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Abstract

We extend the improved Collins-Soper-Sterman (iCSS) W + Y construction recently presented in [1] to the case of

polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We

further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) qT -integral of the

differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD)

Sivers function and the (collinear twist-3) Qiu-Sterman function within the iCSS framework. This relation allows for

their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely

polarized spin- 1
2

target. We further outline how this study can be generalized to other polarized quantities.
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1. Introduction

One of the primary goals of transverse-momentum-dependent (TMD) factorization theorems [2–10], which rely

largely on the work of Collins, Soper, and Sterman (CSS) [2–4], is to describe the cross section as a function of the

transverse momentum qT = |qT| point-by-point, from small qT ∼ m (where m is a typical hadronic mass scale), to

large qT ∼ Q (where Q is a large momentum or mass in the reaction and sets the hard scale). In order to achieve

this, CSS organized the cross section in an additive form, W + Y. The W-term is valid for qT ≪ Q and involves

TMD parton distribution functions (PDFs) and fragmentation functions (FFs). The Y-term, which involves collinear

PDFs and FFs, serves as a correction for larger qT values and is the difference between the collinear calculation for

qT ∼ Q beginning at a fixed order in the strong coupling and its small transverse momentum asymptotic limit for

m ≪ qT ≪ Q [4, 11, 12].

In recent years, much theoretical and phenomenological attention has been devoted to the evolution of the W-term

expressed through TMD PDFs and/or FFs. However, current studies [1, 13–16] indicate that a satisfactory treatment

of non-zero qT/Q corrections and matching to the fixed-order (qT ∼ Q) term is central to obtaining a leading-power

approximation to the cross section over the whole range of qT. In addition, since collinear factorization is valid

not only for large qT, but also for the qT-integrated cross section, one expects to recover the collinear factorized

result after integrating the TMD factorized differential cross section over qT. The original CSS formulation did not

address whether this connection is satisfied [1]. While the matching of powers of qT/Q in the intermediate qT -

region has been studied for semi-inclusive deep inelastic scattering (SIDIS) for various polarizations [17, 18], in

Refs. [1, 14, 19] it was found that the original CSS W +Y construction has difficulties to match the large- and small-qT

regions for phenomenological studies at low Q. In addition, in Ref. [1] it was also demonstrated that the original

W + Y construction does not properly match collinear factorization for the cross section integrated over qT.
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These issues led the authors of Ref. [1] to develop an improved version of the original CSS W + Y construction

(which we subsequently refer to as iCSS). The main focus of that work was for the case of the unpolarized SIDIS cross

section, and it was demonstrated that for the iCSS construction the integral of W + Y over qT reproduces the collinear

result at leading order. We also mention that the relation between resummed and collinear unpolarized results was

discussed in Ref. [20] in the framework of joint resummation [21].

With the intense focus on the 3D structure of hadrons through spin-dependent observables, it is also important

to extend the iCSS formalism to the polarized case, especially transverse single-spin asymmetries (TSSAs) like the

Sivers [22, 23] and Collins [24] effects. The purpose of this work is to achieve this goal.

We organize the Letter as follows: In Sec. 2 we review TMD evolution as it relates to the original CSS W + Y

construction along with issues that arise in both qT-matching in the intermediate region and matching the qT -integrated

cross section to collinear factorization. Next, in Sec. 3 we discuss the iCSS W + Y method developed in Ref. [1] and

show how one can extend it to polarized observables, where in particular we focus on the Sivers effect in SIDIS.

Much data exists for this observable (see for instance Refs. [25–28]), including a recent measurement of the weighted

asymmetry [29]. We also revisit the well-known relation between the (TMD) Sivers function and a (collinear) 3-parton

correlator, the so-called Qiu-Sterman function [30–33], in the context of the iCSS formalism. In Sec. 4 we discuss the

importance of these results with regard to the interpretation of TMDs. Finally, in Sec. 5 we summarize our work.

2. Review of the original CSS formalism

We begin with a synopsis of the W + Y construction of the SIDIS qT -differential cross section, which is given by

Γ(qT,Q, S ) ≡
dσ

dxdydφsdzdφh(z2dq2
T

)
= W(qT,Q, S ) + Y(qT,Q, S ) + O((m/Q)c) , (1)

where qT and −Q2 are the transverse momentum and virtuality, respectively, of the virtual photon, S is a 4-vector

for the spin of the target and φS the azimuthal angle of its transverse component, φh is the azimuthal angle of the

produced hadron, and x, y, z are the other standard SIDIS kinematic variables (see Ref. [34] for more details). Note

that in the arguments of Γ, W, and Y we have suppressed the x and z dependence for brevity. Also, we mention that

the cross section oftentimes is written differential in the hadron transverse momentum Ph⊥ = −zqT. In Eq. (1), the

W-term factorizes into TMD PDFs and FFs and is valid for qT ≪ Q, while the Y-term serves as a correction for larger

qT values and uses collinear PDFs and FFs. There is also a hard factor included in both terms.

The construction of the cross section in Eq. (1) as the sum of W(qT,Q, S ) and Y(qT,Q, S ) results from applying

so-called “approximators” to Γ(qT,Q, S ) [1, 8] that are designed to be valid for a certain region of qT . The resulting

cross section is accurate up to an error that is of order (m/Q)c, where c is a positive power, and m is a typical hadronic

mass scale. The TMD approximator TTMD is valid for qT ≪ Q, while the collinear approximator Tcoll is valid for

qT ∼ Q. Then one has W(qT,Q, S ) ≡ TTMDΓ(qT,Q, S ) and Y(qT,Q, S ) ≡ FO(qT,Q, S ) − AY(qT,Q, S ), where

FO(qT,Q, S ) ≡ TcollΓ(qT,Q, S ) is the fixed-order term and AY(qT,Q, S ) ≡ TcollTTMDΓ(qT,Q, S ) is the asymptotic

term. We note that the actual value for c in the error term O((m/Q)c) depends on which structure function we look at

in Γ(qT,Q, S ).

