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Background: Extracting the proton charge radius from electron scattering data requires determining the slope14

of the charge form factor at Q2 of zero. But as experimental data never reach that limit, numerous methods for15

making the extraction have been proposed, though often the functions are determined after seeing the data which16

can lead to confirmation bias.17

Purpose: To find functional forms that will allow for a robust extraction of the input radius for a wide variety18

of functional forms in order to have confidence in the extraction from upcoming low Q2 experimental data such19

as the Jefferson Lab PRad experiment.20

Method: We create a general framework for inputting form-factor functions as well as various fitting functions.21

The input form factors are used to generate pseudo-data with fluctuations intended to mimic the binning and22

random uncertainty of a given set of real data. All combinations of input functions and fit functions can then23

be tested repeatedly against regenerated pseudo-data. Since the input radius is known, this allows us to find fit24

functions that are robust for radius extractions in an objective fashion.25

Results: For the range and uncertainty of the PRad data, we find that a two-parameter rational function, a26

two-parameter continued fraction and the second order polynomial expansion of z can extract the input radius27

regardless of the input charge form factor function that is used.28

Conclusions: We have created an easily expandable framework to search for functional forms that allow for a29

robust extraction of the radius from a given binning and uncertainty of pseudo-data generated from a wide variety30

of trial functions. This method has enabled a successful search for the best functional forms to extract the radius31

from the upcoming PRad data, and can be used for other experiments.32
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I. INTRODUCTION33

A lot of efforts have been devoted to the measurement of the charge radius of the proton (R), but results from34

different experiments and/or analyses exhibit sizable differences. In high-precision muonic hydrogen Lamb shift35

experiments, R was measured to be 0.8409 ± 0.0004 fm [1, 2], while the current value from CODATA, determined36

from regular atomic Lamb shift and electron-proton (ep) scattering experiments, is R = 0.8751±0.0061 fm [3], though37

this result does not yet reflect the latest published electron scattering or regular atomic Lamb shift results [4, 5]. This38

difference has been known as the proton radius puzzle [6–8].39

To extract the proton radius R from the ep-scattering data, one fits the electric form factor (GE) as a function of40

the squared four-momentum transfer to the system (Q2), and determines the slope of the GE function at Q2 of zero.41

The relation between the slope and the radius is defined to be42

R ≡

(
−6

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

. (1)

Unfortunately, experimental electron scattering cannot reach the Q2 = 0 limit; thus, many different methods have43

been proposed for the extraction of the radius from the data.44

Some recent global analyses of ep-scattering data found R ≈ 0.84 fm, in agreement with the muonic Lamb shift45

results [9–13]. Though using the same experimental data, these analyses extract systematically smaller radius than46

the results of other groups [14–20]. It has been pointed out that the difference between the results comes mainly due47

to differences in how the high-order moments 〈r2n〉 (n > 1) are taken into account [21]. A summary table of the48

higher order moments from a number of these fits can be found in the recent work of Alarcón and Weiss [22].49

In the study of Kraus et al. [23], it was shown that when using low-order polynomial expansion of Q2 to fit pseudo-50

data generated with known R, the value from the fit, R(fit), is systematically smaller than the input value, R(input),51

though they also showed that the variance from the low order fits can be significantly smaller than the unbiased52

higher order fits. Sick et al. [24] also showed that when high-order moments 〈r2n〉 (n > 1) were treated differently,53

significantly different R values were extracted from the world data of ep scattering.54

Describing the form-factor GE with a multi-parameter polynomial expansion of Q2 up to an order Q2N seems to55

be the natural choice for the fits, since each moment 〈r2n〉 (1 ≤ n ≤ N) is related to an independent parameter. And56

though this description seems to be model independent, as Kraus et al. have shown, it does not ensure a correct R57

extraction from data when it is used for fitting [23].58

Beyond multi-parameter polynomials, one can also use functional forms of GE based on models of the proton59

charge distribution. The problem of this approach is that it can be difficult to quantify how much the R extraction is60

affected by the imperfectness of the assumed model. In addition, constructing a model description of the full charge61

distribution of the real proton is a far more complex problem than simply trying to extract only the “real” R value.62

To resolve the mystery of fitting-function choice, we propose a robust method to find function(s) that can extract63

the “real” R from a broad set of input functions and input radii. The expected binning and uncertainty of the PRad64

experiment [25] will be taken as an example of applying this method.65

II. METHOD66

If a perfect functional form of GE for the real proton were available, its parameters could be determined by fitting67

the function to the experimental data, and the “real” R could be extracted. This ideal case is simulated by examining68

the fitting results R(fit) using the same functional form as that used to generate the pseudo-data, and a simulated69

random statistical variation is added to the central GE value. This process is repeated multiple times in order to70

obtain a distribution of R(fit).71

However, a perfect functional form is not available, and one has to search for functional forms that can extract the72

“real” R from certain data sets with minimal dependence on the knowledge of the “real” functional form of GE . For73

simplicity, we call this feature robustness.74

In this study, a number of fittings based on different functional forms are applied to pseudo-data generated from75

various models and/or parameterizations. By studying the distributions of the fitting results, one can find whether a76

functional form is robust: it is robust if it correctly extracts the R value regardless of the parameterizations used to77

generate the pseudo-data.78

A program library consisting of three parts (generator, fluctuation-adder and fitter) has been built to test the robust79

extraction of R [26]. This program library is coded in C++, using the packages of Minuit and CERN ROOT [27].80

The three components of this library are described in detail in the following subsections.81
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A. Generator82

The generator of this library has been built to generate GE values at given Q2 with the simple standard functions,83

parameterizations of experimental data, as well as full theoretical calculations. Other functions can easily be added84

to this library, The currently installed functions include:85

a. Dipole The dipole functional form of GE [28] is expressed as86

GE(Q2) =

(
1 +

Q2

p1

)−2

, (2)

where p1 = 12/R2 is a parameter related to the radius R. This functional form corresponds to an exponential charge87

distribution of the proton, and the relation between moments is88

〈r2n〉 =
(n+ 1)(2n+ 1)

