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Abstract The Covariant Spectator Theory is applied to the description of quarks
and the pion. The dressed quark mass function is calculated dynamically in Minkowski
space and used in the calculation of the pion electromagnetic form factor. The ef-
fects of the mass function on the pion form factor and the different quark-pole
contributions to the triangle diagram are analyzed.
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1 Introduction

Meson form factors are important physical observables that contain the infor-
mation on the structure of a meson, and various physical processes and quantities
depend on them. A prominent example that has recently attracted much attention
is the muon anomalous magnetic moment, a low-energy observable both measured
and calculated to extremely high precision. Its present experimental value persis-
tently deviates from the theoretical prediction by more than 3σ, a discrepancy
often interpreted as a signature of “physics beyond the Standard Model”. There-
fore, in order to draw definite conclusions, it is of highest importance to increase
the accuracy of both measurement and theoretical calculations. The largest the-
oretical uncertainty come from the hadronic vacuum polarization and hadronic
light-by-light scattering contributions. For the latter, the most relevant contribu-
tions are the pseudoscalar-meson-pole diagrams related to the meson transition
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Fig. 1 The pseudoscalar-meson-pole contribution (left panel) with the meson transition form
factors (turquoise blobs) and the dressed-quark-loop contribution (right panel) with the dressed
quark-photon vertices (pink blobs) and the dressed quark propagators (blue lines).

form factors, and the dressed-quark-loop diagram, all of which depend on the
dressed quark propagator and the dressed quark-photon vertex. These contribu-
tions to the muon anomaly are diagrammatically depicted in Fig. 1

This article focuses on the dressed quark propagators (i.e. the dressed quark
mass function), the dressed quark-photon vertex, and the meson vertex functions
as the ingredients for the calculation of meson electromagnetic form factors. In
particular, we concentrate here on the pion electromagnetic form factor in the
spacelike region of momentum-transfer squared Q2 > 0. The pion is the ideal test
case for relativistic calculations because of its simplicity and the large amount of
experimental data available from various hadron facilities worldwide, such as the
Jefferson Lab and FAIR-GSI.

Various theoretical methods have been developed in order to describe the
non-perturbative dynamics underlying the pion and other hadronic bound states.
For instance, lattice QCD [1], Hamiltonian approaches based on Dirac’s forms of
dynamics [2], as well as methods based on the Dyson-Schwinger/Bethe-Salpeter
(DSBS) approach and the mass gap equation [3] have made significant contribu-
tions to our understanding of hadrons.

Our theoretical framework is the Covariant Spectator Theory (CST) [4], a non-
perturbative approach with the unique feature that it allows the use of confining
interaction kernels with a Lorentz scalar structure without violating chiral symme-
try. Similar to the DSBS approaches, it incorporates both relativistic covariance
and dynamical chiral-symmetry breaking, features that are indispensable for the
description of the light mesons, such as the pion, η, and η′. In contrast to lattice
QCD and the DSBS approaches, the CST equations are solved in Minkowski space,
which allows, for instance, for a straightforward extension of form factor results
from the spacelike- to the timelike-Q2 region. This region is relevant for medium
effects searched in experiments to study matter under extreme conditions.

2 Quark mass functions in CST

Dynamical chiral-symmetry breaking implies the dynamical generation of a con-
stituent quark mass via the strong interaction. In the charge-conjugation-invariant
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formulation of CST [5], this is realized by the CST Dyson equation given by

S−1(p) = S−1
0 (p) +

1

2
ZR

∑
σ=±

∫
d3k

(2π)3
m

Ek
V(p, k̂σ)Λ(/̂kσ) , (1)

where S(p) = Z(p2)
[
M(p2)− /p− iε

]−1
and S0(p) =

[
m0 − /p− iε

]−1
are the

dressed and bare quark propagators, respectively, with p the off-shell quark four-
momentum, M(p2) = Z(p2)[A(p2) + m0] the dressed quark mass function, A(p2)
the scalar part of the quark self-energy, Z(p2) the wave-function renormaliza-
tion, m0 the bare quark mass, m the (dressed) constituent quark mass, ZR ≡
Z(m2)/(1 − 2mM ′(m2)) a constant with M ′ ≡ dM/dp2, V(p, k̂±) the strong-
interaction kernel, Λ(k) = (M(k2) + /k)/2M(k2), and k̂± = (±Ek,k) is the on-
shell quark four-momentum with Ek =

√
m2 + k2. The constituent quark mass

m is determined as the value of the mass function where S has a real pole, i.e.
m ≡M(m2). Equation (1) describes the dynamical generation of the dressed quark
mass function due to its dressing through the interaction kernel. In the present
work we use a kernel of the form