2.1. TMD evolution in coordinate space

In the CSS factorization formalism, the TMD evolution of the W-term in (1) is carried out in b-space.1 Thus, we

focus on W̃(bT,Q, S ) and write W(qT,Q, S ) as its Fourier transform,

W(qT,Q, S ) =

∫

d2bT

(2π)2
eiqT·bT W̃(bT,Q, S ) , (2)

where W̃(bT,Q, S ) can be expanded in the following structures [36, 37],

W̃(bT,Q, S ) = W̃UU(bT ,Q) − iMP ǫ
i jbi

T S
j

T
W̃siv

UT(bT ,Q) + . . . , (3)

1A recent work performing the evolution in momentum space can be found in Ref. [35].
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with MP the mass of the target and the epsilon tensor defined with ǫ12 = 1. For our purposes, in W̃(bT,Q, S ) we will

focus only on the unpolarized and Sivers contributions, whereas the ellipsis indicate other azimuthal modulations that

we will not address here. Note that because of the bi
T

factor in the second term, W̃siv
UT

(bT ,Q) does not have a kinematic

zero at bT = 0. From (3) it immediately follows that

W(qT,Q, S ) = WUU(qT ,Q) + |ST| sin(φh − φS ) Wsiv
UT(qT ,Q) + . . . , (4)

where the Fourier transforms take the form

WUU(qT ,Q) ≡

∫

d2bT

(2π)2
eiqT·bT W̃UU(bT ,Q) =

∫ ∞

0

dbT

2π
bT J0(qT bT )W̃UU(bT ,Q) , (5)

Wsiv
UT(qT ,Q) ≡ −iMP

∫

d2bT

(2π)2
eiqT·bT (ĥ · bT) W̃siv

UT(bT ,Q) = −Mp

∫ ∞

0

dbT

2π
b2

T J1(qT bT )W̃siv
UT(bT ,Q) , (6)

where ĥ = Ph⊥/Ph⊥ = −qT/qT . Note that Wsiv
UT

(qT ,Q) has a kinematic zero at qT = 0.

The scalar functions in (3) can be expressed in terms of Fourier transformed TMDs (FT-TMDs) [2–4, 8, 36–38].

The unpolarized scalar function is

W̃UU(bT ,Q) =
∑

j

H j(µ,Q) f̃
j

1
(x, bT ; ζA, µ) D̃

h/ j

1
(z, bT ; ζB, µ) , (7)

where f̃
j

1

(

x, bT ; ζA, µ
)

and D̃
h/ j

1

(

z, bT ; ζB, µ
)

are, respectively, the unpolarized FT-TMD PDF and FF. The FT-TMDs

have two scale arguments: µ, which is the renormalization scale, and ζ, which parameterizes how the effects of

soft-gluon radiation are partitioned between the FT-TMDs, where ζAζB = Q4. We use the freedom from the renor-

malization group to set ζA = ζB = Q2 and µ = C2Q ≡ µQ. The constant C2 is chosen to optimize the accuracy

of the perturbation theory for the lepton-quark hard scattering coefficient H j(µ,Q), which at LO is HLO
j

(µQ,Q) =

α2
em e2

j
(1 − y + y2/2)/(yQ2). With these choices, the unpolarized scalar function now reads

W̃UU(bT ,Q) =
∑

j

H j(µQ,Q) f̃
j

1
(x, bT ; Q2, µQ) D̃

h/ j

1
(z, bT ; Q2, µQ) . (8)

Similarly, the Sivers scalar function reads

W̃siv
UT(bT ,Q) =

∑

j

H j(µQ,Q) f̃
⊥(1) j

1T
(x, bT ; Q2, µQ) D̃

h/ j

1
(z, bT ; Q2, µQ) , (9)

where [36, 37]

f̃
⊥(1) j

1T
(x, bT ; Q2, µQ) ≡ −

1

M2
P

bT

∂ f̃
⊥ j

1T
(x, bT ; Q2, µQ)

∂bT

, (10)

and f̃
⊥ j

1T
(x, bT ; Q2, µQ) is the FT-TMD Sivers function.2 The expressions in Eqs. (8), (9) lead to (after using (5), (6))

the well-known results in momentum-space for WUU(qT ,Q) and Wsiv
UT

(qT ,Q) in Eq. (4) [8, 38],

WUU(qT ,Q) =
∑

j

H j(µQ,Q)

∫

d2 kT d2 pT δ
(2)(kT − pT + qT) f

j

1
(x, kT ; Q2, µQ) D

h/ j

1
(z, zpT ; Q2, µQ) , (11)

Wsiv
UT(qT ,Q) =

∑

j

H j(µQ,Q)

∫

d2 kT d2 pT δ
(2)(kT − pT + qT)













−
ĥ · kT

MP













f
⊥ j

1T
(x, kT ; Q2, µQ) D

h/ j

1
(z, zpT ; Q2, µQ) ,

(12)

2In the limit bT → 0, one finds f̃
⊥(1)

1T
(x, bT → 0) =

∫

d2 kT
k2

T

2M2
P

f⊥
1T

(x, kT ) ≡ f
⊥(1)

1T
(x) (where kT = |kT |) [36].
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which in their structure agree with the parton model calculations [34, 39, 40]. The variable kT is the transverse

momentum of the struck quark w.r.t. the incoming proton, and pT is transverse momentum of the fragmenting quark

w.r.t. the produced hadron (with kT = |kT|, pT = |pT|).

We mention that the FT-TMDs or “b-space functions” on the r.h.s. of (8), (9) can be understood simply as func-

tions arising from the factorization of W̃UU(bT ,Q) and W̃siv
UT

(bT ,Q) from which we can define the momentum-space

functions through inverse Fourier transforms. Likewise, W(qT,Q, S ) can be defined from W̃(bT,Q, S ) via the inverse

Fourier transform (2). We will adopt this viewpoint, rather than the usual approach of calculating b-space functions

from the Fourier transform of the momentum-space correlator (see, e.g., Ref. [36] for details), since TMD evolution

and certain modifications in the iCSS formalism are performed directly in b-space [1, 8] (see Sec. 3).

