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Abstract

The hyperon-nucleon (YN) interaction plays a key role in hypernuclei and strange

nuclear matter and is an important part of the baryon-baryon interaction. While con-

siderable progress has been made in the understanding of the nucleon-nucleon (NN)

interaction, the YN interaction is less known. Some parameters of the YN potential

can be obtained from the NN potential by using SU(3) symmetry. However, due to

broken SU(3) there are parameters, which must be obtained from fits to experimental

data. High-statistics data on exclusive Λ photoproduction off the deuteron initiated

with highly-polarized photons offer a unique opportunity to extract a large sample

of polarization observables for final-state interaction events, which can be used to

constrain hyperon-nucleon potentials. In this work, we determine the polarization

transfers to the Λ, Cx and Cz, from circularly polarized photons, and the hyperon

recoil polarization, Py, for final-state interactions (FSI) in the reaction −→γ d→ K+−→Λn

using data taken with the CLAS detector at the Jefferson laboratory in the E06-103

experiment. Meanwhile, Cx, Cz, and Py for K+Λ photoproduction off the bound pro-

ton were extracted for systematic studies and compared to published CLAS results

from K+Λ photoproduction off a free proton. Our results cover photon energies from

0.9 GeV to 2.6 GeV, a kaon momentum range up to 2 GeV/c, a kaon polar-angle

range in laboratory system from 14◦ to 70◦, a Λ polar-angle range (relative to the

three-momentum transfer to the Λn system) from 0◦ to 60◦, and a Λn invariant-mass

range from 2 GeV/c2 to 2.5 GeV/c2. The FSI results are the first ever obtained for

Cx, Cz, and Py and will be used to constrain the theoretical free parameters of the

models of the YN potential.
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Chapter 1

Introduction

1.1 The Strong Interaction

The strong interaction, which is the mechanism responsible for the strong force be-

tween quarks and gluons, is one of the four fundamental interactions of nature and

is a part of the Standard Model of particle physics. Six different types of quarks

are the fundamental constituents of strongly interacting elementary particles called

hadrons, while eight independent types of gluons mediate the strong interaction be-

tween quarks, antiquarks, and other gluons. Hadrons are classified as baryons (con-

sisting of three quarks) and mesons (consisting of quark-antiquark pairs). In this

work, particles of interest are nucleons and hyperons, which are composed of three

light quarks (which give baryons their quantum numbers), plus a variable number of

sea quark-antiquark pairs of any flavor, plus any number of gluons. Nucleons (proton

and neutron), are composed of up and down quarks, while hyperons contain at least

one strange quark.

Quantum Chromodynamics (QCD) is the generally accepted and the most suc-

cessful theory of the strong interaction. QCD is a quantum-field theory, as is the

theory of the electromagnetic interaction, Quantum Electrodynamics (QED). The

QCD analog of the electric charge is the color charge (a quark’s color can take one

of three charges, red, green or blue), and gluons are the force carriers of QCD, like

photons are for QED. The magnitude of the coupling in QCD is given by the running

coupling constant, αs, which depends on the separation distance between the inter-
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acting particles, i.e. the squared four-momentum transfer (Q2) of the interaction (see

Fig. 1.1). At the relatively large distances that are characteristic of nuclear physics,

αs is large, while at very short distances (less than a tenth of the size of a proton) it

becomes quite small [1]. The scale dependence of the strong coupling is limited by two

fundamental properties of QCD, namely color confinement and asymptotic freedom.

Color confinement means that color-charged particles (quarks and gluons) cannot be

isolated, and therefore cannot be directly observed as the quark-quark interaction is

extremely strong at large distances (i.e. small Q2). Asymptotic freedom [2] means

that quarks and gluons interact very weakly at short distances (i.e. at large Q2).

Thus, the study of QCD splits naturally into the high-energy, very-short-distance

regime, where perturbative QCD is applicable and the low-energy regime of quark

confinement in the bound states, the hadrons [3].

Although the fundamental degrees of freedom of QCD are quarks and gluons,

and nucleons and hyperons are bound states of quarks and gluons, many low-energy

phenomena, where nucleons and/or hyperons do not get excited, can be described

in terms of NN, NY, or YY interactions considering the baryons to be elementary

particles. If nucleons and/or hyperons are non-relativistic, their interactions are

described by potentials. In the procedure to formulate the potentials, free parameters

are introduced, which need to be obtained from fits to experimental data. In this

work, we determine experimental scattering polarization observables that are to be

used in fits by YN potentials to constrain the potential parameters.

1.2 Historical Overview

Discovery of Strange Particles

Willis Eugene Lamb began his Nobel Prize acceptance speech in 1955 with the words

“When the Nobel Prizes were first awarded in 1901, physicists knew something of just

2
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Fig. 1. (Color online.) αs,g1 (Q )/π obtained from JLab (triangles and open stars) and
world (open square) data on the Bjorken sum. Also shown are αs,τ (Q )/π from
OPAL data, the GLS sum result from the CCFR Collaboration (stars) and αs,g1 (Q )/π
from the Bjorken (band) and GDH (dashed line) sum rules.

in a Q 2-range from 0.06 to 2.92 GeV2 [14]. Here, Q 2 is the square
of the four-momentum transfered from the electron to the tar-
get. Apart from the extended Q 2-coverage, one notable difference
between these data and those of Ref. [6] is that the neutron infor-
mation originates from the longitudinally polarized deuteron target
of CLAS while the previous data [15] resulted from the longitudi-
nally and transversally polarized 3He target of JLab’s Hall A [12].
The effective coupling αs,g1 is defined by the Bjorken sum rule ex-
pressed at first order in pQCD and at leading twist. This leads to
the relation:

αs,g1 = π

(
1 − 6Γ

p−n
1

g A

)
, (1)

where g A is the nucleon axial charge. We used Eq. (1) to ex-
tract αs,g1/π . The results are shown in Fig. 1. The inner error
bars represent the statistical uncertainties whereas the outer ones
are the quadratic sum of the statistical and systematic uncertain-
ties. Also plotted in the figure are the first data on αs,g1 from [5]
and from the world data of the Bjorken sum evaluated at 〈Q 2〉 =
5 GeV2 [16], αs,F3 from the Gross–Llewellyn Smith (GLS) sum
rule [17] measured by the CCFR Collaboration [18], and αs,τ [19].
See [5] for details. The behavior of αs,g1 is given near Q 2 = 0 by
the generalized GDH sum rule and at large Q 2, where higher twist
effects are negligible, by the Bjorken sum rule generalized to ac-
count for pQCD radiative corrections. These predictions are shown
by the dashed line and the band, respectively, but they were not
used in our analysis. The width of the band is due to the uncer-
tainty on ΛQCD.

The values for αs,g1 from the new data are in good agreement
with the previous JLab data. While the previous data were sug-
gestive, the freezing of αs,g1 at low Q 2 is now unambiguous and
in good agreement with the GDH sum prediction. At larger Q 2,
the new data agree with the world data and the results from the
Bjorken sum rule at leading twist.

We fit the data using a functional form that resembles the
pQCD evolution equation for αs , with an additional term mg(Q )

that prevents α
f it
s,g1 from diverging when Q 2 → Λ2 and another

term n(Q ) that forces α
f it
s,g1 to π when Q 2 → 0. Note that the lat-

Fig. 2. (Color online.) The effective coupling constant αs,g1 extracted from JLab
data, from sum rules, and from the phenomenological model of Burkert and Ioffe
[20]. The black curve is the result of the fit discussed in the text. The calcula-
tions on αs are: top left panel: Schwinger–Dyson calculations Cornwall [21]; top
right panel: Schwinger–Dyson calculations from Bloch et al. [24] and αs used in the
quark model of Godfrey–Isgur [27]; bottom left: Schwinger–Dyson calculations from
Maris–Tandy [25], Fischer et al. [23] and Bhagwat et al. [26]; bottom right: Lattice
QCD results from Furui and Nakajima [28].

ter constraint is a consequence of both the generalized GDH and
Bjorken sum rules [5]. Our fit form is:

α
f it

s,g1 = γn(Q )

log(
Q 2+m2

g (Q )

Λ2 )

, (2)

where γ = 4/β0 = 12/(33 − 8), n(Q ) = π(1 + [γ /(log(m2/Λ2)(1 +
Q /Λ) − γ ) + (bQ )c]−1) and mg(Q ) = (m/(1 + (aQ )d)). The fit
is constrained by the data, the GDH and Bjorken sum rules at
intermediate, low and large Q 2 respectively. The values of the
parameters minimizing the χ2 are: Λ = 0.349 ± 0.009 GeV, a =
3.008 ± 0.081 GeV−1, b = 1.425 ± 0.032 GeV−1, c = 0.908 ± 0.025,
m = 1.204 ± 0.018 GeV, d = 0.840 ± 0.051 for a minimal reduced
χ2 of 0.84. The inclusion of the systematic uncertainties in the fit
explains why the reduced χ2 is smaller than 1. The term mg(Q )

has been interpreted within some of the Schwinger–Dyson calcu-
lations as an effective gluon mass [21]. Eqs. (2) and (1) can also be
used to parameterize the generalized Bjorken and GDH sums.

