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Abstract

Baryon masses and nucleon σ terms are studied with the effective theory that combines the chiral and 1/Nc expansions

for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the σ term

associated with the scalar density ūu + d̄d − 2s̄s is emphasized. The latter is at lowest order related to a mass

combination whose low value has given rise to a σ term puzzle. It is shown that while the nucleon σ terms have a

well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic

in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that σπN = 69(10) MeV and σs has

natural magnitude within its relatively large uncertainty.
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1. Introduction

Baryon mass dependencies on quark masses, quantified by the different σ-terms, are among the fundamental

observables in baryon chiral dynamics. In particular, they give information on the baryon matrix elements of scalar

quark densities, for which there is no alternative way for their determination. The definition of σ terms is through

the Feynman-Hellmann theorem1, which, for three flavors, through the physical baryon masses gives access to only

two such terms, namely those associated with the SU(3) octet quark mass combinations m3 = mu − md and m8 =

1
√

3
(m̂ − ms), where m̂ is the average of the u and d quark masses. The σ terms associated with the singlet component

m0 = 1
3 (2m̂ + ms) require knowledge of baryon masses for unphysical quark masses, which is made possible through

lattice QCD (LQCD) calculations. On the other hand, the pion-nucleon σ term σπN ≡
m̂

2mN
〈N | ūu + d̄d | N〉 is

accessible through its connection to pion-nucleon scattering via a low energy theorem [1, 2, 3]. Such a determination

of σπN had a long evolution through the availability of increasingly accurate data and the development of combined

methods of dispersion theory and chiral perturbation theory [4, 5, 6, 7, 8, 9, 10, 11]. The values obtained for σπN

range from 45 MeV [4, 5, 6] to 64 MeV [7, 8, 9, 10, 11, 12], where the difference between the results of the different

dispersive analyses resides mostly in the different values of the S-wave πN scattering lengths a1/2,3/2 used in the

1The following notation will be used: σi(B) = mi
∂
∂mi

mB, where mi indicates a quark mass (i = u, d, s) or combination thereof (i = 0, 3, 8), and

B is a given baryon. When B is not explicitly indicated it is assumed to be a nucleon.
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subtractions, cf. [12]. In addition to the results from the analyses of πN scattering, LQCD calculations extrapolated

to or at the physical point obtain different results, with values consistent with the recent πN results [13] and smaller,

σπN ≈ 40 MeV [14, 15, 16, 17]. The relatively large range of values obtained for σπN keeps it as an active topic

of study, and in part motivates the present work. An additional motivation is the relevance of scalar quark operator

matrix elements, quantities that are relevant in studies of direct dark matter detection [18, 19, 20], and of lepton flavor

violation through µ − e conversion in scattering with nuclei [21].

A puzzle that has been emphasized for a long time [22] is the relation between σπN in the isospin symmetry

limit and the nucleon’s σ̂ ≡
√

3 m̂
m8
σ8, namely σπN = σ̂ + 2 m̂

ms
σs, which for a natural size value of σs should give

σπN ∼ σ̂. The origin of the puzzle is the relation: σ8 = 1
3 (2mN − mΣ − mΞ) (or other combinations related via the

Gell-Mann-Okubo (GMO) relation) valid at linear order in quark masses, which gives σ̂ ∼ 25 MeV. If that relation

is a reasonable approximation to the value of σ̂, the implication is that, contrary to expectations, ms must give a very

large contribution to the nucleon mass even for the smaller values of σπN . The puzzle is particularly striking for the

larger values that have been obtained for σπN , which would imply σs ∼ 500 MeV. Indeed, this is clearly impossible if

one considers that σs is OZI suppressed with respect to σπN .