We next follow the CSS procedure [8, 41] to write Eqs. (8) and (9), respectively, as

W̃UU(bT ,Q) = W̃OPE
UU (b∗(bT ),Q)W̃NP

UU(bT ,Q) (13a)

=
∑

j

H j(µQ,Q) f̃
j

1
(x, b∗(bT ); µ2

b∗
, µb∗ ) D̃

h/ j

1
(z, b∗(bT ); µ2

b∗
, µb∗ )

× exp















K̃(b∗(bT ); µb∗ ) ln















Q2

µ2
b∗















+

∫ µQ

µb∗

dµ′

µ′

[

2γ(αs(µ
′); 1) − ln

(

Q2

µ′2

)

γK(αs(µ
′))

]















× exp















−gpdf(x, bT ; Q0, bmax) − gff(z, bT ; Q0, bmax) − gK(bT ; bmax) ln













Q2

Q2
0



























, (13b)

W̃siv
UT(bT ,Q) = W̃siv,OPE

UT
(b∗(bT ),Q)W̃siv,NP

UT
(bT ,Q) (14a)

=
∑

j

H j(µQ,Q) f̃
⊥(1) j

1T
(x, b∗(bT ); µ2

b∗
, µb∗ ) D̃

h/ j

1
(z, b∗(bT ); µ2

b∗
, µb∗ )

× exp















K̃(b∗(bT ); µ̄) ln















Q2

µ2
b∗















+

∫ µQ

µb∗

dµ′

µ′

[

2γ(αs(µ
′); 1) − ln

(

Q2

µ′2

)

γK(αs(µ
′))

]















× exp















−gsiv(x, bT ; Q0, bmax) − gff(z, bT ; Q0, bmax) − gK(bT ; bmax) ln













Q2

Q2
0



























, (14b)

with

b∗(bT ) ≡

√

b2
T

1 + b2
T
/b2

max

, µb∗ ≡
C1

b∗(bT )
, (15)

where bmax separates small and large bT , and C1 is a constant chosen to allow for perturbative calculations of b∗(bT )-

dependent quantities without large logarithms [41]. Note that b∗(bT ) freezes at bmax when bT is large so that b∗(bT ) is

always small (i.e., in the perturbative region). The first two lines in (13b), (14b) are the operator product expansion

(OPE) pieces, W̃OPE(b∗(bT ),Q), whereas the last line is the non-perturbative part, W̃NP(bT ,Q). The functions gpdf

and gff are the non-perturbative factors for f̃1 and D̃1, respectively, while gsiv is the non-perturbative factor for f̃
⊥(1)

1T
.

The factor gK is the non-perturbative part of the Collins-Soper (CS) evolution kernel K̃(bT ; µ) (see [41, Eqs. (6), (11),

(25)]). Note that W̃NP → 1 as bT → 0 [8, 41]. The terms γK(αs(µ)) and γ(αs(µ); 1) are the anomalous dimensions for

the CS kernel and b-space functions, respectively (see [41, Eqs. (7)–(10), (12)]).3

We mention that there are some alternatives in the literature to the b∗-prescription. In Refs. [44, 45] the au-

thors separate the perturbative and non-perturbative contribution through the parameter bmax such that W̃(bT ,Q) =

W̃(bT ,Q) for bT ≤ bmax and W̃(bT ,Q) = W̃(bmax,Q) W̃NP
QZ

(bT ,Q; bmax) for bT > bmax, where W̃NP
QZ

(bT ,Q; bmax) in-

cludes power corrections to improve the matching between the perturbative and non-perturbative regions of W̃(bT ,Q).

3See also [42, 43] and references therein for detailed discussions of the evolution equations and their origins.
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Their approach attempts to minimize the influence of the non-perturbative piece of W̃(bT ,Q), which contains sev-

eral parameters and does not have a fixed functional form, at small bT where one should be driven by perturbatively

calculable effects. In the context of the “resummation approach” [46, 47], one avoids the Landau pole encountered

in performing Fourier transforms (b-space integrations) by extending bT to the complex plane and exploiting the an-

alytic structure of the running coupling. Phenomenological parameters then appear only as non-perturbative power

corrections. In this work we continue to use the CSS b∗-prescription.

Since the unpolarized b-space functions in the first line of Eq. (13b) are restricted to small bT , we can expand them

in an OPE in terms of twist-2 collinear functions [8, 38, 41],

f̃
j

1
(x, b∗(bT ); µ2

b∗
, µb∗) =

∑

j′

∫ 1

x

dx̂

x̂
C̃

pdf

j/ j′
(x/x̂, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ )) f

j′

1
(x̂; µb∗ ) + O((m b∗(bT ))p) , (16)

D̃
h/ j

1
(z, b∗(bT ); µ2

b∗
, µb∗) =

∑

i′

∫ 1

z

dẑ

ẑ3
C̃ffi′/ j(z/ẑ, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ )) D

h/i′

1
(ẑ; µb∗ ) + O((m b∗(bT ))p) , (17)

where f
j′

1
(x̂; µb∗ ), D

h/i′

1
(ẑ; µb∗ ) showing up on the r.h.s. of Eqs. (16), (17), respectively, are understood to be renormal-

ized at the scale µb∗ .

Similarly, the b-space function in Eq. (9) that gives rise to the Sivers effect can be written at small bT in terms of

a twist-3 quark-gluon-quark correlation function [17, 37, 48, 49],

f̃
⊥(1) j

1T
(x, b∗(bT ); µ2

b∗
, µb∗ ) = −

1

2MP

∑

j′

∫ 1

x

dx̂1

x̂1

dx̂2

x̂2

C̃siv
j/ j′ (x̂1, x̂2, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ ))T

j′

F
(x̂1, x̂2; µb∗ )

+ O((m b∗(bT ))p′) , (18)

where T
j′

F
(x̂1, x̂2; µb∗ )

4 likewise is also understood to be renormalized at the scale µb∗ . The function TF(x1, x2) in (18)

has the following operator definition:

TF(x1, x2) =

∫

db−dy−

4π
eix1P+b−ei(x2−x1)P+y− ǫi jS

j

T
〈P, S |ψ̄(0)γ+W(0; y−)gF+i(y−)W(y−; b−)ψ(b−)|P, S 〉 , (19)

whereW(a−; b−) is a straight-line gauge link connecting (0+, a−, 0T) to (0+, b−, 0T). When x1 = x2 ≡ x, TF(x, x) is

known as the Qiu-Sterman function [30–33]. Note that the gauge link for f̃
⊥(1) j

1T
(x, bT ) is understood to be for SIDIS.

If instead one used a gauge link consistent with the Drell-Yan process, the sign on the r.h.s. of (18) would change [51].

The errors in (16)–(18) are suppressed by positive powers p, p′, and represent higher twist terms.

Note that the unpolarized b-space functions in (16), (17) are written at small bT (or large kT in momentum space)

in terms of twist-2 functions while the b-space function in (18) associated with the Sivers effect is written in terms of

a twist-3 function. The reason is due to their different power-law behaviors at large-kT : the former goes as 1/k2
T

while

the latter is suppressed by a power of kT and goes as 1/k3
T

[17, 18, 37, 48, 49].