6
〈r2〉〈r2n−2〉, (3)

where n > 1.89

b. Monopole The monopole functional form of GE [28] is expressed as90

GE(Q2) =

(
1 +

Q2

p1

)−1

, (4)

where p1 = 6/R2. This functional form corresponds to a Yukawa charge distribution of the proton, and the relation91

between moments is92

〈r2n〉 =
n(2n+ 1)

3
〈r2〉〈r2n−2〉, (5)

where n > 1.93

c. Gaussian The Gaussian functional form of GE [28] is expressed as94

GE(Q2) = exp(−Q2/p1), (6)

where p1 = 6/R2. This functional form corresponds to a Gaussian charge distribution of the proton, and the relation95

between moments is96

〈r2n〉 =
2n+ 1

3
〈r2〉〈r2n−2〉, (7)

where n > 1.97

d. Kelly-2004 The parameterization from Ref. [29] is expressed as98

GE(Q2) =
1 + a1τ

1 + b1τ + b2τ2 + b3τ3
, (8)

where τ = Q2/4m2
p, and mp is the proton mass. The parameters a1, b1, b2 and b3 can be found in Table I of Ref.99

[29]. The radius in this parameterization is R = 0.8630 fm.100

e. Arrington-2004 The parameterization from Ref. [30] is expressed as101

GE(Q2) =

(
1 +

N∑
i=1

p2iQ
2i

)−1

, (9)

where parameters p2i up to i = 6 can be found in Table I of Ref. [30]. The radius in this parameterization is102

R = 0.8682 fm.103

f. Arrington-2007 The parameterization from Ref. [31] is a fifth-order continued-fraction (CF) expansion ex-104

pressed as:105

GE(Q2) =
1

1 + p1Q2

1+
p2Q2

1+···

, (10)

where the parameters pi (index i from 1 to 5) can be found in Table I in Ref. [31]. The radius in this parameterization106

is R = 0.8965 fm.107
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g. Venkat-2011 The parameterization from Ref. [33] is expressed as108

GE(Q2) =
1 + a1τ + a2τ

2 + a3τ
3

1 + b1τ + b2τ2 + b3τ3 + b4τ4 + b5τ5
, (11)

where parameters ai (i = 1, 2 and 3) and bi (i = 1, 2, ..., 5) can be found in Table II of Ref. [33]. The radius in this109

parameterization is R = 0.8779 fm.110

h. Bernauer-2014 This parameterization is a refit of the full final set from Ref. [20], and is very close to the111

result in Ref. [32]. It is expressed as a 10th-order polynomial expansion of Q2:112

GE(Q2) = 1 +

10∑
i=1

piQ
2i, (12)

where the refitted parameters pi are very close to the parameters in Sec. J of Ref. [32]. The radius in this parame-113

terization is R = 0.8868 fm.114

i. Alarcón-2017 As a fully realistic charge form factor, we used the model of Alarcón and Weiss [22, 34] referred115

to herein as Alarcón-2017. This model uses the recently developed method combining chiral effective field theory and116

dispersion analysis. Solely for the purpose of testing extraction techniques, the radius in the model was fixed to a117

series of values: 0.84 fm from muonic hydrogen, 0.875 fm from CODATA, and 0.85 fm as the central value from the118

range of radii allowed by the model. Unlike the other models, where a simple function could be programmed, here119

we use a fine table of charge values and then fit it with a cubic spline. The result of the fit can then be called in a120

similar manner to the other functions.121

j. Ye-2018 The parameterization in Ref. [35] pre-fixed the radius to R = 0.879 fm, together with other manual122

constraints and fitted some global data to get the parameters. The parameterization and the values of the parameters123

can be found in Ref. [35] and its supplemental materials. This parameterization will be referred to as Ye-2018 in124

this study. The authors of Ref. [35] also provided a separate set of parameterization with a different pre-fixed radius,125

R = 0.85 fm. This re-fixed paramertization will be referred to as Ye-2018 (re-fix) in this study.126

B. Fluctuation adder127

The library allows adding bin-by-bin and overall fluctuations to the GE vs. Q2 tables, mimicking the real data128

from experiments. It includes fluctuations according to a user-defined random Gaussian distribution, N (µ, σ2).129

In the bin-by-bin case, the uncertainty δGE of each bin is defined by the user. The library sets µ = 0 and σ = δGE ,130

and generates fluctuations according to N (µ, σ2) in each bin.131

In the overall case, the user can manually set the values of µ and σ, and the library generates an overall scaling132

factor according to N (µ, σ2) for all the bins in a table.133

A few other types of fluctuations (such as uniform and Breit-Wigner distributions) are also included in the library134

for other test purposes.135

C. Fitter136

This library uses the Minuit package of CERN ROOT to fit the GE vs. Q2 tables, with a number of functional137

forms as listed below.138

a. Dipole The dipole fitter is expressed as139

fdipole(Q
2) = p0GE(Q2) = p0

(
1 +

Q2

p1

)−2

, (13)

where p0 is a floating normalization parameter, and p1 is a fitting parameter related to the radius R =
√

12/p1.140

b. Monopole The monopole fitter is given by141

fmonopole(Q
2) = p0GE(Q2) = p0

(
1 +

Q2

p1

)−1

, (14)

and R =
√

6/p1.142
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c. Gaussian The Gaussian fitter has the form143

fGaussian(Q2) = p0GE(Q2) = p0 exp(−Q2/p1), (15)

and R =
√

6/p1.144

d. Multi-parameter polynomial-expansion of Q2 The fitter of the multi-parameter polynomial-expansion of Q2 is145

written as146

fpolyQ(Q2) = p0GE(Q2) = p0

(
1 +

N∑
i=1

piQ
2i

)
, (16)

where p0 is a floating normalization parameter, p1 is a fitting parameter related to the radius by R =
√
−6p1,147

parameters for higher order terms (pi with i > 1) are free fitting parameters, and N is defined by the user.148

e. Multi-parameter rational-function of Q2 The fitter of the multi-parameter rational-function of Q2 is expressed149

as150

frational(Q
2) = p0GE(Q2) = p0

1 +
N∑
i=1

p
(a)
i Q2i

1 +
M∑
j=1

p
(b)
j Q2j

, (17)

where p0 is a floating normalization parameter, p
(a)
i and p

(b)
j are free fitting parameters, and radius can be found as151

R =

√
6(p

(b)
1 − p

(a)
1 ). The orders N and M are defined by the user.152

f. CF expansion The CF expansion fitter is expressed as [24]153

fCF(Q2) = p0GE(Q2) = p0
1

1 + p1Q2

1+
p2Q2

1+···

, (18)

where p0 is a floating normalization parameter, pi (i > 0) are free fitting parameters, and R =
√

