$_{1}$ Measurement of double-polarization asymmetries in the quasi-elastic ${}^{3}\vec{He}(\vec{e},e'p)$ process

2	M. Mihovilovič, ^{1, 2, 3} G. Jin, ⁴ E. Long, ⁵ YW. Zhang, ⁶ K. Allada, ⁷ B. Anderson, ⁵ J. R. M. Annand, ⁸
2	T Averett ⁹ W Boeglin ¹⁰ P Bradshaw ⁹ A Camsonne ⁷ M Canan ¹¹ G D Cates ⁴ C Chen ¹² J P Chen ⁷
	F Chudalov ⁷ R Do Loo ¹³ Y Dong ⁴ A Doltuva ^{14,15} A Dour ⁷ C Dutta ¹⁶ I El Engli ⁶ D Elay ¹⁷
4	E. Olludakov, R. De Leo, A. Dellg, A. Delluva, A. Deul, O. Dutta, D. El Fassi, D. Flay,
5	S. Frullani, ¹⁰ F. Garibaldi, ¹⁰ H. Gao, ¹⁹ S. Gilad, ²⁰ R. Gilman, ⁰ O. Glamazdin, ²¹ J. Golak, ²² S. Golge, ¹¹
6	J. Gomez, ⁷ O. Hansen, ⁷ D. W. Higinbotham, ⁷ T. Holmstrom, ²³ J. Huang, ²⁰ H. Ibrahim, ²⁴ C. W. de Jager, ^{7,*}
7	E. Jensen, ²⁵ X. Jiang, ²⁶ M. Jones, ⁷ H. Kang, ²⁷ J. Katich, ⁹ H. P. Khanal, ¹⁰ A. Kievsky, ²⁸ P. King, ²⁹
8	W. Korsch. ¹⁶ J. LeRose. ⁷ R. Lindgren. ⁴ HJ. Lu. ³⁰ W. Luo. ³¹ L. E. Marcucci. ³² P. Markowitz. ¹⁰
	M Moziano ⁹ B Michaels ⁷ B Moffit ⁷ P Monaghan ¹² N Muangma ²⁰ S Nanda ⁷ B F Norum ⁴
9	W. Westand, R. Michaels, D. Mohle, T. Mohaghan, R. Muangha, D. Mahda, D. L. Rorum, $V = 20 \text{ p} = -33 \text{ p} \text{ p} + 1 - 34 \text{ M} \text{ p} + 1 \cdot 17 \text{ M} \text{ p} + 1 \cdot 35 \text{ A} \text{ p} \text{ p} + 1 \cdot 26 \text{ N} \text{ o} \cdot -19 \text{ N} \text{ o} \cdot -7$
10	K. Pan, ²⁰ D. Parno, ³⁰ E. Plasetzky, ³¹ M. Posik, ¹¹ V. Punjabi, ³⁰ A. J. R. Puckett, ³² A. Qian, ¹⁰ Y. Qiang, ³²
11	X. Qui, ³¹ S. Riordan, ⁴ A. Saha, ^{7,*} P. U. Sauer, ³⁶ B. Sawatzky, ⁷ R. Schiavilla, ^{7,11} B. Schoenrock, ³⁷
12	M. Shabestari, ⁴ A. Shahinyan, ³⁸ S. Širca, ^{1, 2, †} R. Skibiński, ²² J. St. John, ²³ R. Subedi, ³⁹ V. Sulkosky, ²⁰
13	W. A. Tobias, ⁴ W. Tireman, ³⁷ G. M. Urciuoli, ¹⁸ M. Viviani, ²⁸ D. Wang, ⁴ K. Wang, ⁴ Y. Wang, ⁴⁰ J. Watson, ⁷
14	B Woitsekhowski ⁷ H Witała ²² Z Ye ¹² X Zhan ²⁰ Y Zhang ³¹ X Zheng ⁴ B Zhao ⁹ and L Zhu ¹²
14	
15	(The Jefferson Lab Hall A Collaboration)
16	¹ Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
17	² Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
18	³ Institut für Kernphysik, Johannes-Gutenberg-Universität, Mainz, Germany
19	⁴ University of Virginia, Charlottesville, VA 22908, USA
20	³ Kent State University, Kent, OH 44242, USA
21	^o Rutgers University, New Brunswick, NJ 08901, USA
22	'Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
23	^o Glasgow University, Glasgow G12 8QQ, Scotland, United Kingdom
24	¹ The College of William and Mary, Williamsburg, VA 23187, USA
25	¹¹ Old Dominican University, Mami, FL 33181, USA
26	Ola Dominion University, Norfolk, VA 23529, USA ¹² Hampton University, Hampton, VA 22660, USA
27	¹³ Università decli studi di Pani Aldo Mono. L'70101 Pani Itale
28	¹⁴ Center for Nuclear Physica, University of Lichon, P. 16/0.002 Lichon, Portugal
29	¹⁵ Institute for Theoretical Physics, and Astronomy Vilning University IT 01108 Vilning Lithuania
3U 21	¹⁶ University of Kentucky Lerinaton KV 10506 USA
32	¹⁷ Temple University Philadelphia PA 19122 USA
33	¹⁸ Istituto Nazionale Di Fisica Nucleare, INFN/Sanita, Roma, Italu
34	¹⁹ Duke University. Durham. NC 27708. USA
35	²⁰ Massachusetts Institute of Technology, Cambridge, MA 02139, USA
36	²¹ Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
37	²² M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
38	²³ Longwood College, Farmville, VA 23909, USA
39	²⁴ Cairo University, Cairo, Giza 12613, Egypt
40	²⁵ Christopher Newport University, Newport News VA 23606, USA
41	²⁶ Los Alamos National Laboratory, Los Alamos, NM 87545, USA
42	²⁷ Seoul National University, Seoul, Korea
43	²⁸ INFN-Pisa, I-56127 Pisa, Italy
44	²⁹ Ohio University, Athens, OH 45701, USA
45	³⁰ Huangshan University, People's Republic of China
46	³¹ Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China
47	³² Physics Department, Pisa University, I-56127 Pisa, Italy
48	³³ Carnegie Mellon University, Pittsburgh, PA 15213, USA
49	35 N G H GL J H C J J H C H J H A 2020 J HGA
50	³⁶ Institute for Theoretical Division University, Norfolk, VA 23504, USA
51	³⁷ Northern Michigan University of Hannover, D-30167 Hannover, Germany
52	³⁸ Venezian Dhunica Institute Venezian America
53	³⁹ Cooree Weshington University, Weshington D.C. 20052, UCA
54	George washington University, washington, D.C. 20032, USA 40 University of Illinois at Unhana Champaign, Unhana, II 61901, USA
55	(Dated: March 30, 2018)
00	(Dated. Match 50, 2010)
57	We report on a precise measurement of double-polarization asymmetries in electron-induced
58	breakup of 3 He proceeding to pd and ppn final states, performed in quasi-elastic kinematics at

