈k2

⊥〉MBM

e−k
2
⊥/〈k

2
⊥〉BM , (2.46)

where the Boer-Mulders Gaussian width is defined as

〈k2
⊥〉BM = 〈k2

⊥〉M2
BM/(〈k2

⊥〉+M2
BM), (2.47)

and the collinear part is parameterized as

∆fq↑(xbj) = Nq(α + β)α+βxαbj(1− xbj)βfq(xbj)/(ααββ). (2.48)

The quantities MBM, Nq, α and β are the phenomenological parameters.

The parameterization of the Collins TMD FF in [5] is expressed as

∆Dq↑(zh, p⊥) =
√

2e
∆Dq↑(zh)p⊥
π〈k2

⊥〉MC

e−p
2
⊥/〈k

2
⊥〉C , (2.49)

where the Collins Gaussian width is defined as

〈p2
⊥〉C = 〈p2

⊥〉M2
C/(〈k2

⊥〉+M2
C), (2.50)

and the collinear part is parameterized as

∆Dq↑(zh) = NC
q (γ + δ)γ+δzγh(1− zh)δDq(zh)/(γ

γδδ). (2.51)
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The quantities MC , NC
q , γ, and δ are the phenomenological parameters.

Using the Gaussian ansatz in Eqs. (2.38) and (2.39), the convolution of TMD

PDF and TMD FF can be carried out analytically. FUU and the Cahn parts of

the structure functions F cosφh

UU and F cos 2φh

UU in Eqs. (2.41), (2.42) and (2.45) after

convolution can be expressed as

FUU =
∑
q

f cqD
c
q

e2
qxbj

π〈P 2
t 〉
e−P

2
t /〈P 2

t 〉, (2.52)

F cosφh

UU = −2
∑
q

f cqD
c
q

Ptzhe
2
qxbj〈k2

⊥〉
πQ〈P 2

t 〉2
e−P

2
t /〈P 2

t 〉, (2.53)

F cos 2φh

UU = 2
∑
q

f cqD
c
q

P 2
t z

2
he

2
qxbj〈k2

⊥〉2

πQ2〈P 2
t 〉3

e−P
2
t /〈P 2

t 〉, (2.54)

where 〈P 2
t 〉 = 〈p2

⊥〉+z2
h〈k2
⊥〉. The Boer-Mulders parts after convolution can be found

in [5].

2.5 Experiments and phenomenology of TMD

In this section, the phenomenological studies of the TMDs are reviewed. While it

has been shown that the evolution effect is expected to be significant, most of the

existing studies used the simple formalism (GPM) described in section 2.4. In this

simple formalism, the structure functions of the SIDIS process are obtained by the

simple convolution of the TMD PDFs and the TMD FFs as in Eq. (2.37). An

example showing the power of this formalism is the agreement between the model

descriptions and the experimental results of the Sivers and the Collins effects [53].

The Sivers effect emerges from the convolution of the Sivers TMD PDF and the

unpolarized TMD FF. The Collins effect is from the convolution of the transversity

TMD PDF and the Collins TMD FF. The Sivers and the Collins effects are related

to different azimuthal modulations in the SIDIS process on a transversely polarized
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nucleon [51, 53].

While factorization originates in the high energy limit (Q � ΛQCD or Q �

Mnucleon) [12, 60], and at low Q2 the description with hadronic degrees of freedom is

more widely used [28], the applicability of the quark-parton model with factorization

in the modest Q2 ranges has been observed in the quark-hadron duality [64, 65].

In the polarized and the unpolarized SIDIS processes, the azimuthal modulations

were found to be sizable in experiments [66, 67, 68, 69]. The intrinsic transverse

momenta of the quarks are expected to play an important role in these observations

[3, 70]. In the global fitting with different types of data (multiplicities and/or asym-

metries) in different kinematic ranges, very different values of 〈k2
⊥〉 were extracted.

Namely 〈k2
⊥〉 is at the level of 0.2 GeV2 in [3, 10], at the level of 0.5 GeV2 in [4] and

less than 0.05 GeV2 in [5]. While the multiplicities and asymmetries from experi-

ments have been fitted with ratios of theoretical cross sections, the corresponding

study for the absolute cross sections is rather limited.

In the following subsections, several typical existing phenomenological studies of

TMDs based on the SIDIS data are reviewed.

2.5.1 Unpolarized SIDIS phenomenology without TMD evolution effect

In [3], the data from the European Muon Collaboration (EMC) in 1987 [66] were

fitted with the unpolarized SIDIS differential cross section, integrating out all the

variables except φh, to probe the φh dependence of the unpolarized SIDIS cross

section. The comparisons of the data and the fitting in the φh bins from [3] are

presented in Fig. 2.4.

In [3], the Pt behavior of another set of EMC data in 1991 [71] was also fitted.

Instead of directly fitting the SIDIS cross section, the ratio of the SIDIS cross section

and inclusive DIS cross section (multiplicity) was fitted. The comparisons of the data

and the fitting in the Pt bins from [3] are presented in Fig. 2.5. The fitting parameters
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Figure 2.4: Fit on the φh dependence of the EMC data: the solid curves are up to
twist-3, the dashed curves include the higher twist terms. The figure is taken from
[3].

were the Gaussian widths 〈k2
⊥〉 and 〈p2

⊥〉. The results combining the fitting on the

φh and Pt dependence were 〈k2
⊥〉 = 0.25 GeV2 and 〈p2

⊥〉 = 0.20 GeV2.

In 2014, the multiplicity data concerning the Pt dependence of the SIDIS process

from HERMES [72] and COMPASS [73] were fitted in the study [4] while the φh

dependence was not included. The comparisons of the fitting and the HERMES data

with π+ and π− as produced hadrons are presented in Figs. 2.6 and 2.7. The results of

fitting the HERMES data in [4] were 〈k2
⊥〉 = 0.57±0.08 GeV2 and 〈p2

⊥〉 = 0.12±0.01

GeV2. While the χ2
dof = 1.69 value from the fitting is quite satisfactory, the 〈k2

⊥〉

value deviates from other studies significantly. The results of fitting the COMPASS

data in [4] were 〈k2
⊥〉 = 0.61± 0.20 GeV2 and 〈p2

⊥〉 = 0.19± 0.02 GeV2.

In [4], instead of using 〈p2
⊥〉 as a constant, the form 〈p2

⊥〉 = N · zah(1 − zh)
b

GeV2 was tested. This change improved χ2
dof = 1.69 to χ2

dof = 1.63, but gave large

uncertainties to the parameters N , a and b. The functional form, in which 〈k2
⊥〉
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Figure 2.5: Fit on Pt dependence of EMC data: solid curves are up to twist-
3, dashed curves include higher twist terms. The shadowed region corresponds to
varying the fitting parameters by 20%. The figure is taken from [3].

depends on xbj, was also tested. This form was from [74], as

〈k2
⊥〉 = 〈k2

⊥〉0
(1− xbj)αxσbj
(1− x0)αxσ0

, (2.55)

where x0 = 0.1. There was no significant improvement in the fitting quality by

including an xbj dependence of 〈k2
⊥〉. The improvement in the fitting quality was

also negligible by including a flavor dependence in 〈k2
⊥〉 and 〈p2

⊥〉 [4].

In [5], in addition to the multiplicity data from HERMES and COMPASS [72,

73], the data on unpolarized azimuthal modulations from HERMES and COMPASS

[75, 76] were fitted simultaneously.

The cosφh and cos 2φh modulations (also called asymmetries in [5]) are defined
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Figure 2.6: Fit on Pt dependence of HERMES π+ production SIDIS data. The
figure is taken from [4].

as

Acosφh = 2〈cosφh〉 = 2

∫
dφhdσ cosφh∫

dφhdσ
, (2.56)

Acos 2φh = 2〈cos 2φh〉 = 2

∫
dφhdσ cos 2φh∫

dφhdσ
. (2.57)
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Figure 2.7: Fit on Pt dependence of HERMES π− production SIDIS data. The
figure is taken from [4].

In terms of structure functions, Eqs. (2.56) and (2.57) can be expressed as

Acosφh =
2(2− y)

√
1− y

1 + (1− y)2

F cosφh

UU

FUU
, (2.58)

Acos 2φh =
2(1− y)

1 + (1− y)2

F cos 2φh

UU

FUU
. (2.59)

In [5], 〈k2
⊥〉 was set as a free parameter, while 〈p2

⊥〉 = A + Bz2
h where A and B

were the other two free parameters. The structure function FUU and the Cahn parts

of the structure functions F cosφh

UU and F cos 2φh

UU are explicitly presented in Eqs. (2.52),
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(2.53) and (2.54). The parameterizations of the Boer-Mulders TMD PDF and the

Collins TMD FF can be found in [5], and their contributions in the fitting were

found to be marginal in [5]. The best fit curves for 〈cosφh〉 from the simultaneous

fitting of the HERMES data on the multiplicities and the 〈cosφh〉 and 〈cos 2φh〉

modulations is presented in Fig. 2.8. When fitting the 〈cos 2φh〉 modulation, the

Cahn effect was set to zero. The minimal χ2 fitting results for the HERMES data

<2cos(φ)> π
+ from P

<2cos(φ)> π
- from P
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Figure 2.8: Best fit curves for 〈cosφh〉 using the HERMES data on multiplicities,
〈cosφh〉 and 〈cos 2φh〉. Cahn effect in 〈cos 2φh〉 was set to zero. The figure is taken
from [5].

were 〈k2
⊥〉 = 0.037±0.004 GeV2, A = 0.126±0.004 GeV2 and B = 0.506±0.045 GeV2.
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The 〈cosφh〉 data constrained 〈k2
⊥〉 to be a very small value (0.037 GeV2), compared

with the much larger value (0.57 GeV2) from [4] in which only the multiplicity data

were fitted.

2.5.2 Polarized SIDIS phenomenology without TMD evolution effect

Besides the unpolarized SIDIS, the asymmetries in polarized SIDIS have been stud-

ied intensively in recent years. The Sivers asymmetry (A
sin(φh−φS)
UT ), related to the

convolution of the Sivers TMD PDF and the unpolarized TMD FF, can be extracted

from the single-spin-asymmetry of a transversely polarized target.

An example of the phenomenological studies of the Sivers asymmetries without

considering the evolution effect can be found in [6]. The comparisons of the fitting

and the COMPASS data [77] taken from [6] is presented in Fig. 2.9.

The Collins asymmetry (A
sin(φh+φS)
UT ), related to the convolution of the Transver-

sity TMD PDF and the Collins TMD FF has also been studied. An example can be

found in [7]. The comparisons between this fitting and the COMPASS data [78] is

presented in Fig. 2.10.

2.5.3 SIDIS phenomenology with TMD evolution effect

As discussed in previously, the QCD evolution could have an important effect in the

studies of TMDs. However, the phenomenological studies with the QCD evolution

effects are limited so far. At the time this dissertation is being written, there is no

published phenomenological study with the evolution effect of the unpolarized SIDIS

process.

A recent study of the Sivers effect with the evolution can be found in [8]. The

data from HERMES [79], COMPASS [80, 81] and JLab [82] were simultaneously

fitted with the evolution effect taken into account by using the Sudakov factor in

[8]. The comparisons of the fitting and the HERMES data in [8] is presented in
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Figure 2.9: COMPASS data vs. fitting: Sivers asymmetries. The solid lines are
from the best fitting. The shaded areas correspond to the statistical uncertainties of
the fitting parameters. The figure is taken from [6].

Fig. 2.11. A noticeable feature of [8] is that this study had the universality feature

thus the result from this SIDIS study was able to make predictions for the Drell-Yan

processes. The minimal χ2
dof in [8] was around 1.3, at the same level as the fitting

for the Sivers asymmetries without the evolution effect in [6].

A recent study of the Collins effect with the CSS formalism for the evolution

can be found in [9]. The SIDIS data from HERMES [79], COMPASS [83] and JLab

[82], and the e+e− annihilation data from BELLE [84, 85] and BaBar [86] were

simultaneously fitted. The comparisons of the fitting and the HERMES data in [9]

is presented in Fig. 2.12. The minimal χ2
dof in [9] is around 0.88, at the same level

as the fitting for the Collins asymmetries without the evolution effect in [7].
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Figure 2.10: COMPASS data vs. fitting: Collins asymmetries. The solid lines are
from the best fitting. The shaded areas correspond to the statistical uncertainties of
the fitting parameters. The figure is taken from [7].

2.5.4 Motivation of the study in this dissertation

As reviewed in this chapter, the SIDIS measurements on proton have been carried out

by a number of experiments and the world data have been used for phenomenology

studies [4, 5, 10, 53, 64, 65, 72, 73, 75, 76]. However, the SIDIS data on the neutron

are rather limited, since there is no stable free neutron target. Using a polarized

3He target as an effective polarized neutron target for experimental studies related

to the spin structure of the neutron is uniquely advantageous, due to the dominant

neutron spin contribution to the 3He spin [87]. The SIDIS experiment E06-010 in

Hall A of JLab was carried out with a 5.9 GeV polarized electron beam and a

transversely polarized 3He target, between October 2008 and February 2009. The

experiment covered a kinematic range 0.12 < xbj < 0.45, 1 < Q2 < 4 (GeV/c)2,
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Figure 2.11: HERMES data vs. fitting: Sivers asymmetries. The figure is taken
from [8].

0.45 < zh < 0.65, and 0.05 < Pt < 0.55 GeV/c. Studies on the data of E06-010

for single-spin asymmetries (SSAs) and double-spin asymmetries (DSAs) have been

carried out [82, 88, 89, 90]. These first SIDIS asymmetry results from 3He as an

effective neutron target were related to TMD PDFs such as transversity, Sivers,

pretzelosity, trans-helicity, and TMD FFs such as Collins.

Data on the absolute SIDIS cross sections would enhance the studies of the TMDs,

as the evolution effect is much stronger on the absolute cross sections compared with

the ratios [91]. In recent years, the unpolarized SIDIS processes have attracted

considerable interest due to providing special insights into the TMD evolution effect

[92].
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Figure 2.12: HERMES data vs. fitting with evolution: Collins asymmetries. The
figure is taken from [9].

In the following chapters, the configuration of experiment E06-010, the data

analysis and the results of the unpolarized SIDIS differential cross section from a

3He target will be presented.
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3

The Experiment

The SIDIS experiment E06-010 in Hall A of the Thomas Jefferson National Ac-

celerator Facility (Jefferson Lab or JLab) was carried out with a 5.89 GeV polar-

ized electron beam and a transversely polarized 3He target, between October 2008

and February 2009. The experiment covered a kinematic range 0.12 < xbj < 0.45,

1 < Q2 < 4 (GeV/c)2, 0.45 < zh < 0.65, and 0.05 < Pt < 0.55 GeV/c.

In the subsequent sections, an overview of JLab is presented first, followed by the

discussion about the apparatus related to experiment E06-010.

3.1 Overview

An overview of the Continuous Electron Beam Accelerator Facility (CEBAF) and

the three experimental halls in JLab is taken from [93] and presented in Fig. 3.1.

There were three experimental halls at the time experiment E06-010 was carried

out, namely Hall A, B and C. As shown in Fig. 3.1, Hall A is the largest one among

the three experimental halls at JLab. A review of the recent 12-GeV upgrade of

JLab and the new facilities can be found in [94].

A 3D overview of the configuration of experiment E06-010 is taken from [95] and
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Figure 3.1: An overview of JLab.

presented in Fig. 3.2.

For the production runs, the experiment used a longitudinally polarized 5.89 GeV

electron beam with an average current of 12 µA. The average beam polarization was

(76.8±3.5)%. Beam energies at 1.23 GeV and 2.4 GeV were used for elastic electron-

proton (ep) calibration runs.

The Hall A 40-cm long polarized 3He target was used in the experiment. The

target cell contained about 10 amg of 3He and a small amount of N2. There were

three pairs of Helmholtz coils perpendicular to each other around the 3He target

providing magnetic fields with different directions according to the experiment for

defining the direction of the 3He polarization. Only one of the three pairs of coils is

shown in Fig. 3.2.

41



The BigBite spectrometer [96, 97, 98] is placed to the beam right facing the beam

dump, at a central polar angle of 30◦ as in Fig. 3.2. In the lab frame, the beam right

is defined as the −x direction (−y×z), where the y direction is vertically up and the

z direction is along the beam direction. The BigBite spectrometer was configured

to detect the scattered electrons in the experiment. The angular acceptance of the

BigBite was: (-140, 140) mrad for the in-plane angle and (-240, 240) mrad for the

out-of-plane angle. The BigBite’s polar and azimuthal angular acceptance ranges

in the lab frame were 23◦ to 40◦ and 245◦ to 300◦, respectively. The momentum

acceptance range of the BigBite was from 0.6 GeV/c to 2.5 GeV/c.

The (left) high-resolution spectrometer (HRS, or Left-HRS) [99] was placed to

the beam left, at a central polar angle of 16◦. The HRS was configured to detect

the electro-produced hadrons in the experiment. The angular acceptance range of

the HRS was relatively small: (-30, 30) mrad for the in-plane angle and (-60, 60)

mrad for the out-of-plane angle. In the lab frame, the polar and azimuthal angular

acceptance ranges of the HRS were 13.5◦ to 18.5◦ and 78◦ to 102◦, respectively. The

momentum acceptance of the HRS was set in the range of (1.0±4.5%)×2.35 GeV/c.

3.2 The electron beam

In this section, the JLab accelerator before the recent 12 GeV upgrade and the

electron beam used in experiment E06-010 are discussed. The accelerator at JLab

consisted of one injector, two super-conducting linear accelerators (linacs), and two

recirculation arcs. Electrons were accelerated by the linacs and circulated up to five

times. Electron beams with high polarization were delivered to Hall A and C at

high current and delivered to Hall B at low current. The accelerator and the three

experimental Halls are shown in Fig. 3.1. Details of the accelerator can be found in

[93, 95, 100].
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Figure 3.2: A 3D overview of the configuration of E06-010. Only part of the target
system is shown, namely the target ladder, collimators and one of the three field
coils. The acceptance of the Left-HRS and BigBite spectrometer is visualized as the
grey and yellow blocks, respectively.

• The electron beam energy during experiment E06-010 was monitored by the

“Tiefenbach” value and cross checked by the Arc measurement. The “Tiefen-

bach” method yielded the following beam energy:

Ebeam = 5891.3± 2.5 MeV. (3.1)

The Arc measurement yielded the following beam energy:

Ebeam,Arc = 5889.4± 0.5(Stat.)± 1.0(Sys.) MeV, (3.2)

where Stat. and Sys. represent the statistical and systematic uncertainties of

the Arc measurement, respectively.
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• The beam current was monitored by the beam current monitors (BCMs) in Hall

A [99]. The averaged beam current was 12 µA during experiment E06-010. The

beam current was calculated using the signal from the two RF cavities of the

BCMs in this experiment. The RF cavities were calibrated by the “OLO2”

cavity which measured the beam current at the injector [93]. The beam charge

was from the integration of the beam current and had a precision at the level

of 1%.

• The beam helicity was flipped at 30 Hz during the experiment. The charge

asymmetry of the beam with opposite helicities was less than 10 ppm for the

entire experiment [95].

• The beam position in the experiment was monitored by two Beam Position

Monitors (BPMA and BPMB), and recorded in the data. Due to the need

of preserving the 3He target cell window (∼ 0.1 mm) during the experiment,

the electron beam was rastered into a 3 × 3 mm2 square, by using two sets of

steering magnets located 23 meters upstream from the target.

3.3 Polarized 3He target

In this section, the important aspects related to the polarized 3He target will be

discussed.

3.3.1 Polarized 3He target as effective polarized neutron target

Neutron has a half-life of 880.2 ± 1.0 s [12], thus there is no stable neutron target.

The lack of a stable neutron target leads to the usage of effective neutron targets

such as deuteron and 3He, for studying the structure of the neutron.

Using a polarized 3He target as an effective polarized neutron target for experi-

mental studies related to the spin structure of the neutron is uniquely advantageous,
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due to the dominant neutron spin contribution to the 3He nuclear spin [87]. This

can be understood by looking at the 3He nuclear wavefunction. The ground state

of polarized 3He is dominated by the S state (with ∼ 90% probability) in which

the spins of the two protons cancel each other and the neutron spin comprises the

entire 3He spin. There are also a P state with negligible probability, an S ′ state with

∼ 1.5% probability and a D state with ∼ 8% probability [101]. An illustration of

the ground state of 3He is taken from [95] and presented in Fig. 3.3.

3He ≈
n

p

n

p p

p

p n p

S S’ D

∼90% ∼1.5% ∼8%

→ n

Figure 3.3: Illustration of 3He nucleus ground state.

The effective polarizations of the neutron (Pn) and the proton (Pp) in a fully

polarized 3He are directly related to the probabilities of the S, S’ and D wave in the

ground state of the 3He nucleus [87], and can be expressed as:

Pn = 1− 2

3
[P (S ′) + 2P (D)], (3.3)

Pp = −1

3
[P (D)− P (S ′)], (3.4)

where P (S ′) and P (D) represent the probabilities of the S ′ and the D state, respec-

tively. The normalization P (S) + P (S ′) + P (D) = 1 is assumed.