Using Eqs. (16)–(18) in (13b), (14b) and comparing the results to Eqs. (8), (9) allows us to establish the following

equalities:

f̃
j

1
(x, bT ; Q2, µQ) =

∑

j′

∫ 1

x

dx̂

x̂
C̃

pdf

j/ j′
(x/x̂, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ )) f

j′

1
(x̂; µb∗ )

× exp

{

K̃(b∗(bT ); µb∗ ) ln

(

Q

µb∗

)

+

∫ µQ

µb∗

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}

× exp

{

−gpdf(x, bT ; Q0, bmax) − gK(bT ; bmax) ln

(

Q

Q0

)}

, (20)

4Terms in Eq. (18) proportional to the derivative of TF (x1 , x2) can be transformed into non-derivative pieces through an integration by parts,

leading to a generalized coefficient function in (18) (see, e.g., Ref. [50]).
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D̃
h/ j

1
(z, bT ; Q2, µQ) =

∑

i′

∫ 1

z

dẑ

ẑ3
C̃ffi′/ j(z/ẑ, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ )) D

h/i′

1
(ẑ; µb∗ )

× exp

{

K̃(b∗(bT ); µb∗ ) ln

(

Q

µb∗

)

+

∫ µQ

µb∗

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}

× exp

{

−gff(z, bT ; Q0, bmax) − gK(bT ; bmax) ln

(

Q

Q0

)}

, (21)

f̃
⊥(1) j

1T
(x, bT ; Q2, µQ) = −

1

2MP

∑

j′

∫ 1

x

dx̂1

x̂1

dx̂2

x̂2

C̃siv
j/ j′(x̂1, x̂2, b∗(bT ); µ2

b∗
, µb∗ , αs(µb∗ )) T

j′

F
(x̂1, x̂2; µb∗ )

× exp

{

K̃(b∗(bT ); µb∗ ) ln

(

Q

µb∗

)

+

∫ µQ

µb∗

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}

× exp

{

−gsiv(x, bT ; Q0, bmax) − gK(bT ; bmax) ln

(

Q

Q0

)}

, (22)

where implicitly there are again errors in (20)–(22) due to the truncation of the OPE in (16)–(18). From these b-space

expressions, we define the following functions in momentum space as

f
j

1
(x, kT ; Q2, µQ) ≡

∫ ∞

0

dbT

2π
bT J0(kT bT ) f̃

j

1
(x, bT ; Q2, µQ) , (23)

D
h/ j

1
(z, zpT ; Q2, µQ) ≡

∫ ∞

0

dbT

2π
bT J0(pT bT ) D̃

h/ j

1
(z, bT ; Q2, µQ) , (24)

k2
T

2M2
P

f
⊥ j

1T
(x, kT ; Q2, µQ) ≡ kT

∫ ∞

0

dbT

4π
b2

T J1(kT bT ) f̃
⊥(1) j

1T
(x, bT ; Q2, µQ) , (25)

where kT = |kT|, pT = |pT|. The definitions in Eqs. (23)–(25) are consistent with the standard parameterization of the

momentum-space (distribution and fragmentation) correlators [39, 52, 53] in terms of (among others) the unpolarized

TMDs f1(x, kT ), D1(z, zpT ) and the Sivers TMD f⊥
1T

(x, kT ). In particular, the result in (25) can be obtained from

Eq. (10) along with the explicit expression for the Fourier transform of the Sivers function. The inverse Fourier

transforms read

f̃
j

1
(x, bT ; Q2, µQ) = 2π

∫ ∞

0

dkT kT J0(kT bT ) f
j

1
(x, kT ; Q2, µQ) , (26)

D̃
h/ j

1
(z, bT ; Q2, µQ) = 2π

∫ ∞

0

dpT pT J0(pT bT ) D
h/ j

1
(z, zpT ; Q2, µQ) , (27)

f̃
⊥(1) j

1T
(x, bT ; Q2, µQ) =

2π

M2
P

∫ ∞

0

dkT

k2
T

bT

J1(kT bT ) f
⊥ j

1T
(x, kT ; Q2, µQ) . (28)

We are now in a position to address some issues with the original CSS formalism presented above.

2.2. Issues with the original W + Y construction

We will highlight two main issues with the original CSS W + Y construction that are also detailed in Ref. [1],

and serve as motivation for the modifications we will discuss in Sec. 3. The first is that the CSS framework is most

useful when Q is large enough that there is a broad intermediate range of transverse momentum characterized by

m ≪ qT ≪ Q. That is, one needs to have a window in qT where qT/Q is small enough that factorization using TMD

PDFs and FFs is valid to sufficient accuracy [1, 8] while m/qT is also small enough that factorization using collinear

PDFs and FFs is simultaneously valid. However, at the values of Q that are of phenomenological interest, for example,

in measurements devoted to studying 3D hadronic structure through the intrinsic transverse motion of partons, neither
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qT/Q nor m/qT is necessarily small. Given these conditions, it becomes a challenge to smoothly and consistently

match the differential cross section over the available range of qT [14, 19].

The second issue is the problem of matching the TMD factorized cross section integrated over qT to the collinear

factorization formalism. As the authors of Ref. [1, Appendix A] showed, the integral of Γ(qT,Q, S ) over all qT in

Eq. (1) results in a mismatch of orders in αS (Q) of the leading contributions on the l.h.s. and r.h.s. of the equation.

This is evident from the fact that integrating W(qT,Q, S ) over all qT gives zero instead of the expected collinear result.