58

63

64

 $Q^2 = 0.25 \,(\text{GeV}/c)^2$ for missing momenta up to $250 \,\text{MeV}/c$. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of ³He and the relative impor-

tance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of ³He unless their three-body segment is adjusted, indicating that the spin-dependent final-state interaction in the breakup process is substantially smaller than previously thought.

PACS numbers: 21.45.-v, 25.30.-c, 27.10.+h

65 ⁷⁴ function, the reaction mechanism including final-state in- 121 summed over) relatively low $p_{\rm m}$. ⁷⁵ teractions (FSI) and meson-exchange currents (MEC), as ¹²² ⁸⁵ larization within polarized ³He.

86 87 knockout of protons, deuterons and neutrons, where ⁸⁸ the sensitivity to various aspects of the process can be ⁸⁹ greatly enhanced by the use of polarized beam and tar-⁹⁰ get. The focus of this paper is on the two-body (2bbu) ⁹¹ and three-body (3bbu) breakup channels with proton de-⁹² tection in the final state, ${}^{3}\vec{\text{He}}(\vec{e}, e'p)d$ and ${}^{3}\vec{\text{He}}(\vec{e}, e'p)pn$, ⁹³ which were investigated concurrently with the already ⁹⁴ published ${}^{3}\vec{\text{He}}(\vec{e}, e'd)$ data [4].