The fit result is shown in Fig. 2. We also include some of
the theoretical calculations (Lattice results and curves labeled
Cornwall, Bloch et al. and Fischer et al.) and phenomenological
model predictions (Godfrey–Isgur, Bhagwat et al. and Maris–Tandy)
on αs . Finally, we show the αs,g1 formed using a phenomenolog-
ical model of polarized lepton scattering off polarized nucleons
(Burkert–Ioffe). These calculations are discussed in [5]. The mag-
nitude of the Godfrey–Isgur and Cornwall results agrees with the
estimate of the average value of αs using magnetic and color-
magnetic spin–spin interactions [22]. We emphasize that the rela-
tion between these results is not fully known and that they should
be considered as indications of the behavior of αs rather than strict
predictions.

The data show that αs,g1 loses its Q 2-dependence both at large
and small Q 2. The Q 2-scaling at large Q 2 is long known and
is the manifestation of the asymptotic freedom of QCD [29]. The
absence of Q 2-dependence at low Q 2 has been conjectured and
observed by many calculations but this is the first experimental
evidence. This lack of scale dependence (conformal behavior) at

Figure 1.1: Running coupling constant of the strong interaction. αs(Q)/π is obtained
from JLab (triangles and open stars) and world (open squares) data on the Bjorken
sum, OPAL data, the Gross-Llewellyn Smith sum results from the CCFR collabora-
tion (stars), and the Bjorken (band) and Gerasimov-Drell-Hearn (dashed lines) sum
rules. The figure is from [4].

two objects which are now called ‘elementary particles’: the electron and the proton.

A deluge of other ‘elementary particles’ appeared after 1930; neutron, neutrino, µ

meson, π meson, heavier mesons, and various hyperons.”

In a short period of the year 1947, physicists believed that they had solved the

major problems of elementary particle physics: What particle mediates the strong

interaction? Does a positively charged twin for the electron predicted by Dirac’s the-

ory exist? What particle is emitted along with the electron in beta decay? Yukawa’s

meson (the π) and Dirac’s positron had been finally found as well as Pauli’s neutrino.

At that time, the muon was regarded as a meson instead of a lepton, and its role was

not clearly understood in the whole scheme of things [1].
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However, new problems came out very soon. A large number of heavier mesons

and baryons were discovered. In December of 1947, Rochester and Butler published

a cloud chamber photograph (see Fig. 1.2) showing the charged decay of a new elec-

trically neutral particle, the K0:
30 l/HISTORICAL INTRODUCTION TO THE ELEMENTARY PARTICLES 

3 cm 
of’lead 

Incident cosmic ray 
shower 

Debris 

Figure 1.8 The first strange particle. Cosmic rays strike a lead plate, producing a KO, 
which subsequently decays into a pair of charged pions. (Photo courtesy of Prof. G. D. 
Rochester. Reprinted by permission from Nature 160, 855. Copyright 0 1947, Macmillan 
Journals Limited.) 

A = -1; then the total baryon number is conserved in any physical process. 
Thus, neutron beta decay (n  - p+ + e- + 5,) is allowed ( A  = 1 before and after), 
and so also is the reaction in which the antiproton was first observed: 

Figure 1.2: The first strange particles. Cosmic rays strike a lead plate, producing a
K0, which subsequently decays into π+ and π−. The figure is from [1].

K0 → π+π−. (1.1)

In 1949, Powell published a photograph (see Fig. 1.3) showing the charged decay of

another new particle, the K+:

K+ → π+π+π−. (1.2)

Subsequently, many more heavy mesons were discovered, including η, φ, ω, ρ, and so

on.
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1.6 STRANGE PARTICLES (1947-1960) 31 

Figure 1.9 K’, entering from above, decays at A:  K+ - T+ + A+ + T-. (The R- subse- 
quently causes a nuclear disintegration at B). [Reprinted by permission from C. F. Powell, 
P. H. Fowler, and D. H. Perkins, The Study of Elementary Particles by the Photographic 
Method (New York: Pergamon, 1959). First published in Rep. Prog. Phys. 13,384 (1950).] 

P + P - P + P + P + P  ( I  .26) 
( A  = 2 on both sides). But the proton, as the lightest baryon, has nowhere to 
go; conservation of the baryon number guarantees its absolute stability.* If we 
are to retain the conservation of baryon number in the light of reaction ( 1.24), 
the lambda must be assigned to the baryon family. Over the next few years 
many more heavy baryons were discovered-the Z’s, the Z’s, and the A’s, and 
so on. [By the way: unlike leptons and baryons, there is no conservation of 
mesons. In pion decay (Y - 1.1- + i,) a meson disappears, and in lambda 
decay (A - p+ + T- )  a meson is created.] 

* Recent “grand unified” theories allow for a minute violation of baryon number conservation, 
and in these theories the proton is nor absolutely stable. See the article by S. Weinberg in Scientific 
American, June 1981. The experimental situation is discussed by J. M. LoSecco et al., Scientific 
American. June 1985. 

Figure 1.3: Discovery of K+. K+ decays to double π+ and π−. The figure is from [1].

Meanwhile, the first strange baryon, the Lambda (Λ), was discovered by Ander-

son’s group at CalTech in 1950. Over the next few years, many more heavy baryons

were discovered, including Σs, Ξs, and so on.

These new particles were known collectively as “strange” particles. In 1952, the

Brookhaven Cosmotron (the first of the modern particle accelerators) began operat-

ing, and soon it could produce strange particles in the laboratory. In the experiments,

the behavior of these particles seemed “strange”. They were produced (about 10−23

s) much faster than they decayed (typically about 10−10 s). Nowadays, we know

that the strange particles are produced by the strong interaction, and decay by the

weak interaction. In 1953, a new property called “strangeness” was introduced for

these strange particles by M. Gell-Mann and K. Nishijima. They postulated that the

strangeness was conserved by the strong interaction, but not conserved by the weak
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interaction [1].

The Eightfold Way

The Eightfold Way was introduced by Murray Gell-Mann in 1961 [5]. In this scheme,

the baryons and the mesons are arranged into geometrical patterns according to their

charge and strangeness. The eight lightest baryons and the eight lightest mesons are

filled into two hexagonal arrays, separately. Figure 1.4 shows the baryon octet and

the meson octet. The Eightfold Way not only organized discovered particles into

proper pattern schemes (called multiplets), but also predicted new particles. These

predicted particles were discovered successfully over the next ten years.

Figure 1.4: The baryon octet (left) and the meson octet (right). Particles with the
same charge lie along the downward-sloping diagonal lines, while particles with the
same strangeness lie along horizontal lines.

The Quark Model

The success of the Eightfold Way raised an important question: Why do the hadrons

fit into these curious patterns? In 1964, Gell-Mann and Zweig independently pro-

posed that all hadrons were composed of even more elementary constituents called

quarks [1]. They suggested that every baryon was comprised of three quarks, and

every meson was comprised of a quark and an antiquark. Nowadays, we know there
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Table 1.1: Light-quark properties. J denotes total angular momentum, B denotes
baryon number, Q denotes electronic charge, I3 denotes the third component of
isospin, and S denotes strangeness.

Name Symbol Mass (MeV/c2) J B Q (e) I3 S
Up u 2.3± 0.7± 0.5 1

2 +1
3 +2

3 +1
2 0

Down d 4.8± 0.5± 0.3 1
2 +1

3 −1
3 −1

2 0
Strange s 95± 5 1

2 +1
3 −1

3 0 -1

are six quark flavors rather than three. The three quarks in the Gell-Mann and Zweig

quark model are the lightest quarks, the up, down, and strange quarks. Table 1.1

summarizes the key properties of the light quarks, which can explain the hadron

multiplets (see Fig. 1.4). For instance, the quark-antiquark combinations yield nine

mesons in the meson octet. In fact, the meson octet only included eight mesons when

Gell-Mann introduced the Eightfold way, and the ninth particle with Q = 0 and S

=0, η′ , was predicted by the quark model and then found experimentally.

1.3 Hyperon-nucleon Potential

The hyperon-nucleon (YN) interaction is the interaction between hyperons and nu-

cleons. It obeys conservations of energy, momentum, angular momentum, charge,

baryon number, lepton number, strangeness, isospin, parity, and charge conjugation.

In the history, the SU(2) symmetry of isospin was successful to describe the nucleon-

nucleon (NN) interaction. After the Eightfold Way was introduced by Gell-Mann, the

flavor SU(3) symmetry, as the parent group of SU(2), was extented to describe the

YN interaction. However, SU(3) is a broken symmetry, since mass splittings within

the baryon octet are as large as 40%. In the Standard Model, the mass splittings

originate with the quark masses [1]. The current masses of the up and the down

quarks are very small, about 10 times the mass of the electron, while their effective

masses are about 350 MeV/c2 within the confines of a hadron. However, the current
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mass of the strange quark is about 95 MeV/c2, while its effective mass is about 500

MeV/c2. The strong interaction treats all flavors equally except for the difference in

quark masses.

