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Abstract

We present a theoretical parametrization of the nucleon electromagnetic form factors (FFs) based on a combination of
chiral effective field theory and dispersion analysis. The isovector spectral functions on the two-pion cut are computed
using elastic unitarity, chiral pion-nucleon amplitudes, and timelike pion FF data. Higher-mass isovector and isoscalar t-
channel states are described by effective poles, whose strength is fixed by sum rules (charges, radii). Excellent agreement
with the spacelike proton and neutron FF data is achieved up to Q2 ∼ 1 GeV2. Our parametrization provides proper
analyticity and theoretical uncertainty estimates and can be used for low-Q2 FF studies and proton radius extraction.
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1. Introduction

The electromagnetic form factors (EM FFs) parametrize
the transition matrix element of the EM current between
nucleon states and represent basic characteristics of nu-
cleon structure. The FFs at spacelike momentum trans-
fers Q2 . 1 GeV2 have been measured in a series of elastic
electron scattering experiments [1, 2, 3], most recently at
the Mainz Microtron (MAMI) [4, 5, 6] and at Jefferson
Lab [7, 8, 9]. The derivative of the proton electric FF at
Q2 = 0 (charge radius) is also determined with high preci-
sion in atomic physics experiments. Discrepancies between
results obtained with different methods have raised inter-
esting questions concerning the precise value of the proton
charge radius and the Q2 → 0 extrapolation of the elastic
scattering data [10, 11, 12]. Besides their importance for
nucleon structure, the EM FFs are needed as an input in
other areas of study, such as precision measurements of
quantities used to test the Standard Model.

The experiments and applications require a theoretical
description of the FFs that covers a broad range Q2 ∼
few GeV2 and controls the behavior in the Q2 → 0 limit
(higher derivatives). This can be accomplished using the
framework of dispersion theory, which incorporates the
analytic properties of the FF in the momentum transfer.
Dispersive parametrizations of the nucleon FFs have been
constructed using empirical spectral functions, determined
by amplitude analysis techniques and fits to the FF data
[13, 14, 15, 16]. It would be desirable to have a dispersive
parametrization that is based on first-principles dynamical
calculations and permits theoretical uncertainty estimates.

In recent work we developed a method for computing the
spectral functions of nucleon FFs on the two-pion cut using
a combination of χEFT and amplitude analysis (disper-

sively improved χEFT, or DIχEFT) [17, 18]. The spectral
functions are constructed using the elastic unitarity condi-
tion. The N/D method is used to separate the ππ rescat-
tering effects (contained in the pion timelike FF) from the
coupling of the ππ system to the nucleon (calculable in
χEFT with good convergence). The method permits com-
putation of the two-pion spectral functions up to masses
∼1 GeV2 with controled accuracy. In Ref. [18] the com-
puted spectral functions in LO, NLO, and partial N2LO,
accuracy were used to study the FFs at low Q2 (<0.5 GeV2

for GE , <0.2 GeV2 for GM ) and their derivatives.

In this letter we use DIχEFT to calculate the nucleon
FFs up to Q2 ∼ 1 GeV2 (and higher) and construct a
dispersive parametrization of the FFs with theoretical un-
certainty estimates. This is achieved by extending our
previous calculations in two aspects: (a) We partially in-
clude N2LO chiral loop corrections in the isovector mag-
netic spectral function, by parametrizing them in a form
similar to the N2LO corrections in the electric case. This
brings the calculation of electric and magnetic isovector
FFs up to the same order. (b) We account for higher-mass
t-channel states in the spectral functions (isovector and
isoscalar) by parametrizing them through effective poles,
whose strength is determined by sum rules (charges, mag-
netic moments, radii). This allows us to extend the disper-
sion integrals to higher masses and compute the spacelike
FFs up to higher Q2. We obtain an excellent description
of GE and GM up to Q2 ∼ 2 GeV2 with controled theo-
retical accuracy. Our results represent genuine theoretical
predictions, as no fits are performed and no spacelike FF
data are used in determining the parameters. In the fol-
lowing we describe the calculation and results and discuss
potential applications of our FF parametrization.
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2. Method