6p1. The user can154

define the maximum i of the expansion.155

g. Multi-parameter polynomial-expansion of z The z-transformation is expressed as [16]156

z =

√
Tc +Q2 −

√
Tc − T0√

Tc +Q2 +
√
Tc − T0

, (19)

where Tc = 4m2
π, mπ is set to be 140 MeV (close to the π0 mass as in Ref. [16]), and T0 is a free parameter representing157

the point mapping onto z = 0 (T0 is set to 0 in this study). With the new variable z, GE can be parameterized as158

fpolyz(Q
2) = p0GE(Q2) = p0

(
1 +

N∑
i=1

piz
i

)
, (20)

where p0 is a floating normalization parameter, p1 is a fitting parameter related to the radius by R =
√
−3p1/2Tc, pi159

are free fitting parameters, and N is defined by the user.160

III. TESTS161

The tests of this method are performed using the bin centers of Q2 and the bin-by-bin uncertainties of the PRad162

experiment [25]. Two sets of binning information [36] are used in the tests; only the expected statistical uncertainties163

from PRad are used, as the PRad analysis of the systematic uncertainties is not finished yet.164

Fig. 1 presents the fits with the dipole fitter of pseudo-data generated with the dipole generator [R(input) = 0.85165

fm] in the PRad binning. No fluctuation is added to the central values of GE in the first panel. The fitting results with166

fluctuations (using the fluctuation-adder) are shown in the second and third panels. It is observed that when there167

is no fluctuation, the fit curve goes through all the pseudo-data points perfectly, and the input R value is obtained.168

However, when there are fluctuations, the results of the fit can differ from the input.169

In the following subsections, the procedure of the tests are presented, followed by the test results. Because the test170

results using the two bin sets are very close, only the results from using one of them are presented in this paper.171
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FIG. 1. (color online). Dipole fits of pseudo-data generated with dipole functional form with and without fluctuations
[R(input) = 0.85 fm]. Pseudo-data in the leftmost panel has no fluctuation. The second and third panels show two dif-
ferent instances of fluctuations added to the central value of GE . The fitting result [R(fit)], fitting uncertainty [R(err)] and χ2

per data point [χ2/N(data)] are presented in each panel.
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FIG. 2. (color online). Dipole, monopole and Gaussian fits of pseudo-data tables generated with the dipole functional form
and added fluctuations [R(input) = 0.85 fm].

A. Procedure172

The following procedure is carried out for the test.173

a. Generation Firstly, one GE model is used to generate pseudo-data (using the generator), at the bin centers174

of Q2 that the user inputs into the program.175

b. Fluctuation-adding Then, bin-by-bin and overall fluctuations are added to the GE vs. Q2 tables in a random176

manner (using the fluctuation-adder), to mimic the real data. The bin-by-bin uncertainties are taken from the bin-set177

file, and an overall scaling uncertainty of 5% (far larger than expected in the PRad result) is added in the tests to178

show that this method works even if there is such a big scaling uncertainty.179

c. Fitting Finally, the GE vs. Q2 tables are fitted with a number of functional forms (using fitters) to extract R180

from the pseudo-data with fluctuations.181

The steps of generation, fluctuation-adding and fitting are repeated for 150,000 times for each combination of182

generators and fitters. The 150,000 fitting results of R(fit) for each combination comprise a distribution with a central183

value R(mean) and a root-mean-square (RMS) width. Because the fitting uncertainty of R determined by Minuit184

(for each of the 150,000 fits) is very close to the RMS width of the R(fit) distribution, we will use the RMS values to185

represent the one-σ fitting-uncertainty.186

B. Fits with strong model assumptions187

The dipole, monopole and Gaussian functional forms imply strong model assumptions regarding the charge distri-188

bution of the proton.189

Fig. 2 shows the R(fit) distributions of the dipole, monopole and Gaussian fits when the dipole generator is used190

[R(input) = 0.85 fm]. It is observed that when the dipole fitter is used, R(mean) ≈ R(input), but when the monopole191

or Gaussian fitter is used, R(mean) significantly deviates from R(input).192



7

0.82 0.84 0.86 0.88
0

5

10

15

310×

2Poly up to Q

mean=0.8207

RMS=0.0051

0.82 0.84 0.86 0.88
0

5

10

310×

4Poly up to Q

mean=0.8483

RMS=0.0088

0.82 0.84 0.86 0.88
0

2

4

6

310×

6
Poly up to Q

mean=0.8497

RMS=0.0142

R(fit) (fm)
0.82 0.84 0.86 0.88

0

1

2

3

4

310×

8
Poly up to Q

mean=0.8500

RMS=0.0192

FIG. 3. (color online). Polynomial-expansion-of-Q2 fits of pseudo-data tables generated with dipole functional form and
fluctuations [R(input) = 0.85 fm].