We follow [87] to illustrate Eqs. (3.3) and (3.4). The spin-dependent projection
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operators for the nucleons from [87] are expressed as:

P̂±n =
3∑
i=1

1− τ3(i)

2

1± σ3(i)

2
, (3.5)

P̂±p =
3∑
i=1

1 + τ3(i)

2

1± σ3(i)

2
, (3.6)

where P̂n (P̂p) counts the number of neutrons (protons) which are aligned (+) or

antialigned (-) with the 3He spin and τ3(i) (σ3(i)) is the third SU(2) isospin (spin)

operator for the ith nucleon. The sum over the three nucleons is expressed by∑3
i=1. The following relations are obtained based on the well-studied ground state

wavefunction |ψ〉 of the 3He nucleus:

3∑
i=1

〈ψ|τ3(i)|ψ〉 = 1, (3.7)

3∑
i=1

〈ψ|σ3(i)|ψ〉 = P (S) + P (S ′)− P (D), (3.8)

3∑
i=1

〈ψ|τ3(i)σ3(i)|ψ〉 = −[P (S)− 1

3
P (S ′) +

1

3
P (D)]. (3.9)

The effective polarizations can be expresses as:

Pn = 〈ψ| P̂
+
n − P̂−n
P̂+
n + P̂−n

|ψ〉, (3.10)

Pp = 〈ψ|
P̂+
p − P̂−p
P̂+
p + P̂−p

|ψ〉. (3.11)

Substituting Eqs. (3.7), (3.8) and (3.9) into Eqs. (3.10) and (3.11), the results in

Eqs. (3.3) and (3.4) can be obtained. Based on different calculations of |ψ〉 the
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averaged Pn and Pp are [87, 102]:

Pn = 0.86± 0.002, (3.12)

Pp = −0.028± 0.004. (3.13)

3.3.2 Polarized 3He target in experiment E06-010

The 3He target cells used in experiment E06-010 were cells made of GE180 glass. A

schematic figure for the 3He target cell is presented in Fig. 3.4.
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Figure 3.4: Schematic figure for a 3He target cell.

Each of the cells consisted of three parts: the pumping chamber, the transfer tube

and the target chamber. The target chamber was put in the electron beam providing

the target 3He nuclei for the scattering experiment. The pumping chamber was under

the spin-exchange optical pumping (SEOP) process [103], and enabled the 3He nuclei

inside the cell to be polarized. The transfer tube allowed the polarized 3He gas in

the pumping chamber to diffuse to the target chamber. About 8 amg of 3He gas was

filled in the glass cell. A small amount of N2 and a mixture of Rb and K metal were

filled in the cell as they are necessary when polarizing 3He using SEOP. A graphical
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illustration of SEOP is put in Fig. 3.5.

Spin Exchange Optical Pumping (SEOP) of 3He cell
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Figure 3.5: The pumping chamber of the cell is heated to more than 200◦C, to
produce sufficient densities of Rb and K vapors. A circularly polarized laser beam
with 794.8 nm wavelength is applied to the pumping chamber. The Rb atoms go
through the process in the left top plot and become polarized. The polarized Rb
atoms exchange spin with the K atoms and the 3He nuclei. The polarized K atoms
also exchange spin with the 3He nuclei.

In SEOP, the vapor of the alkali metal Rb is polarized by the circularly polarized

laser at wavelength of 794.8 nm. The outermost electron in a Rb atom at the ground

state (5S1/2) is excited to the 5P1/2 state. Both of these states split through Zeeman

splitting in an external magnetic field, to sub-levels mJ = ±1/2. Using a laser beam

with spin parallel to the magnetic field, the excitation is from 5S1/2(mJ = −1/2) to

5P1/2(mJ = 1/2). The electrons at the excited states decay to both the mJ = ±1/2
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sub-levels of the state 5S1/2. By pumping with a polarized laser, Rb atoms with one

of the mJ = ±1/2 sub-levels quickly becomes dominant, thus polarized.

When the excited Rb atoms decay, they emit photons with the same wavelength as

the pumping laser, which can depolarize the Rb atoms and jeopardize the pumping.

By introducing a small amount of N2 molecules, the decay of the excited Rb atoms

becomes dominated by the radiation-less process (∼ 95%), thus the efficiency of the

pumping is much enhanced.

The polarized Rb atoms exchange spins with K atoms at a large rate, making the

K atoms also highly polarized. Both the polarized Rb and K atoms exchange spins

with the 3He nuclei, making the 3He gas polarized. While the spin exchange between

both types of the alkali atoms (Rb and K) and 3He nuclei is dominated by hyperfine

interactions during binary collisions [104, 105], K atoms have an order of magnitude

higher efficiency in spin exchange than Rb atoms, thus SEOP is accelerated by using

a mixture of Rb and K, instead of using only Rb. The efficiency, with a dependence

on the [Rb]/[K] density ratio, was studied in [106]. The [Rb]/[K] density ratio in

experiment E06-010 was around 5 [95].

Another part of the system of a polarized 3He target is a magnetic holding field,

defining the direction of the 3He polarization. Three pairs of Helmholtz coils were

used in experiment E06-010, which enabled one to set the magnetic field to any

direction by tuning the currents in the coils. In the experiment, the magnetic field

had two configurations for the transverse polarization of 3He, namely the vertical

direction (up-down) and the transverse direction (left-right), both of which were

perpendicular to the electron beam. A figure for the Helmholtz coil system taken

from [95] is presented in Fig. 3.6.
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Figure 3.6: The Helmholtz coil system of experiment E06-010.

3.3.3 Target polarization measurement

In the experiment, the percentage of polarization of the 3He gas in the target cell

was measured by using the nuclear magnetic resonance (NMR) [107] and electron

paramagnetic resonance (EPR) techniques [108].

In classical electrodynamics, a particle with a magnetic moment ~M and a gyro-

magnetic ratio γ follows an equation of rotation as below, when it is placed in a

magnetic field ~B0.

d ~M

dt
= γ ~M × ~B0. (3.14)

Another magnetic field perpendicular to ~B0, rotating with an angular frequency −~ωrf

is then added to the system. In a frame rotating with an angular frequency − ~ωrf ,
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Eq. (3.14) becomes

d ~M

dt
= γ ~M × ~Beff , (3.15)

where ~Beff is the effective magnetic field in the rotating frame and is expressed in

Eq. (3.16) below. To be concise, one can define ~B0 to be in the ẑ direction. The

perpendicular magnetic field ~Brf is in the ŷ direction.

~Beff = (B0 − ωrf/γ) ẑ +Brf ŷ, (3.16)

When ~Beff is changing in an adiabatically slow manner, the direction of ~M al-

ways follows the direction of ~Beff . In practice, when using NMR to measure the

polarization, the rotating magnetic field is provided by a radio-frequency (RF) elec-

tromagnetic field with a constant frequency ωrf . The magnetic field ~B0 is changing

adiabatically in time. The adiabatic condition is fulfilled by requiring

∣∣∣∣dB0(t)

dt

∣∣∣∣ � γB2
rf . (3.17)

The angle between the ẑ axis and the direction of ~M (same as ~Beff ) as θ(t) can

be expressed as

θ(t) = arcsin
Brf√

(B0(t)− ωrf/γ)2 +B2
rf

. (3.18)

A pair of pick-up coils is placed in the x̂ direction to pick up the signal induced

by the rotating ~M . The signal the coils pick up is proportional to sin θ(t). The

resonance magnetic field is defined as B0(t) = ωrf/γ. At the resonance, the angle

θ(t) is at the largest value, maximizing the NMR signal recorded by the pick-up coil.

Besides the adiabatic condition in Eq. 3.17, this type of NMR measurement also

requires the field B0(t) to change fast enough, so the relaxation of polarization is
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negligible during the sweep passing through the resonance. This is expressed as

1

Brf

∣∣∣∣dB0(t)

dt

∣∣∣∣ � 1

T1

, (3.19)

where T1 is the longitudinal relaxation time of the polarization.

Due to the requirements of “adiabatic” in Eq. (3.17) and “fast” in Eq. (3.19),

this way of doing NMR measurement is named adiabatic-fast-passage (AFP) NMR.

The AFP-NMR needs to be calibrated with the absolute value of polarization.

Such calibration can be achieved by the electron paramagnetic resonance (EPR).

The EPR polarimetry utilizes the Zeeman splitting of the Rb states [108], which

is proportional to the ambient magnetic field. The frequency corresponding to a

specific Zeeman splitting can be locked by the frequency-modulation (FM) sweep

method. Flipping the spin of the polarized 3He changes the magnetic field due to the

magnetic moments of the 3He nuclei. This change of magnetic field is reflected in the

change of the Zeeman frequency. With the knowledge of the 3He density, amplitude

of magnetic holding field and a few constants, the absolute 3He polarization can be

determined from the change of the Zeeman frequency.

During the EPR measurement, a different type of AFP is used to flip the spin

of polarized 3He: the magnetic holding field is kept at a constant magnitude while

sweeping the RF frequency in an adiabatic fast manner. In this way, the Zeeman

frequency change before and after the spin flip is totally due to the magnetic moment

of the polarized 3He gas.

Experimentally carrying out the NMR-AFP and EPR measurements has been

well established for many years at JLab and by the Medium Energy Physics group

at Duke University [95, 109, 110, 111].
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3.3.4 Polarization dynamics

In this subsection, the polarization dynamics of the 3He gas in a one-chamber target

is presented first to explain the physics in a simple and intuitive manner. Then

the polarization dynamics for a two-chamber cell as used in experiment E06-010 is

presented as a generalization of the one-chamber case.

In a single chamber, the number of 3He nuclei with positive and negative spin-

directions are denoted as N+ and N−, respectively. The total number of 3He nuclei

is a constant Ntot = N+ +N−. The number of alkali metal atoms with positive and

negative spin-directions are denoted as n+ and n−, respectively. The total number

of alkali metal atoms is a constant ntot = n+ + n−. The polarization of the 3He gas

(P ) and the polarization of the alkali metal vapor (PA) are defined as the following:

P =
N+ −N−
N+ +N−

, (3.20)

PA =
n+ − n−
n+ + n−

. (3.21)

The spin exchange dynamics can be expressed as:

dN+

dt
= N−

n+

ntot
γSE −N+

n−
ntot

γSE −
1

2
(N+ −N−)Γ, (3.22)

dN−
dt

= N+
n−
ntot

γSE −N−
n+

ntot
γSE −

1

2
(N− −N+)Γ, (3.23)

where γSE is the spin-exchange rate between the alkali atoms and the 3He nuclei and

Γ is the relaxation rate of the 3He nuclei.

The differential equation for P can be derived by subtracting Eq. (3.23) from

Eq. (3.22) and use Eqs. (3.20) and (3.21):

dP

dt
= γSEPA − γSEP − ΓP. (3.24)
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Assuming P (t = 0) = 0, Eq. (3.24) is solved as

P (t) = PA
γSE

γSE + Γ

[
1− e−(γSE+Γ)t

]
. (3.25)

The maximum of the 3He polarization in the cell is

Pmax = P (t =∞) = PA
γSE

γSE + Γ
. (3.26)

The 3He polarization is maximized by maximizing the polarization of the alkali vapor

PA, maximizing the spin-exchange rate γSE and minimizing the relaxation rate Γ.

The alkali-vapor polarization PA can be increased by increasing the power of the

pumping laser and tuning the spectrum of the laser for better laser-power absorption

by the alkali vapor. In experiments using polarized 3He cell with SEOP, PA ≈ 100%.

The spin-exchange rate γSE can be tuned by changing the proportions of Rb and K

in the cell.

The relaxation mechanism includes the nuclear dipolar interactions between two

nearby 3He nuclei, collisions between 3He nuclei and the cell wall, and the non-

uniform-magnetic-field effect. Babcock et al. proposed there could be an additional

relaxation effect and added an “X-factor” in Eq. (3.26) [112]. The resulting maximal

3He polarization is expressed as

Pmax = PA
γSE

(1 +X) · γSE + Γ
. (3.27)

The origin of the “X-factor” is not understood yet.

In experiment E06-010, the 3He target cell consisted of two chambers, the pump-

ing chamber and the target chamber. The polarization dynamics for one-chamber

cell can be generalized to describe a two-chamber cell by including the diffusion effect

between the two chambers [95, 113]. The differential equations for the polarization

of the pumping chamber Ppc and the polarization of the target chamber Ptc are
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expressed as

dPpc
dt

= γSE(PA − Ppc)− ΓpcPpc − dpc(Ppc − Ptc), (3.28)

dPtc
dt

= dtc(Ppc − Ptc)− ΓtcPtc. (3.29)

The diffusion rate dpc (dtc) denotes the rate of diffusion from the target (pumping)

chamber to the pumping (target) chamber. These differential equations can be solved

as

Ppc(t) = Ppc,max + Cs
pc exp(−Γst) + Cf

pc exp(−Γf t), (3.30)

Ptc(t) = Ptc,max + Cs
tc exp(−Γst) + Cf

tc exp(−Γf t). (3.31)

The maximal polarizations Ppc,max and Ptc,max are expressed as

Ppc,max = PA
γSEfpc

γSEfpc + Γpcfpc + Γtcftcdtc/(dtc + Γtc)
, (3.32)

Ptc,max = Ppc,max
dtc

dtc + Γtc
, (3.33)

where fpc (ftc) is the fraction of the 3He nuclei in the pumping (target) chamber.

The explicit expressions for Cf
pc, C

f
tc, Γf and Γs can be found in [113].

The rates dtc and Γtc were determined on a cell-by-cell basis in experiment E06-010

to determine the polarization ratio Ptc,max/Ppc,max using Eq. (3.33). The polarization

in the pumping chamber Ppc was measured and recorded throughout the experiment

and the polarization in the target chamber was derived using the polarization ratio.

The uncertainty of the target-chamber polarization was estimated to be 3.4% [95].

3.4 BigBite spectrometer

In experiment E06-010, the scattered electrons were detected by the BigBite spec-

trometer [96, 97, 98]. A schematic of the BigBite spectrometer from [93] is presented

in Fig. 3.7.

55



Target

Collimators

Magnet

MWDC Preshower

Shower

Scintillator

Sieve

Coils

Gas Cer.

1 m

Figure 3.7: A schematic of the BigBite spectrometer.

The BigBite spectrometer was placed to the beam right facing the beam dump.

The central polar angle of the BigBite was set at 30◦. The solid angle acceptance of

the BigBite was about 64 msr. The BigBite’s polar and azimuthal angular acceptance

ranges in the lab frame were 23◦ to 40◦ and 245◦ to 300◦, respectively. The momentum

acceptance range of the BigBite was from 0.6 GeV/c to 2.5 GeV/c.

The BigBite spectrometer consisted of a single dipole magnet, eighteen planes

of multiwire drift chambers in three groups and a scintillator plane between the

lead-glass preshower and shower calorimeters. The knowledge of the magnetic field

and the information from the drift chambers, were used to reconstruct the tracks of

charged particles. The trigger was formed by summing the signals from the preshower

and shower calorimeters. The preshower and shower energy depositions with the
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reconstructed momentum were utilized for the particle identification (PID) in the

BigBite [93, 96, 97, 98].

The BigBite magnet provided about 1.2 T magnetic field from about 710 A

current. In this magnetic field, charged particles were bent up or down based on the

signs of their charges. This feature enabled a high-precision discrimination of the

particles with opposite signs of charges. The acceptance for the bent-up and bent-

down particles was different. There were a series of reference runs with reversed

BigBite magnetic field in which the positron events had the same acceptance as the

electron events in the production runs. These reference runs were for studying the

background from electron-positron pair-production.

The Multi-Wire-Drift-Chamber (MWDC) for the reconstruction of tracks con-

sisted of 18 wire planes. Each of the three chambers of the MWDC had six wire

planes which were grouped into three types of directions (x at 0◦, u at 30◦ and v at

−30◦). Two adjacent wires were 1 cm way from each other. A figure of the MWDC

is taken from [93], and is presented in Fig. 3.8.

U, U’

X, X’

V, V’

Figure 3.8: The MWDC of the BigBite.

57



The lead-glass preshower and shower calorimeters provided the trigger and the

PID for electrons in the BigBite. There were 54 preshower blocks in two columns.

Each of the preshower block was made of TF-5 lead-glass and had the size of 8.5 cm

× 34 cm × 8.5 cm. The shower blocks were made of TF-2 lead-glass with the same

size as the preshower blocks. The 189 shower blocks were arranged in seven columns

each of which had 27 rows. A schematic of the preshower, shower and the scintillator

between them is shown in Fig. 3.9.

Figure 3.9: A schematic of the pre-shower, shower and the scintillator of the Big-
Bite.

Electrons and hadrons generate electromagnetic showers and deposit certain amounts

of energy in the preshower and shower calorimeters, recorded in the data on an

event-by-event basis. The energy depositions in the preshower/shower system from
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electrons were generally larger than those from hadrons. The PID in the BigBite was

based on the ability to discriminate electrons and hadrons by combining the informa-

tion of the preshower/shower energy deposition and the reconstructed momentum.

3.5 High-Resolution Spectrometer (HRS)

The High-Resolution Spectrometer (HRS) consisted of three super-conducting quadru-

ples, a 6.6 m dipole magnet and the detector hut [99]. A schematic figure for the

Left HRS is shown in Fig. 3.10.
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Figure 3.10: A schematic of the Left HRS.

The HRS was placed to the beam left. The central polar angle of the HRS was

set at 16◦. The solid angle acceptance of the HRS was about 6 msr. The polar and

azimuthal angular acceptance ranges of the HRS were 13.5◦ to 18.5◦ and 78◦ to 102◦,

respectively. The momentum acceptance range of the HRS was set in the range of

(1.0± 4.5%)× 2.35 GeV/c.
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The tracking information from the HRS was from a pair of Vertical Drift Cham-

bers (VDCs). The trigger was provided by two scintillator planes. Four detectors

in the HRS were used for PID: a CO2 gas Čerenkov detector for electron identifica-

tion, an aerogel Čerenkov detector for pion identification, a ring imaging Čerenkov

(RICH) detector for π±, K±, and proton identification, and two layers of lead-glass

calorimeter for electron-hadron separation.

3.6 Trigger and Data Acquisition

The CEBAF Online Data Acquisition (CODA) system was used for the data ac-

quisition (DAQ) of experiment E06-010. The Experimental Physics and Industrial

Control System (EPICS) was used in addition, providing the assisting information

at a lower rate (every few seconds), such as the beam position, beam current, beam

energy and magnet status.

The triggers in the experiment included the singles triggers on the BigBite and

the HRS, and the coincidence trigger by combining the single triggers. The eight

types of triggers in the experiment are listed in Table. 3.1.

Table 3.1: Triggers in experiment E06-010.

Trigger Description
T1 Low threshold on BigBite lead-glass
T2 BigBite gas Cerenkov singles
T3 Left HRS singles
T4 Left HRS efficiency
T5 Coincidence between BigBite and Left HRS (T1.AND.T3)
T6 High threshold on BigBite lead-glass
T7 BigBite Cerenkov and lead-glass overlap
T8 1024 Hz clock

The single BigBite triggers T1 and T6 were formed by requiring a certain amount

of total energy deposited in the preshower and shower calorimeters at low and high
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threshold, respectively. The single HRS trigger T3 was formed by requiring both of

the scintillator planes to have a paddle with a hit on both sides of four PMTs. The

coincidence trigger T5 was constructed by putting logic AND between T1 and T3.

The accumulated information (clock, raw counts for triggers and beam charge)

was recorded in the scalers for normalizing the experimental data and calculating

the DAQ livetime.

Depending on the electronic modules being used and the event rate, the DAQ

system could lose some events due to its busy state. The livetime flive is defined in

the following equation to take this effect into account:

flive =
Trecorded
Traw

, (3.34)

where Trecorded is the counts of the recorded triggers and Traw is the counts of the

raw triggers.

3.7 Calibrations of the experiment

3.7.1 Calibrations of the BigBite spectrometer

There were several types of runs for calibrating the track reconstruction of the Big-

Bite, as listed below.

• No-field runs: finding the locations of the MWDC.

• Multi-Carbon-Foil runs: calibrating the interaction vertices.

• Sieve runs: calibrating the angles at two incident beam energies with the multi-

foil carbon and hydrogen gas targets.

• Hydrogen runs at elastic kinematics: calibrating the momentum with the elastic

scattering data at two beam energies.

61



The reconstruction of the angular information relied on the runs using the target

foils and the sieve. The positions of each foil and the sieve holes were precisely

known. The positions of the carbon foils and the reconstructed data are presented

in Fig 3.11. The resolution of the vertex z is about 1 cm.
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Figure 3.11: The positions of the seven carbon foils (red lines) and the recon-
structed data (black line).

In the sieve run with the carbon foils, the vertex positions (the foils), and the

sieve positions were precisely measured, thus the angular information of the events

from a certain foil and passed through a certain sieve hole is known. A 2D plot of

the sieve and the angular constraint provided by one of the holes are presented in

Fig 3.12.