V(p, k̂±) = (1⊗1+γ5⊗γ5)VL(p, k̂±)+γµ⊗γµh2(p2)
C

2m
(2π)3Ekδ

3(p−k) , (2)

where VL(p, k̂±) is a covariant generalization in momentum space of the linear
confining potential, satisfying the condition [4]∫

d3k

Ek
VL(p, k̂) = 0 , (3)

which is the CST version of the property that describes the vanishing of the
nonrelativistic linear potential at the origin in coordinate space. The last term
of the kernel of Eq. (2) is a covariant generalization in momentum space of a
constant potential C in coordinate space, and h(p2) is a strong quark form factor.
In Ref. [6] we proved that the kernel of Eq. (2) satisfies the axial-vector Ward-
Takahashi identity which ensures dynamical chiral-symmetry breaking. This works
with a mixed (equal-weight) Lorentz pseudoscalar-scalar linear confining kernel
since such a kernel does not contribute to the CST Dyson equation (1) for the
dressed quark propagator because of the property of Eq. (3). After solving Eq. (1)
analytically in the chiral limit (m0 = 0), where ZRC → m, the dynamical quark
mass function is given by

M(p2) = mh2(p2) . (4)

The strong quark form factor h(p2) depends on the chiral-limit constituent
quark mass m and a mass cutoff parameter Λ. Both these parameters are deter-
mined by a fit of the mass function Eq. (4) at negative momenta-squared p2 to
the the available lattice-QCD data [7] (extrapolated to the chiral limit). Since for
timelike momenta p2 > 0 there are no lattice QCD data available, we adopt an
Ansatz for h(p2) in this region. Varying the shape of h for p2 > 0 will allow us to
study the sensitivity of the pion form factor calculation on the quark mass func-
tion. Figure 2 compares the mass function with the lattice QCD data in the chiral
limit and also shows possible shapes in the timelike region.



4 Elmar P. Biernat et al.

●
●
●
●●
●●
●●●●●●●●●●

●●●
●
●●●●●
●
●●●●●●●●●
●●●
●●●●
●●●
●●●●
●●●●●●●●●

●●●●●●
●
●
●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●●
●●
●●●
●
●●●●
●●
●●●●●
●●●●●●

●●●●●●●
●
●●●●●

●●●●●●
●●●
●●●●●●

●
●
●●●●●
●●
●
●●●
●
●●
●
●●
●●●

-15 -10 -5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
2(GeV

2)

M
(p

2
)(

G
e
V
)

Fig. 2 The chiral-limit mass function compared with the lattice QCD data [7] (extrapolated
to the chiral limit). In the timelike region 3 different possible shapes are shown.

3 The pion electromagnetic form factor in CST

Next we use the quark mass function in the calculation of the pion electromagnetic
form factor. In impulse approximation, the electromagnetic pion current is calcu-
lated from the sum of two triangle diagrams in which the virtual photon couples
either to the quark or to the antiquark. One of these diagrams is shown in Fig. 3.
The pion current is given by

q = P+ − P−

P−P+

S(p+) S(p−)

S(k)

Γ̄ Γ

jµ(p+, p−)

Fig. 3 The triangle diagram for the pion current which describes the coupling of the virtual
photon (wiggly line) to the the quark (blue line), with the antiquark as a spectator (red line).

F (Q2)(P+ + P−)µ = i

∫
d4k

(2π)4
Tr
[
Γ̄ (k, p+)S(p+)jµ(p+, p−)S(p−)

× Γ (p−, k)S(k)] , (5)

where F (Q2) is the pion electromagnetic form factor and
Q2 = −q2 = −(P+ − P−)2 is the virtuality of the photon. According to the charge-
conjugation-invariant CST prescription of how to perform the k0 contour integra-
tion in Eq. (5) one takes all six quark propagator-pole contributions into account.
These are the two positive- and negative-energy spectator quark poles at k2 = m2

and the four positive- and negative-energy poles at p2± = m2 of the active quark
to which the photon couples [8].
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For the dressed off-shell quark-photon vertex jµ we use the current given by [8]

jµ(p+, p−) = h(p2+) [f(p+, p−)γµ + δ(p+, p−)Λ(−p+)γµ

+ δ(p−, p+)γµΛ(−p−) + g(p+, p−)Λ(−p+)γµΛ(−p−)]h(p2−) ,

(6)

where f , δ, and g are scalar functions determined through the Ward-Takahashi
identity in terms of the h form factors, according to the Gross-Riska prescription [9]
to ensure gauge invariance. For the pion vertex function Γ , we take a simple
Ansatz near the chiral limit of the form Γ (p−, k) ∝ h(p2−)h(k2)γ5 and Γ̄ (k, p+) ∝
h(p2+)h(k2)γ5 [8].

4 Results and conclusions

In Fig. 4 the ratio Fspect/Fact versus Q2 is shown, where Fspect and Fact are the
spectator and active quark-pole contributions to the pion electromagnetic form fac-
tor, respectively. Also shown are the results obtained with constant quark masses
and quark mass functions in order to analyse the effect of the momentum de-
pendence of the quark mass in the pion form factor. In Fig. 5 the results of Fact
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Fig. 4 The ratio Fspect/Fact calculated with constant quark masses (dashed lines) and
momentum-dependent quark mass functions (solid lines), and different values of the pion mass
µ. The pairs of curves, from top to bottom, are the results obtained with µ = 0.6 (brown),
0.42 (orange), and 0.14 GeV (purple).

when calculated with different mass functions in the timelike region (see Fig. 2)
are compared. Note that the computation of Fspect tests the mass function only
in the spacelike region where it is fixed by the lattice QCD data, hence all curves
coincide in this case.