Tables I, II and III summarize the fitting results using the dipole, monopole and Gaussian fitter, respectively, when193

different generators are used.194

It is clear that these functional forms with strong model assumptions are not able to provide a robust extraction195

of R, because the result can be significantly affected by the imperfectness of these models’ descriptions of the proton196

charge distribution.197

C. Fits with polynomial expansions of Q2
198

Fitting GE vs. Q2 tables from data with polynomial expansions has been widely carried out, but also criticized199

[10–12, 21, 23].200

Fig. 3 shows the R(fit) spectra of the polynomial-expansion fits up to N = 1, 2, 3 and 4 [as in Eq. (16)] when the201

dipole generator is used [R(input) = 0.85 fm].202

Tables IV, V, VI and VII summarize the fitting results using the polynomial-expansion fitter with N = 1, 2, 3 and203

4 respectively, when different generators are used.204

It is observed that when the order of expansion is too low (N = 1), R(mean) is systematically and significantly205

smaller than R(input), for all the generators used in the tests. When higher and higher orders are included (N = 2,206

3 and 4), R(mean) gets closer and closer to R(input), regardless of the type of generator. At the same time, as the207

number of parameters increases, the constraint on R(fit) in each fit decreases, and larger fitting uncertainties are208

obtained.209

The optimal choice of N depends on the Q2 range, distances between bin centers and uncertainty level in the210

data table. Some efforts have been taken to build an algorithm that automatically and systematically determines the211



8

0.82 0.84 0.86 0.88
0

5

10

310×

Rational N=1, M=1

mean=0.8503

RMS=0.0097

0.82 0.84 0.86 0.88
0

1

2

3

310×

Rational N=1, M=2

mean=0.8482

RMS=0.0185

0.82 0.84 0.86 0.88
0

2

4

6

310×

Rational N=2, M=1

mean=0.8646

RMS=0.0132

R(fit) (fm)
0.82 0.84 0.86 0.88

0

1

2

3

4

310×

Rational N=2, M=2

mean=0.8567

RMS=0.0192

FIG. 4. (color online). Rational-function-of-Q2 fits of pseudo-data tables generated with dipole functional form and fluctuations
[R(input) = 0.85 fm].

proper order N [11], when certain data tables were fitted. Such an algorithm will be very useful, if it is tested to be212

successful. However, existing algorithms have not been proven successful yet. The trade-off between bias and variance213

is clearly observed in these tests: as N increases, δR decreases, and the uncertainty increases.214

D. Fits with rational functions of Q2
215

Fitting GE vs. Q2 tables from data with rational functions of Q2 is also widely carried out, such as in Refs. [29,216

30, 33]. The rational functions are also referred to as Padé approximations.217

Fig. 4 shows the R(fit) spectra of the rational-function fits with (N,M) = (1, 1), (1, 2), (2, 1) and (2, 2) [as in218

Eq. (17)] when the dipole generator is used [R(input) = 0.85 fm]. It is observed that the best agreement between219

R(mean) and R(input) comes by setting (N,M) = (1, 1), which also provides the minimal RMS width of the R(fit)220

distribution.221

Tables VIII, IX, X and XI summarize the fitting results using the rational-function fitter with (N,M) = (1, 1), (1,222

2), (2, 1) and (2, 2) respectively, when different generators are used.223

It is observed that, in these tests, the rational-function fitter (N = 1, M = 1) shows its ability to extract R robustly224

(δR < 0.42σ) regardless of the model parameterization in the generator. It also has the minimal fitting uncertainty225

among these four rational-function parametrizations.226
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FIG. 5. (color online). CF fits of pseudo-data tables generated with dipole functional form and fluctuations [R(input) = 0.85
fm].

E. Fits with CF expansions of Q2
227

Using CF expansion to fit GE vs. Q2 tables was proposed and applied to the world data by Sick et al. in 2003 [24],228

and it has been widely carried out since then. Ref. [24] also included broader tests and discussions regarding fitting229

pseudo and real data with CF expansions.230

Fig. 5 shows the R(fit) spectra of the CF fits with order 1, 2, 3 and 4, when the dipole generator is used [R(input) =231

0.85 fm]. It is observed that the best agreement between R(mean) and R(input) comes from the second-order CF-232

expansion.233

Tables XII, XIII, XIV and XV summarize the fitting results using the CF fit at order 1, 2, 3 and 4, respectively,234

when different generators are used. In these tests (using PRad binning), CF at the second order seems to be the235

best: R(mean) ≈ R(input), regardless of the parameterizations in the generator, and the fitting uncertainties are236

reasonably small.237

F. Fits with polynomial expansions of z238

Using polynomial expansion of z instead of Q2 is another option for R extraction [Eq. (19) needs to be used to239

transform Q2 to z from the GE vs. Q2 tables].240

Fig. 6 shows the R(fit) spectra of the fits with polynomial expansions of z [N = 1, 2, 3 and 4 as in Eq. (20)], when241

the dipole generator is used [R(input) = 0.85 fm]. It is observed that the agreements between R(mean) and R(input)242

are reasonably good except when N = 1.243

Tables XVI, XVII, XVIII and XIX summarize the fitting results using the polynomial expansions of z with N = 1,244
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FIG. 6. (color online). Polynomial-expansions-of-z fits of pseudo-data tables generated with dipole functional form and
fluctuations [R(input) = 0.85 fm].

2, 3 and 4, respectively, when different generators are used.245

It is observed that when N = 1, R(mean) is systematically and significantly larger than R(input), for all the246

generators used in the tests. This is opposite to the study of polynomial expansion of Q2 with N = 1.247

When higher-order terms are included in the polynomial expansion of z, R(mean) is closer to R(input), but the248

fitting uncertainties increase. This is similar to the study of polynomial expansions of Q2.249

The polynomial expansion of z with N = 2 shows the good feature that it has both small bias and small variance250

(or fitting uncertainty) in all the tests.251

IV. DISCUSSION252

In this section we will discuss the robustness of the R extraction, the good fitters and the effect of fluctuations.253

The method in this study helps to verify the robustness of R extraction from a certain real dataset. The binning254

and uncertainty information of this dataset can be used in the tests, and if some fitters are able to retrieve the input255

value of R regardless of the generator being used, these fitters are more likely to extract the “real” R in a robust256

manner from this dataset. A good description of the proton charge-distribution is not needed in this process.257

In the tests of this study, the best fitters include the rational-function of Q2 (N = 1, M = 1), and CF at the second258

order. These two fitters obtain R(mean) close to R(input) for all the generators, as in Tables VIII and XIII. They259

both have three fitting parameters (including the floating normalization parameter), and the fitting uncertainty σ [≈260