To be more specific, integrating Eq. (4) over qT and using Eq. (5) yields [1]
∫

d2qT W(qT,Q, S ) = W̃UU(bT → 0,Q)

∼ ba
T × (log corrections) = 0 , (29)

where a = 8CF/β0 with β0 = 11 − 2n f /3. (Note that the integration over qT eliminates all other terms in W(qT,Q, S )

except for WUU(qT ,Q).) The source of this behavior is that b∗(bT → 0) = 0 so that µb∗ → ∞ in this limit. This

leads to a large logarithm in the second term of the perturbative (OPE) exponential (second line of (13b)) involving

γK(αs(µb∗ )) ln(Q2/µb∗ ) [1]. Similarly, for the Sivers contribution to W(qT,Q, S ) we find, using Eqs. (4) and (6),
∫

d2qT qT sin(φh − φS ) W(qT,Q, S ) = π

∫

dqT q2
T WSiv

UT (qT ,Q)

= −MP lim
b′

T
→0

1

b′
T

[
∫ ∞

0

dbT bT

∫ ∞

0

dqT qT bT J1(qT b′T ) J1(qT bT ) W̃siv
UT(bT ,Q)

]

= −MP W̃siv
UT(bT → 0,Q)

∼ ba
T × (log corrections) = 0 , (30)

with a as above. The last line holds because the perturbative (OPE) part of the Sudakov exponential is independent

of spin (cf. Eqs. (13b) and (14b)), so W̃siv
UT

(bT ,Q) retains the same behavior when bT → 0 as W̃UU(bT ,Q). In going

from the second to the third line in Eq. (30) we exploited the well-known relation used in Bessel weighting [36],
∫ ∞

0
dqT qT Jn(qT b′

T
)Jm(qT bT ) = δnm δ(bT−b′

T
)/bT . Therefore, from (30) we see the weighted Sivers effect also vanishes

instead of giving the expected collinear twist-3 expression.

From the above results, one can readily conclude that the integrals over kT (or pT) of the unpolarized functions

(23), (24) vanish upon integration over transverse momentum,
∫

d2 kT f
j

1
(x, kT ; Q2, µQ) = f̃

j

1
(x, bT → 0; Q2, µQ) = 0 , (31)

z2

∫

d2 pT D
j

1
(z, zpT ; Q2, µQ) = z2D̃

h/ j

1
(z, bT → 0; Q2, µQ) = 0 , (32)

and likewise the first moment of the Sivers function vanishes,
∫

d2 kT

k2
T

2M2
P

f
⊥ j

1T
(x, kT ; Q2, µQ) ≡ f

⊥(1) j

1T
(x; Q2, µQ) = f̃

⊥(1) j

1T
(x, bT → 0; Q2, µQ) = 0 . (33)

Note that a dramatic consequence of (31)–(33) is that the physical interpretation of integrated TMDs is lost. For

example, the far l.h.s. of Eq. (33) is supposed to determine the average transverse momentum of unpolarized quarks in

a transversely polarized spin- 1
2

target [40, 54–57]. Clearly, such a statement is not true in the original CSS framework.

In Ref. [1] this formalism is amended in order to address these issues for the unpolarized case. In the next section

we review these improvements and explain how they are implemented for the polarized case. More importantly, we

demonstrate in Sec. 4 how one can restore the standard physical interpretation of (31)–(33) at leading order (LO).

3. The improved CSS formalism

3.1. Modifications to the original CSS framework

In order to deal with some of the problems of the original CSS W + Y construction discussed in the previous

section, the authors of Ref. [1] incorporated improvements to the formalism. We briefly summarize their prescriptions

7



below (see Ref. [1] for more details), which originally were for the unpolarized SIDIS cross section, and extend their

implementation to the case of the Sivers effect. We will briefly outline at the end of this section how to generalize the

iCSS procedure for any polarized observable.

In what follows, we discuss four steps from the iCSS formulation. Step (I) addresses the vanishing of W̃UU (bT ,Q)

and W̃siv
UT

(bT ,Q) at bT = 0, so that one can have a factorized collinear expansion in terms of PDFs and FFs in this

limit. Steps (II) and (III) help improve the matching between the W-term and Y-term in the intermediate-qT regime by

restricting them to their respective region of applicability (see also Ref. [58]). Step (IV) collects these modifications

to form the qT -differential cross section Γ(qT,Q, S ).

(I) Replace bT with bc(bT ) in order to deal with the large logarithms that arise as bT → 0 (see also [59, 60]), where

bc(bT ) =

√

b2
T
+

(

b0

C5Q

)2

=

√

b2
T
+ b′2

min
, (34)

with b0 ≡ 2 exp(−γE), C5 a constant chosen to fix the exact proportionality between bc(0) and 1/Q, and b′
min
≡

b0/(C5Q), which cuts bT off at O(1/Q). In terms of W̃(bT,Q, S ) this modification is to be understood as

W̃(bT,Q, S )→ W̃(bT, bc(bT ),Q, S ) ≡ W̃UU(bc(bT ),Q) − iMP ǫ
i jbi

T S
j

T
W̃siv

UT(bc(bT ),Q) + . . . , (35)

where

W̃UU(bc(bT ),Q) =
∑

j

H j(µQ,Q) f̃
j

1
(x, bc(bT ); Q2, µQ) D̃

h/ j

1
(z, bc(bT ); Q2, µQ) , (36)

W̃siv
UT(bc(bT ),Q) =

∑

j

H j(µQ,Q) f̃
⊥(1) j

1T
(x, bc(bT ); Q2, µQ) D̃

h/ j

1
(z, bc(bT ); Q2, µQ) . (37)

Note that we have written (35) in such a way that no kinematic bT dependence shows up in the scalar func-

tions W̃UU(bc(bT ),Q) and W̃siv
UT

(bc(bT ),Q). That is, the modification bT → bc(bT ) only applies to the parts of

W̃(bT, bc(bT ),Q, S ) that undergo CSS evolution and not to any kinematic/tensorial bT prefactors. The b-space

functions in Eqs. (36), (37) are suitably modified to be

f̃
j

1
(x, bc(bT ); Q2, µQ) =

∑

j′

∫ 1

x

dx̂

x̂
C̃

pdf

j/ j′
(x/x̂, b∗(bc(bT )); µ̄2, µ̄, αs(µ̄)) f

j′

1
(x̂; µ̄)

× exp

{

K̃(b∗(bc(bT )); µ̄) ln

(

Q

µ̄

)

+

∫ µQ

µ̄

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}

× exp

{

−gpdf(x, bc(bT ); Q0, bmax) − gK(bc(bT ); bmax) ln

(

Q

Q0

)}

, (38)

D̃
h/ j

1
(z, (bc(bT ); Q2, µQ) =

∑

i′

∫ 1

z

dẑ

ẑ3
C̃ffi′/ j(z/ẑ, b∗(bc(bT )); µ̄2, µ̄, αs(µ̄)) D

h/i′

1
(ẑ; µ̄)

× exp

{

K̃(b∗(bc(bT )); µ̄) ln

(

Q

µ̄

)