In modern physics, the understanding of the YN interaction plays a key role in

building a comprehensive picture of the strong interaction. It is known as the basic

force that binds Λ and Σ hyperons in hypernuclei. It is crucial to understand the

properties of neutron stars since reliable YN and hyperon-hyperon (YY) potentials

are needed for realistic calculations of the hypernuclear structure and the hyperon

matter. Even in a conventional nuclear system, it is important if one introduces the

strangeness degrees of freedom in the nucleon-nucleon (NN) interaction to extend the

baryon-baryon interaction to a more unified picture demanded by SU(3) symmetry [6].

In the course of understanding the baryon-baryon interaction, the first attempt

was to describe the NN interaction, and then to extend NN potentials to YN poten-

tials. To construct a YN potential, one cannot allow too many free parameters, 5

or 6 at most, if one wants to determine them reliably. Considerable theoretical and

experimental input is therefore needed to construct a YN model. The strategy is to

start with a NN model, and then apply SU(3) flavor symmetry to this model in order

to obtain a YN model. Traditionally, meson-exchange models [7, 8, 9, 10, 11, 12] have

been applied to describe the YN interaction. Recently, chiral Effective Field Theory

(χEFT) [13] and lattice QCD [14] have been used to derive the YN interaction.

The Nijmegen soft-core one-boson-exchange (OBE) model (NSC), which is derived

from Regge-pole theory [15], is widely adopted and developed by a large number of

theoretical groups. The NSC89 [10] and NSC97 [11] YN models are extensions of the

NSC78 and NSC93 NN models, respectively. Compared to NSC89, NSC97 solved

some deficiencies in the spin-spin interaction for the Λ − N channel. There are 6

versions (a – f) of the NSC97 potential. They describe the scattering YN data equally

well, but differ in their s-wave interaction. The NSC models include the following

8



meson exchanges:

• Pseudoscalar mesons (JPC = 0−+): π, η, η′ , K.

• Vector mesons (JPC = 1−−): ρ, ω, φ, K∗.

• Scalar mesons (JPC = 0++): a0, σ, f0, κ.

• Pomeron and the tensor mesons (JPC = 2++): P , f2, f
′
2, a2.

Meson-exchange diagrams for YN potentials within the NSC models are shown in

Fig. 1.5. Hypercharge (H) is equal to 0 for the direct diagram, while H is not equal to 0

for the exchange diagram, which can only occur when the exchanged boson is a strange

boson. The flavor SU(3) symmetry is used to obtain the YN coupling constants from

NN couplings, whereas SU(3) is broken by several factors like the baryon and meson

masses, meson-mixings within the meson-nonet, and the charge-symmetry breaking

(CSB) due to Λ − Σ0 mixing. In the NSC YN models, some parameters are fixed

by theory, other parameters are obtained from fits to experimental NN data, while

several other parameters have to be determined by fits to experimental YN data.

Y 

N 

Y 

N 

Y 

N 

N 

Y 
Direct Exchange 

H = 0 H ≠ 0 

Figure 1.5: One-boson-exchange diagrams for the YN potentials within the Nijmegen
soft-core model. The left figure shows the direct diagram, and the right figure shows
the exchange diagram.

Table 1.2 lists the values of several free parameters, such as the magnetic vector-

meson F/(F+D) 1 ratio, αmv , the scalar F/(F+D) ratio, αs, and scalar-meson mixing

1In potential models, antisymmetric couplings are called F-type couplings, while symmetric
couplings are called D-type couplings. F and D denote coupling constants of F-type and D-type
couplings, respectively.
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Table 1.2: Examples of free parameters of the NSC89 and the NSC97(a–f) models. αmv
denotes the magnetic vector-meson F/(F+D) ratio, αs denotes the scalar F/(F+D)
ratio, and θs is the scalar-meson mixing angle.

Model αmv αs θs
NSC89 0.275 1.286 40.90◦
NSC97a 0.4447 1.086 37.07◦
NSC97b 0.4247 1.091 37.32◦
NSC97c 0.4047 1.096 37.57◦
NSC97d 0.3847 1.111 38.31◦
NSC97e 0.3747 1.123 38.88◦
NSC97f 0.3647 1.138 39.65◦

angle, θs, obtained by fitting the NSC89 [10] and the NSC97(a–f) [11] models to 35

low-energy YN scattering data.

Another method to construct baryon-baryon potentials is provided by chiral EFT.

The pioneering work in this field was done by Weinberg [16, 17]. His formulation was

based on the underlying principle that if one starts from the most general Lagrangian

consistent with all symmetries of the underlying interaction, one will get the most

general S-matrix consistent with these symmetries, together with a power counting

scheme that specifies which terms are required for a desired accuracy [18]. A recent

chiral YN potential [13] was constructed using a modified Weinberg power counting of

nuclear forces, while assuming that the YN interaction is related to the NN interaction

via the flavor SU(3) symmetry. At leading order, the potential is entirely given by two

types of contributions: longer-range one-pseudoscalar-meson exchanges and shorter-

range four-baryon contact interactions. The one-pseudosclar-meson-exchange and the

four-baryon-contact-term diagrams are show in Figs. 1.6 and 1.7, respectively. The

s-wave four-baryon contact interactions contain 5 free parameters, which have been

determined from fits to the 35 YN data points. Table 1.3 lists values of the free

parameters for various cut-off masses. They can be used to obtain the YN partial

wave potentials derived from chiral EFT.
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Fig. 2.2. One-pseudoscalar-meson-exchange diagrams for hyperon-nucleon interac-
tions.

+
∑

ρ′′,ν′′

∞∫

0

dp′′p′′2

(2π)3
V ν′ν′′,J

ρ′ρ′′ (p′, p′′)
2µν′′

p2 − p′′2 + iη
T ν′′ν,J

ρ′′ρ (p′′, p) .

The label ν indicates the particle channels and the label ρ indicates the par-
tial wave. Suppressing the particle channels label, the partial wave projected
potentials V J

ρ′ρ(p
′, p) are given in Appendix B.

The Lippmann-Schwinger equation for the Y N system is solved in the particle
basis, in order to incorporate the correct physical thresholds and the Coulomb
interaction in the charged channels. Since the calculations are done in momen-
tum space, the Coulomb interaction is taken into account according to the
method originally introduced by Vincent and Phatak [20] (see also [21]). We
have used relativistic kinematics for relating the laboratory energy Tlab of the
hyperons to the c.m. momentum. Although we solve the Lippmann-Schwinger
equation in the particle basis, the strong potential is calculated in the isospin
basis. It contains the leading order contact terms and the one-Goldstone-boson
exchanges. The potential in the Lippmann-Schwinger equation is cut off with

13

Figure 1.6: One-pseudoscalar-meson-exchange diagrams for the hyperon-nucleon in-
teraction used in the chiral EFT of [13].

these interactions are shown diagrammatically in Figure 2.1. If we consider

Fig. 2.1. Lowest order contact terms for hyperon-nucleon interactions

again only the large components of the Dirac spinors in Eq. (2.12) then we
need, similar to Eq. (2.5), six contact constants (C2

S, C2
T , C5

S, C5
T , C7

S and C7
T ,)

for the BB interactions. The (leading order) contact term potential resulting
from the interaction Lagrangian Eq. (2.12) now becomes

V (0) =CBB
S + CBB

T σ1 · σ2 , (2.13)

where the coupling constants CBB
S and CBB

T for the flavor symmetric interac-
tion are defined as

CNN
S,T =−C5

S,T + C7
S,T ,

CΛΛ
S,T =

1

6
C2

S,T − 5

3
C5

S,T + 2C7
S,T ,

CΛΣ
S,T =− 1√

3

(
C2

S,T

2
+ C5

S,T

)
,

CΣΣ
S,T =

C2
S,T

2
− C5

S,T + 2C7
S,T . (2.14)

For the flavor antisymmetric interaction the coupling constants CBB
S and CBB

T

are defined as

CNN
S,T =C5

S,T + C7
S,T ,

CΛΛ
S,T =

3

2
C2

S,T + C5
S,T + 2C7

S,T ,

CΛΣ
S,T =− 1√

3

(
−3

2
C2

S,T + C5
S,T

)
,

CΣΣ
S,T =

C2
S,T

2
− C5

S,T + 2C7
S,T . (2.15)

However, the coupling constants Ci
S,T in Eqs. (2.14) and (2.15) still need to be

multiplied with the isospin factors given in Table 2.1. The NN partial wave

7

Figure 1.7: Lowest order contact terms for the hyperon-nucleon interaction used in
the chiral EFT of [13].

Table 1.3: Free parameters of the YN contact terms for various cut-off masses. The
parameters can be used to obtain the YN partial wave potentials derived from chiral
EFT.