RMS of R(fit) distribution] around 0.0095 fm. It is noted that there is a simple mathematical transformation between261

these two, and more general relations between the CF expansion and the rational functions can be found in textbooks262

and journal articles. The polynomial expansion of z (N = 2) is also a good fitter. It has three fitting parameters,263
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and the fitting uncertainty σ is around 0.0108 fm. The difference between R(mean) and R(input) is at most 0.3σ, for264

each generator used in the tests. High order polynomial expansion of z and Q2 (N = 3 and 4), while they show the265

good feature of R(mean) ≈ R(input), their fitting uncertainties are significantly larger than the three listed above.266

The root-mean-square error (RMSE) is a quantity widely used to judge the quality of a fitter considering both the267

bias and variance [37]. It is defined as268

RMSE =
√

bias2 + σ2. (21)

In this study, bias is represented by δR, and σ is represented by the RMS value in the tables of the fitting results.269

Fig. 7 summarizes the bias, σ and RMSE values of the three good fitters discussed above, one of the large-bias fitters270

(dipole) and one of the large-variance fitters [polynomial expansion of z (N = 4)]. In this figure, nine generators271

covering various types of GE models are presented: different simple functions (dipole, monopole and Gaussian),272

rational with non-zero N and M (Kelly-2004), inverse polynomial (Arrington-2004), CF expansion (Arrington-2007),273

full theoretical calculations (Alarcón-2017), polynomial expansion of Q2 (Bernauer-2014) and polynomial expansion274

of z (Ye-2018). The RMSE values of the three good fitters are similar. The RMSE values of the large-bias fitter,275

though smaller than those of the three good fitters on average, have large variations when different generators are276

used, which indicates that the fitter does not have the feature of robustness. The RMSE values of the large-variance277

fitter are significantly larger than those of the good fitters, which indicates that too many parameters are used.278

The test results may change when the binning and sizes of uncertainties in the data table change. For data tables279

with different bin sets (covering different Q2 ranges and/or have different distances between bin centers), and/or280

having different levels of uncertainties, the tests in this study can be carried out similarly, and good fitters can be281

found in a case-by-case manner.282

Due to statistical and systematic uncertainties in a certain bin, the GE value in one data table inevitably has some283

fluctuations around the true central value. These fluctuations in real data cannot be corrected back in an unbiased284

manner in general. Fig. 8 shows the correlation between [χ2/N(data)] and [R(fit)−R(input)], where N(data) is the285

number of data points in the GE vs. Q2 table. In this figure, both the generator and the fitter use the dipole functional286

form. It is observed that, because of the fluctuations, very different values of R can be extracted, while similar values287288

of [χ2/N(data)] are obtained, even when the proper functional form is used (in a test with pseudo-data, the same289

functional form is used in the generator and the fitter). Also, a good χ2 value does not ensure the corresponding290

fit extracts the radius properly. From a purely mathematical point of view, this can be understood as the difference291

between a good interpolating function, valid over the range of the data, and a functional form that can be used beyond292

the range of the data to extrapolated to the Q2 equals zero end-point).293

In the examples above, we have used repeated simulations of pseudo-data to find the best functional forms. In a294

real data table, where one has a single realization from a certain experiment, it is not possible to know exactly how295

much the fluctuation has shifted the GE values, and/or how much effect the fluctuation brings to the R extraction.296

On the other hand, one can make use of the ideas of cross validation and produce multiple data tables by different297

combinations of data runs, and/or using different bin sets. This should ensure that the extracted R is robust and not298

the result of over-training the regression to a given set of data.299

V. CONCLUSION300

In order to find robust methods of extracting the proton radius from data commensurate with the range and301

uncertainties of the upcoming PRad data, 0.0075 < Q2 < 1.85 fm−2, we have repeatedly generated pseudo-data using302

numerous models and fit that data with numerous fit functions. This study has allowed us to investigate both the δR303

and RMS spread of the extracted proton radii in a very systematic way.304

In summary, we demonstrate that interpolating functions with a good χ2 may not extrapolate well beyond data;305

thus χ2 alone cannot be used to judge which functions to use for extracting a radius. On the other hand, for the306

PRad experiment, we find that the (N=M=1) rational function, a two parameter continued fraction as well as the307

second order polynomial expansion of z can robustly extract the input radius regardless of the input function with308

small δR and an RMS uncertainty. In addition, the framework we created in this study can be easily expanded for309

more experimental extraction of R besides PRad.310
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TABLE I. The fitting results using the dipole fitter, when different generators are used. The columns represent the type of316

the generator (Generator), the input radius [R(input)], the mean of the R(fit) distribution [R(mean)], the difference [δR =317

R(mean) −R(input)], and the RMS width of the R(fit) distribution.318

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8500 0.0000 0.0057
Monopole 0.8500 0.8414 −0.0086 0.0056
Gaussian 0.8500 0.8593 0.0093 0.0055
Kelly-2004 0.8630 0.8587 −0.0043 0.0056
Arrington-2004 0.8682 0.8642 −0.0040 0.0054
Arrington-2007 0.8965 0.8887 −0.0078 0.0054
Venkat-2011 0.8779 0.8709 −0.0070 0.0056
Bernauer-2014 0.8868 0.8694 −0.0174 0.0055
Alarcón-2017 0.8500 0.8468 −0.0032 0.0056
Alarcón-2017 (codata) 0.8750 0.8740 −0.0010 0.0054
Alarcón-2017 (µ) 0.8400 0.8366 −0.0034 0.0056
Ye-2018 0.8790 0.8622 −0.0168 0.0056
Ye-2018 (re-fix) 0.8500 0.8477 −0.0023 0.0056

319

320

TABLE II. The fitting results using the monopole fitter, when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8588 0.0088 0.0058
Monopole 0.8500 0.8501 0.0001 0.0058
Gaussian 0.8500 0.8682 0.0182 0.0057
Kelly-2004 0.8630 0.8679 0.0049 0.0058
Arrington-2004 0.8682 0.8735 0.0053 0.0056
Arrington-2007 0.8965 0.8988 0.0023 0.0056
Venkat-2011 0.8779 0.8804 0.0025 0.0057
Bernauer-2014 0.8868 0.8791 −0.0077 0.0057
Alarcón-2017 0.8500 0.8557 0.0057 0.0057
Alarcón-2017 (codata) 0.8750 0.8836 0.0086 0.0056
Alarcón-2017 (µ) 0.8400 0.8451 0.0051 0.0057
Ye-2018 0.8790 0.8716 −0.0074 0.0057
Ye-2018 (re-fix) 0.8500 0.8566 0.0066 0.0058