The FFs are analytic functions of the invariant momen-
tum transfer t ≡ −Q2 and satisfy dispersion relations

Gp,ni (t) =
1

π

∫ ∞
tthr

dt′
ImGp,ni (t′)

t′ − t− i0
(i = E,M). (1)

They allow one to reconstruct the spacelike FFs from the
spectral functions ImGp,ni (t′) on the cut at t′ > tthr. For
theoretical analysis one uses the isovector and isoscalar
combinations, GV,Si ≡ 1

2 (Gpi ∓ Gni ) (i = E,M). In the
isovector FF the lowest singularity is the two-pion cut
with tthr = 4M2

π . The spectral functions on the two-pion
cut can be obtained from the elastic unitarity conditions,
which in the N/D representation take the form [13, 19, 20]

ImGVE(t′)[ππ] =
k3cm

mN

√
t′
J1
+(t′) |Fπ(t′)|2, (2)

ImGVM (t′)[ππ] =
k3cm√

2t′
J1
−(t′) |Fπ(t′)|2, (3)

where kcm =
√
t′/4−M2

π is the center-of-mass momen-
tum of the ππ system in the t-channel. Here J1

±(t′) ≡
f1±(t′)/Fπ(t′) are the ratios of the ππ → NN̄ partial-wave
amplitudes and the timelike pion FF, which are real for
t′ > 4M2

π and free of ππ rescattering effects. These func-
tions can be computed in χEFT with good convergence
[17, 18]. |Fπ(t′)|2 is the squared modulus of the time-
like pion FF, which contains the ππ rescattering effects
and the ρ meson resonance. This function is measured in
e+e− → π+π− exclusive annhihilation experiments with
high precision and can be taken from a parametrization of
the data; see Ref. [21] for a review. Because the ππ state
practically exhausts the e+e− annihilation cross section at
t′ . 1 GeV2, the elastic unitarity relations Eqs. (2) and
(3) are assumed to be valid up to t′ = 1 GeV2.

The calculation of the J1
± functions in relativistic χEFT

is described in Ref. [18]. At LO they are given by the N
and ∆ Born terms in the ππ → NN̄ amplitudes and the
Weinberg-Tomozawa term. At NLO corrections arise at
tree-level from an NLO ππNN contact term in the chi-
ral Lagrangian. At N2LO pion loop corrections appear,
and the structure becomes considerably more complex. In
Ref. [18] we estimated the N2LO corrections to J1

+ by as-
suming that the full N2LO result has the same structure
as the tree-level N2LO result, in which the dominant con-
tribution is the term proportional to d1 + d2. No such es-
timate was performed for J1

−, since its N2LO corrections
arise entirely from loops. In order to extend the reach of
our calculation we now want to estimate J1

+ and J1
− at

the same level. This becomes possible with a generaliza-
ton of our previous arguments. Inspecting the structure
of the N2LO loop corrections in the πN → πN ampli-
tude, we find that the dominant t-channel correction can
be parametrized as

A−[N2LO loop] = 0, B−[N2LO loop] = λ t/f2π ,
(4)

where A and B are the invariant amplitudes [22]. In this
form the N2LO loop result in J1

− has the same structure
as a tree-level correction arising from contact terms, and
the parameter λ can be determined in the same way as in
our previous estimate for J1

+.
In order to extend the isovector spectral integrals to

masses t′ > 1 GeV2 we need to parametrize the isovec-
tor spectral function beyond the two-pion cut. The e+e−

exclusive annihilation data show that the isovector cross
section above t′ ∼ 1 GeV2 is overwhelmingly in the 4π
channel and peaks at t′ ≈ 2.3 GeV2 [21]. (Incidentally,
this value coincides with the squared mass of the ρ′ res-
onance observed in the ππ channel.) It is reasonable to
assume that the strength distribution in the nucleon spec-
tral function follows a similar pattern. The simplest way
to parametrize the high-mass contribution to the isovector
spectral function is by a single effective pole,