The relations between (dxtar, dytar) and (θphy, φphy) can be expressed as [114]

θphy = arccos
[
(cos θ0 − dytar sin θ0 sinφ0)/

√
1 + dx2

tar + dy2
tar

]
, (3.35)

φphy = arctan [(dytar cos θ0 + sin θ0 sinφ0)/(sin θ0 cosφ0 + dxtar)] , (3.36)
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Figure 3.12: A 2D plot of all the events from the sieve run (black dots) is presented
in the left big panel. The events from the middle foil in the vertex z range of
−3 < vz < 3 cm (red dots) are drawn on top of the black dots. The differences (δs)
between the reconstructed angles and the central angles using the red-dot events are
presented in the four panels on the right side. The quantities dxtar, dytar, θphy and
φphy represent the out-of-plane angle, the in-plane angle, the physical polar angle
and the physical azimuthal angle, respectively.

where θ0 and φ0 are the central polar and azimuthal angles of a detector. The central

angles of the BigBite and the HRS are presented in Table 3.2.

Type of angle Value
BigBite central polar angle θbb0 30◦

BigBite central azimuthal angle φbb0 270◦

HRS central polar angle θhrs0 16◦

HRS central azimuthal angle φhrs0 90◦

Table 3.2: The central polar and azimuthal angles of the BigBite and the HRS.

The relation between the angles in Eqs. (3.35) and (3.36) can be understood by

looking at the coordinate systems presented in Fig 3.13. In the detector coordinate
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Figure 3.13: A top view of the physical (subscript phy) and the detector (subscript
bb and hrs) coordinate systems.

system (DCS), the z0 axis points from the interaction vertex to the detector center,

the x0 axis points vertically down (into the paper), and the y0 axis is in the direction

ŷ0 = −x̂0× ẑ0. The vector for the direction of an event in the DCS can be expressed

as

~v = (dxtar, dytar, 1), (3.37)

where the out-of-plane (out of the y0-z0 plane) angle dxtar is defined as the ratio

(xtar/L) of the length xtar = dxtar × L and a fixed distance L, and the in-plane

(in the y0-z0 plane) angle dytar is defined similarly. These definitions are especially

useful for using the sieve plate with a fixed L to calibrate the detector angles. The

same vector in the physical coordinate system (PCS) can be easily derived as

~v′ = (sin θ0 cosφ0 + dxtar, dytar cos θ0 + sin θ0 sinφ0, cos θ0 − dytar sin θ0 sinφ0).(3.38)

The polar and azimuthal angles of the vector ~v′ are found as in Eqs. (3.35) and

(3.36). The θbbphy and φbbphy resolutions were about 0.25◦ and 0.6◦, respectively.
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After the angle-reconstruction calibrations, the elastic electron-proton scatter-

ing runs at 1.23 and 2.4 GeV beam energy were used to calibrate the momentum

reconstruction. In the elastic scattering process, the momentum of the scattered

electron can be calculated based on energy-momentum conservation, with a known

polar angle. The momentum resolution was about 1%.

The BigBite calorimeter was used for both the threshold of the BigBite trigger

and the PID. The two main aspects of the calibration are listed below.

• Cosmic ray calibration: match the gains for all PMTs by changing the high-

voltage (HV) settings.

• Elastic scattering calibration: used the reconstructed momentum in the elastic

ep runs to tune the ADC gains in software.

The average energy resolution was about σE/P ≈ 8%. Using the preshower and

shower energy for PID will be discussed in section 4.2.2. A description of the total

shower energy deposition was built into the Monte Carlo simulation for the experi-

ment, which will be discussed in section 4.3.2.

3.7.2 Calibrations of the left HRS

The calibration procedure for reconstructing the vertex, angles and momentum are

listed below.

• Vertex calibration of the HRS used the multi-carbon-foil target. The recon-

structed vertex matched actual positions of the foils, as shown in Fig 3.14. The

mean resolution of the vertex reconstruction was about 6 mm [95].

• The angular calibration of the HRS was based on the sieve runs using the

multi-carbon-foil target. The reconstructed events matched the actual sieve

pattern, as presented in Fig 3.15. The θphy and φphy resolutions of the HRS

were about 0.07◦ and 0.6◦, respectively.
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• The momentum calibration of the HRS was based on the elastic electron-carbon

scattering using the multi-carbon-foil target. The real momentum was calu-

lated using the scattering angle and the corrections due to the collision energy

losses. A resolution better than 5× 10−4 was achieved [95].
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Figure 3.14: The positions of the seven carbon foils (red lines) and the recon-
structed data (black line), in the HRS calibration runs.

The calibration of the detectors for PID in the HRS are listed below.

• The gas Čerenkov detector was calibrated for the discrimination between lep-

tons (electrons and positrons) and hadrons. The lepton events were mainly in

high ADC channels, while the hadron events were mostly below the threshold.

• The aerogel Čerenkov detector was calibrated for distinguishing pions from

kaons and protons. The pion events occupied in high ADC channels, while the

kaons and proton were mostly in the low ADC channels.
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Figure 3.15: The reconstructed sieve-slit pattern. Each plot is one of the carbon
foils, and each crossing of the magenta lines represents the physical location of a
sieve hole.

• The lead-glass calorimeter was calibrated for distinguishing pions from leptons.

Leptons deposit more energy than hadrons due to the EM shower, and their

spectra could be clearly discriminated.

The procedures of using these detector for the HRS PID will be discussed in

detail in section 4.2.1.

3.7.3 Calibrations of the timing

In experiment E06-010, a coincidence timing (CT, also called coincidence time-of-

Flight, cTOF) was defined as the time difference between the production of two

particles detected by the BigBite and the HRS. The CT spectra between different

particles were different due to different flight times. The CT was used to suppress the

random coincidence background, and also in the PID for different hadrons detected

by the HRS. The calibrations of CT aimed at setting the offsets of (e, e′π±) peaks at
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0, and optimizing the resolution.

The CT spectrum of 3He(e, e′h+)X is presented in Fig 3.16. In this spectrum, the

electrons detected by the BigBite were selected by the PID techniques introduced in

the next chapter, no PID cut was applied to the HRS, and all the production runs

in which the HRS detected positively charged particles were combined.
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Figure 3.16: The CT spectrum of (e, e′h). The π+ peak centers at CT =0 ns, the
K+ peak centers at -1.7 ns, and the proton peak centers at -6.7 ns.
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4

Data analysis

The goal of the data analysis is to extract the unpolarized SIDIS differential cross

sections from the data. The detector calibration, data reconstruction and data qual-

ity check have been carried out in the asymmetry studies of experiment E06-010

[93, 95]. The data analysis for the unpolarized SIDIS differential cross section is

more complicated than that for the asymmetry studies due to the need of a thor-

ough understanding and description of the experimental acceptance as well as a good

control of the systematic uncertainties, as some of which were less important due to

the cancellation in the asymmetry studies. Dedicated developments and updates of

the detector models in the simulation enabled a good description of the experimental

acceptance, and have been successfully used in single electron channels as well as co-

incidence SIDIS channels. Detailed studies of the systematic uncertainties have been

carried out thoroughly for the cross section extraction and the overall systematic un-

certainty is mostly under 10%. In addition, radiative corrections, subtraction of the

radiative tails from the exclusive scattering channels, and bin-centering corrections

have been applied. In this chapter, the general procedures of the data analysis will

be presented first. Then each element in the entire analysis will be discussed.
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4.1 General procedures of data analysis

The general procedure of the data analysis is listed below.

• The data in each experimental run were combined, and the data events were

put in certain kinematic bin sets.

• The events in each bin contained both the “good” and the “bad” events. The

bad events are those consisted of various contaminations/backgrounds, and

were subtracted or corrected for. The efficiencies, related to the fact that some

of the good events were not recorded in the data or were cut away in the

analysis process, were corrected for.

• The raw differential cross section in each bin was obtained by applying the

acceptance correction to the number of data events, with a Monte Carlo sim-

ulation that was able to describe the experimental acceptance.

• The raw differential cross sections from the data included not only the physics

of interest, but also the radiative effects (REs). Radiative corrections (RCs)

were carried out to extract the Born differential cross sections from the data,

by using the simulations with and without the REs.

• The bin-centering corrections were carried out, which allowed the comparison

between the experimental results and various models/theories.

An important quantity for normalizing the combined data runs is the luminosity,

which was obtained from the information recorded in each run of the experiment.

In each run, the beam charge, the data-acquisition (DAQ) livetime and the target

temperature were recorded in the data together with the information on the detected

particles from the detectors. The number of beam-electrons was calculated from the

recorded beam charge for each run. The target number density was calculated in
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each run based on the filling density of 3He gas in the target, the target geometry

and the target temperature values at different parts of the target cell during the

experiment. Conventionally the luminosity is defined as the product of the number

of beam-electrons Ne, the target number density ρtar and the target length ltar.

In each run, due to the DAQ livetime, the luminosity corresponding to the recorded

data (effective luminosity) is the product of the conventional luminosity and the DAQ

livetime flive. In order to include the livetime correction in the data normalization

procedure, we defined the effective luminosity Ld as in the following expression:

Ld = Ne · flive · ρtar · ltar. (4.1)

The individual runs were combined together in the analysis and the effective lumi-

nosity related to each of the combined runs were summed to normalize the data

when extracting the differential cross sections. Overall detection efficiencies of the

detectors were also included in the normalization of the data. Using the elastic

electron-proton (ep) calibration runs and the inclusive DIS channel to determine

these overall efficiencies is discussed in the following sections.

A number of corrections needed to be applied to the data in order to extract the

differential cross sections, namely for the efficiency, the contamination/background

subtraction and the acceptance. In order to compare the experimental results with

theoretical/phenomenological models, the radiative corrections and the bin-centering

corrections need to be applied in addition. The differential cross section from the data

in a specific bin before the radiative corrections and the bin-centering corrections is

denoted as
〈

dσ
dPHS

〉
data

, and can be expressed as the following:

〈
dσ

dPHS

〉
data

= Ndata · fcorr ·
1

Ld
· Ls
Nphs

, (4.2)

where Ndata is the number of events from the data in this bin, fcorr is the factor for

the data correction, Ld is the effective luminosity, Ls is the phase-space simulation
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luminosity and Nphs the number of events from the phase-space simulation in this

bin.

The data-correction factor fcorr included the correction for the efficiency and the

contamination/background, and can be expressed as

fcorr =

[
1−

∑
i

fcontam(i)

]∏
j

1

feff (j)
, (4.3)

where fcontam(i) is the contamination fraction of the ith type and feff (j) is the

efficiency of the jth type. The fraction fcontam(i) was defined as the ratio of the

number of events from ith type of contamination/background over the total number

of events. The types of contamination/background included the events from the

radiative tails of the exclusive channels, the N2 background, the random-coincidence

background and the remaining contaminations after the PID cuts. The types of

efficiencies included the PID-cut efficiencies and the overall detection efficiencies of

the BigBite and the HRS. The correction for the π± decay was included in Eq. (4.3)

as feff (decay).

The angular and momentum cuts of the BigBite and the HRS, the total-shower-

energy (ETS) cut of the BigBite, the vertex z cut (common for both detectors),

the DIS-selecting kinematic cuts, the cut on the mass of the undetected final-state

particles W ′ (for SIDIS events), and the coincidence-time (CT) cut (for SIDIS events)

used in this study are listed in Table 4.1.

4.2 Efficiency and contamination corrections

4.2.1 Left HRS PID

The CO2 gas Čerenkov detector, the aerogel Čerenkov detector, the lead-glass calorime-

ter, and the reconstructed momentum of each event were used to do the PID in the

(left) HRS.
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Category Cut
BigBite angular cut 25◦ < θbb < 37◦ and 250◦ < φbb < 290◦

BigBite momentum cut 1.6 < Pbb < 2.5 GeV
BigBite ETS cut ETS > 0.9 GeV
HRS angular cut 14◦ < θhrs < 18◦ and 81◦ < φhrs < 99◦

HRS momentum cut 2.26 < Phrs < 2.41 GeV
Vertex z cut −0.12 < vz < 0.12 m
DIS-selecting invariant mass cut W > 2.3 GeV
DIS-selecting Q2 cut Q2 > 1 GeV2

SIDIS-selecting W ′ cut W ′ > 1.6 GeV
Coincidence-time (CT) cut −3 < CT < 3 ns

Table 4.1: List of cuts on the kinematics in this study.

Each PID cut removes some good events thus has a certain efficiency, and some

contamination after applying all the PID cuts exists. To study the effect of a PID cut

using a certain apparatus on one type of particles, one needs to select a rather clean

sample first, which can be achieved by a tight PID cut using another apparatus. A

tight PID cut, while being able to produce a clean sample, has a low efficiency in

general.

In the runs with negative HRS-polarity, only negatively charged particles were

detected, and the π− and electron events were dominant. The π− and electron

events selected by tight PID cuts in the gas Čerenkov detector are shown in the ratio

Etot/Phrs as in Fig. 4.1, where Etot is the total energy deposition in the lead-glass

calorimeter, and Phrs is the reconstructed momentum. The π− events are mostly in

the range of Etot/Phrs < 0.6, and has a peak around 0.1. The electron events are

mostly in the range of Etot/Phrs > 0.6, and has a peak around 0.85.

The π− and electron events selected by the lead-glass calorimeter (the ratio

Etot/Phrs), observed in the gas Čerenkov detector are presented in Fig. 4.2. The

π− events are mostly in the range of channelGC < 250, where channelGC is the chan-
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nel number1 of the gas Čerenkov detector. The π− spectrum has a very large peak

at 0. The electron events are mostly in the range of channelGC > 250, and has a

peak around 1300.

The tight PID cuts in the gas Čerenkov detector and the ratio Etot/Phrs, are

listed in Table 4.2.

Tight PID cut Type of selection
channelGC > 700 Electron events
channelGC < 10 π− events
Etot/Phrs > 0.8 Electron events
0.08 < Etot/Phrs < 0.11 π− events

Table 4.2: Tight PID cuts in the gas Čerenkov detector and the ratio Etot/Phrs, for
clean sample selection.

The scaling factors of the π− and electron spectra in the lead-glass calorimeter

(Etot/Phrs) and the gas Čerenkov channel are based on a ratio Nfull/Nsample, where

Nfull is the number of events without PID cuts, and Nsample is the number of events

in the clean sample. The integration ranges for Nfull/Nsample used in Figs. 4.1 and

4.2 are listed in Table 4.3. It is observed that the π− and electron spectra, with

proper scaling, add up to the spectrum without PID cuts, and one is able to study

the effects of a cut in Etot/Phrs on different particles. This method allows one to

study the PID-cut efficiency and the fraction of contamination after applying a PID

cut.

In the runs with positive HRS-polarity, only the positively charged particles were

detected, and the π+ events were dominant. There were also a certain amount of

proton events, which could not be distinguished from the π+ events by using the

Etot/Phrs and channelGC spectra. The Etot/Phrs and channelGC spectra of positively

charged particles without applying PID cuts are presented in Fig. 4.3. As the number

1 A channel number is a non-calibrated reading from a detector.
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Integration range Type of spectrum
0.8 < Etot/Phrs < 0.9 Electron spectrum
0.08 < Etot/Phrs < 0.11 π− spectrum
2000 < channelGC < 2500 Electron spectrum
0 < channelGC < 10 π− spectrum

Table 4.3: Integration ranges for electron and π− spectra in the ratio Etot/Phrs and
the gas Čerenkov channel.

of positron events was very small, these spectra with no PID cuts are very similar

to the π− spectra in Figs. 4.1 and 4.2. By applying the tight electron-selecting

PID cuts in channelGC and Etot/Phrs, one can observe the positron events in the

Etot/Phrs and channelGC spectra, as presented in Fig. 4.4. The shape of the positron

spectra are very similar to the electron spectra in Figs. 4.1 and 4.2. A small number

(comparable to the number of positron events) of positively charged hadron events

remained after the tight lepton PID cut, as in Fig. 4.4.
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Figure 4.1: The π− and electron events selected by the gas Čerenkov detector,
observed in the ratio Etot/Phrs. The green histogram contains all the events, without
PID cuts. The black (red) line represents the electron (π−) events selected by a tight
PID cut in the gas Čerenkov detector. The scaling of the electron and π− spectra is
described in the text. The right-panel plot is a zoom-in view of the left-panel plot,
focusing on the junction region.
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Figure 4.2: The π− and electron events selected by the lead-glass calorimeter (the
ratio Etot/Phrs), observed in the gas Čerenkov detector. The green histogram contains
all the events, without PID cuts. The black (red) line represents the electron (π−)
events selected by a tight PID cut in the lead-glass calorimeter. The scaling of the
electron and π− spectra is described in the text. The right-panel plot is a zoom-in
view of the left-panel plot, focusing on the junction region.

The proton and π+ events were separated by using the aerogel Čerenkov detector

and the CT information. The spectra of hadrons with positive (negative) charge

in the aerogel Čerenkov channel channelAC, after the cut 0.08 < Etot/Phrs < 0.11

and several different CT cuts are presented in the left (right) panel of Fig. 4.5.

The spectra in each panel has been scaled to the spectrum without any CT cut,

according to the number of events in the range 1000 < channelAC < 1500, without

changing the shape. The spectra of negatively charged hadrons (mostly π−, with

a very small number of K−) have almost the same shape under different CT cuts,

with a peak at channelAC ≈ 550. The spectra of positively charged hadrons have two

peaks from the π+ and proton spectra. The π+ spectrum has a very similar shape

as the π− spectrum. The proton spectra has a peak at channelAC ≈ 100. The CT

cut can change the size of the proton spectrum relative to the π+ spectrum, due to

the different CT behavior of π+ and proton.

The CT spectra of positively and negatively charged hadrons, under the cut
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Figure 4.3: The Etot/Phrs and the gas Čerenkov spectra of positively charged
particles in the HRS.

0.08 < Etot/Phrs < 0.11, are presented in the left and right panel of Fig. 4.6. The π±

events are mostly in the range −3 < CT < 3 ns, and the proton events are mostly in

the range −9 < CT < −4.5 ns.

The spectrum of positively charged hadrons in the aerogel Čerenkov detector can

be decomposed into the proton and pion spectra, with proper scaling factors. In

this way, the efficiency of the PID cut in the aerogel Čerenkov detector and the
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Figure 4.4: The Etot/Phrs (gas Čerenkov) spectrum of positively charged particles,
with the tight electron-selecting PID cuts in the gas Čerenkov (Etot/Phrs).
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Figure 4.5: The spectra of positively charged hadrons (left panel), and negatively
charged hadrons (right panel), with different CT cuts.
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Figure 4.6: The CT spectra of positively charged hadrons (left panel), and nega-
tively charged hadrons (right panel).

contamination after the PID cut can be studied. The proton spectrum was obtained

by using the cuts 0.08 < Etot/Phrs < 0.11 and −8 < CT < −5.5 ns. The π−

spectrum is very similar to the π+ with the cut 0 < CT < 0.5 ns, and could represent

the spectra of both π+ and π−. The decomposition of the spectrum of positively

charged hadrons without CT cuts is presented in Fig. 4.7. In this figure, factors

fscp and fscπ were used to scale the proton and pion spectra, respectively. These
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Figure 4.7: The decomposition of the spectrum of positively charged hadrons with-
out CT cuts. The black line is the spectrum without CT cuts. The blue line is the
pion spectrum. The red line is the proton spectrum. The green line is the sum of
blue and red line.

scaling factors are expressed as

fscp =
n2nπ,1 − n1nπ,2
np,2nπ,1 − np,1nπ,2

, (4.4)

fscπ =
−n2np,1 + n1np,2
np,2nπ,1 − np,1nπ,2

, (4.5)

where ni, nπ,i and np,i represent the numbers of events in range i (i = 1 or 2)

from the total, the pion and the proton spectrum. Range i = 1 is for the proton

peak 80 < channelAC < 120, and i = 2 is for the pion-dominating range 1000 <

channelAC < 1500. It is straightforward to verify the following relations from Eqs.

(4.4) and (4.5):

n1 = nπ,1fscπ + np,1fscp, (4.6)

n2 = nπ,2fscπ + np,2fscp. (4.7)

In Fig. 4.7, it is observed that the sum (green line) of the proton and pion spectra
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is almost the same as the total spectrum (black line) in all the ranges.

The PID cuts used in the HRS for selecting the π± events from the data of the

production runs are listed in Table 4.4. The efficiencies and contaminations related

Detector name PID cut

Aerogel Čerenkov channelAC > 150
Gas Čerenkov channelGC < 250
Lead-glass calorimeter Etot/Phrs < 0.6

Table 4.4: PID cuts used for π± event selection from the production runs.

to the PID cuts above are listed in Table 4.5.

Item Value

Aerogel Čerenkov cut efficiency 96.5%
Gas Čerenkov cut efficiency 99.5%
Lead-glass calorimeter cut efficiency 99.3%
Positively charged non-pion hadron contamination to π+ 0.7%
Positron contamination to π+ < 10−5

Negatively charged non-pion hadron contamination to π− < 0.1%
Electron contamination to π− < 10−4

Table 4.5: Efficiencies and contaminations related to the PID cuts in the HRS.

4.2.2 BigBite PID

The negatively and positively charged particles detected by the BigBite spectrometer

were bent by the magnetic field in opposite directions, and could be clearly separated.