Cut-off Mass (MeV) 550 600 650 700
CΛΛ

1S0 -0.0467 -0.0536 -0.0520 -0.0516
CΛΛ

3S1 -0.0214 -0.0162 -0.0097 -0.0024
CΣΣ

1S0 -0.0797 -0.0734 -0.0738 -0.0730
CΣΣ

3S1 0.0398 0.2486 0.1232 0.1235
CΛΣ

3S1 0.0035 -0.0063 -0.0048 -0.0025
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Since the fundamental theory of the interactions between the baryons is QCD, one

should be able to describe the YN interaction in terms of the underlying degrees of

freedom of QCD, the quarks and the gluons. This is a very complex problem that is

difficult to solve. Lattice QCD is the only choice to carry out a first-principles QCD

derivation of the YN interaction. A first fully-dynamical calculation was attempted

by [14]. This study provided rigorous theoretical constrains on effective field theory

and potential model constructions of YN interactions.

1.4 The reaction −→γ d→ K+−→Λn

Experimental Motivation

In the past decades, a large number of NN and YN scattering experiments were

performed to develop proper baryon-baryon potentials and to constrain the values

of their parameters. A very comprehensive NN scattering data, both polarized and

unpolarized, have lead to a substantial progress in the understanding of the NN inter-

action. However, limited YN scattering data lead to significant uncertainties in mod-

ern YN potentials, which restricts the comprehension of the YN interaction. While

performing elastic YN scattering experiments is difficult due to the short lifetime of

hyperons, alternative approaches, such as hypernuclear spectroscopy [19] or studies

of re-scattering in hyperon production experiments, were proposed to investigate the

available YN potential models. In particular, exclusive hyperon photoproduction off

deuteron is an attractive choice due to the simplicity of the target, and the ability to

select kinematics where final-state interactions between the hyperon and the specta-

tor nucleon are enhanced [6]. Additionally, experiments with electromagnetic probes

have the advantage that the electromagnetic interaction in the initial state is well

understood.
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Main Mechanisms

The suitability of the γd → KΛN reactions to differentiate among different YN

potential models and to constrain the YN low-energy scattering parameters has been

studied in a large number of publications [6, 20, 21, 22, 23, 24, 25, 26, 27]. In these

reactions the strange particles are produced in a first step on one of the nucleons

in the deuteron and then the hyperon scatters quasi-elastically off the other nucleon

in a second step. Access to the YN interaction is provided in this second step.

The advantage of this method of study of the YN interaction is two fold. First,

technical difficulties related to the production of a hyperon beam, such as in YN

elastic scattering experiments, are avoided (the hyperon beam is produced in the

nucleus). Second, the nucleons in the deuteron are very weakly bound and are almost

on their mass shell (i.e. no significant corrections are needed due to many-body effects

as in hypernuclear studies). The disadvantage is that one does not have directly full

control over the first- and the second-step processes, meaning that contributions from

other elementary mechanisms are an integral part of the data sample. Thus, in order

to use exclusive −→γ d→ K+−→Λn data to extract information about the YN interaction,

one needs a comprehensive theoretical model incorporating the full dynamics of the

process. In this respect, the data do not provide a direct access to the Λn re-scattering,

and the interpretation of our results will be model-dependent. The observables will

be used to discriminate between different hyperon-nucleon potentials by comparing

our results with model predictions. The best model developed for hyperon-nucleon

studies using the −→γ d → K+−→Λn reaction is that of [6]. Within this model, the

main mechanisms contributing to the reaction are the quasi-free (QF) mechanism

and several final-state interactions (FSI), including pion mediated scattering, Λn re-

scattering, and Kn re-scattering. The corresponding diagrams are shown in Fig. 1.8.

Overall, the QF mechanism dominates the cross section of the reaction.
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Figure 1.8: The four main mechanisms contributing to the reaction −→γ d → K+−→Λn
according to the model [6]. The diagrams show quasi-free production (top left), pion-
mediated production (top right), Λn rescattering (bottom left), and Kn rescattering
(bottom right). The latter three mechanisms are all final-state interactions.

Observables in Hyperon Photoproduction

The objective of this project is to extract the polarization observables Cx, Cz, and Py

for FSI in the reaction −→γ d → K+−→Λn from data taken in the Jefferson Lab (JLab)

experiment E06-103 [28] for photon energies between 0.9 GeV and 2.6 GeV and over a

broad range ofK+ and Λ scattering angles. For Λ photoproduction off an unpolarized

free-nucleon target with unpolarized beam, parity conservation in electromagnetic

production allows induced polarization Py of the Λ only along an axis perpendicular

to the reaction plane γ̂×K̂+ [29]. However, when the incoming photons are circularly

polarized, that is, when the photons are spin polarized parallel or anti-parallel to the

beam direction (i.e. the beam has a net helicity), then this polarization may be

transferred in whole or in part to the produced hyperons, giving rise to hyperon

polarization components in the reaction plane. Cx and Cz thus characterize the

polarization transfer from a circularly polarized incident photon beam to a recoiling
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Λ along mutually orthogonal axes in the reaction plane [30].

Experimentally, for a given photon energy Eγ, polarization observables in hy-

peron photoproduction are extracted by using the general expression Eq. (1.3) for

the polarized differential cross section [31, 32].

dσ

dΩdϕ = (dσ/dΩ)unpol[1− PlinΣ cos 2ϕ

+ α cos θx(−PlinOx sin 2ϕ− PcircCx)

− α cos θy(−Py + PlinT cos 2ϕ)

− α cos θz(PlinOz sin 2ϕ+ PcircCz)],

(1.3)

where (dσ/dΩ)unpol is the unpolarized differential cross section; Plin and Pcirc denote

the linear and the circular polarization of the photon beam, respectively; ϕ is the

azimuthal angle between the linear photon polarization vector and the reaction plane

γ̂ × K̂+; α is the self-analyzing power of the Λ, 0.642± 0.013 [33]; cos θx, cos θy and

cos θz denote the direction cosines of the three-momentum vector of the decay proton

in the rest frame of Λ; Σ, Py, T, Ox, Oz, Cx, and Cz are polarization observables: beam

spin asymmetry, Λ induced polarization, target polarization, polarization transfers

to the Λ from linearly polarized photons, and polarization transfers to the Λ from

circularly polarized photons, repectively. For the reaction of interest, which has three

final-state particles, this expression is incomplete. However, Eq. (1.3) can be used to

extract the observables aimed for in this project.

After integrating over ϕ from 0 to 2π, the terms with linear polarization cancel,

and Eq. (1.3) can be simplified into Eq. (1.4) in terms of Cx, Cz, and Py under

consideration of the helicity of the photons

dσ±

dΩ = dσ

dΩ |unpol(1± αPcircCx cos θx ± αPcircCz cos θz + αPy cos θy), (1.4)

where + and − represents positive and negative photon helicity, respectively.
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Theoretical Studies

As mentioned earlier, the most comprehensive model for the study of the reaction
−→γ d→ K+−→Λn is the one of Miyagawa et al. [6], which not only predicts cross sections

but also polarization observables. In addition to the QF mechanism, full FSI are

included. The production operator in the model is written as

T γKλ = T γK + T γKKπ + T γKΛN + T γKKN , (1.5)

where the four terms on the right-hand side denote the contributions of the four

mechanisms shown in Fig. 1.8. Kinematic variables are defined in the coordinate

system shown in Fig. 1.9, which is also the coordinate system used in this work.

Figure 1.10 shows the kinematic evolution of five observables predicted by the model.

The results from a Plain Wave Impulse Approximation (PWIA) [22] refer to QF

production only, without any FSI. The two Nijmegen potentials, NSC89 and NSC97f,

give very different predictions for the polarization observables. Variations between the

predictions with the two potentials are of the order of 10% and are more pronounced at

larger hyperon polar angles. Differences between the values of several free parameters

of NSC89 and NSC97f are shown in Table 1.2. Furthermore, the sensitivity of the

predicted observables to various YN potentials varies significantly between different

models. For example, the model of Li and Wright [34] predicts variations in the

unpolarized differential cross section of up to 50%. Thus, experimental observables

of the −→γ d → K+−→Λn reaction have the potential to significantly contribute to the

YN studies. The study in this work is also very timely, since extensive measurements

of the elementary first-step process −→γ p → K+−→Λ are now becoming available as a

result of nucleon-resonance programs actively carried out at Jefferson Lab and other

facilities. Moreover, the elementary process is measured in complete experiments,

meaning all of its helicity independent amplitudes will be determined from the data.