This work analyzes the σ terms through the octet and decuplet baryon masses in the combined chiral and 1/Nc

expansions BChPT × 1/Nc. The emphasis is in that the effective theory can give at NNLO (one chiral loop) a natural

description of baryon masses, including LQCD results, along with the axial couplings which have been obtained

in LQCD at different quark masses. In particular, the resolution of the σ term puzzle is explained by the fact that

∆σ8 ≡ σ8 −
1
3 (2mN −mΣ −mΞ) receives large non-analytic in quark mass corrections dominated by ms. It will also be

shown that σ8 itself, and thus σ̂, has a natural low energy expansion and therefore the origin of the puzzle resides in

the large non-analytic correction to the mass combination 1
3 (2mN −mΣ−mΞ). In fact, a big part of that large correction

stems from the contribution of decuplet baryons in the loop, as it was found in Refs. [13, 23]. By analyzing LQCD

baryon masses [24], it is found that as expected σπN ∼ σ̂, with the results σπN = 69(8)(6) MeV, where the errors are

respectively the statistical and theoretical (expected NNNLO corrections) ones, and | σs |. 50 MeV. The connection

between the deviation from the GMO relation, ∆GMO ≡ 3mΛ + mΣ − 2(mN + mΞ), and ∆σ8, both calculable at NNLO

and given solely in terms of non-analytic loop contributions, is of particular importance in the present work.

2. BChPT × 1/Nc analysis of masses and σ terms

The combined BChPT×1/Nc [25, 26, 27, 28, 29] implements the consistency of the effective theory with both the

approximate chiral symmetry and the expansion in 1/Nc of QCD. The expansion requires a link between the chiral and

the 1/Nc expansions: in practice the natural link is the ξ expansion where O (p) = O (1/Nc) = O (ξ), which is closely

related to the so called small scale expansion [30, 31] even when that one did not strictly implement the constraints of

the 1/Nc expansion. Consistency with 1/Nc power counting demands the imposition of a dynamical SU(6) spin-flavor

symmetry, which is broken by sub-leading corrections in 1/Nc and requires the inclusion of the higher spin baryons
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(the decuplet in the case Nc = 3) and relates low energy constants (LECs) in the chiral Lagrangian. The details on the

calculations of baryon masses concerning the present work can be found in [29].

The chiral Lagrangian to O
(
ξ3

)
, including electromagnetic corrections to the baryon masses is given by [29]:

LB = B†
(
iD0 + g̊AuiaGia −

CHF

Nc
Ŝ 2 −

1
2Λ

c2χ̂+ +
c3

Nc Λ3 χ̂
2
+

+
h1

N3
c

Ŝ 4 +
h2

N2
c Λ

χ̂+Ŝ 2 +
h3

NcΛ
χ0

+Ŝ 2 +
h4

Nc Λ
χa

+{S
i,Gia} + αQ̂ + βQ̂2

)
B. (1)

where terms not directly relevant to the baryon masses have been omitted. M0 = O (Nc) is the spin-flavor singlet

piece of the baryon mass that provides the large mass expansion parameter for HBChPT. In addition to the well

known chiral building blocks, B represents the baryon spin-flavor multiplet field, Ŝ 2 is the square of the baryon spin

operator, Gia are the spin-flavor generators of SU(6), and Q̂ is the electric charge operator. No baryon-spin dependent

electromagnetic effects are included. The term proportional to CHF gives the leading order mass splitting between the

spin 1/2 and 3/2 baryons. g̊A is identified with 6
5 gN

A at the LO, whose physical value is gN
A = 1.2723(23). The term h1

is only relevant if baryons with higher spin than 3/2 appear, which requires Nc ≥ 5. The rest of the terms describe the

quark mass effects. The combination χ̂+ = Nc χ
0
+ + χ̃+, where χ0

+ = 1
3 Tr χ+ and χ̃+ is the traceless piece of χ+, assures

that the nucleon mass dependency on ms is at most O
(
N0

c

)
(OZI). Λ is an arbitrary scale, which is conveniently chosen

to be mρ. The baryon mass formula then reads (neglecting isospin breaking for now)[29]:

mB = M0 +
CHF

Nc
Ŝ 2 −

c1

Λ
2B0(

√
3m8Y + Ncm0) −

c2

Λ
4B0m0 −

c3

NcΛ3

(
4B0(

√
3m8Y + Ncm0)

)2

−
h1

N2
c Λ

Ŝ 4 −
h2

NcΛ
4B0(

√
3m8Y + Ncm0)Ŝ 2 −

h3

NcΛ
4B0m0Ŝ 2

−
h4

NcΛ

4B0m8
√

3

(
3Î2 − Ŝ 2 −

1
12

Nc(Nc + 6) +
1
2

(Nc + 3)Y −
3
4

Y2
)

+ δmloop
B , (2)

where δmloop
B can be obtained with some work using the results in [29], where the details on the mass renormalization

and results for general Nc can be found.