A two-dimensional (2D) plot showing the clear separation of differently charged par-

ticles is presented in Fig. 4.8. The elastic electron-proton (ep) scattering data were

used to check the separation of particles with different charges. The 2D plots show-

ing the separation of particles with different charges, from the elastic ep data at 1.23

GeV beam energy is presented in Fig. 4.9. The cut(s) applied to the plots are shown
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Figure 4.8: Particles detected by the BigBite spectrometer. The positively charged
particles (blue dots), the negatively charged particles (red dots) and the neutral
particles (black dots) are shown together in the top left panel. The neutral particles
are shown in the top right panel. The positively and negatively charged particles are
shown in the bottom left and right panels, respectively. The densities of the particles
in the top right, and bottom panels are shown in color scales.

in each panel of Fig. 4.9, namely the combinations of the preshower cut and the W

cut. The preshower cut was used to reject the hadrons (mainly π±), as will be dis-

cussed in the following part of this subsection. The invariant mass W cut was used

to select the elastic ep kinematics (0.9 < W < 1.0 GeV), which could help to obtain

a cleaner electron sample. It can be observed that, the positively charged, negatively

charged and neutral particles are well separated. When a clean electron sample is

selected, more than 99.9% of the events were identified as negatively charged, which
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Figure 4.9: Particles detected by the BigBite spectrometer in the elastic ep runs at
1.23 GeV beam energy. The positively charged particles (blue dots), the negatively
charged particles (red dots) and the neutral particles (black dots) are shown together
in each panel. In each panel, the cut(s) applied to the data, and the fraction of the
negatively (positively) charged particles denoted by RN (RP ) are presented.

supports the validity of the charge separation/identification.

The PID in the BigBite spectrometer was based on the ratio of the total shower

energy (ETS) over the reconstructed momentum (Pbb), and the information of the

preshower channel (channelPS). The behavior of leptons and hadrons (mostly pi-

ons) in ETS/Pbb and channelPS can be distinguished from each other. A 2D plot of

channelPS vs. ETS/Pbb is presented in Fig. 4.10. The pion events dominate in the

low preshower channels (channelPS < 300), and cover a large range of ETS/Pbb. The

lepton events are mostly in the range around ETS/Pbb = 1, and cover an extended
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Figure 4.10: The 2D plot of preshower channel (channelPS) vs. ETS/Pbb.

range of the preshower channels. The PID cut for leptons in ETS/Pbb was not a

constant and had a Pbb dependence. This cut was described as

∣∣∣∣ETSPbb
− µ(Pbb)

∣∣∣∣ < Wcut(Pbb), (4.8)

where µ(Pbb) is the central value of ETS/Pbb, and Wcut(Pbb) is the width of the

cut. Both µ(Pbb) and Wcut(Pbb) were determined from the data, by Gaussian fits of

ETS/Pbb in different ranges of Pbb: µ is equal to the Gaussian mean value, and Wcut

is the Gaussian width σ multiplied by a constant Ns chosen empirically. The 2D

plot of Pbb vs. ETS/Pbb, and an example Gaussian fit in the range 1.3 < Pbb < 1.5

GeV are presented in Fig. 4.11. In this plot, a cut of channelPS > 300 was applied,

to suppress the large number of pions in the low preshower channels.

The 2D plot of Pbb vs. ETS/Pbb and the cut with Wcut = 2.5σ is presented in Fig.

4.12. The momentum-dependent quantities µ(Pbb) and σ(Pbb) were parameterized as
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Figure 4.11: A 2D plot of Pbb vs. ETS/Pbb in the left panel. The ETS/Pbb dis-
tribution in the range 1.3 < Pbb < 1.5 GeV (between the two black lines), and the
corresponding Gaussian fit are shown in the right panel.

as

µ(Pbb) = a0 + a1Pbb + a2P
2
bb + a3P

3
bb, (4.9)

σ(Pbb) = b0 + b1Pbb + b2P
2
bb + b3P

3
bb, (4.10)

where a0, a1, a2, a3, b0, b1, b2 and b3 are parameters determined by a series of fits

of ETS/Pbb in different Pbb ranges. Two sets of parameters were used in the ranges

Pbb ≤ 0.9 GeV or Pbb > 0.9 GeV, and were able to describe the Pbb dependence of the

ETS/Pbb distribution in the data. These sets of parameters are presented in Tables

4.6 and 4.7.

Kinematic ranges a0 a1 a2 a3

Pbb ≤ 0.9 1.5664 1.1385 5.6513 0.0
Pbb > 0.9 0.7931 0.4426 -0.2740 0.0457

Table 4.6: Parameters for µ(Pbb).

To study the PID cut in the preshower channels, the channelPS distribution in

different Pbb ranges were studied. A 2D plot of Pbb vs. channelPS, and the channelPS
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Figure 4.12: Events and the lepton PID cut in a 2D plot of Pbb vs. ETS/Pbb. The
PID cut is represented by the black lines.

Kinematic ranges b0 b1 b2 b3

Pbb ≤ 0.9 0.0849 0.1218 -0.1041 0.0
Pbb > 0.9 0.2939 -0.3408 0.1763 -0.0293

Table 4.7: Parameters for σ(Pbb).

distribution in the range 0.9 < Pbb < 1.2 are presented in Fig. 4.13. In this plot,

the ETS/Pbb cut shown in Fig. 4.12 was applied. The hadron (pion) part was fitted

with a Gaussian-convoluted Landau function, and the lepton (electron) part was

fitted with a Gaussian distribution. The data spectrum was well described by the

combined fit. While the data spectrum can be well described by the combined fit,

it is important to check the hadron and lepton spectra individually. Due to the

lack of other PID detectors, the method for studying the HRS PID in Section 4.2.1

could not be used for the BigBite. Relatively clean pion spectrum in the preshower
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Figure 4.13: 2D plot of Pbb vs. channelPS, and the preshower spectrum of events
selected by the ETS/Pbb cut for leptons.

channels can be obtained by requiring ETS/Pbb < 0.45 or ETS/Pbb > 1.55, instead

of the cut for leptons shown in Fig. 4.12. A 2D plot of Pbb vs. channelPS, and the

channelPS distribution in the range 0.9 < Pbb < 1.2 are presented in Fig. 4.14. It
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Figure 4.14: 2D plot of Pbb vs. channelPS, and the preshower spectrum of pion
events, selected by ETS/Pbb < 0.45 or ETS/Pbb > 1.55.

can be observed that the pion spectrum in the preshower channels can be reasonably

described by the Gaussian-convoluted Landau function.
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The pion contamination and PID-cut efficiency have kinematic dependence and

also depend on the interaction channel under the study. In the semi-inclusive channel,

the size of the pion spectrum relative to the electron spectrum is much smaller than

that in the inclusive channel, as presented in Fig. 4.15. The semi-inclusive channel

in this plot requires that a pion is detected by the HRS in coincidence with the

negatively charge particles detected by the BigBite.
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Figure 4.15: 2D plot of Pbb vs. channelPS, and the preshower spectrum of events
selected by the ETS/Pbb cut for leptons, requiring a pion is detected by the HRS in
coincidence.

The fraction of the π− contamination and the PID cut efficiency are defined as

the following:

fcontam(π) =
Nπ,h

Nh

, (4.11)

feff (PS) = 1− Ne,l

Nh −Nπ,h +Ne,l

, (4.12)

where fcontam(π) represents the π− contamination, and feff (PS) represents the

preshower cut efficiency. The numbers Ni, Nπ,i and Ne,i represent the number from

the data (the histogram of preshower spectrum), the number from the pion fit and

the number from the electron fit, where i = l (h) represents the integrated number
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in the range lower (higher) than the preshower cut. The events with i = l and i = h

are the ones being rejected and kept intact by the preshower cut, respectively.

The total number of good events (electrons) can be obtained by substituting Eqs.

(4.11) and (4.12) into Eq. (4.3):

Ne = Nh × (1− fcontam(π))/feff (PS) = Nh −Nπ,h +Ne,l, (4.13)

where Ne is the total number of electrons.

In the SIDIS channel, under different preshower cuts, the PID-cut efficiency and

the π− contamination are different. These numbers in the π+ and π− production

SIDIS channel are presented in Tables 4.8 and 4.9.

Pbb range (GeV) E1 (%) C1 (%) E2 (%) C2 (%) E3 (%) C3 (%)
0.6 - 0.7 9.75 7.91 18.7 5.04 31.2 4.06
0.7 - 0.8 8.68 4.76 16.7 2.96 28.2 2.31
0.8 - 0.9 7.6 3.62 14.8 2.26 25.3 1.74
0.9 - 1.0 5.43 3.17 11.0 1.96 19.5 1.47
1.0 - 1.1 4.36 2.82 8.87 1.71 16.0 1.26
1.1 - 1.2 3.56 2.6 7.27 1.57 13.3 1.15
1.2 - 1.3 3.2 2.0 6.44 1.2 11.6 0.862
1.3 - 1.4 2.88 1.57 5.74 0.936 10.3 0.667
1.4 - 1.5 2.4 1.17 4.84 0.692 8.82 0.492
1.5 - 1.6 2.11 0.903 4.23 0.531 7.72 0.374
1.6 - 1.7 1.97 0.621 3.93 0.364 7.11 0.255
1.7 - 1.8 1.65 0.582 3.33 0.342 6.1 0.239
1.8 - 1.9 1.62 0.358 3.21 0.209 5.8 0.146
1.9 - 2.0 1.35 0.375 2.72 0.222 5.01 0.155
2.0 - 2.1 1.27 0.192 2.53 0.109 4.63 0.0755

Table 4.8: The PID-cut inefficiency [Ei = 1.0−feff (PSi)] and the π− contamination
(Ci) in the π+ production SIDIS channel under three different preshower cuts i = 1,
2 and 3, which are channelPS > 300, 400 and 500, respectively.

It is observed that, with a tighter PID cut, the fraction of the contamination is

smaller, but the efficiency also becomes lower.
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Pbb range (GeV) E1 (%) C1 (%) E2 (%) C2 (%) E3 (%) C3 (%)
0.6 - 0.7 9.75 3.0 18.7 1.87 31.2 1.49
0.7 - 0.8 8.68 1.88 16.7 1.16 28.2 0.906
0.8 - 0.9 7.6 1.45 14.8 0.897 25.3 0.688
0.9 - 1.0 5.43 1.07 11.0 0.656 19.5 0.491
1.0 - 1.1 4.36 0.825 8.87 0.499 16.0 0.368
1.1 - 1.2 3.56 0.747 7.27 0.448 13.3 0.326
1.2 - 1.3 3.2 0.547 6.44 0.326 11.6 0.234
1.3 - 1.4 2.88 0.408 5.74 0.242 10.3 0.173
1.4 - 1.5 2.4 0.297 4.84 0.175 8.82 0.124
1.5 - 1.6 2.11 0.202 4.23 0.119 7.72 0.0836
1.6 - 1.7 1.97 0.142 3.93 0.0831 7.11 0.0583
1.7 - 1.8 1.65 0.133 3.33 0.0781 6.1 0.0545
1.8 - 1.9 1.62 0.088 3.21 0.0513 5.8 0.0357
1.9 - 2.0 1.35 0.102 2.72 0.0601 5.01 0.0419
2.0 - 2.1 1.27 0.0347 2.53 0.0199 4.63 0.0137

Table 4.9: The PID-cut efficiency [Ei = 1.0− feff (PSi)] and the π− contamination
(Ci) in the π− production SIDIS channel under three different preshower cuts i = 1,
2 and 3, which are channelPS > 300, 400 and 500, respectively.

4.2.3 Photon-induced contamination

A more significant contamination in the electron events was from the photon-induced

electrons from the pair-production. The π0 meson, from the electroproduction, de-

cays into two photons. The high energy photons create the photon-induced electron

contamination through the pair-production process. Because the detected particles

were electrons, this contamination could not be rejected by the PID techniques. The

percentage of this contamination in the total electron events was determined by com-

paring the positron yield in the runs using the BigBite with reversed magnetic field

(reversed-polarity runs or RP runs) and the electron yield in the production runs.

The electrons in the production runs and the positrons in the RP runs had the same

acceptance effect, and the yields could be directly compared. The positrons in the

productions runs could not be directly used for this study, because oppositely charge
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particles in the same BigBite magnetic field had different acceptance effects.

A 2D plot of Pbb vs. channelPS, and the channelPS distribution of the positively

charged particles from the RP runs in the range 0.9 < Pbb < 1.2 are presented in

Fig. 4.16. In this plot, the ETS/Pbb cut for leptons in Fig. 4.12 was applied.
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Figure 4.16: 2D plot of Pbb vs. channelPS, and the preshower spectrum of positively
charged particles in the RP runs.

Three main observations from Fig. 4.16 are listed below.

• The number of the positrons decreases very fast in increasing range of Pbb,

which means the photon-induced contamination is much smaller in high Pbb

range than in low Pbb range.

• The contamination from the π+ events to the positrons is much larger than the

case of π− and electrons.

• Due to limited number of RP runs, the statistics was limited. Statistical fluc-

tuations and irregular shapes in channels are observed, which resulted in large

fitting uncertainties when a small kinematic range was under study.

The shapes of the preshower spectra from the positively charged particles in the

RP runs, and from the positively and negatively charged particles in the production
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runs are compared in Fig. 4.17. All these spectra were in the momentum range of

0.9 < Pbb < 1.2 GeV. The observed agreements between the shapes of the spectra

Preshower channel
0 500 1000 1500 2000 2500

E
ve

nt
s

0

20

40

1 channel per bin

Preshower channel
0 500 1000 1500 2000 2500

E
ve

nt
s

0

50

100

150

200
 +πRP: Positron and 

 -πProd: Electron and 

 +πProd: Positron and 

5 channels per bin

Figure 4.17: The shape comparison between the preshower spectra from the pos-
itively charged particles in the RP runs (black line), and from the negatively (red
line) and positively (blue line) charged particles in the production runs. The spectra
in the right panel (five channels per bin) are re-binned from the ones in the left panel
(one channel per bin). The spectra were scaled to have the same number of events
in the channels between 100 and 200, while the shapes were intact.

allowed one to use the pion and lepton fitting results, with proper scaling factors,

to study the π+ contamination to positrons in the RP runs. This method is similar

to the PID study in the HRS and helped to reduce the uncertainties from fitting a

spectrum with limited statistics.

A 2D plot of Pbb vs. channelPS, and the channelPS distribution for the positively

charged particles from the production runs in the range 0.9 < Pbb < 1.2 are presented

in Fig. 4.18.

The π+ contamination to the positrons can be determined in the same way as

in Eq. (4.11) for the case of π− and electrons. Because of the similar shapes of the

pion spectra shown in Fig. 4.17, another way with a scaling method can be used to

avoid fitting a spectrum with limited statistics. This method is expressed as

fcontam(π, 2) =
Nπ,h(2)

Nh(2)
=
Nh(1)

Nh(2)

Nint(2)

Nint(1)
× fcontam(π, 1), (4.14)
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Figure 4.18: 2D plot of Pbb vs. channelPS, and the preshower spectrum of positively
charged particles in the production runs.

where Nint(i) is a number from integrating the ith preshower spectrum around the

pion peak (channel 100 to 170, for example), i = 1 and 2. This method assumed the

following:

Nπ,h(1)

Nint(1)
=
Nπ,h(2)

Nint(2)
. (4.15)

This assumption is valid as long as the integration range of Nint(i) covers clean pion

samples, and the pion spectra 1 and 2 have the same shape. In this way, the fitting

on spectrum 2 is avoided, and fcontam(π, 2) can be obtained from fcontam(π, 1) and

four integrated numbers from the spectra.

The fraction of the photon-induced electron contamination can be expressed as

fcontam(γe) =
Nh(RP)(1− fcontam(π+))

Nh(Prod)(1− fcontam(π−))
· LProd

LRP

, (4.16)

where LProd (LRP) represents the total effective luminosity of the production (RP)

runs.

The fractions of the photon-induced electron contamination in the π+ and π−

production SIDIS channel are presented in Tables 4.10 and 4.11. The statistical

uncertainties in the scaling method are presented in the tables.
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Pbb range (GeV) C1 ± δ1 (%) C2 ± δ2 (%) C3 ± δ3 (%)
0.6 - 0.7 43.3 ± 6.36 45.2 ± 6.52 46.3 ± 6.93
0.7 - 0.8 28.0 ± 4.00 29.4 ± 4.04 29.2 ± 4.22
0.8 - 0.9 18.5 ± 2.83 17.3 ± 2.72 18.1 ± 2.86
0.9 - 1.0 11.6 ± 2.13 11.4 ± 2.07 10.4 ± 2.02
1.0 - 1.1 8.68 ± 1.78 8.39 ± 1.7 8.84 ± 1.77
1.1 - 1.2 3.36 ± 1.19 3.55 ± 1.18 3.89 ± 1.26
1.2 - 1.3 3.94 ± 1.25 4.0 ± 1.22 4.46 ± 1.28
1.3 - 1.4 3.15 ± 1.19 2.71 ± 1.08 2.72 ± 1.06
1.4 - 1.5 2.3 ± 1.06 2.1 ± 0.972 2.01 ± 0.944
1.5 - 2.2 0.527 ± 0.241 0.473 ± 0.219 0.514 ± 0.225

Table 4.10: The fractions of the photon-induced contamination Ci in the π+ SIDIS
production channel, under three different preshower cuts i = 1, 2 and 3, which
are channelPS > 300, 400 and 500, respectively. The δs represent the statistical
uncertainties of the contamination fractions using the scaling method introduced in
the text.

4.2.4 Random coincidence subtraction

Besides the good SIDIS events, there were also a small amount of random-coincidence

events in the time window of −3 < CT < 3 ns. The random-coincidence background

were subtracted by subtracting the events in the time windows of −69 < CT < −19

ns and 9 < CT < 59 ns (with a scaling factor of 6/100) from the events in the time

window of −3 < CT < 3 ns.

The spectra with and without the random-coincidence-background subtraction

in the aerogel Čerenkov detector is presented in Fig. 4.19.

4.2.5 Corrections for shower-threshold drift

There were complicated and time-dependent drifts of the total shower energy thresh-

old for the BigBite trigger during the experiment. The effect of the threshold drift

can be seen in the ETS spectra in the shower blocks. As presented in Fig. 3.9, there

were 189 shower blocks arranged in 27 rows and 7 columns. The ETS spectra in

four typical blocks are presented in Fig. 4.20. In the top left and right panels of
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Pbb range (GeV) C1 ± δ1 (%) C2 ± δ2 (%) C3 ± δ3 (%)
0.6 - 0.7 26.0 ± 4.49 29.6 ± 5.01 29.0 ± 5.26
0.7 - 0.8 20.8 ± 3.29 21.8 ± 3.41 20.9 ± 3.48
0.8 - 0.9 22.4 ± 3.1 20 ± 2.91 21.0 ± 3.06
0.9 - 1.0 12.6 ± 2.2 12.6 ± 2.16 12.0 ± 2.16
1.0 - 1.1 13.9 ± 2.28 13 ± 2.16 12.9 ± 2.16
1.1 - 1.2 6.64 ± 1.61 5.99 ± 1.52 6.8 ± 1.62
1.2 - 1.3 4.9 ± 1.43 4.43 ± 1.35 4.25 ± 1.32
1.3 - 1.4 4.54 ± 1.44 4.77 ± 1.45 4.4 ± 1.4
1.4 - 1.5 3.0 ± 1.2 2.6 ± 1.12 2.6 ± 1.12
1.5 - 2.2 1.96 ± 0.488 1.33 ± 0.391 1.27 ± 0.375

Table 4.11: The fractions of the photon-induced contamination Ci in the π− SIDIS
production channel. The format of the table is the same as the table for the π+

channel above.

Fig. 4.20, the spectra show a step-function-like behavior, which means the effect of

the threshold drifts in these two blocks were not significant. There are very compli-

cated spectra in the bottom two panels, indicating significant effects of the threshold

drifts. All of the 189 blocks experienced complicated threshold drifts to certain ex-

tent, which induced complicated effects in the trigger efficiency. In principle, if the

threshold of each block was known for each run, these effects could be simulated,
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Figure 4.19: The π+ (π−) SIDIS production channels with and without the
random-coincidence-background subtraction is presented in the left (right) panel.
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Figure 4.20: The ETS spectra in four typical blocks. The black lines represent the
spectra without any PID cut. The red lines represent the spectra with the ETS/Pbb
PID cut for leptons.

and thus corrected for. However, two features of the study for the threshold drifts,

as listed below, hindered this block-by-block solution on a run-by-run basis.

• In plots as shown in Fig. 4.20, many blocks do not show step-function-like

spectra, therefore their thresholds cannot be simply read out. This is because

the threshold of one block could change between different runs, and a plot

combining several runs shows the mixed effect of threshold drift in an extended

period of time.

• A number of runs need to be combined together to provide enough statistics

for a spectrum plot of each block. With the data of only one run, only some
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discrete events could be seen in many blocks, therefore it is not possible to

determine the threshold on a run-by-run basis, even if one neglects the drift

during one run.