+

∫ µQ

µ̄

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}

× exp

{

−gff(z, bc(bT ); Q0, bmax) − gK(bc(bT ); bmax) ln

(

Q

Q0

)}

, (39)

f̃
⊥(1) j

1T
(x, bc(bT ); Q2, µQ) = −

1

2MP

∑

j′

∫ 1

x

dx̂1

x̂1

dx̂2

x̂2

C̃siv
j/ j′ (x̂1, x̂2, b∗(bc(bT )); µ̄2, µ̄, αs(µ̄)) T

j′

F
(x̂1, x̂2; µ̄)

× exp

{

K̃(b∗(bc(bT )); µ̄) ln

(

Q

µ̄

)

+

∫ µQ

µ̄

dµ′

µ′

[

γ(αs(µ
′); 1) − ln

(

Q

µ′

)

γK(αs(µ
′))

]}
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× exp

{

−gsiv(x, bc(bT ); Q0, bmax) − gK(bc(bT ); bmax) ln

(

Q

Q0

)}

, (40)

where

b∗(bc(bT )) =

√

b2
T
+ b′2

min

1 + b2
T
/b2

max + b′2
min
/b2

max

, µ̄ ≡
C1

b∗(bc(bT ))
, (41)

with b′
min

defined after (34).

(II) Define a new W-term,

W(qT,Q, S ; C5) ≡ Ξ(qT/Q)

∫

d2bT

(2π)2
eiqT·bT W̃(bT, bc(bT ),Q, S )

= Ξ(qT/Q)
[

WUU(qT ,Q; C5) + |ST| sin(φh − φS ) Wsiv
UT(qT ,Q; C5) + . . .

]

, (42)

where

WUU(qT ,Q; C5) ≡

∫

d2bT

(2π)2
eiqT·bT W̃UU(bc(bT ),Q) =

∫ ∞

0

dbT

2π
J0(qT bT )W̃UU(bc(bT ),Q) , (43)

Wsiv
UT(qT ,Q; C5) ≡ −iMP

∫

d2bT

(2π)2
eiqT·bT (ĥ · bT) W̃siv

UT(bc(bT ),Q) = −Mp

∫ ∞

0

dbT

2π
b2

T J1(qT bT )W̃siv
UT(bc(bT ),Q) ,

(44)

with C5 again a constant chosen to optimize the control of large logarithms that arise as bT → 0. The quantity

Ξ(qT/Q) in (42) is a smooth function chosen so that it is unity at qT = 0 and approaches zero for large qT &
Q [1, 8]. This factor ensures that W(qT,Q, S ; C5) is sufficiently suppressed for qT & Q, where its accuracy has

significantly degraded. The momentum-space functions are likewise defined as

f
j

1
(x, kT ; Q2, µQ; C5) ≡

∫ ∞

0

dbT

2π
bT J0(kT bT ) f̃

j

1
(x, bc(bT ); Q2, µQ) , (45)

D
j

1
(z, zpT ; Q2, µQ; C5) ≡

∫ ∞

0

dbT

2π
bT J0(pT bT ) D̃

h/ j

1
(z, bc(bT ); Q2, µQ) , (46)

k2
T

2M2
P

f
⊥ j

1T
(x, kT ; Q2, µQ; C5) ≡ kT

∫ ∞

0

dbT

4π
b2

T J1(kT bT ) f̃
⊥(1) j

1T
(x, bc(bT ); Q2, µQ) . (47)

(III) Define a new Y-term,

Y(qT,Q, S ; C5) ≡ X(qT/m)
{

FO(qT,Q, S ) − AY(qT,Q, S ; C5)
}

, (48)

where X(qT/m) is a smooth function that approaches zero for qT . m and unity for qT & m [1, 4]. The

function X(qT/m) ensures that Y(qT,Q, S ; C5) is sufficiently suppressed for qT . m, where its accuracy has

significantly degraded. The quantity AY(qT,Q, S ; C5), being the asymptotic expansion of W(qT,Q, S ; C5) at

large qT , includes the modifications (I), (II). The change (II) to AY(qT,Q, S ) has the additional benefit that the

integral of the asymptotic term over all qT is now finite, whereas in the original CSS formalism it diverges. We

mention that in AY(qT,Q, S ; C5) the scale µb∗ is replaced with µQ (see, e.g., Ref. [1, Sec. VIII]). Furthermore,

as qT → 0 the singular logarithms cancel between FO(qT,Q, S ) and AY(qT,Q, S ; C5). Thus, Y(qT,Q, S ; C5) is

suppressed for qT ≪ Q.

(IV) With these modifications, the qT -differential cross section (1) now reads

Γ(qT,Q, S ) = W(qT,Q, S ; C5) + Y(qT,Q, S ; C5) + O((m/Q)c) . (49)
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3.2. Agreement between TMD and collinear results

We start with the cross section in Eq. (49), which can be written as

Γ(qT,Q, S ) = Ξ(qT/Q)
[

WUU(qT ,Q; C5) + |ST| sin(φh − φS ) Wsiv
UT(qT ,Q; C5) + . . .

]

+ Y(qT,Q, S ; C5) (50a)

=
[

WUU(qT ,Q; C5) + |ST| sin(φh − φS ) Wsiv
UT(qT ,Q; C5) + . . .

]

− (1 − Ξ(qT/Q))
[

WUU(qT ,Q; C5) + |ST| sin(φh − φS ) Wsiv
UT(qT ,Q; C5) + . . .

]

+ Y(qT,Q, S ; C5) . (50b)

Note that at small qT ≪ Q, the second and third lines of (50b) are suppressed by qT/Q compared to the first line.

Since they only become sizable for larger qT , the second and third lines contribute at O(αs(Q)). Therefore, the LO

part of any (possibly weighted) qT -integration of Γ(qT,Q, S ) will be from the first line of Eq. (50b).