These results will reduce the uncertainties in the modeling of this reaction and will
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improve the theoretical interpretation of our data.
POLARIZATION OBSERVABLES IN EXCLUSIVE KAON . . . PHYSICAL REVIEW C 74, 034002 (2006)
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FIG. 6. Kinematics in the deuteron rest frame. The z axis points
into the photon beam direction pγ and the kaon lies in the x-z plane.
The momentum transferred to the YN system, pγ − pK , defines the
z′ axis. The hyperon angle θ ′

Y is measured from the z′ axis.
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Cx = Tr{Mε=ε1M
+
ε=ε1

σx}
Tr{Mε=ε1M

+
ε=ε1

} , (20)

Cz = Tr{Mε=ε1M
+
ε=ε1

σz}
Tr{Mε=ε1M

+
ε=ε1

} . (21)

In the definitions above, M is the K+YN breakup amplitude

M(µY µN ; µdε) = 〈�(−)
qY µY νY µNνN

|tγK (1)|�dµd〉, (22)

with Mε=εy
as the amplitude where the photon polarization

points into the y axis, ε = εy , and so on. The photon polar-
ization ε1 = − 1√

2
(εx + iεy) describes the helicity state +1.

The beam polarization asymmetry � is obtained with linearly
polarized photon, while the double polarization observables
Cx and Cz are the hyperon polarization along with circularly
polarized photons.

IV. RESULTS AND DISCUSSIONS

As mentioned in Sec. I, the aim of this article is twofold,
i.e., to study the YN final-state interaction (FSI) effects as well
as to extract the information on the elementary amplitude in
the region where FSI effects are negligible. For this purpose,

034002-5

Figure 1.9: The axis convention adopted in the model [6]. The z axis points into
the photon beam direction −→p γ. The kaon momentum, −→p K , lies in the x − z plane.
The momentum transferred to the YN system, −→p γ − −→p K , defines the z′ axis. The
hyperon angle θ′Y is measured from the z′ axis. The figure is from [6].

A formalism to extract the spin-singlet and the spin-triplet ΛN scattering lengths,

a1S0 and a3S1, has been developed by Gasparyan et al. [26]. In this approach, a dis-

persion integral is derived that allows to relate ΛN invariant-mass spectra to the scat-

tering lengths. The method has been successfully applied to inclusive K+ hadropro-

duction (pp → K+Λp) [3]. By fitting the differential cross section as a function of

the invariant mass of the p-Λ state, shown in Fig. 1.11, and by using the scatter-

ing length formalism, the hadro-production data yielded a spin-averaged scattering

length of −1.5± 0.15± 0.3 fm [27]. The formalism can be applied to the observables

obtained in this work to obtain an estimate for a spin-average Λn scattering length.

It must be pointed out that the fits to each observable, Cx, Cz, or Py are not expected
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Figure 1.10: Unpolarized differential cross section and polarization observables for
−→γ d→ K+−→Λn as a function of the hyperon polar angle θ′Λ. The kaon lab momentum
is fixed at pK = 870 MeV/c, and the kaon polar angle is fixed at θK = 17 deg. The
results obtained from two YN potentials (NSC89 and NSC97f) are compared with
the results from a Plain Wave Impulse Approximation (PWIA) [22].
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to yield the same value of the scattering length, since the observables are different

combinations of the Λn → Λn helicity amplitudes. A model needs to be applied

further to estimate the spin-singlet and the spin-triplet scattering lengths. Only fits

to data with polarized deuteron target would yield separate estimates for a1S0 and

a3S1 [26]. Table 1.4 lists the values of a1S0 and a3S1 in the NSC97(a–f) models. One

can see that the scattering lengths vary significantly from model to model, sometimes

by a factor of two or more.

Figure 1.11: Differential cross section as a function of IMpΛ for the reaction pp →
K+Λp. The figure is from [27].

Past Experimental Results

The results for Cx, Cz, and Py for FSI of −→γ d→ K+−→Λn obtained in this work are the

first ever to be obtained. No previous data on exclusive hyperon photoproduction off

the deuteron have been published so far. For systematic studies, we also extracted Cx,

Cz, and Py for the quasi-free mechanism, i.e. for K+Λ photoproduction off the bound

proton. Our quasi-free results can be compared to published results [30, 35, 36, 37, 38]
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Table 1.4: Values of the isospin-singlet and isospin-triplet Λn scattering lengths,
a1S0 and a3S1, for NSC97(a–f). One can see that the scattering lengths are poorly
constrained.

Model a1S0 (fm) a3S1 (fm)
NSC97a -0.76 -2.14
NSC97b -0.97 -2.08
NSC97c -1.28 -2.06
NSC97d -1.82 -1.93
NSC97e -2.24 -1.82
NSC97f -2.68 -1.66

Table 1.5: Published results of Cx, Cz, and Py from different experiments.

Experiment Ref(s) Cx Cz Py
CLAS g1c [35, 30] ? ? ?
CLAS g11 [36] ?
SAPHIR [37] ?
GRAAL [38] ?

(for full list of experiments and observables see Table 1.5) for the reaction −→γ p →

K+−→Λ .

Figure 1.12 shows published data for Py for the reaction −→γ p → K+−→Λ from

different experiments. In the figure, W denotes the square of the center-of-mass

(CM) energy, and θc.m.K denotes the K+ polar angle in the CM system.

Figures 1.13 and 1.14 show Cx and Cz for the reaction −→γ p → K+−→Λ from the

CLAS Collaboration [30], respectively. The results are compared to various theoret-

ical models [39, 40, 41, 42].
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FIG. 13. (Color online) P! vs.
√

s (GeV) in bins of cos θ c.m.
K . Results of this analysis are represented by red circles, previous CLAS

(McNabb et al. [19]) results by blue triangles, SAPHIR 2004 (Glander et al. [3]) by green triangles, and GRAAL 2007 (Lleres et al. [20]) by
black squares. Physical limits on P! are indicated by dashed horizontal lines.

the current dσ/dcos θ c.m.
K results; agreement between these

results and the previous CLAS results is satisfactory at most
kinematics.

The final model included here is that of the Bonn-
Gatchina (BG) group [9], which is the result of a large-
scale coupled-channels partial-wave analysis of K+!, K+$0,
and K0$+, pπ0, nπ+, and pη photoproduction data. It
should be noted that the model was constrained to γp →

K+! differential cross section, recoil polarization, and
beam asymmetry data. This model employs the operator
expansion method, which projects t- and u-channel am-
plitudes into s-channel partial waves. Resonant production
in the K+! channel is represented by significant con-
tributions of the N (1650)S11 and N (1730)P13 states, as
well as two “newly observed” N (1840)P11 and N (2170)D13
states.

025201-16

P y
 

W (GeV) 

Figure 1.12: Py vs. W in bins of cos θc.m.K for different experiments. Results from
CLAS 2010 [36] are shown by the red solid circles, results from CLAS 2004 [35]
are shown by the open blue triangles, results from SAPHIR [37] are shown by the
solid green triangles, and the results from GRAAL [38] are shown by the open black
squares. The figure is from [36].
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FIG. 13. (Color online) Observable Cz for the reaction !γ + p → K+ + !"0, plotted as a function of the c.m. energy W . Lower-left axis
scales apply to all plots. Circles are the results of this measurement, with uncertainties discussed in the text. Thin-dashed (green) curves are
from Kaon-MAID [10], thick-dashed (blue) curves from BG [41], thin solid (black) from RPR [16], and thick dot-dashed (magenta) from
GENT [12].

Fig. 8: the panels are placed to have the same W bins in
the same location. At W = 1.889 GeV, for example, the "0

has a Cz of about +0.5, while for the # it is at +1.0. At W =
2.296 GeV, the Cz for the "0 is about zero, while for the # it is
large and positive. The corresponding values of Cx are similar
between the two hyperons, as seen in comparing Figs. 16
and 9.

As was the case for the # polarization, one expects that the
magnitude of the polarization transfer coefficients, R"0 , to be
less than unity as per Eq. (13). The lesser statistical precision in
the case of the "0 for all three components of the combination
{Cx, P,Cz} makes it more difficult to compute this precisely.
However, we found that the angle and energy averaged value is

R̄"0 = 0.82 ± 0.03, (19)

which is clearly incompatible with the maximum possible
value of unity. Thus, the "0 cannot be said to be produced

with 100% polarization from a fully polarized beam. Thus,
even if the quark-level dynamics leading to the creation of an
ss quark pair were the same in both the # and "0 reaction
channels, then the hadronization into a # or a "0 produces
different final polarization states. If the quark-level dynamics
are not relevant, one is left with the question of why the # is
formed fully spin polarized but not so the "0.

The previous remarks about the comparison with existing
reaction models apply to the "0 case as well as the # case.
While none of the calculations can be said to agree well with
the data, the calculation of Corthals et al. [16] at least repro-
duces the trend with W at most angles, as shown in Fig. 13.

H. Further discussion

In addition to comparing dynamic models, as done above,
one can ask what model-independent information is gained

FIG. 14. (Color online) Same as Fig. 13, but for observable Cx .

035205-16

Figure 1.13: Cx vs. W in bins of cos θc.m.K from the g1c experiments [30]. The
open circles show the experimental results. Thin-dashed (green) curves are from
Kaon-MAID [41], thick-dashed (blue) curves from BG [42], thin solid (black) from
RPR [39], and thick dot-dashed (magenta) from GENT [40]. The figure is from [30].