The method adopted for solving the threshold-drift issue was to apply a cut in

ETS, high enough to override the complicated drift, but not too high to significantly

reduce the kinematic range and the valuable data. In this way, the effect due to the

threshold drift was manually removed. To understand and correct for the efficiency of

the ETS cut, a Monte Carlo simulation was used, and a description of the total shower

energy deposition was included in the simulation. The details of the simulation will

be presented in the next section.

4.3 Monte Carlo simulation

For a full description of the experimental acceptance of E06-010, a model for the

BigBite spectrometer used in E06-010 for electron detection has been developed and

incorporated into the SIMC package [115] which was initially developed for JLab Hall

C experiments and used for the semi-inclusive studies in Hall C [64]. It was adapted

for this experiment [116]. It contains a realistic description of various detectors

including the left HRS used in the experiment E06-010 for hadron detection. The

energy loss, multiple scattering, pion decay processes have also been included in the

SIMC package. The radiation length and materials in the simulation were defined

based on the configuration of the experiment E06-010.

4.3.1 A general description and the flow of the simulation

The simulation used in this study is based on the “sample mean” method of Monte

Carlo which has been used for multi-dimensional numerical integration for decades.
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The 1D and 2D integrals using this method can be found in textbooks:

I1D =

∫
L1D

dxf(x) =
L1D

Ngen

Ngen∑
i

f(xi), (4.17)

I2D =

∫
A2D

dxdyf(x, y) =
A2D

Ngen

Ngen∑
i

f(xi, yi), (4.18)

where I1D (I2D) is the result of the 1D (2D) integration, L1D (A2D) is the 1D (2D)

integration range, Ngen is the number of the sample being generated, xi and yi are the

variables in the ith generation, and f is the function being integrated. This method

can be easily applied to integrations in n dimensions (n is a positive integer):

InD =

∫
∆PHSnD

dPHSnDf(var) =
∆PHSnD
Ngen

Ngen∑
i

f(vari), (4.19)

where ∆PHSnD is the n-dimensional phase space of the integration, and var is a set

of n variables.

The simulation for the number of events in a bin, is essentially a numerical in-

tegration process, with a complicated integrand which includes the differential cross

section, the radiative effect, and the acceptance effect. The flow of the simulation

is presented in Fig. 4.21. The factor named “weight” in this figure is a part of

the integrand in Eq. (4.19), including the differential cross section and the internal

radiative effect. The external radiative effect is included in the energy-loss process.

The acceptance effect is described by the detector model and affected by the multiple

scattering process. This multi-dimensional integration is complicated as some of the

events were rejected (zero contribution in the integration) due to being outside the

acceptance, or outside the boundaries of a chosen bin, or cut away for other reasons

in the analysis. Putting the simulation result in Eq. (4.19) gives the number of events

with one unit luminosity in a specific bin, and a proper scaling for the (effective)
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Figure 4.21: The flow of the Monte Carlo simulation.

luminosity is needed for comparing the number of events between the simulation and

the data.

The numbers of events in a specific bin of data, weighted and phase-space (non-

weighted) simulations are expressed as

Ndata · fcorr =

〈
dσ

dPHS

〉
data

·∆PHSd · facc,d · Ld, (4.20)

Nsim =

〈
dσ

dPHS

〉
sim

·∆PHSs · facc,s · Ls, (4.21)

Nphs = 1 ·∆PHSs · facc,s · Ls, (4.22)

where ∆PHSd is the phase space in the data for a specific bin, and ∆PHSs is the
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phase space in the simulations. The factor facc,d represents the acceptance effect in

the data, and facc,s represents the acceptance effect in the simulations. The factor

Ld is the total effective luminosity, and Ls is the luminosity in the simulations. The

quantities ∆PHSi and facc,i are related to the acceptance, the fiducial and kinematic

cuts and the boundaries of a specific bin, where i = d (s) represents the quantities

in the experiment (simulation). The averaged differential cross section (DXS) of the

data (simulation) in this bin is denoted as
〈

dσ
dPHS

〉
i

where i = data (sim). The DXS

of the data is a quantity from nature, and can be extracted from the data, while in

the simulation it comes from a theoretical model built in the simulation, and can be

retrieved from the simulation results.

In the experiment, the measured cross sections included the internal and external

radiative effects, and the simulation was constructed to include these effects. The

external radiative effects included the energy loss and multiple scattering for the par-

ticles before and after scattering and were included in the SIMC package according to

the defined experimental configuration. The materials in the E06-010 configuration

before and after the scattering are listed in Tables 4.12 and 4.13.

Type Thickness (cm) Density (g/cm3)
Be window 0.0254 1.848
4He gas 31.6 0.000166
Glass window of target 0.0123 2.76

Table 4.12: The materials in the E06-010 configuration for incoming beam electrons.

In the simulation, the length of the target cell was defined to be 40 cm, and the

radius of the cell was defined to be 0.95 cm. The 3He density was set at 0.00141

g/cm (10.5 amg number density). The path length of a beam electron through the

3He gas was calculated based on the target geometry, the interaction vertex and the

angle on an event-by-event basis. The path length through the target window or
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Type Thickness (cm) Density (g/cm3)
Glass cell wall of target 0.166 2.76
4He gas 45.7 0.000166
Air (to the BigBite) 104.3 0.00121
Air (to the HRS) 74.3 0.00121

Table 4.13: The materials in the E06-010 configuration for scattered/produced par-
ticles.

target wall was also calculated on an event-by-event basis.

The internal radiative effects are more closely related to the change of the Born

cross sections, including the vacuum polarization, vertex correction and contributions

from higher-order Feynman diagrams. The internal radiative effects were evaluated

by using additional packages based on the process being studied.

4.3.2 The detector models

One of the key functions of a good detector model is providing a reliable map between

the target variables and the hardware variables of the detector. This map is often

called the detector “optics”. The target variables include the momentum, the angles

and the vertex of each event. The hardware variables are obtained directly from the

information recorded in the detectors during the experiment.

The hardware variables described by the BigBite model were the focal-plane X

and Y positions (Xfp and Yfp) and the out-of-plane and in-plane angles (dXfp and

dYfp). The map between the focal-plane variables and the target variables in the

BigBite model was provided by polynomial expansions up to the third order. The

mapping from the target variables to the focal-plane variables was called the forward

transport, and the reversed mapping was called the reverse transport. They are
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expressed as

afp =
∑
i,j,k,l

Cforward
ijkl × aitarb

j
tarc

k
tard

l
tar, (4.23)

atar =
∑
i,j,k,l

Creverse
ijkl × aifpb

j
fpc

k
fpd

l
fp, (4.24)

where the subscript fp (tar) represents the four focal-plane (target) variables a, b,

c and d, and Cforward
ijkl (Creverse

ijkl ) represents the coefficient of the expansions in the

forward (reverse) transport. The coefficients of each term in the expansion are often

called the optical-matrix coefficients. The orders of the polynomials were no greater

than three:

i+ j + k + l ≤ 3. (4.25)

The relatively big acceptance range of the BigBite was separated in about 200 sec-

tions, each of which has its own optical-matrix coefficients. The flow of an event

going through the BigBite model is presented in Fig. 4.22.

A first check of the sectioned-expansion method was to calculate the focal-plane

(target) variables from the target (focal-plane) variables using the data from the

production runs, and compare these calculated variables with the original ones in the

data. The 2D plots showing the correlations of var(Data) vs. var(Expansion) are

presented in Fig. 4.23, where var(Data) is one of the target (focal-plane) variables

from the data, and var(Expansion) is the same variable from the expansion method.

It is observed that the 2D plots of of var(Data) vs. var(Expansion) is close to the

exact match depicted by the black lines. For a more quantitative view, the difference

between the variables from the data and the expansion (δ(var) = var(Expansion)−

var(Data)) are presented in Fig. 4.24. A test using the data from the Sieve runs

was also carried out, as presented in Fig. 4.25.
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Figure 4.22: The flow of an event going through the BigBite model.

The total-shower-energy deposition was built into the BigBite model in an em-

pirical method as discussed below. Usually, the energy deposition in the calorimeter

(Edp) is related to the energy of the incoming particle (Ein) as

Edp

Ein
= N (µ, σ2), (4.26)

where N (µ, σ2) is a Gaussian distribution with a mean value of µ and a width of σ.

The dependence of σ on Ein can be expressed as

σ = RE
1√

Ein/E0

, (4.27)

where RE is a constant depending on the calorimeter, and E0 is conventionally set

to be 1 GeV. The elastic ep channel was used to provide a clean electron sample

for determining the RE value of electrons detected by the BigBite. Neglecting the

mass of the electrons detected by the BigBite, the ETS/Pbb distribution was used to
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Figure 4.23: The comparisons between the out-of-plane (dx) and in-plane (dy)
angles from the data and the expansion. In each panel the X (Y) axis represents the
variable from the expansion (data). The relation of the variables (varX = varY ) is
represented by the black diagonal lines in each panel. The red dots represent the 2D
comparisons.

determine an empirical value for RE. The ETS/Pbb distributions and the Gaussian

fits using the elastic ep data are presented in Fig. 4.26. Eqs. (4.26) and (4.27)

with RE = 0.085 were built into a Monte Carlo simulation to describe the ETS for

electrons.

A block-by-block setting of the ETS threshold was built in the simulation (the

BigBite model), for finding a ETS cut high enough to override the threshold drifts

in the data. The thresholds for the blocks with a clear step-function behavior were

set at the sharp rising peak, as the top panels of Fig. 4.20. The thresholds of the
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from the data and the expansion. In each panel, the X axis represents the difference
of the variables δ(var), and the Y axis represents the number of events. The mean
value (µ) and the root-mean-square (RMS) value are presented in each panel.

blocks behaving as in the bottom panels of Fig. 4.20 were set at the middle of the

rising slope of the events with the ETS/Pbb PID cut for leptons (the red spectra in

this figure). Two simulations were carried out for the study of the ETS cut. The

first simulation was carried out without using the threshold setting: all the events

accepted by the detector model were kept. The second simulation was carried out by

using the threshold setting: besides requiring an event to be accepted by the detector

model, the ETS of it was required to be larger than the threshold of the block it hit

on. Then a series of ETS cuts was applied to the simulations, and the ratio of events

between the first and second simulation in the momentum bins was compared as in
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correlations of the target variables (var(Data) vs. var(Expansion)) are presented
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Fig. 4.27. Three features are observed in this study, as listed below.

• The cuts ETS > Ecut are able to override the threshold setting with at least

Ecut = 0.8 GeV.

• With higher Ecut values, more events with low momentum are removed.

• The ratio of events with Pbb > 0.9 GeV is very stable with various ETS cuts.

The left HRS model was taken from the SIMC package [115]. This HRS model

also uses the expansion method for the forward and reverse transports.
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Several well-studied channels were used to test both the BigBite and the HRS

model, which will be presented in the next subsection.

4.3.3 Testing the simulation

In a well-studied channel, the Born cross sections found in experiments have been

described by theories/models:

dσ

dPHS Born
=

dσ

dPHS theory
. (4.28)

The simulation can be tested in these channels, using theoretical cross sections and

proper algorithm(s) for the radiative effects. By comparing Ndata and Nsim in Eqs.

(4.20) and (4.21), with proper scaling factors for the luminosity, the agreement be-

tween ∆PHSs · facc,s and ∆PHSd · facc,d can be studied. In the following parts of

this section, the comparison between the data and the simulation in several known

channels are presented.

The simulation with the BigBite detector model was tested by using the cali-

bration runs of elastic ep scattering at incident electron beam energies of 1.23 and
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2.4 GeV. In these simulations, the form factors from [117] were used. The inter-

nal radiative effects were based on [118]. The results from the simulation used the

same luminosity values as the total effective luminosity of the combined data. In

the simulations, only the elastic ep process was included, thus only the peak of the

proton was observed in both the simulation and the data while the peaks from higher

resonances are only observed in the data. The comparisons between the data and

the simulations are presented in Fig. 4.28.

The HRS with the setting for the production runs could not access the elastic

ep scattering, as the scattered electrons were outside the acceptance range of the

HRS. In order to test the acceptance description for the HRS, the inclusive DIS

data from the 3He production runs and the H2 reference cell runs at 5.9 GeV beam

energy were used. The structure functions for the inclusive DIS channels were taken

from a widely used model [119]. The model provided a good description of the
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Figure 4.28: The momentum Pbb (two left panels) and invariant mass Wbb (two
right panels) comparisons between the data and the simulations of the 1.23 (two
top panels) and 2.4 GeV (two bottom panels) elastic ep scattering. The black solid
circles are from the data. The red solid squares are from the simulations. The error
bars represent the statistical uncertainties.

unpolarized inclusive DIS cross sections for the 3He target in experiment E06-014

[120, 121] which had a similar kinematic range. In the kinematic range of the HRS,

the contribution from the quasi-elastic radiative tail was estimated to be negligible

using the simulations. The photon-induced electron contamination was estimated to

be negligible by comparing the electron and positron yields in the HRS with negative

and positive polarities. The comparisons between the data and the simulation in the

3He DIS channel in the HRS is presented in Fig. 4.29. In this comparison, the Mo

and Tsai algorithm was used for the internal radiative effect, and an overall scaling
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Figure 4.29: The scattered electron momentum (Phrs), the polar angle (θhrs) and
the azimuthal angle (φhrs) comparisons of the 3He inclusive DIS channel in the HRS
between the data and the simulation (Sim). The error bars represent statistical
uncertainties. The black solid circles are from the data. The red solid squares are
from the simulation.

factor of 100% was used in the simulation. This overall efficiency at 100% is close

to what was found in experiment E06-014 (99.95%) [120]. A reasonable agreement

between the data and the simulation is observed.

The comparisons between the data and the simulations in the H2 DIS channel in

the HRS is presented in Fig. 4.30. In this comparison, one of the simulations (Sim1)

used the algorithm from Mo and Tsai [122] for the internal radiative effect, the other

simulation (Sim2) used the algorithm from POLRAD [123]. In these comparisons,

the difference introduced by using different methods for internal radiative effects (Mo
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Figure 4.30: The scattered electron momentum (Phrs), the polar angle (θhrs) and
the azimuthal angle (φhrs) comparisons of the H2 inclusive DIS channel in the HRS
between the data and the simulations (Sim1 and Sim2). Different algorithms for the
internal radiative effect were applied in Sim1 and Sim2, as described in the text.
The error bars represent statistical uncertainties. The black solid circles are from
the data. The red solid squares are from the simulation.

and Tsai [122] and POLRAD [123]) was less than 1%. The overall scaling factor of

100% was used in the simulation. A reasonable agreement between the data and the

simulations is observed.

In the kinematic range Pbb > 1.6 GeV of the BigBite spectrometer, the contribu-

tion from the quasi-elastic radiative tail and the photon-induced electron contamina-

tion were less than 2%, but both increased to large values in lower momentum ranges.

This has been observed in experiment E06-014 [120, 121] as well. The determination

of the photon-induced electron contamination was done by comparing the positron
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yield in the BigBite with the reversed magnetic field and the electron yield in the

production runs. In experiment E06-010, the photon-induced electron contamina-

tion involved larger uncertainties in the inclusive channel than in the semi-inclusive

coincidence channel, as the runs for subtracting this contamination provided limited

statistics for the inclusive channel (due to large prescale factors2) while providing

high statistics for the semi-inclusive channels. In addition, we also found different

methods for internal radiative effects (Mo and Tsai [122] and POLRAD [123]) and

different models for the quasi-elastic cross sections (from [119] and [124]) gave quite

different estimations for the quasi-elastic radiative tails in the range Pbb < 1.6 GeV.

The estimation for the fraction of events from the quasi-elastic tail could differ up to

∼ 10% around Pbb = 1.0 GeV, while the differences were less than 1% in the range

Pbb > 1.6 GeV.

Considering the complications above for the inclusive DIS channel in the kine-

matic range Pbb < 1.6 GeV in the BigBite, we only present the comparison of the

data and the simulation in the range Pbb > 1.6 GeV in Fig. 4.31 as an additional test

for the acceptance description of the BigBite besides the elastic ep channels.

The N2 background in the 3He runs was subtracted using the N2 runs. The

efficiency of the PID cuts and the remaining contamination from negatively charged

hadrons and the photon-induced electron after the PID cuts were corrected for, using

the techniques presented in section 4.2.

Besides the PID cuts on the data events, kinematic cuts were also applied to

the comparisons above. In each of the comparisons, the same set of kinematic cuts

was applied to the data and the simulation. In the elastic channel comparison, only

the angular and vertex z cuts were applied. In the DIS channel comparison the

momentum cut and the DIS-selecting cuts were applied in addition. The angular,

2 A prescale factor is a setting in the DAQ system controlling the ratio between the number of
triggers and that of the recorded events. For example, if a prescale factor is set to 100, only one
event will be recorded while there are 100 triggers.
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Figure 4.31: The scattered electron momentum (Pbb), the polar angle (θbb) and the
azimuthal angle (φbb) comparisons of the 3He inclusive DIS channel in the BigBite
between the data and the simulation (Sim). The error bars represent statistical
uncertainties. The black solid circles are from the data. The red solid squares are
from the simulation.

momentum and vertex z cuts applied to the detectors, and the DIS-selecting cuts

applied to the data and the simulations are listed in Table 4.1.

4.3.4 Simulating the pion decay

In the experiment, the µ± from the decay of a π± could not be discriminated from

the π± in the HRS and was assumed to be a π± event. When a π± event decays to a

µ± and a neutrino, the kinematics of this event is changed. This effect was evaluated

using simulations. The SIMC package has an established component simulating the

probability of the decay and the kinematic change of each π± event. The probability
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of the decay was calculated based on the length of the track of an event and the π±

life time. The kinematic change was evaluated by generating the momentum and

angles of the µ± in the center-of-mass frame of the decaying π±, from which the

kinematics of the µ± in the lab frame were calculated. In the center-of-mass frame of

the decaying π±, the momentum of the µ± followed the four-momentum conservation

and the angles were generated with a uniform probability distribution in the solid

angle. The µ± was recorded as a π± if it was in the acceptance of the HRS model,

and was rejected otherwise.

The effect of the decay of π± was treated as one of the efficiency factors as

feff (decay) = Nsim(decay)/Nsim(no decay), (4.29)

where Nsim(decay) and Nsim(no decay) are the numbers of events recorded in the

simulation with decay-effect turned on and off, respectively. The value of feff (decay)

was found to be around 90%, with a kinematic dependence.

4.3.5 Radiative tails from exclusive channels

The contribution from the exclusive channels e+p→ e′+π++n and e+n→ e′+π−+p

were evaluated by using simulations with cross section models tested in the kinematic

range of this experiment [64]. The contributions from the exclusive channels were

from 2% to 7.5% in the π+ production channel and 0.5% to 3% in the π− production

channel.

The contribution of the π± from the decay of the gluon-exchange-produced ρ

(diffractive ρ) is not a part of the SIDIS process and should be subtracted. The

contribution of the π± from the decay of quark-exchange-produced ρ is part of the

SIDIS process and should not be subtracted. We have simulated the contribution of

the π± from the decay of the ρ, in the same way as in [64]. The model for the exclusive

production of ρ was from PYTHIA [125] and was further tuned according to the ρ0
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cross section from a CLAS experiment at JLab as described in [64]. Comparing this

simulation with the data, it was found that the fraction of the events from the ρ

decay was mostly less than 5% in experiment E06-010. While the level of 5% was

not completely negligible, the contribution from the decay of the diffractive ρ was

considered to be negligible considering a recent study from CLAS [126]. In [126],

the quark-exchange production of ρ was found to be dominant while the diffractive ρ

from the gluon-exchange was found to be negligible. The fraction of the events from

the decay of diffractive ρ was expected to be much smaller than 5% in the kinematic

range 0.45 < zh < 0.65 of this experiment, thus at a negligible level.

4.4 Extracting the differential cross sections

In order to extract the differential cross section from the data, the luminosity of the

data needs to be used for the normalization process, and several additional corrections

need to be applied, namely the acceptance correction, the radiative correction and

the bin-centering correction.

The acceptance corrections were based on the Monte Carlo simulation with the

same kinematic cuts as applied to the data. Using Eqs. (4.20), (4.21) and (4.22),

the averaged differential cross section in a bin can be expressed as

〈
dσ

dPHS

〉
data

=
Ndata · fcorr

Nphs

Ls
Ld
, (4.30)

where Ld is the total effective luminosity, and Ls is the luminosity in the simulations.

This method requires a good description of the acceptance of the BigBite and the

HRS, which was checked using the known channels as in section 4.3.3.

The radiative corrections (RCs) were based on the ratios of the weighted simula-

tions with and without radiative effects. A RC coefficient Crc can be found in each
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bin, defined as

Crc =
N rad
sim

Nnr
sim

, (4.31)

where N rad
sim and Nnr

sim represent the numbers of events in a specific bin of weighted

simulations with and without radiative effects. Different models for the Born differ-

ential cross section would result in different Crcs, and the proper coefficients Crcs can

be determined when the simulation with radiative effects match the data (after the

efficiency corrections and the contamination/background subtractions). The match-

ing was found by tuning certain parameters in a certain phenomenological model

until the difference between the data and the simulation in each bin was close to or

less than the corresponding total experimental uncertainty. The value of Crc in this

study was found to be between 0.85 and 1.05 with a kinematic dependence.