In a ${}^{3}\vec{He}(\vec{e}, e'p)$ reaction the virtual photon emitted by 95 ⁹⁶ the incoming electron transfers the energy ω and momen- $_{97}$ tum q to the ³He nucleus. The process observables are ⁹⁸ then analyzed in terms of missing momentum defined as ⁹⁹ the difference between the momentum transfer and the 100 detected proton momentum, $p_{\mathrm{m}} = |\boldsymbol{q} - \boldsymbol{p}_{\mathrm{p}}|$, thus p_{m} cor-101 responds to the momentum of the recoiled deuteron in ¹⁰² 2bbu and the total momentum of the residual pn system 103 in 3bbu.

104 ¹⁰⁵ has been studied at MAMI, both on the quasi-elastic ¹⁵⁰ The \tilde{A}^0 and A_e are the asymmetries induced by the polar-¹⁰⁶ peak [5] and below it [6]. The bulk of our present high-¹⁵¹ ization of only the target or only the beam, respectively, ¹⁰⁷ energy information comes from the two experiments in ¹⁵² while the spin-correlation parameter A is the asymmetry 108 quasi-elastic kinematics at Jefferson Lab [7, 8], result- 153 when both the beam and the target are polarized. If the $_{109}$ ing in reaction cross-sections at high $p_{\rm m}$ and yielding $_{154}$ target is polarized only in the horizontal plane defined 110 important insight into nucleon momentum distributions, 155 by the beam and scattered electron momenta, the term ¹¹¹ isospin structure of the transition currents, FSI, and ¹⁵⁶ $\vec{S} \cdot \vec{A}^0$ does not contribute [13], while A_e is suppressed

The ³He nucleus represents a cornerstone of nuclear $_{112}$ MEC. However, just as in the (e, e'd) case, experiments ⁶⁶ physics due to its potential to reveal the basic features ¹¹³ that exploit polarization offer much greater sensitivity 67 of nuclear structure and dynamics in general. In particu-114 to the fine details of these ingredients. Such measure-⁶⁸ lar, this paradigmatic three-body system offers an unique ¹¹⁵ ments have been extremely scarce. A single asymmetry 69 opportunity to study the interplay of two-nucleon and 116 data point with high uncertainty exists from NIKHEF ⁷⁰ three-nucleon interactions, an effort at the forefront of ¹¹⁷ [9, 10]. In addition, we have a precise measurement of ⁷¹ nuclear physics research [1–3]. Modern theoretical de- ¹¹⁸ both transverse and longitudinal asymmetries separately ⁷² scriptions of the structure and dynamics of ³He require a ¹¹⁹ for the 2bbu and 3bbu channels in quasi-elastic kinemat-⁷³ detailed understanding of the nuclear ground-state wave-¹²⁰ ics [11, 12], but the measurement was restricted to (and

Early studies [13–15] have shown strong sensitivities of ⁷⁶ well as three-nucleon forces. The experiments on ³He, ¹²³ double-polarization asymmetries in ³He breakup to the 77 particularly those involving polarization degrees of free- 124 isospin structure of the electromagnetic current, to the ⁷⁸ dom, provide the essential input to these theories which ¹²⁵ sub-leading components of the ³He ground-state wave-79 need to be perpetually improved to match the current 126 function, as well as the tensor component of the nucleon-⁸⁰ increase in experimental precision. The quality of this ¹²⁷ nucleon interaction. However, while in the deuteron ⁸¹ match is crucial to all ³He-based experiments seeking to $_{128}$ channel these would manifest themselves at low $p_{\rm m}$, the ⁸² extract neutron information by utilizing ³He as an ef- ¹²⁹ 2bbu and 3bbu proton channels should allow access to $_{130}$ fective neutron target, an approximation relying on a $_{130}$ this information at high $p_{\rm m}$, a region difficult to ex-⁸⁴ sufficient understanding of the proton and neutron po-¹³¹ plore experimentally. These diagrammatic evaluations 132 ultimately gave way to more refined, full Faddeev calcu-The ³He nucleus is best studied by electron-induced ¹³³ lations performed independently by the Bochum/Krakow ¹³⁴ [16, 17] and the Hannover/Lisbon [18–21] groups, which ¹³⁵ we use in this paper. The key feature of our experi-¹³⁶ ment is the unmatched precision of the extracted asym- $_{137}$ metries together with a broad kinematic range, with $p_{\rm m}$ $_{138}$ extending to as far as $250 \,\mathrm{MeV}/c$. This extended cover-¹³⁹ age represents a crucial advantage, since Faddeev calcu-140 lations indicate that the manifestations of various wave-¹⁴¹ function components, as well as the potential effects of 142 three-nucleon forces, imply very different signatures as ¹⁴³ functions of $p_{\rm m}$.