C
z 

W (GeV) 

R. K. BRADFORD et al. PHYSICAL REVIEW C 75, 035205 (2007)

FIG. 13. (Color online) Observable Cz for the reaction !γ + p → K+ + !"0, plotted as a function of the c.m. energy W . Lower-left axis
scales apply to all plots. Circles are the results of this measurement, with uncertainties discussed in the text. Thin-dashed (green) curves are
from Kaon-MAID [10], thick-dashed (blue) curves from BG [41], thin solid (black) from RPR [16], and thick dot-dashed (magenta) from
GENT [12].

Fig. 8: the panels are placed to have the same W bins in
the same location. At W = 1.889 GeV, for example, the "0

has a Cz of about +0.5, while for the # it is at +1.0. At W =
2.296 GeV, the Cz for the "0 is about zero, while for the # it is
large and positive. The corresponding values of Cx are similar
between the two hyperons, as seen in comparing Figs. 16
and 9.

As was the case for the # polarization, one expects that the
magnitude of the polarization transfer coefficients, R"0 , to be
less than unity as per Eq. (13). The lesser statistical precision in
the case of the "0 for all three components of the combination
{Cx, P,Cz} makes it more difficult to compute this precisely.
However, we found that the angle and energy averaged value is

R̄"0 = 0.82 ± 0.03, (19)

which is clearly incompatible with the maximum possible
value of unity. Thus, the "0 cannot be said to be produced

with 100% polarization from a fully polarized beam. Thus,
even if the quark-level dynamics leading to the creation of an
ss quark pair were the same in both the # and "0 reaction
channels, then the hadronization into a # or a "0 produces
different final polarization states. If the quark-level dynamics
are not relevant, one is left with the question of why the # is
formed fully spin polarized but not so the "0.

The previous remarks about the comparison with existing
reaction models apply to the "0 case as well as the # case.
While none of the calculations can be said to agree well with
the data, the calculation of Corthals et al. [16] at least repro-
duces the trend with W at most angles, as shown in Fig. 13.

H. Further discussion

In addition to comparing dynamic models, as done above,
one can ask what model-independent information is gained

FIG. 14. (Color online) Same as Fig. 13, but for observable Cx .

035205-16

Figure 1.14: Cz vs. W in bins of cos θc.m.K from the g1c experiments [30]. The
open circles show the experimental results. Thin-dashed (green) curves are from
Kaon-MAID [41], thick-dashed (blue) curves from BG [42], thin solid (black) from
RPR [39], and thick dot-dashed (magenta) from GENT [40]. The figure is from [30].
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Chapter 2

Experimental Facility

The data analyzed in this work was collected in the experiment E06-103 [28] con-

ducted at the Thomas Jefferson National Accelerator Facility. General running con-

ditions involved a circularly-polarized real-photon beam incident on an unpolarized

liquid deuterium target. The real-photon beam was a product of both the Continu-

ous Electron Beam Accelerator Facility (CEBAF) [43] and the Hall-B photon tagging

system [44]. CEBAF provided the electron beam that was used to produce the pho-

ton beam using the bremsstrahlung technique. The Hall-B photon tagger was used

to determine the energy of the photons interacting in the target. Final-state parti-

cles produced in nuclear reactions in the target were detected by the CEBAF Large

Acceptance Spectrometer (CLAS) [45], also housed in Hall B.

2.1 The Continuous Electron Beam Accelerator Facility

CEBAF (see Fig. 2.1) provides polarized electron beam for three end-stations (Halls

A, B and C). The electron beam originates from an injector, which is composed of

a GaAs photoemission electron gun, a radio-frequency (RF) accelerating cavity, and

an optical chopper. The electron gun uses three separate laser systems to deliver the

beam to the three halls simultaneously. Each laser produces a pulse with a frequency

of 499 MHz. The three laser pulses with 120◦ phase separation are optically combined

to form a 1497 MHz pulse train, illuminating a GaAs photocathode to emit polarized

electrons. The polarization of the electron beams is 70% – 80% as measured by po-

larimeters in the injector and the halls [46]. A half-wave plate (HWP) is periodically
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inserted into one laser path to reverse the sign of the electron beam polarization. The

status of the HWP determines the helicity of the circularly-polarized photon beam

(more details about the status of the HWP during the E06-103 experiment are given

in section 3.1). The electron beam is accelerated by superconducting RF cavities

operating at 1497 MHz. Two superconducting RF parallel linacs joined by magnetic

180◦ recirculation arcs increase the beam energy by 2×0.4 GeV – 2×0.6 GeV in each

turn. The beam is recirculated up to five times to reach a maximum energy up to

6 GeV, and is allowed to be simultaneously delivered to the halls at 499 MHz in the

form of bunches. The microbunches can be loaded with different current, depending

on the operation requirements of the experimental halls [47]. During the E06-103

experiment discussed in this thesis, the current delivered to Hall B was 40 nA. Halls

A and C were typically operating at beam currents of 100 µA.

E X P E R I M E N T A L  M E T H O D S  A N D  P R O C E S S I N G  O F  D A T A

ELECTRON BEAM MØLLER POLARIMETER AT HALL A, JLAB
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1National Science Center “Kharkov Institute of Physics and Technology”, 
1 Academicheskaya Str., Kharkov, 61108, Ukraine
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As a part of the spin-physics program at the Thomas Jefferson National Accelerator Facility (JLab), a Møller 
polarimeter has been developed to measure the polarization of electron beam of energies between 0.8 and 6.0 GeV. 
A unique design of this polarimeter was developed. A set of three quadrupole magnets provides an angular selection 
of the Møller electron pairs and a dipole magnet provides energy analysis. The test procedure and commissioning of 
the polarimeter are presented. The results of beam polarization measurements in long-term physical experiments, the 
correlation for the three-beam accelerator mode and other effects are discussed.

PACS: 13.88.+e, 29.27.Hj, 29.27.Fh

1. INTRODUCTION
Since 1996 JLab is the world's premier facility for 

studying nuclei  and  nucleons via  the  (e,e'x)  reactions 
with  a  polarized  electron  beam.  For  the  spin-physics 
program at JLab, a number of polarimeters exploiting 
Mott, Møller, and Compton scattering are used. In the 
Hall  A  a  Møller  polarimeter  was  designed  and 
constructed to measure the polarization of the electron 
beam  with  energies  from  0.8  to  6 GeV.  It  has  been 
operating  since  1998.  The  polarimeter  was  created 
eliminating certain disadvantages which were inherent 
in  its  predecessors.  For  example,  the  effect  of  Fermi 
motion  of  atomic  electrons  [1-2]  (now known as  the 
Levchuk-effect)  was  taken  into  account  in  the 
polarimeter  design.  A rotatable polarized target  and a 
new method of target polarization measurements in situ 
were  developed  for  this  polarimeter.  The  polarimeter 
was  used  to  measure  the  long-time  evolution  of  the 
beam polarization for a number of experiments in the 
Hall A. Some of the experiments results are published 
already  [3-8].  The  Møller  polarimeter  was  used  for 
investigation of the dependencies of the electron beam 
polarization on certain parameters of the RF system of 
the injector at the JLab accelerator.

2. EXPERIMENTAL METHOD AND 
RESULTS

2.1 Polarized electron beam at JLab

CEBAF  (Continuous  Electron  Beam  Accelerator 
Facility) is the accelerator located at JLab in Newport 
News,  VA,  USA.  The  accelerator  is  based  on 
superconducting RF cavities operating in a continuous 
wave (CW) mode. A layout of the machine is shown in 
Fig. 1  [9].  Two  parallel  linacs  in  a  "race  track" 
configuration  increase  the  beam  energy  from  800  to 

1200 MeV for each turn. The beam is recirculated up to 
five times to reach a maximum energy up to 6 GeV. The 
accelerator can deliver electrons to 3 experimental areas 
(Hall  A,  B  and  C)  at  either  the  same  energy,  or  at 
multiples of 1/5 of the end energy. The energy spread in 
the beam is ∆E/E<10-4. Beams can be extracted at each 
recirculation.  It  provides  the  operation  of  the 
experimental  halls  with  simultaneous  beams  of 
different,  but  correlated,  energies.  The 1.497 GHz RF 
structure allows simultaneous beams to be delivered to 
the halls at a frequency of 499 MHz. The microbunches 
can be loaded with different  electron densities,  which 
provide  operations  of  the  experimental  halls  with  in 
parallel with a standard thermionic unpolarized gun.