In each bin, the coefficient Crc was applied to the differential cross section from

the data:

σbinexp =
1

Crc
·
〈

dσ

dPHS

〉
data

, (4.32)

where σbinexp represents the differential cross section extracted experimentally after the

RCs.

The bin-centering corrections (BCCs) were evaluated in each bin. The need for

the BCCs and the calculation are presented in the following paragraphs. The values

of kinematic variables in a bin were determined by averaging the experimental data.

For example, the value of a variable x in a certain bin was determined by

x =
1

Ndata

∑
xi, (4.33)

where x is the averaged value of x, Ndata is the total number of events in this bin

and xi is the x value of the ith event. The symbol x stands for any kinematic
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variable. The averaged values of the kinematic variables (xbj, zh, Q
2, φh and Pt) from

the simulation were consistent with the data mostly within 0.5%.

The differential cross section extracted from the data in a specific bin (σbinexp) using

Eqs. (4.30) and (4.32) was an averaged value and can be directly compared with the

averaged differential cross section σbinMC from the simulation in the same bin.

The averaged differential cross section σbinMC = σmodel was not necessarily equal to

σtheory = σmodel(vars), where σmodel(vars) is the theoretical model for the differen-

tial cross sections, the symbol vars represents the collection of kinematic variables

(xbj, zh, Q
2, φh and Pt) and vars represents the averaged values of kinematic vari-

ables in this bin (xbj, zh, Q2, φh and Pt). For the purpose to compare theoretical

model σtheory with the data, the ratio σtheory/σ
bin
MC was applied to the data in each

bin, based on the same tuned model of Born differential cross section as used in the

radiative corrections.

The BCC for the data in one bin is defined as

σBCCexp =
σtheory
σbinMC

· σbinexp, (4.34)

where σBCCexp is the SIDIS differential cross section extracted experimentally, after the

bin-centering correction with experimental central values of kinematic variables, and

can be compared with the differential cross section in models evaluated at the same

central values of kinematic variables. The BCC ratio (σtheory/σ
bin
MC) in this study was

between 1.01 and 1.1, with a kinematic dependence.

The methods to estimate the systematic uncertainties will be presented in the next

section, and the results of extracted differential cross section in multi-dimensional

bins will be presented in the next chapter.
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4.5 Estimation of systematic uncertainties

The systematic uncertainties related to the PID and the acceptance can be estimated

by series of PID and kinematic cuts, and will be presented first. The systematic

uncertainties related to the detector resolution will be presented afterwards. Lastly,

the systematic uncertainties related to the radiative corrections and exclusive tail

subtraction will be discussed.

The estimation of the systematic uncertainties related to the beam charge and the

target density of experiment E06-010, follows the study for the inclusive cross section

extraction in experiment E06-014 [120, 121]. A summary of the main contributions

of the systematic uncertainties is presented in Table 4.14.

Source Uncertainty (%)
e− identification in the BigBite 2.0-8.0
e− overall detection efficiency in the BigBite <3.0
π± identification in the HRS <1.0
Overall detection efficiency in the HRS <2.0
Beam charge <1.0
Target density ≈2.0
Experimental acceptance corrections <10.0
Radiative corrections and exclusive tail subtraction 2.0-6.0
Resolution-related <3.0

Table 4.14: List of main systematic uncertainties.

4.5.1 Estimation by series of cuts

The detector models in the simulation were not able to perfectly describe the ex-

perimental acceptance, and the systematic uncertainties were studied by applying a

series of kinematic cuts to the simulation and the data, and check the change of the

ratio R in each bin. The ratio R is defined as

R =
Ndata · fcorr

N rad
sim

. (4.35)
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With a tuned model (and radiative effects) that matched the data reasonably well,

the changes of R under different cuts reflect the systematic uncertainties related to

the cut. These cuts include the kinematic cuts (related to the description of the

acceptance), and the ETS cut (related to the description of the total-shower energy

deposition in the BigBite). The systematic uncertainty in each bin was estimated as

δsys =

[
1

N − 1

N∑
i 6=i0

(Ri −Ri0)
2

R2
i0

− δ2
stat(Ri0)

R2
i0

] 1
2

, (4.36)

where N is the number of the cuts in the series, i0 represents the central cut (i0 = 1

in this study), Ri represents the ratio with the ith cut, and δstat(Ri0) represents the

statistical uncertainty of Ri0 .

The series of kinematic and ETS cuts were set around the cuts used in section

4.3.3 which enabled a reasonable comparison between the data and the simulation

in the known channels. The relative ratio RR = Ri/Ri0 will be presented for the

relative changes of R and the estimation of the related systematic uncertainties.

The RR changes due to series of cuts in the polar (azimuthal) angles of the

detectors will be presented in bin sets of the azimuthal (polar) angles. The RR

changes due to series of cuts in the momenta of the detectors will be presented in

the angular bin sets. The total systematic uncertainty related to the acceptance was

estimated by combining the effects due to all types of kinematic cut series, and was

found to be less than 10% with a kinematic dependence.

The PID cuts were also varied around the central values, and the related efficien-

cies and contaminations were re-evaluated. As the PID cuts are not related to the

simulation, the numbers of data events (after correction) in bins will be presented.

Series of HRS-angle cuts

A series of HRS-angle cuts around the central values were used to study the system-
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atic uncertainties. The changes of the ratio (RR) by changing the cut in θhrs (φhrs)

are presented in the φhrs (θhrs) bins, as in Figs. 4.32 and 4.33. The angle cuts are

listed in Table 4.15.
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Figure 4.32: The ratio RR in the θhrs bins, with different angle cuts applied to the
HRS. The left (right) panel represents the π+ (π−) SIDIS production channel. The
error bars in the plots represent the statistical uncertainties.
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Figure 4.33: The ratio RR in the φhrs bins, with different angle cuts applied to the
HRS. The left (right) panel represents the π+ (π−) SIDIS production channel. The
error bars in the plots represent the statistical uncertainties.

Series of momentum cuts in the HRS

A series of momentum cuts were carried out similarly to the angle cuts. The changes
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Cut number θhrs cut φhrs cut
1 13.5◦ < θhrs < 18.5◦ 81◦ < φhrs < 99◦

2 13.5◦ < θhrs < 18.5◦ 80◦ < φhrs < 99◦

3 13.5◦ < θhrs < 18.5◦ 82◦ < φhrs < 99◦

4 13.5◦ < θhrs < 18.5◦ 81◦ < φhrs < 98◦

5 13.5◦ < θhrs < 18.5◦ 81◦ < φhrs < 100◦

6 14.0◦ < θhrs < 18.5◦ 81◦ < φhrs < 99◦

7 14.5◦ < θhrs < 18.5◦ 81◦ < φhrs < 99◦

8 13.5◦ < θhrs < 18.0◦ 81◦ < φhrs < 99◦

9 13.5◦ < θhrs < 17.5◦ 81◦ < φhrs < 99◦

Table 4.15: The series of HRS-angle cuts.

of the ratio (RR) are presented in the θhrs and φhrs bins, as in Figs. 4.34 and 4.35.
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Figure 4.34: The ratio RR in the θhrs bins, with different momentum cuts applied
to the HRS. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

The momentum cuts are listed in Table 4.16. The systematic uncertainties were

evaluated using Eq. (4.36).

Series of HRS-PID cuts

A series of HRS-PID-cut sets (Table 4.17) were applied to the data besides the

central set (Table 4.4), for the systematic uncertainty study. The efficiencies and
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Figure 4.35: The ratio RR in the φhrs bins, with different momentum cuts applied
to the HRS. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

Cut number Phrs cut
1 2.26 < Phrs < 2.41 GeV
2 2.25 < Phrs < 2.41 GeV
3 2.27 < Phrs < 2.41 GeV
4 2.26 < Phrs < 2.42 GeV
5 2.26 < Phrs < 2.43 GeV

Table 4.16: The series of HRS momentum cuts.

contaminations were re-evaluated using different sets of PID cuts. The comparisons

between the Phrs spectra under the series of PID-cut sets and the corresponding data

corrections are presented in Fig. 4.36. It was found that the systematic uncertainty

of the HRS PID is less than 0.5% (relative).

Series of BigBite-angle cuts

A series of BigBite-angle cuts around the central values were used to study the

systematic uncertainties. The changes of the ratio (RR) by changing the cuts in φbb

(θbb) are presented in the θbb (φbb) bins, as in Figs. 4.37 and 4.38. The cuts are listed

in Table 4.18.
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PID-cut set Aerogel Čerenkov cut Gas Čerenkov cut Lead-glass calorimeter cut
1 channelAC > 150 channelGC < 250 Etot/Phrs < 0.6
2 channelAC > 180 channelGC < 250 Etot/Phrs < 0.6
3 channelAC > 120 channelGC < 250 Etot/Phrs < 0.6
4 channelAC > 150 channelGC < 300 Etot/Phrs < 0.6
5 channelAC > 150 channelGC < 200 Etot/Phrs < 0.6
6 channelAC > 150 channelGC < 250 Etot/Phrs < 0.7
7 channelAC > 150 channelGC < 250 Etot/Phrs < 0.5

Table 4.17: A series of HRS-PID-cut sets. Set 1 is the central set.
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Figure 4.36: The comparisons between the Phrs spectra under a series of HRS-
PID-cut sets and the corresponding data corrections.

Series of momentum cuts in the BigBite

The low momentum range of the BigBite had issues related to the shower-threshold

drifts, and relatively large uncertainties related to the photon-induced contamination.

For a clear illustration, the effects from the series of momentum cuts in the high

momentum range are discussed first. The series of momentum cuts in the high

momentum range are listed in Table 4.19. The changes of the ratio (RR) are presented

in the θbb and φbb bins, as in Figs. 4.39 and 4.40.

The series of momentum cuts in the low momentum range are listed in Table

4.20. The changes of the ratio (RR) are presented in the θbb and φbb bins, as in Figs.
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Cut number θbb cut φbb cut
1 25.0◦ < θbb < 37.0◦ 250◦ < φbb < 290◦

2 25.0◦ < θbb < 37.0◦ 245◦ < φbb < 290◦

3 25.0◦ < θbb < 37.0◦ 255◦ < φbb < 290◦

4 25.0◦ < θbb < 37.0◦ 250◦ < φbb < 285◦

5 25.0◦ < θbb < 37.0◦ 250◦ < φbb < 295◦

6 26.0◦ < θbb < 37.0◦ 250◦ < φbb < 290◦

7 28.0◦ < θbb < 37.0◦ 250◦ < φbb < 290◦

8 25.0◦ < θbb < 35.0◦ 250◦ < φbb < 290◦

9 25.0◦ < θbb < 33.0◦ 250◦ < φbb < 290◦

Table 4.18: The series of BigBite-angle cuts: same θbb cut, and different φbb cuts.
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Figure 4.37: The ratio RR in the θbb bins, with different φbb cuts applied to the
BigBite. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

4.41 and 4.42.

The systematic uncertainties (δsyss) were evaluated using Eq. (4.36). The low-

end-momentum cuts gave larger δsys than the high-end-momentum cuts. In Figs.

4.39, 4.40, 4.41 and 4.42, a total-shower energy cut ETS > 0.9 GeV was applied to

the data and the simulations. The systematic uncertainties from different ETS cuts

are presented in the following part of the section.
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Figure 4.38: The ratio RR in the φbb bins, with different θbb cuts applied to the
BigBite. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

Cut number Pbb cut
1 0.9 < Pbb < 2.5 GeV
2 0.9 < Pbb < 2.2 GeV
3 0.9 < Pbb < 2.1 GeV
4 0.9 < Pbb < 2.0 GeV
5 0.9 < Pbb < 1.9 GeV
6 0.9 < Pbb < 1.8 GeV
7 0.9 < Pbb < 1.7 GeV

Table 4.19: The series of BigBite high momentum cuts.

Series of total-shower-energy cuts

As discussed in sections 4.2.5 and 4.3.2, a ETS cut is needed to remove the threshold

drift issue in the data, while the effect of the cut needs to be described by the

simulation. The spectra of RR in the Pbb bins, with a series of ETS cuts are presented

in Fig. 4.43. When the ETS cut was changed, all the corrections for the data efficiency

and contamination were re-evaluated.

The systematic uncertainty (δsys) in each bin was estimated as in Eq. (4.36), and

is listed in Table 4.21.
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Figure 4.39: The ratio RR in the θbb bins, with different momentum cuts, in the
high momentum range, applied to the BigBite. The left (right) panel represents
the π+ (π−) SIDIS production channel. The error bars in the plots represent the
statistical uncertainties.

The large systematic uncertainties in the low momentum range would affect mul-

tiple bins of other variables, e.g. xbj, thus a cut of Pbb > 0.9 GeV was applied when

the SIDIS differential cross sections were extracted.
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Figure 4.40: The ratio RR in the φbb bins, with different momentum cuts, in the
high momentum range, applied to the BigBite. The left (right) panel represents
the π+ (π−) SIDIS production channel. The error bars in the plots represent the
statistical uncertainties.
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Cut number Pbb cut
1 0.9 < Pbb < 2.5 GeV
2 0.6 < Pbb < 2.5 GeV
3 0.7 < Pbb < 2.5 GeV
4 0.8 < Pbb < 2.5 GeV
5 1.0 < Pbb < 2.5 GeV
6 1.1 < Pbb < 2.5 GeV
7 1.2 < Pbb < 2.5 GeV

Table 4.20: The series of BigBite momentum cuts.
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Figure 4.41: The ratio RR in the θbb bins, with different momentum cuts applied to
the BigBite. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

Series of BigBite-preshower cuts

The Pbb spectra under BigBite-preshower cuts channelPS > 300, 400 and 500, and

the corresponding data corrections are compared in Fig. 4.44. In this figure, no

total-shower-energy cut was applied to the data, and the momentum cut was 0.6 <

Pbb < 2.5 GeV. Similar comparisons have been done with various total-shower-energy

cuts and kinematic cuts. It was found that the systematic uncertainties related to

the BigBite-preshower cuts was less than 3%.

126



 (degree)
bb

φ
250 260 270 280 290

R
R

0.8

1

1.2

 cut 1bbP
 cut 2bbP
 cut 3bbP

 channel+π

 < 0.040sysδ

 (degree)
bb

φ
250 260 270 280 290

R
R

0.8

1

1.2

 cut 4bbP
 cut 5bbP
 cut 6bbP
 cut 7bbP

 channel-π

 < 0.043sysδ

Figure 4.42: The ratio RR in the φbb bins, with different momentum cuts applied to
the BigBite. The left (right) panel represents the π+ (π−) SIDIS production channel.
The error bars in the plots represent the statistical uncertainties.

4.5.2 Resolution-related systematic uncertainties

The resolutions of the detectors would cause uncertainties of the reconstructed kine-

matic variables, thus lead to systematic uncertainties. The resolutions of the basic

kinematic variables (angles and momentum) were estimated based on the calibra-

tions, and are summarized in Table 4.22.
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Figure 4.43: The ratio RR in the Pbb bins, with different ETS cuts applied to
the data and the simulation. The left (right) panel represents the π+ (π−) SIDIS
production channel. The error bars in the plots represent the statistical uncertainties.
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Pbb range (GeV) δsys (π+) δsys (π−)
0.7 - 0.8 0.412 0.120
0.8 - 0.9 0.240 0.180
0.9 - 1.0 0.079 0.059
1.0 - 1.1 0.021 0.0
> 1.1 0.0 0.0

Table 4.21: Systematic uncertainties from the series of ETS cuts. The value of δsys
was set to 0 if the estimated total uncertainty is smaller or equal to the statistical
uncertainty.
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Figure 4.44: The comparisons between the Pbb spectra under a series of BigBite-
preshower cuts and the corresponding data corrections.

The resolutions of composite/derived kinematic variables (derived from the basic

ones) were studied by calculating the (smeared) composite variables with the smeared

basic variables. The basic variables were smeared as

Psmear = Porig ×N (1, σP (rela)2), (4.37)

θsmear = θorig +N (0, σ2
θ), (4.38)

φsmear = φorig +N (0, σ2
φ), (4.39)

where N (µ, σ2) is a Gaussian distribution with a mean value of µ and a width of

σ, the subscript “smear” and “orig” represent the smeared and original variables,

respectively. The quantities σP (rela), σθ and σφ represent the relative momentum
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Type of variable Resolution
HRS momentum Phrs < 10−4 (relative)
HRS angle θhrs ≈ 0.07◦

HRS angle φhrs ≈ 0.6◦

BigBite momentum Pbb ≈ 1% (relative)
BigBite angle θbb ≈ 0.25◦

BigBite angle φbb ≈ 0.6◦

Table 4.22: Resolutions of basic kinematic variables.

resolution, the θ resolution and the φ resolution, respectively.

The comparisons between the original and smeared xbj, zh and φh are presented

in Fig. 4.45. The comparisons for the other composite variables are very similar.

The finite resolution of a variable causes the bin-migration effect, which means

some events in one bin could be mis-identified and placed in other bins. This effect

can be quantified by using a 2D matrix based on the type of 2D plots in Fig. 4.45.

The elements in the 2D matrix is defined as

Nij =
∑

event(varorig ∈ bini & varsmear ∈ binj), (4.40)

where Nij is the number of events with the original variable (varorig) in the ith bin

and the smeared variable (varsmear) in the jth bin. The estimation for the fraction

(fij) of the events placed in the ith bin but originated from the jth bin can be

expressed as

fij =
Nij∑
j Nij

. (4.41)

The center of the ith bin (〈var〉i) is calculated using Eq. (4.33), which has an

uncertainty due to the resolution. This uncertainty can be estimated by fitting the

quantity δvar = varsmear−varorig with a Gaussian function. It can also be estimated
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Figure 4.45: The 2D comparisons between the original and smeared xbj, zh and
φh.

using the probability array in Eq. (4.41) as

δi =

[∑
j

(〈var〉i − 〈var〉j)2 × fij

]1/2

, (4.42)

where δi is the uncertainty of the variable var in the ith bin. The estimation from

Eq. (4.42) was found to be similar to the Gaussian width from the fitting of δvar.

The systematic uncertainty related to the central-value uncertainties of the vari-

ables can be estimated by inserting the variable uncertainties to the tuned cross
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section model, similar to the bin-centering correction in Eq. (4.34). The resolution-

related uncertainties can be evaluated for each variable in the expression of the

differential cross section:

δσres(varn,i) =

[
1

2
(δ+σ2

n,i + δ−σ2
n,i)

]1/2

, (4.43)

where the set of the subscripts (n, i) represents the nth variable in the ith bin. The

quantities δ±σn,i are defined as

δ±σn,i = [σtheory(varn,i ± δn,i)− σtheory(varn,i)]
σbinexp
σbinMC

, (4.44)

where σtheory is the theoretical differential cross section from the tuned model, as

in the BCC corrections. The total resolution-related uncertainties for the extracted

differential cross section in ith bin can be expressed as

δσresi =

[∑
n

1

N
δσres(varn,i)

2

]1/2

, (4.45)

where the sum over the N variables that σtheory depends on is carried out. This type

of systematic uncertainty was less than 3% with a kinematic dependence.

4.5.3 Systematic uncertainties of the radiative corrections and exclusive tail sub-
traction

The systematic uncertainties related to the tail subtractions from exclusive channels

and the SIDIS radiative corrections have been evaluated in the same manner as [64].

Specifically, different models of the exclusive channels and the difference between the

HAPRAD and the SIMC for the radiative corrections have been used to define the

systematic uncertainties. The systematic uncertainties for these items are between

2% to 6% depending on the kinematics.
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5

Results and conclusion

In this chapter, the extracted unpolarized SIDIS differential cross sections are com-

pared with models in different bin sets in the following sections. Fitting the extracted

differential cross sections from this data demonstrates the data’s constraint on the

parameters describing the SIDIS process. The plane wave impulse approximation

(PWIA) treatment of the 3He nucleus in the SIDIS process is adopted in this study,

thus the modeled SIDIS cross section from 3He is the same as the sum of the modeled

SIDIS differential cross sections from two protons and one neutron. The collinear

PDF from CTEQ10 [127] and the collinear FF from DSS [128] were used in the

modeled SIDIS differential cross sections.

In the multi-dimensional bin sets, models from three studies [4, 5, 10] are com-

pared with the data. The modeled SIDIS differential cross sections were calculated

as in Eq. (2.40) using the parameters 〈k2
⊥〉 and 〈p2

⊥〉 from these three studies. The

parameterizations of the Boer-Mulders TMD PDF and the Collins TMD FF were

taken from [5], giving a negligible (less than 2%) contribution to the SIDIS differen-

tial cross sections. These three studies have been reviewed in section 2.5, and the

parameters in Table 5.1 are used to represent them.
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Model 〈k2
⊥〉 (GeV2) 〈p2

⊥〉 (GeV2)
Anselmino2014: from [4] 0.57 0.12
Barone2015: from [5] 0.037 0.126 + 0.506z2

h

Bacchetta2011: from [10] 0.14 0.42 · z0.54
h (1− zh)0.37

Table 5.1: The parameters from three phenomenological studies.