> If both beam and target are polarized, the cross-section ¹⁴⁵ for the ³He($\vec{e}, e'p$) reaction has the form

$$\frac{\mathrm{d}\sigma(h,\vec{S})}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma_0}{\mathrm{d}\Omega} \left[1 + \vec{S} \cdot \vec{A}^0 + h(A_\mathrm{e} + \vec{S} \cdot \vec{A}) \right] \,,$$

146

¹⁴⁷ where $d\Omega = d\Omega_e dE_e d\Omega_p$ is the differential of the phase-¹⁴⁸ space volume, σ_0 is the unpolarized cross section, \vec{S} is the The unpolarized ${}^{3}\text{He}(e, e'p)$ process at low energies 149 spin of the target, and h is the helicity of the electrons.

¹⁵⁷ and is negligible with respect to \vec{A} .

The orientation of the target polarization is defined by 158 ¹⁵⁹ the angles θ^* and ϕ^* in the frame where the z-axis is along 160 q and the y-axis is given by $p_{\rm e} \times p'_{\rm e}$. Any component of ¹⁶¹ \vec{A} , i. e. the asymmetry at given θ^* and ϕ^* is then

$$A(\theta^*, \phi^*) = \frac{(\mathrm{d}\sigma/\mathrm{d}\Omega)_+ - (\mathrm{d}\sigma/\mathrm{d}\Omega)_-}{(\mathrm{d}\sigma/\mathrm{d}\Omega)_+ + (\mathrm{d}\sigma/\mathrm{d}\Omega)_-}, \qquad (1)$$

¹⁶³ where the subscript signs represent the beam helicities. ¹⁶⁴ In this paper we report on the measurements of these ¹⁶⁵ asymmetries in ${}^{3}\vec{\text{He}}(\vec{e}, e'p)d$ and ${}^{3}\vec{\text{He}}(\vec{e}, e'p)pn$ processes. ¹⁶⁶ The measurements were performed during the E05-102 167 experiment at the Thomas Jefferson National Accelera-¹⁶⁸ tor Facility in experimental Hall A [22], with the beam ¹⁶⁹ energy of 2.425 GeV in quasi-elastic kinematics at four-170 momentum transfer of $Q^2 = q^2 - \omega^2 = 0.25 \, (\text{GeV}/c)^2$.

The beam was longitudinally polarized, with an aver-171 172 age polarization of $P_{\rm e} = (84.3 \pm 2.0)$ % measured by a ¹⁷³ Møller polarimeter. The target was a 40 cm-long glass ¹⁷⁴ cell containing the ³He gas at approximately 9.3 bar $_{175}$ (0.043 g/cm²), polarized by hybrid spin-exchange optical ¹⁷⁶ pumping [23–26]. Two pairs of Helmholtz coils were used 177 to maintain the in-plane target polarization direction at $_{178}$ 67° and 156° with respect to q, allowing us to measure $_{179} A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$, respectively. Electron para-¹⁸⁰ magnetic and nuclear magnetic resonance [27–29] were 181 used to monitor the target polarization, $P_{\rm t}$, which was $_{182}$ between 50 % and 60 %.