We now show that the improvements of Sec. 3.1 resolve the problems in the original CSS formalism (see Sec. 2.2)

with integrating Γ(qT,Q, S ), as well as the TMD functions, over transverse momentum. While Ξ(qT/Q) and X(qT/m)

in (II), (III) are needed to help accurately describe the intermediate qT region, as we will see below, it is the bT →

bc(bT ) modification of (I) that is crucial to recover the expected relations between TMD and collinear quantities. For

the unpolarized case we find [1]

dσ

dxdydz
≡ 2

∫

d2 Ph⊥

∫

dφS Γ(qT,Q, S ) = 4πz2 W̃OPE
UU (b′min,Q)LO + O(αs(Q)) + O((m/Q)p)

=
4πα2

em

yQ2
(1 − y + y2/2)

∑

j

e2
j f

j

1
(x; µc) D

h/ j

1
(z; µc) + O(αs(Q)) + O((m/Q)p) , (51)

where µc ≡ limbT→0 µ̄ ≈ C1C5Q/b0 (with µ̄ given in (41)) so that µc is on the order Q. This agrees with the result

in [34]. Note that “O(αs(Q))” includes the next-to-leading order (NLO) corrections to the coefficients C̃ and hard

factors H along with the terms in the second and third lines of Eq. (50b) (since both are unsuppressed only at large

qT ), and the O((m/Q)p) correction is from replacing W̃UU(b′
min
,Q) with W̃OPE

UU
(b′

min
,Q) [1]. This result was first derived

for the iCSS formalism in Ref. [1].

We now extend this to the Sivers case and obtain

d〈Ph⊥ ∆σ(S T )〉

dxdydz
≡ 2

∫

d2 Ph⊥

∫

dφS Ph⊥ sin(φh − φS ) Γ(qT,Q, S )

= −4πz3MP lim
b′

T
→0

1

b′
T

[∫ ∞

0

dbT bT

∫ ∞

0

dqT qT bT J1(qT b′T ) J1(qT bT ) W̃siv
UT(bc(bT ),Q)LO

]

+ O(αs(Q))

= −4πz3MP lim
b′

T
→0

1

b′
T

[∫ ∞

0

dbT δ(bT − b′T ) bT W̃siv
UT(bc(bT ),Q)LO

]

+ O(αs(Q))

= −4πz3MP W̃
siv,OPE

UT
(b′min,Q)LO + O(αs(Q)) + O((m/Q)p′)

=
2π zα2

em

yQ2
(1 − y + y2/2)

∑

j

e2
j T

j

F
(x, x; µc) D

h/ j

1
(z; µc) + O(αs(Q)) + O((m/Q)p′) . (52)

Again we confirm the previous LO calculations in the literature [61]. Note as before that “O(αs(Q))” includes the NLO

corrections to the coefficients C̃ and hard factors H along with the terms in the second and third lines of Eq. (50b),

and the O((m/Q)p′) correction is from replacing W̃siv
UT

(b′
min
,Q) with W̃

siv,OPE

UT
(b′

min
,Q). Again in going from the second

to the third line have used
∫ ∞

0
dqT qT Jn(qT b′

T
) Jm(qT bT ) = δnm δ(bT − b′

T
)/bT .

We emphasize that it was crucial in (44) that the bT in (ĥ · bT) not get replaced by bc(bT ) in order to achieve the

result (52). This manifests itself in the second line of (52), where the factor (qT bT ) appears instead of (qT bc(bT )). If,

on the other hand, the bT → bc(bT ) replacement was made in (ĥ · bT), the third line in (52) would give a divergent
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result since then one would have a factor limb′
T
→0 bc(b

′
T

)/b′
T
= limb′

T
→0 b′

min
/b′

T
. This example highlights the key

observation needed in order to use the iCSS formalism with polarized observables. In general it is a statement that

the bT → bc(bT ) prescription only applies to the bT dependence that is a part of the evolution and not to any external

(kinematic) bT prefactors.

In terms of the momentum-space functions (45)–(47), we also find

∫

d2 kT f
j

1
(x, kT ; Q2, µQ; C5) = f̃

j

1
(x, b′min; Q2, µQ) = f

j

1
(x; µc) + O(αs(Q)) + O((m/Q)p) , (53)

z2

∫

d2 pT D
j

1
(z, zpT ; Q2, µQ; C5) = z2D̃

h/ j

1
(z, b′min; Q2, µQ) = D

h/ j

1
(z; µc) + O(αs(Q)) + O((m/Q)p) , (54)

∫

d2 kT

k2
T

2M2
P

f
⊥ j

1T
(x, kT ; Q2, µQ; C5) ≡ f

⊥(1) j

1T
(x; Q2, µQ; C5)

= f̃
⊥(1) j

1T
(x, b′min; Q2, µQ) = −

1

2MP

T
j

F
(x, x; µc) + O(αs(Q)) + O((m/Q)p′) , (55)

where again µc ≡ limbT→0 µ̄ ≈ C1C5Q/b0 (with µ̄ given in (41)) so that µc is on the order Q.5 Note that, due to

the bT → bc(bT ) modification, the above integrals on the l.h.s. are UV finite, yielding at LO and for Q ≫ m the

renormalized collinear functions on the far r.h.s. To obtain these last equalities we have used the fact that b′
min
∼

O(1/Q) so that we can replace (38)–(40) with their OPE pieces and expand the exponentials in powers of αs(Q)

without large logarithms. The correction terms also include NLO in the coefficients C̃. The results in Eqs. (53)–(55)

agree with our expectations from the “naı̈ve” operator definitions of TMDs.6 In particular, Eq. (55) is the well-known

relation between the first kT -moment of the Sivers function and the Qiu-Sterman function [62] (see also [49, 57, 63,

64]). We emphasize that the relations between the integrals of the TMDs on the far l.h.s. of Eqs. (53)–(55) and the

functions f̃1(x, b′
min

; Q2, µQ), D̃1(z, b′
min

; Q2, µQ), and f̃
⊥(1)

1T
(x, b′

min
; Q2, µQ), respectively, which can be obtained from

Eqs. (38)–(40) by setting bT to zero, hold to all orders in the strong coupling.

3.3. Power counting in the region m ≪ qT ≪ Q

A necessary condition for a TMD modulation in W(qT,Q, S ; C5) to yield the corresponding LO collinear cross

section (upon a suitably weighted integration over qT) is that there must be no power-counting mismatch in the

intermediate qT region (m ≪ qT ≪ Q) where both factorization in terms of TMD functions and collinear functions

are valid.7 For the Sivers effect that we focused on in Sec. 3.2, it was shown explicitly in SIDIS [17, 65] and Drell-

Yan [48] that the results for TMD and collinear twist-3 factorization match in the m ≪ qT ≪ Q regime. The same

was also explicitly proven for the Collins effect in SIDIS [66], for hyperon production in SIDIS involving the Boer-

Mulders function [67], and for certain modulations in Drell-Yan involving the worm-gear functions [50]. In addition,

this problem was discussed extensively in Ref. [18], where the authors analyzed if the powers of qT matched in the

m ≪ qT ≪ Q region between results at low and high transverse momentum for the structure functions that enter the

SIDIS cross section. For those structure functions where calculations existed in the literature for both regions, there

was only a mismatch at intermediate qT for the cos(2φh) and sin(3φh − φS ) modulations.