In all the bin sets, some of the kinematic variables were not separated in mul-

tiple ranges and were treated as in a single bin (single-binned-variables). The

central values and ranges of the single-binned-variables changed in different bins

due to the kinematic correlations. The central values of the variables were deter-

mined using Eq. (4.33). We kept the single-binned-variables in the definition of

the differential cross sections and kept the differential phase space in the results

as dPHS = dxbjdydzhdφSdP
2
t dφh in all the bin sets. The method to extract the

differential cross section for a specific bin was discussed in section 4.4.

In all the bin sets the data corrections in Eqs. (4.2) and (4.32) were carried out

in the same way for individual bins. The BCCs defined in Eq. (4.34) were carried

out differently in pseudo-1D bins and multi-dimensional bins.

In pseudo-1D bins, the central values of all the kinematic variables were the

experimental averages using Eq. (4.33). The BCCs were evaluated using these

central values of the kinematics. The differential cross sections from the model were

at the same central values of the kinematics.

In the multi-dimensional bin sets, the dependence of the differential cross sec-

tion on one kinematic variable (φh or Pt) was examined in multiple ranges of other

variables. To remove the effect of kinematic correlations, BCCs were evaluated with

range-by-range sets of kinematics. In each range, the corresponding set of kine-

matic variables was put in the model σtheory = σmodel(vars) of Eq. (4.34) while

the ratio σbinexp/σ
bin
MC in Eq. (4.34) was evaluated in the usual way for each bin. In
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each of the range-by-range sets of kinematics, the variable of interest (φh or Pt) had

the experimental-averaged value for each bin, while all the other variables had the

experimental-averaged value at the central bin in this range.

We did not combine different ranges of the multi-dimensional bin sets to give

one distribution of the variable of interest, for minimizing the model dependence

introduced in the BCCs.

In the following sections, the kinematic correlations and binning will be presented

first, followed by the comparisons between extracted SIDIS differential cross sections

and different models. The fitting results based on the stand-alone data of this study

will be presented afterwards. The conclusion will be presented at the end of this

chapter.

5.1 Kinematic correlations and binning

In the production run of E06-010, only one experimental configuration was used.

Kinematic correlations are shown in Fig. 5.1. Due to the kinematic correlations,

strict one-dimensional (1D) binning, in which only one variable changes while all the

other variables stay intact, is prohibited.

In this study, a set of pseudo-one-dimensional (pseudo-1D) bins is used for pre-

senting the results. Pseudo-1D means that when the binning is in one variable, for

example, xbj, the difference between one bin and another is not only in xbj, but in

all the variables (xbj, zh, Q
2, φh, Pt) due to kinematic correlations. Pseudo-1D bins

in xbj has 10 consecutive bins with almost equal statistics. The central values of the

kinematic variables in the pseudo-1D bins are presented in Table. 5.2.

As shown in Fig. 5.1 and Table. 5.2, the acceptance in this experiment had

strong kinematic correlations. In increasing range of xbj, zh and Q2 also increased,

while Pt decreased. The kinematic range of φh centered around the angle of π (180◦),

due to the experimental configuration. The central values of φh and xbj were weakly
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Figure 5.1: The correlations between xbj and other kinematic variables in experi-
ment E06-010.

correlated. In the range of φh closer to the center more events were with smaller xbj

compared with the range of φh farther from the center.

A set of two-dimensional (2D) bins is used to present the Pt dependence of the

cross sections. The set of 2D bins (10 × 10) consists of 10 Pt bins in 10 ranges of xbj.

The boundaries of the bins are set to make each bin contain almost equal statistics.

A set of three-dimensional (3D) bins is used to present the φh dependence of the

cross sections. The data are binned into two ranges of Pt first. In each of the Pt

ranges, five xbj bins are defined. In each of the 2 × 5 ranges of Pt vs. xbj, 10 φh bins

are defined. Each bin of the 2 × 5 × 10 set has almost equal statistics.

5.2 Cross sections in pseudo-1D bins

The comparisons of the SIDIS differential cross sections from the data and the quark-

parton model in pseudo-1D xbj bins are shown in Fig. 5.2. The top panel in the
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xbj Q2/GeV2 zh φh/rad Pt/GeV
0.163 1.47 0.476 3.10 0.437
0.188 1.70 0.484 3.08 0.411
0.208 1.85 0.491 3.07 0.392
0.228 2.00 0.499 3.07 0.371
0.249 2.14 0.508 3.06 0.350
0.272 2.29 0.519 3.06 0.325
0.297 2.45 0.530 3.05 0.299
0.325 2.62 0.543 3.05 0.271
0.358 2.81 0.557 3.04 0.239
0.393 3.09 0.562 3.02 0.216

Table 5.2: The central values of the kinematic variables in the pseudo-1D bins. The
unit for Q2 is GeV2. The unit for Pt is GeV. The unit for φh is rad. The kinematic
variables xbj, y and zh have no unit.

figure is for the π+ production channel 3He(e, e′π+)X and the bottom panel for the

π− production channel 3He(e, e′π−)X. The vertical axis is the SIDIS differential

cross section dσ/(dxbjdydzhdφSdP
2
t dφh) in unit of nb ·GeV−2 · rad−2. The total ex-

perimental systematic uncertainties using quadrature combination of all the sources

are shown in the band at the bottom of each plot.

The SIDIS differential cross section from the model is defined in Eq (2.40) and

the parameterizations of the Gaussian widths of unpolarized TMD PDF and FF are

in the forms as in [10], namely 〈k2
⊥〉 = 0.14 GeV2 and 〈p2

⊥〉 = a · z0.54
h (1− zh)b GeV2,

where a = 1.55 and b = 2.2 are tuned from the values in one set of the HERMES

data analysis inherited and cited by [10]. The Boer-Mulders TMD PDF and Collins

TMD FF parameterizations were taken from [5]. The effect of the Boer-Mulders

terms in the total SIDIS cross sections were found to be less than 2% in magnitude

and opposite in sign for the π± electroproduction channels. Terms with twists higher

than those included in Eqs. (2.41) - (2.45) were neglected. The model calculates the

sum of the cross sections from two protons and one neutron as an approximation for

the 3He nucleus. Agreement between the data and the model is observed.
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Figure 5.2: The SIDIS differential cross sections (defined in text) comparison be-
tween the data and the simulation in pseudo-1D xbj bins. The red solid circles are
from the data and the black open circles are from the quark-parton model. The
error bar of each point represents the statistical uncertainty, mostly smaller than
the markers. The error band on the bottom of each panel represents the experimen-
tal systematic uncertainty. The left and right panels are for π+ and π− production
channel, respectively.

The comparisons of the ratios (from the data and the model) of SIDIS π+ pro-

duction cross sections to that of π− in pseudo-1D xbj bins are shown in Fig. 5.3. The

systematic uncertainties from the acceptance and efficiency of electron detection in

the BigBite, are not included in the bottom systematic error band, as the electron

part is the same in the SIDIS π± production.

In the plot, the error bars of the data points are for the statistical uncertainties

of the data. The error bars of the model points are for the model uncertainties. In

this study, the model uncertainties are defined by the quadrature combination of the

differences of the ratios with and without the contribution from the Boer-Mulders

terms, changing the width 〈k2
⊥〉 to 2〈k2

⊥〉 and changing 〈p2
⊥〉 to 2〈p2

⊥〉. The Boer-

Mulders effects in the π± production channels have opposite signs, and the changes

of the cross section ratios due to turning off the Boer-Mulders contributions are 1%

to 4%. The flavor dependence of the widths has not been included in the model, thus

the widths do not differ in channels of the π± production. Theoretically, if the π±
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Figure 5.3: The SIDIS differential cross section ratio σπ
+

/σπ
−

comparison between
the data and the model in pseudo-1D xbj bins. The red solid circles are from the
data and the black open circles are from the quark-parton model. The error bar of
each point of data represents the statistical uncertainty. The error bars for the model
parameterization uncertainty are smaller than the marker size. The error band on
the bottom represents the systematic uncertainty of the data.

SIDIS production cross sections have the same transverse momentum dependence,

their ratios at the same kinematics will be independent of the widths. Due to the

very small differences between the central values of variables in the π± production

channels, the effect of changing 〈k2
⊥〉 to 2〈k2

⊥〉 or 〈p2
⊥〉 to 2〈p2

⊥〉 was non-zero but less

than 0.1%.

Results from the data are consistent with the model without a flavor dependence

of 〈k2
⊥〉 and 〈p2

⊥〉 as assumed in most of the global analysis for SIDIS [4, 5, 10].
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5.3 The Pt dependence of the cross sections: in 2D bins

To present the Pt dependence of the SIDIS cross sections, 2D bins (10 × 10) of xbj

vs. Pt are used. Bin-centering corrections were used to remove the difference of all

the variables except Pt from one bin to another in each range of xbj, therefore the

10 Pt bins in a certain range of xbj differ only in the values of Pt. The comparisons

of the SIDIS differential cross sections from the data and the models from [4, 5, 10]

are presented in Figs. 5.4 and 5.5.

The comparisons show that the model from [10] compares the best with the data,

while the model from [4] deviates the most from the data in most of the kinematic

ranges. In the highest xbj ranges (corresponding to the lowest Pt ranges), the model

from [4] gives better comparison than the models from [5, 10], but still has sizable

deviations from the data.
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Figure 5.4: (color online). The differential cross sections in 2D bins: the π+ SIDIS
production channel. The red circles are from the data, the black solid lines are from
the model [10], the blue dashed lines are from the model [5] and the green dotted
lines are from the model [4]. The error bars represent the statistical uncertainties of
the data. The error band on the bottom of each panel represents the experimental
systematic uncertainty. The xbj range of each plot is presented at the bottom of the
panel.
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Figure 5.5: (color online). The differential cross sections in 2D bins: the π− SIDIS
production channel. The definitions of the markers, the lines and the bands are the
same as the figure above for π+ channel.
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5.4 The φh dependence of the cross sections: in 3D bins

The differential cross sections of SIDIS were extracted in 3D bins (2 × 5 × 10), to

examine the φh dependence of the cross sections in 2 × 5 ranges of Pt vs. xbj. Bin-

centering corrections were used to remove the difference of all the variables except

φh from one bin to another in each of the Pt vs. xbj ranges, therefore the 10 φh bins

in a certain range of Pt and xbj differ only in the values of φh. The comparisons of

the SIDIS differential cross sections from the data and the models from [4, 5, 10] are

presented in Figs. 5.6 and 5.7.

The comparisons show that the model from [10] compares the best with the data,

while the model from [4] deviates the most from the data in most of the kinematic

ranges.

In a phenomenological model, the modulations are from the structure functions

F cosφh

UU and F cos 2φh

UU on top of the non-modulated part (FUU). The distributions from

the model without modulations can be calculated by using the model parameteriza-

tion while setting F cosφh

UU and F cos 2φh

UU to zero. The non-modulated SIDIS differential

cross section does not depend on φh, and behaves as a straight line in any φh range,

when other kinematic variables are fixed. Comparisons between the data and the

model from [10] with and without modulations are in Figs. 5.8 and 5.9.

Studies on the modulations and the constraints on the phenomenological param-

eters provided by the data in this study will be presented in the next section.
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Figure 5.6: The differential cross sections in 3D bins: the π+ SIDIS production
channel. The red circles are from the data, the black solid lines are from the model
[10], the blue dashed lines are from the model [5] and the green dotted lines are
from the model [4]. The error bars represent the statistical uncertainties of the data.
The error band on the bottom of each panel represents the experimental systematic
uncertainty. The Pt (in unit of GeV) and xbj ranges of each plot are presented at
the top and the bottom of the panel, respectively.
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Figure 5.7: The differential cross sections in 3D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are the same as the
figure above for the π+ channel.

144



2.5 3 3.5

]
-2

 [n
b 

G
eV

σd 5

10

15

20

 < 0.25bj x≤0.16 

 < 0.34t P≤0.05 

2.5 3 3.5

5

10

 < 0.29bj x≤0.25 

 < 0.34t P≤0.05 Data

 (total)σ

 (no mod)σ

2.5 3 3.5

5

10

 < 0.31bj x≤0.29 

 < 0.34t P≤0.05 

2.5 3 3.5 4

2

4

6

8

 < 0.34bj x≤0.31 

 < 0.34t P≤0.05 

2 2.5 3 3.5 4

2

4

6

 < 0.45bj x≤0.34 

 < 0.34t P≤0.05 

2.5 3 3.5

10

20

30

 < 0.18bj x≤0.14 

 < 0.54t P≤0.34 

2.5 3 3.5

5

10

15

20

 < 0.20bj x≤0.18 

 < 0.54t P≤0.34 

2.5 3 3.5

5

10

15

20

 < 0.21bj x≤0.20 

 < 0.54t P≤0.34 

 (rad)
h

φ
2.5 3 3.5 4

5

10

15

 < 0.23bj x≤0.21 

 < 0.54t P≤0.34 

2 2.5 3 3.5 4

5

10

 < 0.44bj x≤0.23 

 < 0.54t P≤0.34 

Figure 5.8: The differential cross sections in 3D bins: the π+ SIDIS production
channel. The red circles are from the data, the black solid lines are from the model
[10], the blue dashed lines are from the model [10] with F cosφh

UU and F cos 2φh

UU setting
to zero. The error bars represent the statistical uncertainties of the data. The error
band on the bottom of each panel represents the experimental systematic uncertainty.
The Pt (in unit of GeV) and xbj ranges of each plot are presented at the top and the
bottom of the panel, respectively.
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Figure 5.9: The differential cross sections in 3D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are the same as the
figure above for the π+ channel.
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5.5 Azimuthal modulation and stand-alone data fitting

Fitting the φh distribution in each of the 2 × 5 ranges of Pt vs. xbj in the 3D bins

(2 × 5 × 10), with a simple function A · (1−B · cosφh), provides a naive probe for

the azimuthal modulation effect in the data. The parameter B indicates the size of

the modulation. The parameter Bs in all ranges are presented in Fig. 5.10. Due to

a limited φh range in the data and a large number of fitting parameters being used

(A and B in one Pt and xbj range differ from A and B in another range), the data

do not provide good constraints on the Bs.
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Figure 5.10: Results of B in 3D bins from the A · (1 − B · cosφh) fit. The red
solid circles and black open circles represent the results in the π+ and π− production
channels, respectively.

Azimuthal modulation effects in the unpolarized SIDIS channel arise from the

relative magnitudes of the structure functions F cosφh

UU , F cos 2φh

UU and FUU . Substituting

the expressions of the structure functions after the convolution [Eqs. (2.52), (2.53),

and (2.54)] in to Eq. (2.40), one obtains a fitting function with two parameters,

〈k2
⊥〉 and 〈p2

⊥〉. The 2D bins (10 × 10) and 3D bins (2 × 5 × 10) data were fitted

and the results are in Fig. 5.11. Three contours corresponding to δχ2 = 1, 2.3 and

6.2 are drawn besides the central values from the fitting. The δχ2 = 1 contour is

147



conventionally the same as the one-σ contour, which is at a confidence level of 39%

for a two-parameter fit. The contours of δχ2 = 2.3 and 6.2 show the constraints

of two-parameter fitting at confidence levels of 68% and 95%, respectively. In this

fitting the Boer-Mulders parts of the structure functions were set to zero.
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Figure 5.11: Fitting contours with the functional form of the total unpolarized
SIDIS cross section (refer to the text). The top panel is for the fitting results using
the 2D bins (10 × 10) data, the bottom panel for the 3D bins (2 × 5 × 10). The
central values of the fitting are the black crosses. The three contours from the
smallest to the largest in each panel correspond to δχ2 = 1, 2.3 and 6.2, respectively.

The central values of the fitting in the 2D bins are

〈k2
⊥〉 = 0.003± 0.008 GeV2, (5.1)

〈p2
⊥〉 = 0.2104± 0.0025 GeV2. (5.2)

The central values of the fitting in the 3D bins are

〈k2
⊥〉 = 0.006± 0.010 GeV2, (5.3)

〈p2
⊥〉 = 0.2148± 0.0026 GeV2. (5.4)

148



The fitting results indicate consistent azimuthal modulation effects from the data in

3D bins with the φh information and 2D bins without the φh information.

Fitting the data with a simpler functional form, namely setting F cosφh

UU and F cos 2φh

UU

to zero, was also done. The results are presented in Fig. 5.12.
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Figure 5.12: Fitting contours with the functional form of the non-modulated un-
polarized SIDIS cross section (F cosφh

UU and F cos 2φh

UU set to zero: refer to the text). The
top panel is for the fitting results using the 2D bins (10 × 10) data, the bottom
panel for the 3D bins (2 × 5 × 10). The central values of the fitting are the black
crosses. The three contours from the smallest to the largest in each panel correspond
to δχ2 = 1, 2.3 and 6.2, respectively.

The central values of this fitting in the 2D bins are

〈k2
⊥〉 = 0.090± 0.097 GeV2, (5.5)

〈p2
⊥〉 = 0.1840± 0.0276 GeV2. (5.6)

The central values of the fitting in the 3D bins are

〈k2
⊥〉 = 0.085± 0.112 GeV2, (5.7)

〈p2
⊥〉 = 0.1901± 0.0330 GeV2. (5.8)
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The very different constraints of 〈k2
⊥〉 vs. 〈p2

⊥〉 using the functional form including

all three structure functions (Fig. 5.11) and the functional form including only

structure function FUU (Fig. 5.12), come from the specific model formulation, namely

F cosφh

UU and F cos 2φh

UU as in Eqs. (2.53) and (2.54). These specific functional forms, when

applied to the data in this study, would result in the intrinsic transverse momentum

width 〈k2
⊥〉 of the quarks in the nucleon being consistent with zero at small central

values, which contradicts the results from the global analyses [4, 5, 10]. The effect of

including the Boer-Mulders terms as parameterized in [5] was tested to be negligible

(less than 2% in the kinematic range of this study).

To examine the data’s constraint on the intrinsic widths with relaxed model

formulations, two adjusted functional forms were used to do the fitting in the 3D

bins with the φh information. The first one includes the structure functions FUU and

F cosφh

UU , with an additional fitting parameter A to tune the amplitude of modulation

as A · F cosφh

UU . The results of the fitting are

〈k2
⊥〉 = 0.078± 0.1505 GeV2, (5.9)

〈p2
⊥〉 = 0.1925± 0.0464 GeV2, (5.10)

A = 0.0119± 0.1971. (5.11)

The intrinsic widths 〈k2
⊥〉 and 〈p2

⊥〉 are under loose constraint individually while the

amplitude of A · F cosφh

UU is suppressed by a small factor A.

The second one includes the structure functions FUU , F cosφh

UU and F cos 2φh

UU , with an

additional fitting parameter A to tune the amplitude of modulation as A · (F cosφh

UU +

F cos 2φh

UU ). The results of the fitting are

〈k2
⊥〉 = 0.080± 0.1542 GeV2, (5.12)

〈p2
⊥〉 = 0.1918± 0.0475 GeV2, (5.13)

A = 0.0077± 0.1820. (5.14)
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The intrinsic widths are under similar constraint as in the first case with a small

factor A suppressing the amplitude of A · (F cosφh

UU + F cos 2φh

UU ).

Without introducing specific forms of F cosφh

UU and F cos 2φh

UU , the parameters 〈k2
⊥〉

and 〈p2
⊥〉 in the SIDIS channels appear as the combined quantity 〈P 2

t 〉. Sensitivity to

〈P 2
t 〉 is explicitly provided by the Pt behavior of the data. The comparison between

the data and the models in the two functional forms (with and without F cosφh

UU and

F cos 2φh

UU ) using the parameters from fitting in 2D bins of the data are shown in Figs.

5.13 and 5.14.

5.6 Conclusion

In the multi-dimensional bin sets, the data are compared with three models from

[4, 5, 10] while the 3He nucleus is approximated as two protons and one neutron in a

plane-wave picture. In most of the kinematic ranges, the model from [10] compares

the best with the data while the model from [4] deviates the most from the data. In

the highest xbj ranges (corresponding to the lowest Pt ranges), the model from [4]

gives the best comparison with the data.

Azimuthal modulations in unpolarized SIDIS are observed to be consistent with

zero within the experimental uncertainties in this study. Using the specific functional

form as in the global analysis [5], the fitting results show that the width of quark

intrinsic transverse momentum 〈k2
⊥〉 is much smaller than the results from the global

analyses of other types of data [3, 4, 5, 10]. With relaxed model formulation, 〈k2
⊥〉 and

〈p2
⊥〉 are under looser constraint individually, while the combined quantity 〈P 2

t 〉 is

constrained by the Pt behavior of the data. The widths 〈k2
⊥〉 and 〈p2

⊥〉 in the structure

functions, related to the azimuthal modulations are determined consistently using

the extracted cross sections with and without the information of φh.

Apparently, a simple model at the lowest twist was able to describe the main

features of the data. The applicability of the simple model to semi-inclusive experi-
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ments on the proton and deuteron targets in modest Q2 ranges was also observed by

other JLab experiments [64, 65]. While one might naively expect large contributions

from the higher-twist terms in the modest Q2 range, they have not been found to be

significant experimentally. It is possible that the contributions of the higher-twist

terms in the SIDIS process are not as large as expected. It is also possible that

the higher-twist contributions have been absorbed into the lowest-twist model by

changing the parameters (〈k2
⊥〉 and 〈p2

⊥〉). On the other hand, besides the general

agreement between the simple model and the data in this study, sizable differences

exist in some of the kinematic ranges. These differences might be related to the

higher-twist terms. The higher-twist terms might also be responsible for the very

different 〈k2
⊥〉 values found in this study and from the studies [3, 4, 5, 10]. A discus-

sion about the potential effect from the higher-twist terms on determining the 〈k2
⊥〉

can be found in [5].