The scattered electrons were detected by a High-183 184 Resolution magnetic Spectrometer (HRS), while the pro-185 tons were detected by the large-acceptance spectrometer ¹⁸⁶ BigBite equipped with a detector package optimized for ¹⁸⁷ hadron detection [30]. Details of the experimental setup 188 and the procedure to extract the very pure sample of 189 electron-proton coincidence events are given in Ref. [4]. The experimental asymmetry for each orientation of 190 ¹⁹¹ the target polarization was determined as the relative ¹⁹² difference between the number of background-subtracted 193 coincidence events corresponding to positive and nega-¹⁹⁴ tive beam helicities, $A_{exp} = (N_{+} - N_{-})/(N_{+} + N_{-})$, $_{195}$ where N_{+} and N_{-} have been corrected for helicity-gated ¹⁹⁶ beam charge asymmetry, dead time and radiative effects. ¹⁹⁷ The corresponding physics asymmetries were calculated 198 as $A = A_{\rm exp} / (P_{\rm e} P_{\rm t})$.

199 200 shown in Fig. 1. The largest contribution to their system- 213 FSI and MEC, but do not include three-nucleon forces; $_{201}$ atic error comes from the relative uncertainty in the tar- $_{214}$ the Coulomb interaction is taken into account in the 3 He $_{202}$ get polarization, $P_{\rm t}$, which has been estimated at $\pm 5\%$, $_{215}$ bound state. The H/L calculations are based on the ²⁰³ followed by the uncertainty in the target dilution factor ²¹⁶ coupled-channel extension of the charge-dependent Bonn $_{204}$ ($\pm 2\%$) and the absolute uncertainty of the beam polar- $_{217}$ potential [34] and also include FSI and MEC, while the $_{205}$ ization, $P_{\rm e}$ ($\pm 2\%$). The uncertainty in the target orien- $_{218}\Delta$ isobar is added as an active degree of freedom pro- $_{206}$ tation angle represents a minor contribution ($\pm 0.6\%$) to $_{219}$ viding a mechanism for an effective three-nucleon force ²⁰⁷ the total uncertainty, totaling $\approx 6\%$ (relative).

208 ²⁰⁹ three-body calculations of the Bochum/Krakow (B/K), ²²² The Pisa calculations are based on the AV18 interac-²¹⁰ Hannover/Lisbon (H/L) and Pisa (P) [31] groups. The ²²³ tion model (augmented by the Urbana IX three-nucleon

JLab 2009 -2 B/K 2.0 $A(67^{\circ}, 0^{\circ})$ [%] H/L1 0 1.5-11.0 -2 R_{32} 0.5-3 $A_{3bbu} \times \frac{1}{3}$ -40 50100 150200250 $p_{\rm m} \, [{
m MeV}/c]$ 4 2.53 $A_{3
m bbv}$ 2.0 $A(156^{\circ},0^{\circ})$ [%] $\mathbf{2}$ 1 1.50 1.0 -10.5-2 R_{32} 0 50100 150200 250 $p_{\rm m} \, [{\rm MeV}/c]$ FIG. 1. (Color online.) The asymmetries $A(67^\circ, 0^\circ)$ (top) and

4

3

 $A_{2\rm bbu}$

 $A(156^\circ, 0^\circ)$ (bottom) in the quasi-elastic ${}^3\vec{\text{He}}(\vec{e}, e'p)$ process (2bbu and 3bbu combined) as functions of missing momentum, compared to theoretical predictions (green) showing the 2bbu (blue) and 3bbu (red) contributions as well as the ratio of 3bbu and 2bbu cross-sections (grey). All full (dashed) lines correspond to B/K (H/L) calculations, respectively.

²¹¹ B/K calculations are based on the AV18 nucleon-nucleon The resulting asymmetries as functions of $p_{\rm m}$ are ²¹² potential [32, 33] and involve a complete treatment of ²²⁰ and for exchange currents. Point Coulomb interaction is Figure 1 also shows the results of the state-of-the-art 221 added in the partial waves involving two charged baryons.