Setting c3 = 0 2, the terms analytic in quark masses in Eqn. (2) lead to the exact GMO and Equal Spacing mass

relations, which are unchanged at generic Nc. On the other hand at generic Nc the mass relation for σ8 at tree level

reads:

∆σ8 = σ8 −
1
9

(
5Nc − 3

2
mN − (2Nc − 3)mΣ −

Nc + 3
2

mΞ

)
, (3)

The dominant contributions to ∆GMO and ∆σ8 are calculable non-analytic contributions. ∆GMO is O
(
ξ4

)
and in large

Nc limit it is O (1/Nc). On the other hand, σ8 is O (ξ) and it has a prefactor Nc, and ∆σ8 is O
(
ξ2

)
also with a prefactor

Nc. c3 gives a contribution to the ∆GMO which is O
(
ξ5

)
, and to ∆σ8 at O

(
ξ4

)
, both being beyond the accuracy of the

2The 27-plet SU(3) breaking produced by this term is O
(
ξ5

)
, and thus for the current purposes it can be neglected
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present work. ∆GMO
3 and ∆σ8 are thus determined by the meson masses and by the LECs g̊A/Fπ, and CHF . ∆GMO

depends rather smoothly on CHF , and drives to a large extent the determination of g̊A/Fπ. One finds the interesting

fact that the ratio ∆σ8/∆GMO, which is independent of g̊A/Fπ, is also almost entirely independent of the value of CHF

in a very wide range around its actual value. For Nc = 3, σ8/∆GMO ∼ −13.5, which translates into ∆σ̂/∆GMO ∼ 1.68.

The analysis of the physical octet and decuplet baryon masses suffice to make the main point of this work. In this

case, the LECs c2, c3 and h1 are set to vanish, because at the order of the calculation they are redundant (actually h1 is

altogether irrelevant unless Nc ≥ 5). A fit is carried out including strong and electromagnetic isospin breaking. This

requires using the meson masses with isospin breaking, which include η − π0 mixing (required to have a consistent

renormalization of the baryon masses) and the electromagnetic mass shifts where Dashen’s theorem is used, which

should be sufficient for the current application. The electromagnetic addition to ∆GMO is equal to − 4
3β, while the

strong isospin breaking has negligible effect, and the electromagnetic contribution to the p-n mass difference is equal

to α + β. The result of the fit to physical masses is shown in Table (1), Fit 1.

g̊A
Fπ

M0
Nc

CHF c1 c2 h2 h3 h4 α β

Fit MeV−1 MeV MeV MeV MeV

1 0.0126(2) 364(1) 166(23) −1.48(4) 0 0 0.67(9) 0.56(2) −1.63(24) 2.16(22)

2 0.0126(3) 213(1) 179(20) −1.49(4) −1.02(5) −0.018(20) 0.69(7) 0.56(2) −1.62(24) 2.14(22)

3 0.0126∗ 262(30) 147(52) −1.55(3) −0.67(8) 0 0.64(3) 0.63(3) −1.63∗ 2.14∗

∆
phys
GMO σ8 ∆σ8 σ̂ σπN σs σ3 σu+d(p − n)

MeV MeV MeV MeV MeV MeV MeV MeV

1 25.6(1.1) −583(24) −382(13) 70(3)(6) − − −1.0(3) −1.6(6)

2 25.5(1.5) −582(55) −381(20) 70(7)(6) 69(8)(6) −3(32) −1.0(4) −1.6(8)

3 25.8∗ −615(80) −384(2) 74(1)(6) 65(15)(6) −121(15) − −

Table 1: Results from fits to baryon masses. Fit 1 uses only the physical octet and decuplet masses, Fit 2 uses the physical and the LQCD masses

from Ref. [24] with Mπ . 300 MeV, and Fit 3 uses only those LQCD masses and imposes the value of ∆
phys
GMO determined by the physical masses.