Clearly, high-precision data in the modest Q2 range with a full azimuthal angular

coverage will, in addition to study the leading-twist TMDs, provide opportunities to

study the details of the higher-twist terms and their effects on the azimuthal angular

modulations. The future 12 GeV SIDIS programs at JLab with SoLID combining

high luminosities and a large acceptance including a full azimuthal angular coverage

[129, 130] will provide high-precision data of the SIDIS differential cross sections

as well as the azimuthal modulations in multi-dimensional bins covering a broad

kinematic range. These data will significantly advance the development of the TMD

phenomenology and our understanding of the TMD physics.
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Figure 5.13: The differential cross sections in 2D bins: the π+ SIDIS production
channel. The red circles are from the data. The black solid lines are from the
model including the structure functions FUU , F cosφh

UU and F cos 2φh

UU with parameters
〈k2
⊥〉 and 〈p2

⊥〉 from stand-alone data fitting. The blue dashed lines are from the
model including only the structure functions FUU with parameters 〈k2

⊥〉 and 〈p2
⊥〉

from fitting the data of this work only. The error bars represent the statistical
uncertainties of the data. The error band on the bottom of each panel represents the
experimental systematic uncertainty. The xbj range of each plot is presented at the
bottom of the panel.
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Figure 5.14: The differential cross sections in 2D bins: the π− SIDIS production
channel. The definitions of the markers, the lines and the bands are the same as the
figure above for π+ channel.
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Appendix A

Formalisms for inclusive radiative effects

In this appendix, a formalism based on Mo and Tsai [122, 131] (MT) is presented.

This approach removed the energy-peaking approximation which has been assumed

in various other approaches. Discussions and some re-derivations of the expressions

from [122, 131] are presented along the derivation of this approach.

There were three key points in the MT formalism as listed below.

• The vacuum polarization and vertex correction changes the Born cross section,

at a basic QED level. This part was considered as an energy-loss-independent

part of the internal radiative effects.

• The internal bremsstrahlung is not directly calculated using QED, but based

on modified Bethe-Heitler formula [122].

• The external energy loss included the external bremsstrahlung and ionization

when the particles go through materials.

Based on these three points, Mo and Tsai argued that the Born cross section

firstly is changed by the energy-loss-independent radiative effects. Then, this cross

155



section is further changed, because of the difference between the kinematics recorded

experimentally and the kinematics at the interaction point. Mo and Tsai assumed

the method based on the modified Bethe-Heitler formula for internal bremsstrahlung

was the “exact” calculation, and different approximate methods to integrate this

formula were compared with the non-approximated one. Among the approximate

methods, a most convenient one was named the equivalent radiator method (ERM).

As discussed by Bjorken in [132], the internal-bremsstrahlung effects could be de-

scribed by an equivalent radiator, when the angle peaking condition is assumed in

the calculation based on modified Bethe-Heitler formula. The angle peaking ap-

proximation is a conventional and convenient method to compute the Bethe-Heitler

integration, which assumes the bremsstrahlung photons are in the directions of the

incident and scattered electrons. It is useful to mention that, the approach based

on the Bethe-Heitler formula is also a type of empirical method (not full or exact

QED).

The formalism from MT used probability integrations to “fold” the Born cross

section with the radiative effects [131], which can be expressed as

σrad(Es, Ep) =

∫ Es

Emin
s

dE ′s

∫ Emax
p

Ep

dE ′p F (Q2)σborn(E ′s, E
′
p)

×I(Es, E
′
s, Ts) I(E ′p, Ep, Tp), (A.1)

where σrad(Es, Ep) represents the radiative (measured) cross section with incident

and scattered electron energies of Es and Ep, and σborn(E ′s, E
′
p) represents the Born

cross section with incident and scattered electron energies of E ′s and E ′p at the in-

teraction point of the scattering. The term I(E,E ′, T ) represents the probability

distribution related to the energy loss of (E − E ′), and a total path length T . The

quantities Ts and Tp represent the total path lengths for the incident and scattered

electrons. The factor F is the energy-loss-independent factor, which includes the
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vacuum polarization and the vertex correction.

Based on ERM, the total path lengths Ts and Tp can be expressed as

Ts = Tb + Tr, (A.2)

Tp = Ta + Tr, (A.3)

where Tb (Ta) represent the path length, in the unit of the radiation length, of the

electron through the materials before (after) the scattering. The effects related to Tb

and Ta are the external radiative effects. The effective internal path length Tr was

defined as [131, 133]

Tr = b−1α

π

[
ln(

Q2

m2
)− 1

]
, (A.4)

where m is the electron mass, and the constant b depends on the materials the

electrons pass through. As will be presented later, a path length T always appears

as b× T , thus the internal radiative effects (related to b× Tr) is independent of the

materials. In [131, 133], b was defined as

b =
4

3

[
1 +

Z + 1

9(Z + η)

1

ln(183Z−1/3)

]
, (A.5)

where Z is the (averaged) number of proton(s) in the nuclei of the materials, and η

was defined as

η =
ln(1440Z−2/3)

ln(183Z−1/3)
. (A.6)

The physical picture of MT can be illustrated as: the measured cross section

is different from the Born cross section because of the F factor, and experiments

only record the electron energies (Es and Ep) which differ from the energies at the

interaction point of the scattering (E ′s and E ′p). Eq. (A.1) is the folding formula that

connects the Born cross section to the measured cross section.
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The probability distribution includes the energy loss from the external and in-

ternal bremsstrahlung, and ionization (also called straggling in [122, 131]) for the

external energy loss. Following the steps leading to Eq. (4.1) in [131], it can be

expressed as

I(E,E − δE, T ) =
1

Γ(1 + b T )

(
δE

E

)b T {
b T

δE
φ(
δE

E
) +

ξ

δE2

}
, (A.7)

where Γ represents the Gamma function, T = Ts (Tp), and ξ = a x0 Tb (a x0 Ta) for

an incident (scattered) electron. The function φ(v) was defined as

φ(v) ≈ 1− v +
3

4
v2. (A.8)

The first term in the curly bracket of Eq. (A.7) is related to the external and internal

bremsstrahlung, and the second one is related to the external energy loss due to the

ionization process.

The function I(E,E ′, T ) has a singularity at E = E ′, which needs a special

treatment in a integration. This issue can be tackled by separating the 2D integration

in Eq. (A.1) into four parts, expressed as

σrad(Es, Ep) =

(∫ Es−∆s

Emin
s

+

∫ Es

Es−∆s

)
dE ′s

(∫ Emax
p

Ep+∆p

+

∫ Ep+∆p

Ep

)
dE ′p F (Q2)

×σborn(E ′s, E
′
p) I(Es, E

′
s, Ts) I(E ′p, Ep, Tp), (A.9)

where ∆s and ∆p are two empirical small energy values. The four parts involving

different types of singularities are listed below.

• One regular integral (no singularity):
∫ Es−∆s

Emin
s

dE ′s
∫ Emax

p

Ep+∆p
dE ′p.

• Two single-singular integrals:
∫ Es

Es−∆s
dE ′s

∫ Emax
p

Ep+∆p
dE ′p, and

∫ Es−∆s

Emin
s

dE ′s
∫ Ep+∆p

Ep
dE ′p.

• One double-singular integral:
∫ Es

Es−∆s
dE ′s

∫ Ep+∆p

Ep
dE ′p.
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The integration boundaries are defined by the kinematics of the elastic scattering:

Emin
s =

Ep
1− EpM−1 (1− cos θ)

, (A.10)

Emax
p (E ′s) =

E ′s
1 + E ′sM

−1 (1− cos θ)
, (A.11)

where θ is the polar angle of the scattered electron, and M is the mass of the target

nucleon or nucleus.

The singular part in the integrals can be formally expressed as

Isg =

∫ E

E−∆

dE ′ I(E,E ′, T ) f(E ′), (A.12)

where f(E ′) represents the other parts of the integrand besides I(E,E ′, T ). Assuming

f(E ′) ≈ f(E) in the small range (E −∆, E), Eq. (A.12) can be analytically carried

out by using Eq. (A.7):

Isg =
f(E)

Γ(1 + b T )

(
∆

E

)b T [
1− ξ

(1− b T ) ∆

]
. (A.13)

Eq. (A.13) is the same as Eq. (B.36) of [131], in which a more convoluted derivation

was presented.

The final (non-singular) formula for the folded cross section can be obtained by
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substituting Eq. (A.13) into Eq. (A.9):

σrad(Es, Ep) =

∫ Es−∆s

Emin
s

dE ′s

∫ Emax
p

Ep+∆p

dE ′p F (Q2)

×σborn(E ′s, E
′
p) I(Es, E

′
s, Ts) I(E ′p, Ep, Tp)

+

∫ Emax
p

Ep+∆p

dE ′p
1

Γ(1 + b Ts)

(
∆s

Es

)b Ts
[
1− ξb

(1− b Ts)∆s

]
×F (Q2)σborn(Es, E

′
p) I(E ′p, Ep, Tp)

+

∫ Es−∆s

Emin
s

dE ′s
1

Γ(1 + b Tp)

(
∆p

Ep

)b Tp
[
1− ξa

(1− b Tp)∆p

]
×F (Q2)σborn(E ′s, Ep) I(Es, E

′
s, Ts)

+
1

Γ(1 + b Ts)

(
∆s

Es

)b Ts
[
1− ξb

(1− b Ts)∆s

]

× 1

Γ(1 + b Tp)

(
∆p

Ep

)b Tp
[
1− ξa

(1− b Tp)∆p

]
×F (Q2)σborn(Es, Ep). (A.14)

This expression can be directly used in a code for numerical calculations. A few

points listed below should be useful for the people who use this formula.

• The quantities Q2 and Tr (internal part of Ts and Tp) are kinematic dependent,

and should be computed inside the integrations.

• One may also use bs and bp in the product with Ts and Tp, instead of a com-

mon b. The internal part b Tr will not change when b is varied, as discussed

previously following Eq. (A.4).

• The small quantities ∆s and ∆p should be small enough so Eq. (A.13) is a

good approximation. One can study the systematic uncertainties related to

this approximation by varying the values of ∆s and ∆p.
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Due to the limitation of the computing power at the time Mo and Tsai worked

out their algorithm, various peaking approximations were developed to accelerate

the numerical integration [122, 131]. One of the most widely used version is the

energy-peaking approximation, its analytical form (for usage in code) can be found

in Eq. (4.1) of [131] and Eq. (A82) of [133]. This analytical form can be expressed

as

σrad(Es, Ep) =

(
∆s

Es

)b Ts
(

∆p

Ep

)b Tp 1

Γ(1 + b Ts + b Tp)

×
[
1− ξb + ξa

(1− b Ts + b Tp)∆p

]
F (Q2)σborn(Es, Ep)

+

∫ Es−∆s

Emin
s

dE ′s f(s) F (Q2)σborn(E ′s, Ep) I
′(Es, E

′
s, Ts)

+

∫ Emax
p

Ep+∆p

dE ′p f(p) F (Q2)σborn(Es, E
′
p) I

′(E ′p, Ep, Tp). (A.15)

The factors f(s) and f(p) from the peaking approximation were defined as

f(s) =

(
Es − E ′s
EpR

)b Tp

, (A.16)

f(p) =

[
R(E ′p − Ep)

Es

]b Ts

, (A.17)

where R was expressed as

R =
∆s

∆p

=
M + 2Es sin2(θ/2)

M − 2Ep sin2(θ/2)
. (A.18)

Using the ratio R, only ∆p was empirically defined in [131, 133].

The functional form of the probability distribution I ′ in Eq. (A.15) was the same

as I in Eq. (A.7), with the following change: for an incident and scattered electron,

ξ was commonly defined as ξ = a x0 (Tb + Ta)/2. This difference can be traced back
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to the (incomplete) update from [133] to the original formalism in [131], as listed

below.

• In [131], the authors used the approximation of Tb = Ta (half-path-length

approximation), which means the scattering was assumed to happen at the

center of the materials. Thus, the ionization-related quantity ξ was defined

to be ξ = a x0 (Tb + Ta)/2. In appendix C of [131], the authors had some

discussions about the uncertainty of this approximation.

• In [133], the authors intended to remove the assumption Tb = Ta, and changed

the bremsstrahlung-related quantities in the folding formula (with energy-

peaking approximation), but left the ionization-related part intact. This seems

like an incomplete update, but if Tb is close to Ta, or the radiative effects due

to the bremsstrahlung is dominating, the error should be acceptable.

With the development of computers, people are now able to carry out the full

2D integrations mentioned above, and use the Monte Carlo method to simulate

the energy loss effects. The external radiative effects can be simulated by defining

materials before and after the scattering (Tb, Ta and b). In the formalism developed

by Mo and Tsai, the internal radiative effects can also can also be simulated by

calculating the effective path length Tr, and the F factor, based on the kinematics of

each event. Using a Monte Carlo simulation, one is able to change the descriptions

of the energy loss mechanisms without the need to derive an analytical form of the

combined probability distribution. Simulation tool kits, such as Geant [134], have

been developed, and are able to properly describe the external radiative effects.

Mo and Tsai discussed ERM and other methods (before 1975) for the description

of the internal radiative effects [122, 131]. Another widely used formalism (POL-

RAD) for the internal radiative effects in the inclusive scattering based on QED was

developed in 1997 [123]. In POLRAD, a 2D integration has to be carried out.
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A code module (RADIATE) based on [133] was developed by K. Slifer, et al. for

JLab experiments, and have been used for more than 15 years. I developed a code

module (XYRAD2D) based on Eq. (A.14). A comparison between the integration

ranges of POLRAD, MT 2D integration (XYRAD2D), and MT peaking integrations

(RADIATE) for one example event is presented in Fig A.1. The kinematics of this

event is listed in Table A.1. The corresponding Born and radiative differential cross

sections (DXSs) of the inclusive DIS process, using the model from [119], are listed

in Table A.2. In this example, the radiative DXSs are evaluated by RADIATE,

XYRAD2D and POLRAD with only the internal radiative effects.

Es (GeV) Ep (GeV) θ (degree) Q2 (GeV2) W (GeV)
5.89 1.0 30 1.58 2.91

Table A.1: Kinematics of the example event.

Type of DXS Born RADIATE XYRAD2D POLRAD
Value 17.55 21.77 22.03 20.98

Table A.2: The Born and radiative differential cross sections evaluated by RADIATE,
XYRAD2D and POLRAD, at the kinematics listed in Table A.1. The DXS dσ/dΩ dE
is in the unit of [nb GeV−1Sr−1].

Radiative tail from the elastic channel

The derivation from Eq. (A.1) to Eq. (A.14) can be easily used for the evaluation

of the radiative tail from the elastic channel.

The cross section of the elastic channel can be expressed as

σel(Es, Ep) = σel(Es) δ(Ep − Eel
p (Es)), (A.19)

where the angular dependence of σel is not explicitly expressed, and Eel
p (E ′s) is defined
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Figure A.1: Each step in the integrations of POLRAD (green rhombus), MT 2D
integration (blue solid circles), and MT peaking integrations (red squares) for one
example event. The central kinematics of the event as in Table A.1 is represented
by the black empty circle.

as

Eel
p (E ′s) =

E ′s
1 + E ′sM

−1 (1− cos θ)
. (A.20)

Substituting Eq. (A.19) into Eq. (A.1), the radiative cross section of the elastic
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channel can be expressed as

σrad(Es, Ep) =

∫ Es

Emin
s

dE ′s

∫ Emax
p

Ep

dE ′p F (Q2)σel(E
′
s)

×δ(E ′p − Eel
p (E ′s) I(Es, E

′
s, Ts) I(E ′p, Ep, Tp)

=

∫ Es

Emin
s

dE ′s F (Q2)σel(E
′
s) I(Es, E

′
s, Ts) I(Eel

p (E ′s), Ep, Tp)

=

(∫ Emin
s +∆1

Emin
s

+

∫ Es−∆2

Emin
s +∆1

+

∫ Es

Es−∆2

)
dE ′s

×F (Q2)σel(E
′
s) I(Es, E

′
s, Ts) I(Eel

p (E ′s), Ep, Tp), (A.21)

where ∆1 and ∆2 are small empirical energy values. Eq. (A.21) consists of two

singular integrals and one regular integral:

• Integral
∫ Emin

s +∆1

Emin
s

dE ′s (denoted as A for later discussions): when E ′s = Emin
s ,

Eel
p (E ′s) = Ep makes I(Eel

p (E ′s), Ep, Tp) singular.

• Integral
∫ Es

Es−∆2
dE ′s (denoted as B for later discussions): when E ′s = Es,

I(Es, E
′
s, Ts) is singular.

• Integral
∫ Es−∆2

Emin
s +∆1

dE ′s (denoted as C for later discussions): regular 1D integral.

Integral B can be calculated as

B =
1

Γ(1 + b Ts)

(
∆2

Es

)b Ts
[
1− ξb

(1− b Ts)∆2

]

× 1

Γ(1 + b Tp)

(
ωp
Ep

)b Tp
[
b Tp
ωp

φ(
ωp
Ep

) +
ξa
ω2
p

]
×F (Q2)σel(Es). (A.22)
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Integral A can be calculated as

A =

∫ Emin
s +∆1

Emin
s

dE ′s F (Q2)σel(E
′
s) I(Es, E

′
s, Ts) I(Eel

p (E ′s), Ep, Tp)

=

∫ Ep+∆′1

Ep

dEel
p

dE ′s
dEel

p

F (Q2)σel(E
min
s ) I(Es, E

min
s , Ts) I(Eel

p , Ep, Tp)

=
1

Γ(1 + b Ts)

(
ωs
Es

)b Ts
[
b Ts
ωs

φ(
ωs
Es

) +
ξb
ω2
s

]

× 1

Γ(1 + b Tp)

(
∆′1
Ep

)b Tp
[
1− ξa

(1− b Tp)∆′1

]
×F (Q2)σel(E

min
s ) [1− EpM−1 (1− cos θ)]−2. (A.23)

The quantities ωs, ωp and ∆′1 are defined as

ωs = Es − Emin
s , (A.24)

ωp = Eel
p (Es)− Ep, (A.25)

∆′1 = Eel
p (Emin

s + ∆1)− Eel
p (Emin

s ). (A.26)

Using Eqs. (A.23) and (A.22), the radiative cross section in Eq. (A.21) can be

explicitly expressed, and put in code.

Additional discussions on the formalism of Mo and Tsai

In the tech-notes from previous JLab experiments [135, 136], the cross section of

the elastic tail σelrad was expressed as

σelrad =
(
σbint + σbext + σionext

)
F, (A.27)

where subscript int (ext) represents internal (external), and superscript b (ion) rep-

resents bremsstrahlung (ionization). The first term is the radiative cross section with
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the effect of internal bremsstrahlung, evaluated based on the modified Bethe-Heitler

formula. The second term is the radiative cross section with the effect of external

bremsstrahlung, evaluated with the external path lengths (Tb and Ta). The third

term is the radiative cross section with the effect of external ionization, evaluated

with the quantity ξ before and after the scattering.

Such an additive form was also presented in Eq. (3.1) of [131], with a comment:

when the equivalent radiator method is used, the first term (σbint) should be dropped,

and add the equivalent internal path length (Tr) to the external path lengths. Two

points are listed below as discussions of Eq. (A.27) [Eq. (3.1) of [131]]

• Tsai carried out the derivation of σbint with the energy-peaking approximation,

and reached Eq. (C.13) in [131]. Then the result was generalized (without

intermediate steps of derivation) to include the external bremsstrahlung and

ionization, as in Eq. (3.1) of [131].

• The final form of the combined probability distribution in [131], as in Eq.

(A.7), has a similar mystery. While there are extended discussions about the

proper way to combine the probability distributions related to bremsstrahlung

and ionization in appendix B of [131], the final expression in Eq. (4.1) of [131]

simply used the combined probability distribution in Eq. (A.7), which has

an additive form. The intermediate steps between Eq. (C.23) (with only the

internal bremsstrahlung) and Eq. (4.1) of [131] were also omitted in [131].

Based on the two points above, this additive form, while being concise and con-

venient for coding, seems to have included implicit approximations in the process of

combining the internal and external radiative effects.

In this appendix, using the equivalent radiator method, the expressions for folding

the cross sections of the continuous and discrete (elastic) spectra are derived with

167



a simple approximation in Eq. (A.13). Due to the use of Eq. (A.7), the implicit

approximations Tsai used for combining the probability distributions are inherited.

There is also a practice to remove the angle-peaking approximation when integrat-

ing the modified Bethe-Heitler formula in [135], which still used the energy-peaking

approximation.

Various versions of folding the Born cross section have used different approxima-

tions, and their comparisons may be useful when estimating (and even suppressing)

the systematic uncertainties.
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