Fig. 1. Schematics of the CEBAF accelerator [9]

The  polarized  electron  gun  produces  a  continuous 
series  of  electron  bunches  at  a  characteristic  RF  of 
1497 MHz of  the accelerator.  The polarized source is 
based  on  the  method  of  photoemission  from 
semiconductor  photocathodes  (strained  GaAs  type), 
which  induce  an  incident  circularly  polarized  laser 
beam.  The  laser  system  (see  Fig. 2)  comprises  three 

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2002, № 2.
Series: Nuclear Physics Investigations (40), p. 43-48. 43

Figure 2.1: Schematic diagram of CEBAF at the Thomas Jefferson Accelerator Fa-
cility (JLab). The figure is from [48].
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2.2 Hall B and the CLAS Detector

Hall B Beamline

The beamline setup used in Hall B is shown in Fig. 2.2. Hall B can operate in three

different modes for photon beams: an unpolarized mode, a circularly-polarized mode,

and a longitudinally polarized mode. The data discussed in this work was collected

using a circularly-polarized photon beam. The circularly-polarized photon beam is

obtained when a linearly-polarized electron beam is incident on a thin amorphous

radiator, typically a gold-plated carbon foil with a thickness of 5 × 10−5 to 3 ×

10−4 radiation lengths. The foil is located 0.5 m in front of the tagging magnet.

The beam after the radiator is mixed as it contains both photons and electrons.

The electrons are bent by the dipole magnet of the tagging spectrometer away from

the beam line, while the photons move straight towards the target. In E06-103,

the photon beam was collimated by a pair of collimators before it impinged on the

target. The polarization of the electron beam is measured by a Mφller polarimeter

located upstream of the tagging spectrometer. Another device, which is relevant in

real-photon-beam experiments is the total absorption shower counter (TAC) located

downstream of the CLAS. TAC measures the number of photons in the photon beam

at a very low electron beam current (5 nA), which is needed for intensity calibration

of the tagging system. The calibration allows to determine the absolute photon flux

at nominal electron beam currents. The absolute photon flux is used to determine

nuclear reaction cross sections and for data quality control.

Photon Tagger

The photon tagging system in Hall B is used to determine the energy of the photon

beam and the time of the photons at the target. This is done by detecting the

electrons that radiated bremsstrahlung photons in the radiator. A dipole magnet
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Figure 4.4 : The CLAS detector, photon tagger, and beamline devices in experimental Hall B at Jefferson Lab [81].
Figure 3.2. The experimental Hall B that is comprised of the CLAS, the photon tagger, and beamline detectors [81]

4
4

Figure 2.2: Schematic diagram of the Hall-B beam line during real photoproduction
experiments. Important beam-line components include the Mφller polarimeter, the
bremsstrahlung radiator, the tagger magnet, the electron beam position monitors,
and the total absorption shower counter. The figure is from [45].

bends the electrons on trajectories with radii depending on the electron energy. A

hodoscope located in the focal plane of the magnet measures the position and the

arrival time of the electrons. The electron energy, E ′ , is determined from the electron

hit position in the hodoscope. The nominal energy of the electron beam in Hall B,

E, is determined by the accelerator settings and by precision measurements in Hall

A or Hall C. Then, the energy of the corresponding bremsstrahlung photons, Eγ, is

determined as Eγ = E−E ′ . The tagging system in Hall B allows for the determination

of the photon energy over a range of 20% to 95% of the incident electron energy.

A schematic diagram of the tagging system is shown in Fig. 2.3. The focal-plane

hodoscope consists of two detector planes of scintillation detectors. The first detector

plane is comprised of 384 scintillator paddles referred to as E-counters. Each E-

counter is 20-cm long and 4-mm thick. The widths of the E-counters range from 6

mm to 18 mm. The E-counters are used to determine the energy of the scattered
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electrons by identifying their hit position in the hodoscope with a resolution of 0.001

× E [44]. The second detector plane consists of 61 2-cm-thick scintillators (referred

to as T-counters), which are used to determine the time of the incident electrons with

a resolution of 110 ps [44].

Fig. 1. Overall geometry of tagging system. Important details referenced in the text include the shape of the magnet pole, the
straight-ahead photon path through the magnet yoke, and the relative locations of the hodoscope E- and ¹-planes. Also shows `typicala
electron trajectories labeled according to the fraction of the incident energy that was transferred to the photon.

PACS: 29.30.Kv; 29.40.Mc; 29.70.Fm

Keywords: CLAS; Photon tagger; Photon beam; Scintillator hodoscope; Time-based logic

1. Introduction

We report the design, construction, and commis-
sioning of the photon-tagging system now in use in
Hall B at the Thomas Je!erson National Acceler-
ator Facility (JLab) for the investigation of real-
photon-induced reactions. The tagger was initially
designed to be used in conjunction with the
CEBAF (Continuous Electron Beam Accelerator
Facility) Large Acceptance Spectrometer (CLAS)
[1], and has subsequently also been used in two
additional experiments which do not make use of
CLAS. While the descriptions in this paper make
frequent reference to correlations of tagger in-
formation with the CLAS detector, it is intended
that the reader understand that all such discussions
have equivalent application to any other
downstream detector system for photon-induced
interactions.

The bremsstrahlung tagging technique for direct
measurement of incident photon energy in photo-
nuclear interactions is well established [2}4]. The

JLab system is the "rst photon tagger in the multi-
GeV energy range to combine high resolution
(&10!"E

#
) with a broad tagging range (20}95%

of E
#
).

2. Background and general description

The geometry of our system is sketched in Fig. 1,
with additional, more detailed views in Figs. 2 and
3. Electrons from the CEBAF accelerator strike
a thin target (the `radiatora) just upstream from
a magnetic spectrometer (the `taggera). The system
is based upon the electron bremsstrahlung reaction
in which an electron of incident energy E

#
is `decel-

erateda (scattered) by the electromagnetic "eld of
a nucleus, and in the process emits an energetic
photon (gamma ray). The energy transferred to the
nucleus is negligibly small, so the reaction obeys the
energy conservation relation

E!"E
#
!E

!

264 D.I. Sober et al. / Nuclear Instruments and Methods in Physics Research A 440 (2000) 263}284

Figure 2.3: Schematic diagram of the Hall-B tagging system. The electron beam hits
the radiator and produces bremsstrahlung photons. The electrons are then bent by
a dipole field with their radius of curvature defined by their energy. These electrons
are then detected by a set of scintillation detectors. The figure is from [44].

The CEBAF Large Acceptance Spectrometer

The data discussed in this thesis were taken with the CLAS, which operated in Hall

B from 1995 to 2012. CLAS was being used to study photo- and electro-induced

nuclear and hadronic reactions by providing efficient detection of multiple charged

particles over a good fraction of the full solid angle [45]. CLAS was optimized to

detect charged particles and had a limited acceptance for neutrals. The detector (see

Fig. 2.4) was based on a six-coil toroidal magnet that provided a largely-azimuthal

field distribution, and thus the whole detection system was divided into six inde-
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pendent spectrometers (referred to as sectors). Trajectory reconstruction using drift

chambers (DC) [49] resulted in a momentum resolution of 0.5% at forward angles.

Time-of-flight (TOF) scintillators [50] and electromagnetic calorimeters (EC) [51] pro-

vided good particle identification: pion/kaon separation up to 2 GeV/c, kaon/proton

separation up to 2 GeV/c, and pion/proton separation up to 3.5 GeV/c [3]. A start

counter (ST) [52] provided the time at which reactions occured in the target for

photon-beam experiments. Fast triggering and high data-acquisition rates allowed

operation at a luminosity of 1034 cm−2s−1. These capabilities were being used in

a broad experimental program to study the structure and interactions of mesons,

nucleons, and nuclei using polarized and unpolarized electron or photon beams and

targets [45].
CLAS characteristics is given in Table 3.1. A description of each system is provided in the

sections below.
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(A)

Region 3

Region 1

Region 2

1 m

TOF
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EC
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(B)

Drift Chambers
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Region 2
Region 3

TOF Counters

Main Torus Coils

Mini-torus Coils
1 m

Figure 4.5 : (A) Cross section of the CLAS detector along the beamline. Typical charged particle
tracks are shown with corresponding hits in the detector equipment. The torus magnet is outlined
by the dotted line surrounding the Region 2 drift chambers. The Cherenkov counters (CC), time-
of-flight scintillators (TOF), and electromagnetic calorimeters (EC) are also illustrated. (B) Cross
section of the CLAS detector perpendicular to the beamline. The mini-torus shown in the middle
is only used for electron runs [81].

torus coils are located between the Region 2 drift chambers of each sector. The magnetic field is

concentrated around the Region 2 drift chambers, while Regions 1 and 3 of the drift chambers are

relatively field-free [81].

As seen in Figure 4.6, the magnetic field from the superconducting torus coils is negligible in

the region near the beamline, allowing the use of polarized targets. The coils are approximately five

meters in length, and produce a field about five meters in diameter. At the maximum coil current of

3860 A, the integral magnetic field reaches 2.5 T ·m in the forward region, and drops to 0.6 T ·m at

a 90◦ scattering angle [81]. All non-active parts of the detector, such as the photomultiplier tubes

from the Cherenkov counters, electromagnetic calorimeters, and time-of-flight system, as well as the

drift chamber support structures, are confined to the shadow of the torus coils to provide maximum

angular acceptance.