The renormalization scale µ and the scale Λ are taken to be equal to mρ. ∗ indicates an input. An estimated theoretical error of 6 MeV is indicated

for σ̂ and σπN .

The information given by LQCD, where the baryon masses have been obtained with MK approximately constant

and varying mu = md in a range where 213 MeV < Mπ < 430 MeV [24], is very useful for testing the effective theory,

and necessary for calculating σπN . Two different fits that include LQCD baryon masses were performed, shown in

Table (1). One fit combines the physical and LQCD masses, up to Mπ ∼ 300 MeV, and the other uses only LQCD

3∆GMO corresponds to having removed the EM corrections, otherwise it is denoted by ∆
phys
GMO
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and the physical value of ∆GMO, which is important for controlling the value of g̊A/Fπ. In these fits the LEC c2 which

gives the baryon mass dependencies on the singlet quark mass component m0 becomes significant, and its presence

is responsible for the significant change in M0 compared to the physical fit. M0 is very precisely determined by the

physical masses; Fit 3 shows that it is much less precise if only LQCD masses are used. The constant β can be

estimated by the relation 2β = mp −mn − (mΞ0 −mΞ− ), valid to LO in quark masses, which gives β = 2.78 ± 0.1 MeV.

The fit indicates that higher order terms in quark masses affect the extraction of β. The theoretical error for σ̂ and

σπN accounting for higher order corrections was estimated by explicitly expanding in ξ and identifying the size of the

contributions; the magnitude of the theoretical error was then estimated to be ∼ 1/3 the size of the last term in the

expansion.

The observations derived from the effective theory and from the fits are the following:

i) The value of g̊A/Fπ is to a large extent fixed by ∆GMO, and it corresponds to a value of gN
A at LO which is roughly

a factor 0.75 of the physical one; this agrees with what is observed in the analysis of the axial vector couplings [29]

provided by LQCD calculations at different values of quark masses [32].

ii) The octet baryons contribute 43% of ∆GMO, and 33% of ∆σ8, which shows the importance of the decuplet contri-

butions.

iv) The first fit determines σ8. Using the natural renormalization scale µ = mρ, the different contributions to σ8 are

primarily given by the terms c1 (∼ −870 MeV), h4 (∼ 110 MeV) and the loop contributions (∼ 190 MeV), where

the latter two are the NLO contributions. This seems to be a well behaved expansion. On the other hand the mass

combination on the RHS of Eqn. (3) has the corresponding pattern −870 MeV, 110 MeV and 570 MeV, the latter loop

contribution given by the addition of ∆σ8 ∼ 380 MeV. The NLO terms in the mass combination are very large and

tend to cancel the LO one.

v) The correction ∆σ8 becomes quite large for MK > 350 MeV, being about 70% of σ8 for the physical MK . As

mentioned earlier, ∆σ8 and ∆GMO are determined only in terms of g̊A/Fπ, CHF and the meson masses. The ratio

∆σ8/∆GMO does not depend on g̊A/Fπ, and has virtually no dependence on CHF . The ratio is also modestly dependent

on MK , going from ∼ −11 to ∼ −14 when MK is increased from 200 to 600 MeV.

vi) The combined fit of physical and LQCD masses, Fit 2, is compatible with Fit 1; this implies that the chiral extrap-

olation of the LQCD results to the physical case is consistent.

vii) The fit to only LQCD masses and imposing the physical ∆GMO, Fit 3, serves for a consistency check, which turns

out to be quite reasonable. The LQCD masses do not describe correctly the hyperfine mass shifts between the octet

and decuplet, which is shown in Fig. 1 where the ∆ mass is systematically large, and this is the reason the resulting