One conclusion of this work can be drawn from Fig. 4: For small pion masses µ,
the active quark contributions Fact are as important as the spectator contributions
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Fig. 5 Fact when calculated with different quark mass functions, corresponding to the ones
shown in Fig. 2.

Fspect, over the whole range of Q2, and only for large µ and large Q2, Fact is sup-
pressed as compared to Fspect by about 30%. This suppression is slightly stronger
for momentum-dependent than for constant quark masses. For small µ, Fact and
Fspect are nearly identical, not only in magnitude but also in shape, even for large
Q2. Furthermore, we find that the pion form factor in this model is surprisingly
insensitive to the functional form of the strong quark form factors and quark mass
function, as can be seen in Fig. 5.

Despite its simplicity, this first calculation of the pion form factor in the charge-
conjugation-invariant CST showed the importance of the different quark-pole con-
tributions to the triangle diagram and its insensitivity to the choice of the time-like
dependence of the strong quark form factors. It will be the reference work for future
form factor calculations within this framework.

Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia
(FCT) under Grants No. CFTP-FCT (UID/FIS/00777/2013), No. CERN/FP/123580/2011,
No. SFRH/BPD/100578/2014, and No. SFRH/BD/92637/2013, and by the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 283286.
F.G. was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear
Physics under contract DE-AC05-06OR23177.

References

1. T. DeGrand, C. DeTar. Lattice Methods for Quantum Chromodynamics, World Scientific
(2006); C. Gattringer, C. B. Lang. Quantum Chromodynamics on the Lattice, Springer
(2010); R.G. Edwards, N. Mathur, D.G. Richards, S.J. Wallace, Phys. Rev. D 87, 054506
(2013); P. Guo, J.J. Dudek, R.G. Edwards, A.P. Szczepaniak, Phys. Rev. D 88, 014501
(2013)

2. S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rept. 301, 299 (1998); J. P. Vary et al. Phys.
Rev. C 81 (035205) 2010. J. Carbonell, B. Desplanques, V. Karmanov, J. Mathiot, Phys.
Rept. 300, 215 (1998); B. D. Keister, W. N. Polyzou. Adv. Nucl. Phys. 20, 225 (1991); L.
Ya. Glozman, W. Plessas, K. Varga, R. F. Wagenbrunn. Phys. Rev. D 58, 094030 (1998);
E. B. Biernat, W. H. Klink, W. Schweiger. Few Body Syst. 49, 149 (2011)



Quark mass functions and pion structure in the Covariant Spectator Theory 7

3. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C. S. Fischer, Prog. Part. Nucl.
Phys. 91, 1 (2016); P.J. de A. Bicudo, J.E.F.T. Ribeiro, Phys. Rev. D 42, 1611; ibid.
1625; ibid. 1635, (1990); A.V. Nefediev, J.E.F.T. Ribeiro, Phys. Rev. D 70, 094020 (2004);
R. Alkofer, L. von Smekal, Phys. Rept. 353, 281 (2001); P. Maris, C.D. Roberts, Int. J. Mod.
Phys. E 12, 297 (2003); C.S. Fischer, J. Phys. G 32, R253 (2006); E. Rojas, J. de Melo,
B. El-Bennich, O. Oliveira, T. Frederico, J. High Energy Phys. 1310, 193 (2013); T. Hilger,
M. Gomez-Rocha, A. Krassnigg, Phys. Rev. D, 91, 114004 (2015); T. Hilger, C. Popovici,
M. Gomez-Rocha, A. Krassnigg, Phys. Rev. D, 91 034013 (2015); L. Chang et al., Phys.
Rev. Lett. 111, 141802 (2013)

4. F. Gross, Phys. Rev. 186, 1448 (1969); F. Gross, J. Milana, Phys. Rev. D 43, 2401 (1991);
ibid. 45, 969 (1992); ibid. 50, 3332 (1994); S. Leitão, A. Stadler, M. T. Peña, E. B. Biernat.
Phys. Lett. B764, 38 (2017); ibid. Phys.Rev. D 96, 074007 (2017)

5. C. Savkli, F. Gross, Phys. Rev. C 63, 035208 (2001); E.P. Biernat, F. Gross, M.T. Peña,
A. Stadler, Phys. Rev. D 89, 016005 (2014)

6. E.P. Biernat, M.T. Peña, J.E. Ribeiro, A. Stadler, F. Gross, Phys. Rev. D 90, 096008 (2014)
7. P. O. Bowman et al. Phys. Rev. D 71, 054507 (2005)
8. E.P. Biernat, F. Gross, M.T. Peña, A. Stadler, Phys. Rev. D 89, 016006 (2014); ibid. 92,

076011 (2015)
9. F. Gross, D.O. Riska, Phys. Rev. C 36, 1928 (1987); F. Gross, Y. Surya, Phys. Rev. C 47,

703 (1993); Y. Surya, F. Gross, Phys. Rev. C 53, 2422 (1996)


	1 Introduction
	2 Quark mass functions in CST
	3 The pion electromagnetic form factor in CST
	4 Results and conclusions