321

322
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TABLE III. The fitting results using the Gaussian fitter, when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8407 −0.0093 0.0055
Monopole 0.8500 0.8322 −0.0178 0.0055
Gaussian 0.8500 0.8499 −0.0001 0.0054
Kelly-2004 0.8630 0.8491 −0.0139 0.0055
Arrington-2004 0.8682 0.8544 −0.0138 0.0053
Arrington-2007 0.8965 0.8780 −0.0185 0.0052
Venkat-2011 0.8779 0.8608 −0.0169 0.0054
Bernauer-2014 0.8868 0.8593 −0.0275 0.0053
Alarcón-2017 0.8500 0.8376 −0.0124 0.0057
Alarcón-2017 (codata) 0.8750 0.8640 −0.0110 0.0053
Alarcón-2017 (µ) 0.8400 0.8276 −0.0124 0.0054
Ye-2018 0.8790 0.8523 −0.0267 0.0054
Ye-2018 (re-fix) 0.8500 0.8384 −0.0116 0.0054

TABLE IV. The fitting results using the polynomial-expansion fitter (N = 1), when different generators are used. Notation as
in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8207 −0.0293 0.0051
Monopole 0.8500 0.8132 −0.0368 0.0045
Gaussian 0.8500 0.8297 −0.0203 0.0050
Kelly-2004 0.8630 0.8284 −0.0346 0.0050
Arrington-2004 0.8682 0.8338 −0.0344 0.0044
Arrington-2007 0.8965 0.8550 −0.0415 0.0049
Venkat-2011 0.8779 0.8409 −0.0370 0.0037
Bernauer-2014 0.8868 0.8374 −0.0494 0.0050
Alarcón-2017 0.8500 0.8178 −0.0322 0.0049
Alarcón-2017 (codata) 0.8750 0.8429 −0.0321 0.0043
Alarcón-2017 (µ) 0.8400 0.8105 −0.0295 0.0037
Ye-2018 0.8790 0.8310 −0.0480 0.0050
Ye-2018 (re-fix) 0.8500 0.8185 −0.0315 0.0051

TABLE V. The fitting results using the polynomial-expansion fitter (N = 2), when different generators are used. Notation as
in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8483 −0.0017 0.0088
Monopole 0.8500 0.8473 −0.0027 0.0089
Gaussian 0.8500 0.8491 −0.0009 0.0088
Kelly-2004 0.8630 0.8608 −0.0022 0.0086
Arrington-2004 0.8682 0.8654 −0.0028 0.0085
Arrington-2007 0.8965 0.8930 −0.0035 0.0083
Venkat-2011 0.8779 0.8744 −0.0035 0.0085
Bernauer-2014 0.8868 0.8796 −0.0072 0.0084
Alarcón-2017 0.8500 0.8474 −0.0026 0.0086
Alarcón-2017 (codata) 0.8750 0.8735 −0.0015 0.0082
Alarcón-2017 (µ) 0.8400 0.8383 −0.0017 0.0088
Ye-2018 0.8790 0.8707 −0.0083 0.0085
Ye-2018 (re-fix) 0.8500 0.8490 −0.0010 0.0087
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TABLE VI. The fitting results using the polynomial-expansion fitter (N = 3), when different generators are used. Notation as
in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8497 −0.0003 0.0142
Monopole 0.8500 0.8498 −0.0002 0.0143
Gaussian 0.8500 0.8494 −0.0006 0.0144
Kelly-2004 0.8630 0.8630 0.0000 0.0137
Arrington-2004 0.8682 0.8680 −0.0002 0.0136
Arrington-2007 0.8965 0.8962 −0.0003 0.0135
Venkat-2011 0.8779 0.8775 −0.0004 0.0139
Bernauer-2014 0.8868 0.8858 −0.0010 0.0137
Alarcón-2017 0.8500 0.8496 −0.0004 0.0139
Alarcón-2017 (codata) 0.8750 0.8758 0.0008 0.0136
Alarcón-2017 (µ) 0.8400 0.8405 0.0005 0.0140
Ye-2018 0.8790 0.8770 −0.0020 0.0138
Ye-2018 (re-fix) 0.8500 0.8504 0.0004 0.0142

TABLE VII. The fitting results using the polynomial-expansion fitter (N = 4), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8500 0.0000 0.0192
Monopole 0.8500 0.8503 0.0003 0.0192
Gaussian 0.8500 0.8499 −0.0001 0.0194
Kelly-2004 0.8630 0.8628 −0.0002 0.0187
Arrington-2004 0.8682 0.8685 0.0003 0.0189
Arrington-2007 0.8965 0.8965 0.0000 0.0194
Venkat-2011 0.8779 0.8772 −0.0007 0.0189
Bernauer-2014 0.8868 0.8866 −0.0002 0.0197
Alarcón-2017 0.8500 0.8497 −0.0003 0.0189
Alarcón-2017 (codata) 0.8750 0.8769 0.0019 0.0185
Alarcón-2017 (µ) 0.8400 0.8426 0.0026 0.0184
Ye-2018 0.8790 0.8783 −0.0007 0.0199
Ye-2018 (re-fix) 0.8500 0.8499 −0.0001 0.0208