2.5

²²⁴ force [35]), in which full inclusion of FSI is taken into ac-225 count by means of the variational pair-correlated hyper-226 spherical harmonic expansion, as well as MEC. Coulomb ²²⁷ interaction is included in full (not only in the ³He ground 228 state). In contrast to the B/K and H/L approaches, the ²²⁹ Pisa calculations are not genuine Faddeev calculations 230 but are of equivalent precision and are expected to ac-231 count for all relevant reaction mechanisms. At present, 232 the Pisa group only provides 2bbu calculations. Due 233 to the extended experimental acceptance, all theoretical ²³⁴ asymmetries were appropriately averaged. Details can be $_{235}$ found in [4].

Neither the B/K nor the H/L calculation reproduces 236 ²³⁷ the measured asymmetries to a satisfactory level. Simi-238 larly to our findings in the deuteron channel, the theories ²³⁹ approximately capture their overall functional forms, but ²⁴⁰ exhibit systematic vertical offsets of up to two percent. ²⁴¹ In calculations a strong cancellation is involved in ob-²⁴² taining each total asymmetry from its 2bbu and 3bbu 243 contributions, which are typically opposite in sign and ²⁴⁴ of very different magnitudes. Nevertheless, the failure of 245 the theories to reproduce the data can be traced to the 278 ²⁴⁶ 3bbu asymmetry alone, as discussed in the following.

247 ²⁶² 3bbu asymmetry is about 1% smaller than the predic-²⁶³ tion. However, a better insight into the 3bbu asym-²⁶⁴ metry has been obtained by investigating the data at $_{265} E_{\mathrm{m}} > 0$. Considering that the measured asymmetries ²⁶⁶ contain also the 2bbu contribution, the 3bbu asymmetry ²⁶⁷ (Fig. 2 (right)) has been extracted from the data as

268
$$A_{3bbu} = \frac{(1 + R'_{32})A_{exp} - A_{2bbu}}{R'_{32}}$$

 $_{269}$ where R'_{32} is the 3bbu/2bbu cross-section ratio shown 270 in Fig. 1 corrected for finite-resolution and radiative ef- $_{271}$ fects. Typically R'_{32} ranges from 0.20 to 0.33 and is as- $_{272}$ sumed to be well under control in both B/K and H/L 273 calculations. The extracted asymmetries are in good ²⁷⁴ agreement with the theory in the limit where the whole $_{275}$ spectrum ($E_{\rm m} \leq 50 \,{\rm MeV}$) is considered in the analysis, 276 but strongly deviaties from the theory at the threshold $_{277}$ ($E_{\rm m} \leq 2.5 \,{\rm MeV}$) for the 3bbu reaction channel.

FIG. 2. (Color online.) The extracted asymmetries for 2bbu (left) and 3bbu (right). Curve notation as in Fig. 1, with the addition of the Pisa 2bbu calculation in the left panel (blue dotted lines hidden beneath the full and dashed lines).