ImGVE,M (t′)[high-mass] = πa
(1)
E,M δ(t′ −M2

1 ), (5)

where we choose M2
1 = M2

ρ′ = 2.1 GeV2. The total isovec-
tor spectral function is given by the sum of the ππ cut (cal-
culated in DIχEFT) and the high-mass part (parametrized
by the effective pole),

ImGVE,M = ImGVE,M [ππ] + ImGVE,M [high-mass]. (6)

We then determine the parameters of the N2LO contribu-
tions in GVE,M [ππ] and the strength of the effective pole in

GVE,M [high-mass] by imposing the sum rules for the isovec-
tor charge and magnetic moment, and for the electric and
magnetic radii (here tthr = 4M2

π):

1

π

∫ ∞
tthr

dt′
ImGVE(t′)

t′
= 1

2 , (7)

1

π

∫ ∞
tthr

dt′
ImGVM (t′)

t′
= 1

2 (µp − µn), (8)

6

π

∫ ∞
tthr

dt′
ImGVE(t′)

t′2
= 〈r2〉VE ≡ 1

2 [〈r2〉pE − 〈r
2〉nE ], (9)

6

π

∫ ∞
tthr

dt′
ImGVM (t′)

t′2
= 〈r2〉VM ≡ 1

2 [µp〈r2〉pM − µ
n〈r2〉nM ].

(10)

Since the charge and magnetic moment are known pre-
cisely, the unknown parameters are essentially determined
in terms of the isovector charge and magnetic radii, which
can be allowed to vary over a reasonable range (see be-
low). This makes our parametrization particularly conve-
nient for applications where the nucleon radii are regarded
as basic parameters or extracted from data.

In the isoscalar FF the lowest singularity is the 3-pion
cut (tthr = 9M2

π). The strength at t′ < 1 GeV2 is over-
whelmingly concentrated in the ω resonance, which we de-
scribe by a zero-width pole. At t′ & 1 GeV2 the KK̄ and
other channels open up. The exclusive e+e− annihilation
data show that the strength at t′ ∼ 1 GeV2 is concen-
trated in the φ resonance [21]. We therefore parametrize
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a
(1)
E (−0.853,−0.58)

a
(1)
M (−2.601,−1.194)
aωE (0.722, 0.840)
aωM (0.613, 0.898)

aφE (−0.905,−0.705)

aφM (−1.064,−0.581)

Table 1: Parameters of the effective poles describing the high-mass
isovector spectral function, Eq. (5), and the isoscalar spectral func-
tion, Eq. (11), as determined by the sum rule Eqs. (7)–(10) and the
corresponding isoscalar sum rule.

the high-mass isoscalar strength by an effective pole at the
φ mass. Altogether, our parametrization of the isoscalar
spectral function is

ImGSE,M (t′) = πaωE,Mδ(t
′−M2

ω)+πaφE,Mδ(t
′−M2

φ). (11)

The strength of the ω and high-mass (φ) poles are fixed
by imposing the sum rules for the isoscalar charges and
radii, i.e., the analog of Eqs. (7)–(10) with V → S and
(p− n)→ (p+ n).

In fixing the isovector and isoscalar spectral function
parameters through the sum rules Eqs. (7)–(10) and their
isoscalar analog, we use the Particle Data Group (PDG)
values of the proton and neutron charge radii [23], together
with a recent dispersive calculation of the isovector charge
radius [24]. For the proton and neutron magnetic radii
we use the results of Refs. [16, 25], which are compatible
with the PDG values in the neutron case. The empirical
variation of the radii generates a range of the parame-
ters, which then produces the uncertainty bands in our
predictions. The resulting parameters are summarized in
Table 1. The uncertainty induced by the empirical pion
timelike FF in the isovector calculation using Eqs. (2) and
(3) is small and can be neglected.