TABLE VIII. The fitting results using the rational-function fitter (N = 1, M = 1), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8503 0.0003 0.0097
Monopole 0.8500 0.8499 −0.0001 0.0099
Gaussian 0.8500 0.8509 0.0009 0.0094
Kelly-2004 0.8630 0.8631 0.0001 0.0096
Arrington-2004 0.8682 0.8686 0.0004 0.0094
Arrington-2007 0.8965 0.8965 0.0000 0.0094
Venkat-2011 0.8779 0.8777 −0.0002 0.0096
Bernauer-2014 0.8868 0.8844 −0.0024 0.0097
Alarcón-2017 0.8500 0.8499 −0.0001 0.0096
Alarcón-2017 (codata) 0.8750 0.8758 0.0008 0.0093
Alarcón-2017 (µ) 0.8400 0.8407 0.0007 0.0096
Ye-2018 0.8790 0.8750 −0.0040 0.0097
Ye-2018 (re-fix) 0.8500 0.8514 0.0014 0.0096
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TABLE IX. The fitting results using the rational-function fitter (N = 1, M = 2), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8482 −0.0018 0.0185
Monopole 0.8500 0.8546 0.0046 0.0193
Gaussian 0.8500 0.8448 −0.0052 0.0164
Kelly-2004 0.8630 0.8629 −0.0001 0.0174
Arrington-2004 0.8682 0.8675 −0.0007 0.0151
Arrington-2007 0.8965 0.8963 −0.0002 0.0159
Venkat-2011 0.8779 0.8779 0.0000 0.0126
Bernauer-2014 0.8868 0.8881 0.0013 0.0177
Alarcón-2017 0.8500 0.8507 0.0007 0.0194
Alarcón-2017 (codata) 0.8750 0.8747 −0.0003 0.0131
Alarcón-2017 (µ) 0.8400 0.8457 0.0057 0.0206
Ye-2018 0.8790 0.8799 0.0009 0.0192
Ye-2018 (re-fix) 0.8500 0.8556 0.0056 0.0265

TABLE X. The fitting results using the rational-function fitter (N = 2, M = 1), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8646 0.0146 0.0132
Monopole 0.8500 0.8641 0.0141 0.0162
Gaussian 0.8500 0.8620 0.0120 0.0121
Kelly-2004 0.8630 0.8736 0.0106 0.0125
Arrington-2004 0.8682 0.8767 0.0085 0.0118
Arrington-2007 0.8965 0.8991 0.0026 0.0153
Venkat-2011 0.8779 0.8829 0.0050 0.0114
Bernauer-2014 0.8868 0.8908 0.0040 0.0152
Alarcón-2017 0.8500 0.8654 0.0154 0.0194
Alarcón-2017 (codata) 0.8750 0.8813 0.0063 0.0107
Alarcón-2017 (µ) 0.8400 0.8585 0.0185 0.0169
Ye-2018 0.8790 0.8844 0.0054 0.0147
Ye-2018 (re-fix) 0.8500 0.8661 0.0161 0.0145

TABLE XI. The fitting results using the rational-function fitter (N = 2, M = 2), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8567 0.0067 0.0192
Monopole 0.8500 0.8639 0.0139 0.0194
Gaussian 0.8500 0.8518 0.0018 0.0187
Kelly-2004 0.8630 0.8683 0.0053 0.0178
Arrington-2004 0.8682 0.8723 0.0041 0.0164
Arrington-2007 0.8965 0.8969 0.0004 0.0182
Venkat-2011 0.8779 0.8806 0.0027 0.0147
Bernauer-2014 0.8868 0.8895 0.0027 0.0183
Alarcón-2017 0.8500 0.8593 0.0093 0.0197
Alarcón-2017 (codata) 0.8750 0.8773 0.0023 0.0156
Alarcón-2017 (µ) 0.8400 0.8578 0.0178 0.0203
Ye-2018 0.8790 0.8828 0.0038 0.0182
Ye-2018 (re-fix) 0.8500 0.8595 0.0095 0.0209
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TABLE XII. The fitting results using the CF fit (order 1), when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8588 0.0088 0.0058
Monopole 0.8500 0.8501 0.0001 0.0059
Gaussian 0.8500 0.8682 0.0182 0.0059
Kelly-2004 0.8630 0.8676 0.0046 0.0058
Arrington-2004 0.8682 0.8736 0.0054 0.0057
Arrington-2007 0.8965 0.8987 0.0022 0.0056
Venkat-2011 0.8779 0.8805 0.0026 0.0056
Bernauer-2014 0.8868 0.8792 −0.0076 0.0057
Alarcón-2017 0.8500 0.8556 0.0056 0.0058
Alarcón-2017 (codata) 0.8750 0.8833 0.0083 0.0058
Alarcón-2017 (µ) 0.8400 0.8452 −0.0034 0.0059
Ye-2018 0.8790 0.8717 −0.0073 0.0057
Ye-2018 (re-fix) 0.8500 0.8565 0.0065 0.0058

TABLE XIII. The fitting results using the CF fit (order 2), when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8503 0.0003 0.0096
Monopole 0.8500 0.8502 0.0002 0.0098
Gaussian 0.8500 0.8506 0.0006 0.0094
Kelly-2004 0.8630 0.8631 0.0001 0.0098
Arrington-2004 0.8682 0.8686 0.0004 0.0096
Arrington-2007 0.8965 0.8964 −0.0001 0.0092
Venkat-2011 0.8779 0.8776 −0.0003 0.0094
Bernauer-2014 0.8868 0.8843 −0.0025 0.0097
Alarcón-2017 0.8500 0.8494 −0.0006 0.0095
Alarcón-2017 (codata) 0.8750 0.8756 0.0006 0.0095
Alarcón-2017 (µ) 0.8400 0.8405 0.0005 0.0097
Ye-2018 0.8790 0.8750 −0.0040 0.0097
Ye-2018 (re-fix) 0.8500 0.8514 0.0014 0.0096