CHF has some difference with the other fits. The extrapolation to the physical case turns out to be from 20 to 50 MeV

larger than the physical octet masses, but less accurate for the decuplet ones where the ∆ mass, which is the worst

case, comes out to be about 100 MeV larger than the physical one.

viii) It is observed that σ̂ and σπN have both a small and approximately linear dependency on MK in a very wide

range. This in particular indicates that m̂σs/ms must remain relatively small throughout.
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ix) σs is poorly determined in the present study because the LQCD results are at approximately fixed ms. Its range

of values is however in line with the natural expectations. A LQCD calculation performed with smaller MK than the

physical one is necessary to obtain σs with better precision and also for understanding the effective theory in general.

x) The results obtained for σπN are consistent with the larger values obtained from πN analyses [7, 8, 9, 10, 11]. Note

however that a more reliable value would require some more accurate and extensive LQCD results. Fig. 1 depicts the

result for σπN from Fit 2 and its comparison with other results.

xi) The analysis also gives an estimate of the isospin-breaking σ terms σ3 and σu+d(p − n). In addition one can

extract the separate contributions σq(N), q = u, d, N = p, n. The results are the following: σu(p) = 26.23 MeV,

σd(p) = 42.42 MeV, σu(n) = 23.82 MeV, σd(n) = 46.48 MeV, which checks with σπN = m̂(σu/mu + σd/md). The

relation σu(p) = σd(n) in the isospin symmetry limit is of course satisfied, but the naive quark model relation in the

isospin limit σu(p) = 2σd(p) is significantly violated due to contributions by the SU(2) singlet component of the

quark masses.

xii) Obviously, the discussion can be extended to the rest of the σ terms for the different baryons and their various

relations [29].

xiii) One can compare with an analysis in ordinary HBChPT without the decuplet. In that case ∆GMO requires g̊A/Fπ to

be significantly larger (corresponding to gN
A = 1.48 at LO), which despite the lack of the decuplet contributions leads

to values of the σ terms which are not very different but somewhat larger than the ones obtained here (σ̂ ∼ 83 MeV,

σπN ∼ 76 MeV). The difference lies in the fact that in ordinary HBChPT the corrections to the axial currents cou-

plings have large Nc power violating contributions, which compounded with the larger value of g̊A/Fπ required by

∆GMO lead to a failure in describing the axial couplings obtained in LQCD at different quark masses [32], in particular

their observed small quark mass dependencies.

xiv) Although the approach followed in recent work [33] should be expected to give a result for σπN similar to the

one obtained here, it is actually much smaller. It is not clear to the authors whether this may be entirely due to the

different set of LQCD data. However, since σ̂ is accurately obtained with only the physical masses, the result of [33]

would require a large negative σs, which seems to be unlikely within the present framework.

3. Summary

Theσ terms of nucleons were calculated using SU(3) BChPT × 1/Nc. From the physical octet and decuplet baryon

masses a value of σ̂ is obtained which is much larger than the one predicted by a tree level baryon mass combination, in

agreement with similar observations in calculations that included the decuplet baryons as explicit degrees of freedom.

The ”σ term puzzle” is understood as the result of large non-analytic contributions to that mass combination, while the

higher order corrections to the σ terms have natural magnitude. The intermediate spin 3/2 baryons play an important

role in enhancing σ̂ and thus σπN . The analysis carried out here shows that there is compatibility in the description of
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Figure 1: Left panel: summary of the determinations of σπN from πN scattering (blue), from LQCD (red), and from this work showing the

combined fit and theoretical error. Right panel: N and ∆ masses from Fit 2 of Table (1): physical and LQCD masses from [32]. The squares are

the results from the fit and the error bands correspond to 68% confidence interval.

∆GMO and the nucleon σ terms. The value of σπN = 69±10 MeV obtained here from including LQCD baryon masses

agrees with the more recent results from πN analyses, where the increase in value with respect to previous analyses

has been understood as a result of the values of the input scattering lengths, and strongly disfavor the values from

recent LQCD evaluations. The tension between results, which includes LQCD, remains as an important problem to

which the present approach can hopefully contribute with useful insights. The resolution of that tension will in turn

provide a validation test of the approach.
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