3.4. Other polarized observables

Our extension of the iCSS procedure to the Sivers effect is quite general and can also be used for any polarized

observable. Here we outline the basic steps. First, one would continue with the expansion in Eq. (35) to include other

polarized terms. We generically denote these by Cpol(MP, bT, S ) W̃pol(bc(bT ),Q), where W̃pol(bc(bT ),Q) is a scalar

function (initially of bT before the bT → bc(bT ) modification), and Cpol(MP, bT, S ) is the associated tensor structure.

5Phenomenological fits of TMDs use C1 and bmax to optimize the perturbation theory. The fact that the collinear functions on the r.h.s. of

(53)–(55) depend on these parameters via µc is a result of the truncation of the perturbative series in αs.
6We will discuss specifically what we mean by “naı̈ve” operator definition in Sec. 4.
7Most likely this is also a sufficient condition at LO. However, at NLO, a quantitative matching in the intermediate-qT region is probably also

required in order for the integrated TMD results to match the collinear ones at that order in αs.
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The key is that all kinematic bT dependence must be contained in Cpol(MP, bT, S ). One can receive guidance for the

structure of these terms from Eqs. (2.13), (2.14) of Ref. [36], where, exactly like in (38)–(40), the evolution of the

b-space functions that enter those formulas does not contain any kinematic bT prefactors. Next, one would continue

with the modifications (II) and (III), where, in particular, one defines the momentum-space quantities in terms of

the modified b-space ones, exactly like in Eqs. (42)–(44) and Eqs. (45)–(47). Finally, one puts these pieces together

in the qT -differential cross section of (IV). Given our discussion in Sec. 3.3, we expect that all TMD functions one

obtains from the iCSS procedure will reduce at LO to their collinear counterparts upon integration (like in (53)–(55))

while inconsistencies could arise when integrating certain modulations in W(qT,Q, S ; C5), specifically cos(2φh) and

sin(3φh − φS )) [18], at LO to obtain the corresponding collinear cross sections.

4. Physical interpretation of Eqs. (53)–(55)

An important consequence of Eqs. (53)–(55) is that the “naı̈ve” operator definition interpretation of TMDs is

restored at LO. For example, one can determine the average transverse momentum of unpolarized quarks in a trans-

versely polarized spin- 1
2

target according to [40, 54–57]

〈ki
T (x; µ)〉UT =

1

2

∫

d2 kT ki
T

∫

db−

2π

∫

d2bT

(2π)2
eixP+b−e−ikT·bT 〈P, S |ψ̄(0)γ+WDIS(0; b)ψ(b)|P, S 〉

∣

∣

∣

∣

∣

b+=0

=
1

2

∫

db−dy−

4π
eixP+b−〈P, S |ψ̄(0)γ+W(0; y−)gF+i(y−)W(y−; b−)ψ(b−)|P, S 〉

=
1

2
ǫi jS

j

T
TF(x, x; µ) , (56)

whereWDIS(0; b) is a future-pointing staple gauge link connecting (0+, 0−, 0T) to (0+, b−, bT), and we have used (19)

in going from the second to the last line. (The relation (56) holds for each quark flavor.) For Drell-Yan, where one

uses a past-pointing staple gauge link, there will be a sign change on the r.h.s. of Eq. (56) [51]. That is, 〈ki
T

(x; µ)〉UT

is process-dependent. Note that the operator defining the TMD f
⊥ j

1T
(x, kT ; Q2, µQ; C5) on the l.h.s. of (55) includes a

UV renormalization factor and a soft factor, along with non-light-like Wilson lines (see, e.g., Refs. [8, 37]). However,

this is not the operator that enters the first line of Eq. (56). Rather, the TMD operator that sits in (56) is the “naı̈ve”

definition, where the UV renormalization and soft factors are kept to LO and the Wilson lines are on the lightcone. On

the other hand, the collinear operator in the second line of Eq. (56) is the one which underlies the Qiu-Sterman function

TF(x, x; µc) on the r.h.s. of (55).8 Therefore, it is the Qiu-Sterman function which fundamentally is related to average

transverse momentum, and, due to Eq. (55), the first kT -moment of the Sivers function (within the iCSS formalism)

retains this interpretation at LO. We mention that both the l.h.s. and the r.h.s. of Eq. (56), i.e., the operators in the

first line and second line, respectively, are implicitly renormalized using the same procedure. Thus, both functions are

modified in the same way from the strict physical interpretation one obtains from using bare operators.

Note that the interpretation of the Qiu-Sterman function given in (56) is compatible with the understanding of the

average transverse force acting on quarks in a transversely polarized spin- 1
2

target [68]. Moreover, relation (55) made

it possible to connect TSSAs in different processes (e.g., the Sivers effect in SIDIS and AN in proton-proton collisions)

and has been used routinely in phenomenology (see, e.g., Refs. [69–73]). The incorporation of evolution in the TMD

correlator through the original CSS formalism breaks the “naı̈ve” relations between TMDs and collinear functions

(see Eqs. (31)–(33)). Nevertheless, as we have shown above, the modifications implemented by the iCSS framework

allow one to preserve these identities at LO.

5. Summary

In this Letter we have extended the improved CSS formalism of Ref. [1] to the case of polarized observables, which

are especially important for experiments studying the 3D structure of hadrons. As a result, we are able to recover

the well-known relations between TMD and collinear quantities one expects from their naı̈ve operator definitions.

8The scale dependence is from the renormalized correlator one defines since the kT -integration in the first line of (56) is UV divergent.

12



For example, we have shown at LO that the weighted Sivers effect, using the iCSS W + Y construction of TMD

factorization, yields the collinear twist-3 result in the literature. We also have demonstrated the validity of the relation

between the first kT -moment of the Sivers function and the Qiu-Sterman function, which holds at LO in iCSS. Since the

latter fundamentally defines the average transverse momentum of unpolarized quarks inside a transversely polarized

spin- 1
2
-target (see Eq. (56)), the former retains this interpretation as well at LO. We have discussed how the iCSS

modifications can be applied to other polarized observables, where one would also recover the other known identities

between TMD and collinear twist-3 functions. We leave as future work the implementation of the iCSS method into

phenomenological analyses.
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