TABLE XIV. The fitting results using the CF fit (order 3), when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8515 0.0015 0.0149
Monopole 0.8500 0.8525 0.0025 0.0139
Gaussian 0.8500 0.8537 0.0037 0.0167
Kelly-2004 0.8630 0.8659 0.0029 0.0250
Arrington-2004 0.8682 0.8704 0.0022 0.0229
Arrington-2007 0.8965 0.8973 0.0008 0.0108
Venkat-2011 0.8779 0.8785 0.0006 0.0213
Bernauer-2014 0.8868 0.8902 0.0034 0.0210
Alarcón-2017 0.8500 0.8509 0.0009 0.0140
Alarcón-2017 (codata) 0.8750 0.8794 0.0044 0.0141
Alarcón-2017 (µ) 0.8400 0.8448 0.0048 0.0141
Ye-2018 0.8790 0.8826 0.0036 0.0232
Ye-2018 (re-fix) 0.8500 0.8572 0.0072 0.0235
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TABLE XV. The fitting results using the CF fit (order 4), when different generators are used. Notation as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8507 0.0007 0.0155
Monopole 0.8500 0.8532 0.0032 0.0144
Gaussian 0.8500 0.8486 −0.0014 0.0148
Kelly-2004 0.8630 0.8655 0.0025 0.0255
Arrington-2004 0.8682 0.8677 −0.0005 0.0265
Arrington-2007 0.8965 0.8970 0.0005 0.0127
Venkat-2011 0.8779 0.8764 −0.0015 0.0257
Bernauer-2014 0.8868 0.8918 0.0050 0.0224
Alarcón-2017 0.8500 0.8510 0.0010 0.0144
Alarcón-2017 (codata) 0.8750 0.8768 0.0018 0.0156
Alarcón-2017 (µ) 0.8400 0.8450 0.0050 0.0151
Ye-2018 0.8790 0.8839 0.0049 0.0242
Ye-2018 (re-fix) 0.8500 0.8587 0.0087 0.0260

TABLE XVI. The fitting results using the polynomial expansion of z (N = 1), when different generators are used. Notation as
in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8896 0.0396 0.0055
Monopole 0.8500 0.8809 0.0309 0.0055
Gaussian 0.8500 0.8985 0.0485 0.0055
Kelly-2004 0.8630 0.8980 0.0350 0.0055
Arrington-2004 0.8682 0.9036 0.0354 0.0056
Arrington-2007 0.8965 0.9273 0.0308 0.0053
Venkat-2011 0.8779 0.9101 0.0322 0.0054
Bernauer-2014 0.8868 0.9087 0.0219 0.0054
Alarcón-2017 0.8500 0.8858 0.0358 0.0050
Alarcón-2017 (codata) 0.8750 0.9128 0.0378 0.0051
Alarcón-2017 (µ) 0.8400 0.8764 0.0364 0.0056
Ye-2018 0.8790 0.9016 0.0226 0.0054
Ye-2018 (re-fix) 0.8500 0.8873 0.0373 0.0065

TABLE XVII. The fitting results using the polynomial expansion of z (N = 2), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8492 −0.0008 0.0109
Monopole 0.8500 0.8503 0.0003 0.0109
Gaussian 0.8500 0.8474 −0.0026 0.0109
Kelly-2004 0.8630 0.8631 0.0001 0.0107
Arrington-2004 0.8682 0.8681 −0.0001 0.0108
Arrington-2007 0.8965 0.8970 0.0005 0.0102
Venkat-2011 0.8779 0.8781 0.0002 0.0106
Bernauer-2014 0.8868 0.8855 −0.0013 0.0103
Alarcón-2017 0.8500 0.8491 −0.0009 0.0108
Alarcón-2017 (codata) 0.8750 0.8753 0.0003 0.0106
Alarcón-2017 (µ) 0.8400 0.8401 0.0001 0.0109
Ye-2018 0.8790 0.8760 −0.0030 0.0104
Ye-2018 (re-fix) 0.8500 0.8507 0.0007 0.0107
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TABLE XVIII. The fitting results using the polynomial expansion of z (N = 3), when different generators are used. Notation
as in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8497 −0.0003 0.0182
Monopole 0.8500 0.8498 −0.0002 0.0185
Gaussian 0.8500 0.8496 −0.0004 0.0185
Kelly-2004 0.8630 0.8631 0.0001 0.0179
Arrington-2004 0.8682 0.8679 −0.0003 0.0178
Arrington-2007 0.8965 0.8963 −0.0002 0.0171
Venkat-2011 0.8779 0.8776 −0.0003 0.0177
Bernauer-2014 0.8868 0.8870 0.0002 0.0173
Alarcón-2017 0.8500 0.8497 −0.0003 0.0171
Alarcón-2017 (codata) 0.8750 0.8766 0.0016 0.0169
Alarcón-2017 (µ) 0.8400 0.8417 0.0017 0.0172
Ye-2018 0.8790 0.8785 −0.0005 0.0175
Ye-2018 (re-fix) 0.8500 0.8500 0.0000 0.0178

TABLE XIX. The fitting results using the polynomial expansion of z (N = 4), when different generators are used. Notation as
in Table I.

Generator R(input) (fm) R(mean) (fm) δR (fm) RMS (fm)
Dipole 0.8500 0.8497 −0.0003 0.0268
Monopole 0.8500 0.8493 −0.0007 0.0273
Gaussian 0.8500 0.8499 −0.0001 0.0267
Kelly-2004 0.8630 0.8628 −0.0002 0.0261
Arrington-2004 0.8682 0.8676 −0.0006 0.0263
Arrington-2007 0.8965 0.8963 −0.0002 0.0252
Venkat-2011 0.8779 0.8777 −0.0002 0.0260
Bernauer-2014 0.8868 0.8865 −0.0003 0.0254
Alarcón-2017 0.8500 0.8506 0.0006 0.0218
Alarcón-2017 (codata) 0.8750 0.8779 0.0029 0.0210
Alarcón-2017 (µ) 0.8400 0.8442 0.0042 0.0212
Ye-2018 0.8790 0.8786 −0.0004 0.0255
Ye-2018 (re-fix) 0.8500 0.8493 −0.0007 0.0265



21

[1] R. Pohl et al., Nature 466, 213 (2010).323

[2] A. Antognini et al., Science 339, 417 (2013).324

[3] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016), arXiv:1507.07956 [physics.atom-ph].325

[4] M. Mihovilovic et al., Phys. Lett. B771, 194 (2017), arXiv:1612.06707 [nucl-ex].326

[5] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova, A. Grinin, T. Lamour, D. C. Yost, T. W. Hänsch,327
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