In an effort to compensate for the effect of spin ori-²⁷⁹ entation of protons inside the polarized ³He nucleus, we Since the energy resolution of our measurement was 280 have divided the nuclear asymmetries by the asymme-248 insufficient to directly disentangle the 2bbu and 3bbu 281 tries for elastic e-p scattering at the same value of four-²⁴⁹ channels, the individual asymmetries were extracted by ²⁸² momentum transfer; see Fig. 3. In a simplified picture $_{250}$ restricting the data sample to $p_{\rm m} \approx 0$ and studying the $_{283}$ of the $^3\vec{\rm He}(\vec{\rm e},{\rm e'p})$ process, one would expect the 2bbu ²⁵¹ dependence of $A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$ in terms of the ²⁸⁴ ratio at $p_{\rm m} \approx 0$ to be -1/3, corresponding to the effective of $A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$ in terms of the ²⁸⁴ ratio at $p_{\rm m} \approx 0$ to be -1/3, corresponding to the effective of $A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$ in terms of the ²⁸⁴ ratio at $p_{\rm m} \approx 0$ to be -1/3, corresponding to the effective of $A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$ in terms of the ²⁸⁴ ratio at $p_{\rm m} \approx 0$ to be -1/3, corresponding to the effective of $A(67^{\circ}, 0^{\circ})$ and $A(156^{\circ}, 0^{\circ})$ in terms of the ²⁸⁴ ratio at $p_{\rm m} \approx 0$ to be -1/3. $_{252}$ cut in missing energy, $E_{\rm m} = \omega - T_{\rm p} - 7.7 \,{\rm MeV}$. The $_{285}$ tive polarization of the (almost free) proton inside the $_{253}$ comparison of the measured $E_{\rm m}$ spectrum with the sim- $_{286}$ polarized ³He nucleus, while the 3bbu ratio should van-²⁵⁴ ulated one revealed that in spite of the overlap between ²⁸⁷ ish because any of the two oppositely polarized protons 255 the two channels, the lowest portion of the distribution 288 could be knocked out in the process. Indeed, in the 2bbu $_{256}$ at $E_{\rm m} < 0$ is dominated by 2bbu, thus allowing for the $_{289}$ case both the experimental and the predicted ratios co-257 extraction of the corresponding asymmetry, A_{2bbu}, which 290 incide almost perfectly, at the anticipated "naive" value $_{258}$ agrees with the calculations to better than 0.5% (abso- $_{291}$ of -1/3. On the other hand, in the 3bbu case the pre-²⁵⁹ lute): see Fig. 2 (left). In this region the contribution of ²⁹² dictions cluster approximately around unity (and appar-²⁶⁰ 3bbu to the experimental cross-section is approximately ²⁹³ ently retain a residual dependence on θ^*), while the two 261 7%, suggesting that near the threshold the size of the 294 experimental ratios are much smaller (and mutually con-²⁹⁵ sistent).

FIG. 3. (Color online.) The $A(67^\circ, 0^\circ)$ (full symbols) and $A(156^\circ, 0^\circ)$ (empty symbols) asymmetries for 2bbu (left) and 3bbu (right) divided by the corresponding asymmetries for elastic \vec{e} - \vec{p} scattering at the same value of Q^2 . In both panels the data (circles) are compared to the calculations (squares).

296 In conclusion, we have provided the world-first, high-²⁹⁷ precision measurement of double-polarization asymme²⁹⁸ tries for proton knockout from polarized ³He nuclei at ³³⁸ ²⁹⁹ two different spin settings and over a broad range of 300 momenta. Two state-of-the-art theoretical approaches ³⁰¹ to the ³He system are able to approximately accom-302 modate the main kinematical and structural features of ³⁰³ our data set. Since the asymmetries are rather small ³¹⁴₃₄₄ [15] S. Nagorny and W. Turchinetz, Phys. Lett. B **429**, 222 ³⁰⁴ and strong cancellations of the two-body and three-body ³⁰⁵ breakup contributions are involved, the agreement can be 306 deemed satisfactory and the theoretical framework justi-307 fied. However, the large precision of our measurements ³⁰⁸ has been able to reveal a substantial deficiency in the cal-³⁰⁹ culations, pointing to an incomplete understanding of the 310 spin-dependent final-state interaction in the three-body 311 breakup.

We thank the Jefferson Lab Hall A and Accelerator 312 ³¹³ Operations technical staff for their outstanding support. ³¹⁴ This work was supported in part by the National Sci-³¹⁵ ence Foundation and the U.S. Department of Energy. 316 Jefferson Science Associates, LLC, operates Jefferson 317 Lab for the U.S. DOE under U.S. DOE contract DE-318 AC05-06OR23177. This work was supported in part by ³¹⁹ the Slovenian Research Agency (research core funding ₃₂₀ No. P1–0102) and the Polish National Science Center 321 under Grant No. DEC-2013/10/M/ST2/00420. The nu-³²² merical calculations of the Bochum/Krakow group were 323 partly performed on the supercomputer cluster of the 324 JSC, Jülich, Germany.