In the present calculation we parametrize the high-mass
states in the spectral functions by a single effective pole,
whose strength can be fixed by the sum rules. The ap-
proximation is justified as long as we restrict ourselves to
the spacelike FFs at moderate momentum transfers |t| ∼
1 GeV2. We can demonstrate this explicitly for the isovec-
tor FF, using a techique described in Ref. [13]. We take
the difference of the empirical spacelike FF and the finite
dispersive integral over the ππ cut up to tmax = 1 GeV2,

∆E(t) ≡ GVE(t)[emp] − 1

π

∫ tmax

tthr

dt′
ImGVE(t′)[ππ]

t′ − t− i0
. (12)

This quantity represents the high-mass part of the disper-
sive integral, which is to be approximated by the disper-

sive integral with the effective pole, a
(1)
E /(t−M2

1 ). Plotting
1/∆E(t) at t < 0 (see Fig. 1) one sees that the dependence
on t is approximately linear, and that the single-pole form
provides an adequate description up to |t| < 2 GeV2. Note
that this is achieved with the pole parameters fixed by the

M1
2

-2 -1 0 1 2 3
0

2

4

6

8

t (GeV2 )

Δ
E-
1
(t
)

Figure 1: Red band: Inverse difference 1/∆E(t), Eq. (12).
Black lines: Inverse of the dispersive integral with the single-pole
parametrization Eq. (5).

sum rules Eqs. (7)–(10), and that we do not perform a fit
of the spacelike FF data in Fig. 1.

The nucleon FFs obey superconvergence relations∫ ∞
tthr

dt′ ImGV,Si (t′) = 0 (i = E,M), (13)

which guarantee the absence of powers t−1 in the asymp-
totic behavior for |t| → ∞. In the present calcula-
tion we focus on the FFs at limited spacelike momenta
|t| . 1 GeV2 and are not concerned with the asymptotic
behavior. The relation Eq. (13) could easily be imple-
mented in our approach by parametrizing the high-mass
spectral density in a more flexible form; however, this
would require fitting the spacelike FF data in order to
determine the parameters, which is not our intention here.

3. Results

The spectral functions are the primary quantities cal-
culated in our approach. The results for the isovector
spectral function on the two-pion cut, Eqs. (2) and (3),
are shown in Fig. 2. The bands show the total uncer-
tainty of our calculation, resulting from the uncertainty of
the low-energy constants in the χEFT calculation and the
empirical uncertainty of the nucleon radii used to fix the
parameters (see above). Compared to Ref. [18] the elec-
tric and magnetic spectral functions are now calculated at
the same order (LO + NLO + partial N2LO). Both spec-
tral functions now show a trend to negative values above
the ρ peak. Our results agree overall very well with those
obtained in an analysis of πN scattering data using Roy-
Steiner equations [24]; only in the ρ peak our ImGVE is
∼15% larger. Our uncertainties are comparable to those
of the Roy-Steiner analysis. Also shown in Fig. 2 are the
empirical spectral functions of Ref. [26].

The spacelike EM FFs calculated with the dispersion
integrals Eq. (1) are shown in Fig. 3. The proton and neu-
tron FFs were obtained as Gp,ni = GSi ± GVi (i = E,M).
Contrary to Ref. [18] we now do not perform any sub-
tractions and calculate the dispersive integral without a

3



Exp.

Ye et al.

LQCD

DI EFTχProton

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Q2 (GeV2 )

G
E

DI EFT

Exp.

Ye et al.

LQCD

χNeutron

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

Q2 (GeV2 )

G
E

DI EFTχ

Exp.

Ye et al.

LQCD

Proton

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q2 (GeV2 )

G
M

DI EFT

Exp.

Ye et al.

LQCD

χ

Neutron

0.0 0.5 1.0 1.5 2.0

-2.0

-1.5

-1.0

-0.5

0.0

Q2 (GeV2 )

G
M

Figure 3: Red bands: Proton and neutron EM FFs calculated in our approach and their theoretical uncertainties. Solid black: Empirical FF
parametrization of Ref. [3]. Black dots: Data of the MAMI A1 experiment [4, 5]. Green dots: Lattice QCD results from Ref. [27].

cutoff in t′, as the high-mass parts of the spectral func-
tions are now parametrized consistently through the effec-
tive poles. Our results show excellent agreement with the
recent FF parametrization of Ref. [3] for all momentum
transfers Q2 . 1 GeV2, and even up ∼2 GeV2, which is
remarkable in view of our simple parametrization of the
high-mass spectral functions. Note that GnE involves sub-
stantial cancellations between the isovector and isoscalar
components, so that its relative uncertainties are larger
than that of the other FFs.