Deceased. 325

- t Corresponding author: simon.sirca@fmf.uni-lj.si 326
- [1] W. Glöckle et al., Eur. Phys. J. A 21, 335 (2004). 327
- [2] J. Golak et al., Phys. Rep. 415, 89 (2005). 328
- [3] S. Širca, Few-Body Systems 47, 39 (2010). 329
- [4] M. Mihovilovič et al., Phys. Rev. Lett. 113, 232005 330 (2014).331
- [5]R. E. J. Florizone *et al.*, Phys. Rev. Lett. **83**, 2308 (1999). 332
- [6] A. Kozlov et al., Phys. Rev. Lett. 93, 132301 (2004). 333
- 334 [7] M. M. Rvachev, Phys. Rev. Lett. 94, 192302 (2005).
- [8] F. Benmokhtar, Phys. Rev. Lett. 94, 082305 (2005). 335
- [9] H. R. Poolman et al., Phys. Rev. Lett. 84, 3855 (2000). 336
- 337 [10] D. W. Higinbotham et al., Nucl. Instrum. Meth. A 444,

557 (2000).

- C. Carasco et al., Phys. Lett. B 559, 41 (2003). 339 [11]
- 340 [12] P. Achenbach et al., Eur. Phys. J. A 25, 177 (2005).
- 341 [13] J.-M. Laget, Phys. Lett. B 276, 398 (1992).
- 342 [14] S. Nagorny and W. Turchinetz, Phys. Lett. B 389, 429 (1996).343
- (1998).345
- J. Golak et al., Phys. Rev. C 65, 064004 (2002). 346 [16]
- 347 [17] J. Golak et al., Phys. Rev. C 72, 054005 (2005).
- 348 [18] L. P. Yuan, K. Chmielewski, M. Oelsner, P. U. Sauer, and J. Adam, Phys. Rev. C 66, 054004 (2002). 349
- 350 [19] A. Deltuva, L. P. Yuan, J. Adam, A. C. Fonseca, and P. U. Sauer, Phys. Rev. C 69, 034004 (2004). 351
- 352 [20] A. Deltuva, L. P. Yuan, J. Adam, and P. U. Sauer, Phys. Rev. C 70, 034004 (2004). 353
- 354 [21] A. Deltuva, A. C. Fonseca, and P. U. Sauer, Phys. Rev. C 71, 054005 (2005). 355
- 356 [22] J. Alcorn et al., Nucl. Instr. Meth. A 522, 294 (2004).
- 357 [23] T. G. Walker and W. Happer, Rev. Mod. Phys. 69, 629 (1997).358
- 359 [24] S. Appelt et al., Phys. Rev. A 58, 1412 (1998).
- 360 [25] E. Babcock, I. A. Nelson, S. Kadlecek, B. Driehuys, L. W. Anderson, F. W. Hersman, and T. G. Walker, Phys. Rev. 361 Lett. 91, 123003 (2003). 362
- J. T. Singh, P. A. M. Dolph, W. A. Tobias, T. D. Averett, 363 [26] A. Kelleher, K. E. Mooney, V. V. Nelvubin, Y. Wang, 364 Y. Zheng, and G. D. Cates, Phys. Rev. C 91, 055205 365 (2015).366
- 367 [27] A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, 1961). 368
- 369 [28] M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998).370
- E. Babcock, I. A. Nelson, S. Kadlecek, and T. G. Walker, 371 [29] Phys. Rev. A 71, 013414 (2005). 372
- 373 [30] M. Mihovilovič et al., Nucl. Instr. Meth. A 686, 20 374 (2012).
- 375 [31] L. E. Marcucci, M. Viviani, R. Schiavilla, A. Kievsky, and S. Rosati, Phys. Rev. C 72, 014001 (2005). 376
- [32]R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. 377 Rev. C 51, 38 (1995). 378
- 379 [33] S. Veerasamy and W. N. Polyzou, Phys. Rev. C 84, 034003 (2011). 380
- R. Machleidt, Phys. Rev. C 63, 024001 (2001). [34]381
- 382 [35] B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995). 383