The higher derivatives of the FFs (moments) are needed
in the extraction of the proton radius from experimental
data. In our dispersive approach they are evaluated as

〈r2n〉i
(2n+ 1)!

=
1

π

∫ ∞
tthr

dt′
ImGi(t

′)

t′n+1 (i = E,M); (14)

see Ref. [18] for details. The moments obtained with our
spectral functions are summarized in Table 2. Compared
to the results quoted in Ref. [18] the isovector LO and NLO
parts are exactly the same; the only changes are the esti-
mated partial N2LO contributions and the added isovector
high-mass contribution. The isoscalar part is the same as
in Ref. [18]; only the couplings have now been determined
through the charge and radius sum rules. Our new mo-
ments have smaller uncertainty than those of Ref. [18].
They confirm the “unnatural size” of the higher moments
(compared to the dipole expectation) observed in Ref. [18].

4. Discussion

DIχEFT enables first-principles dynamical calculations
of the isovector two-pion spectral functions with controled
uncertainties and results in good agreement with empirical
amplitude analysis. Together with a minimal effective pole
parametrization of the high-mass isovector and isoscalar
states, the method provides an accurate dispersive descrip-
tion of the nucleon FFs up to momentum transfers |t| ∼
1 GeV2 and above. The method is predictive in the sense
that the dynamical input is provided by chiral dynamics
and e+e− annihilation data, and no fitting of nucleon FFs
is performed. This represents major progress in the theory
of nucleon FFs at low momentum transfers.

Our results provide a FF parametrization with exact an-
alyticity in t and can be used for theoretical or empirical
studies in which this property is essential: (a) Determina-
tion of the peripheral charge and magnetization densities
in the nucleon [28]; (b) extraction of the proton charge
radius from ep elastic scattering data; (c) calculation of
two-photon-exchange corrections in ep elastic scattering.

This material is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of Nu-
clear Physics under contract DE-AC05-06OR23177. This
work was also supported by the Spanish Ministerio de
Economı́a y Competitividad and European FEDER funds
under Contract No. FPA2016-77313-P.
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Moment GpE GnE GpM GnM
〈r2〉 (fm2)∗ (0.701, 0.768) (−0.079,−0.146) (0.689, 0.765) (0.713, 0.813)
〈r4〉 (fm4) (1.473, 1.602) (−0.635,−0.506) (1.676, 1.782) (2.045, 2.042)
〈r6〉 (fm6) (8.519, 8.962) (−6.110,−5.667) (11.525, 11.579) (15.231, 15.645)
〈r8〉 (102 fm8) (1.269, 1.296) (−1.159,−1.131) (1.834, 1.882) (2.597, 2.691)
〈r10〉 (103 fm10) (3.933, 3.965) (−3.866,−3.834) (5.707, 5.905) (8.274, 8.581)
〈r12〉 (105 fm12) (2.041, 2.049) (−2.039,−2.031) (2.903, 3.004) (4.233, 4.382)
〈r14〉 (107 fm14) (1.557, 1.561) (−1.559,−1.556) (2.158, 2.230) (3.150, 3.255)
〈r16〉 (109 fm16) (1.624, 1.626) (−1.626,−1.624) (2.191, 2.260) (3.198, 3.299)
〈r18〉 (1011 fm18) (2.210, 2.212) (−2.212,−2.210) (2.905, 2.991) (4.241, 4.367)
〈r20〉 (1013 fm20) (3.796, 3.799) (−3.799,−3.796) (4.866, 5.006) (7.105, 7.308)

Table 2: FF moments obtained from the dispersive integral Eq. (14) with the DIχEFT spectral functions (LO + NLO + partial N2LO).
∗The 〈r2〉 moments are input values (see text).
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Figure 2: Red bands: Isovector spectral functions on the two-pion
cut calculated in our approach and their theoretical uncertainty. Or-
ange bands: Spectral functions obtained in Roy-Steiner analysis of
Ref. [24]. Black line: Spectral functions of Ref. [26].
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