4.2.4 The Drift Chambers

The six superconducting coils split the detector into six separate tracking sectors. In each sector the

drift chambers are divided into three regions, each at a different distance from the beamline. The

chambers span from 8◦ to 142◦ in polar angle from the beamline and cover 80% of the azimuthal

Figure 3.7. The CEBAF Large Acceptance Spectrometer (CLAS) in Hall B. It is composed

of three regions of drift chambers (DC), electromagnetic calorimeters (EC), Čerenkov counters
(CC), and time-of-flight scintillators (TOF). (A) Cross section of the CLAS along the beamline,
with typical charged-particle tracks shown. (B) Cross section of the CLAS perpendicular to the
beamline. The mini-torus shown in the middle is used only for electron runs [81].

Torus magnet

The torus magnet is composed of six superconducting coils (dashed lines in Fig. 3.7A)

which separate the detector into six independent magnetic spectrometers (sectors). The

magnetic field produced by the magnet bends charged particles, which are then tracked

through the three regions of drift chambers for momentum determination. Figure 3.8

shows the magnetic field produced by the superconducting torus coils. The coils are ap-

proximately five meters in length and they are wound into a kidney shape using 216 layers

of aluminum-stabilized NbTi/Cu wire. The shape of the magnet is such as to provide op-

timum curvature for the highest-momentum particles that are emitted at forward angles.

Thus, at forward polar angles the magnetic field is the highest, whereas at backward polar

angles the magnetic field is lower. When the magnet operates at the maximum design

current of 3860 A, the integral magnetic field reaches 2.5 T·m in the forward region, and

drops to 0.6 T·m at a 90◦ polar scattering angle. Since the center of the CLAS is relatively
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Figure 2.4: Schematic diagram of the CLAS. The detector is composed of a toroidal
magnetic spectrometer, three regions of drift chambers, electromagnetic calorimeters,
Cherenkov counters, and time-of-flight scintillators. (A) Cross section of the CLAS
along the beamline, with typical charged-particle tracks shown. (B) Cross section of
the CLAS perpendicular to the beamline. The mini-torus, as well as the Cherenkov
Counter, shown in the middle is used only for electron runs. The Start counter used
in real-photoproduction experiments is not shown on the diagram. The figure is
from [45].
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Torus magnet

The magnetic field in CLAS is generated by six superconducting coils (see Fig. 2.5)

arranged in a toroidal geometry around the beam line. The field is oriented along

the azimuthal direction except in locations close to the coils where there are signifi-

cant deviations from a pure azimuthal field [45]. The CLAS toroidal magnet bends

charged particles toward or away from the beam axis, but leaves the azimuthal angle

essentially unchanged. During the E03-106 experiment, the torus field was set so that

negatively-charged particles were out-bending while positively-charged particles were

in-bending. The magnet was operated at a current of –1500 A, which produced 39%

of the maximum field.
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(A) (B)

Figure 4.6 : (A) Magnetic field strength in the plane between two of the torus coils. The concen-
tration of magenta lines is the projection of one of the coils onto the midplane. (B) Magnetic field
vectors in the cross section of CLAS perpendicular to the beamline. The location of the six torus
coils are shown in magenta [81].

range [81]. Figure 4.5 illustrates the curved shape and location of the drift chamber regions within

the CLAS detector.

In the drift chambers, wire layers are arranged such that the wires form a hexagonal cell pattern.

In this arrangement there are six field wires surrounding each sense wire, as shown in Figure 4.7.

For each region of the drift chambers, the wires are grouped into two superlayers, each consisting of

six wire cell layers. The only exception is the second superlayer of Region 1, which consists of only

four wire layers due to space constraints. The wires within the first superlayer of Regions 2 and

3 are aligned axially, perpendicular to the magnetic field’s bend plane, to best measure the track

curvature. The second superlayer for these regions is rotated by a 6◦ stereo angle with respect to

the first, and provides some azimuthal tracking information while focusing on the axial direction.

Region 1 has the opposite configuration, with stereo wires in the first superlayer and the axial wires

in the second [81].

To detect the passage of a charged particle through the drift chambers, a strong electric field

is created between the field and sense wires. A gas mixture of 90% argon and 10% CO2 that

fills the drift chambers is ionized when a charged particle passes through. With this gas mixture,

Figure 3.8. (A) Magnetic field strength in the plane between two of the torus coils. The magenta
lines correspond to the projection of one of the coils onto the midplane. (B) Magnetic field vectors
in the cross section of the CLAS perpendicular to the beamline. The magenta blocks indicate the
location of the six torus coils [81].

field-free, the torus magnet also allows for experiments with polarized targets [81].

Drift chambers

The drift chambers are used to map the trajectories of the charged particles passing

through the magnetic field, and thus determine the particle’s momentum. As mentioned

before, the torus magnet separates the CLAS into six sectors. Each sector consists of three

regions of drift chambers, located concentrically around the target, inside and outside the

torus magnet (for a total of 18 different drift chambers). Region-1 drift chamber surrounds

the start counter and is located in a low magnetic field. Region-2 drift chamber is located

in the area of the highest magnetic field between the coils of the magnet, while Region-3

covers the area just outside of the coils (Fig. 3.7). The trapezoidal cross section of each

chamber is designed to fill the sector volume between two coils, spanning 8◦ to 142◦ in

polar angle. The endplates of each drift chamber are tilted by 60◦ so that they are parallel

to the torus coils (and with adjacent drift chambers) resulting in a coverage of about 80%

of the azimuthal-angle range (Fig. 3.7 (B)) [94].
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Figure 2.5: Geometry of the magnetic field produced by the CLAS torus. (A) Mag-
netic filed strength in the plane between two of the torus coils. The magenta lines
correspond to the projection of one of the coils onto the midplane. (B) Magnetic field
vectors in the cross section of the CLAS perpendicular to the beamline. The magenta
blocks indicate the location of the six torus toils. The figure is from [45].

Drift Chambers

The drift chambers are used to measure the trajectories of outgoing charged particles.

18 separate drift chambers are located at three radial positions in each of the six

sectors. These radial locations are referred to as “Region”. This design of the DC
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provides an average spacial resolution of 310 µm, 315 µm, and 380 µm for Region 1,

Region 2, and Region 3, respectively (see Fig. 2.4). Trajectory reconstruction using

the drift chambers results in a momentum resolution of ∆p/p ≤ 0.5% and angular

resolutions of ∆θ of 1 mrad and ∆φ of 4 mrad [45].

Start Counter

The start counter (ST), shown in Fig. 2.6, is a scintillation detector that is used

to identify the correct start time of an event for time-of-flight measurements. The

detector is made up of six identical sectors surrounding the target cell. Each sector

is composed of four scintillator paddles (for a total of 24 scintillators) coupled to an

acrylic light guide that leads to a photomultiplier tube. The ST measures the inter-

action time in the target by detecting the outgoing particles with a time resolution

of 350 ps. The design of the ST is such as to keep the rate due to electromagnetic

background within acceptable values [52].

through the sense wires. If the electric field is strong enough, the electrons will gain enough

energy to produce a cascade of ionization, amplifying the signal. The potential difference

between the field and sense wires is kept at about 2000 V. The gas mixture used for the

CLAS drift chambers is 90% argon and 10% carbon dioxide [81].

The geometry of the individual hexagonal cells allows a spacial resolution of 300-

350 µm. The set of 10–12 wire layers per region increases the resolution to 100 µm in the

bend plane of the torus field and 1 mm in azimuth. The resulting momentum uncertainty

is δp/p < 0.5% and the angular resolutions δθ, δφ are about 2 mrad [84].

Start counter

As mentioned before, the start counter is used to determine the time at which

nuclear reactions occur in the target, for photon-beam experiments. The start counter

surrounds the target and is the first detector encountered by a particle produced within

the target through its path into the CLAS. The information from the start counter is used

for event triggering and reconstruction. Specifically, it is used to synchronize the particles

detected in the CLAS with the tagged photons that produced the reaction.

detected energy. These scintillators are 2 cm thick and read
out using PMT’s attached by solid light guides at both ends,
giving a timing resolution of about 110ps.

The main technique for particle identification in CLAS is
through the measurement of the time-of-flight of the
scattered particle from the interaction vertex to the outer
detectors (TOF or EC). The time of interaction is obtained
by determining the photon beam bucket that produced the
event. For this purpose a sub-nanosecond coincidence of
the tagging spectrometer with a counter (Start Counter)
close to the target region is needed. The time of interaction
at the target must be determined to !2 ns. The software-
corrected time should result in a confidence interval
between !1 ns for the interaction of greater than 99%,
i.e. have tails outside of 1 ns for no more than 1% of the
events. For a Gaussian time distribution, this translates
into a standard deviation s ¼ 388 ps. Thus, the Start
Counter signal in coincidence with the T-counter time
allows good identification of the RF bucket that produced
the hadronic interaction in the target. Comparison to the
nearest RF time gives the start time of the particle
trajectory to better than 25 ps.

Thin scintillators are required to minimize the effects of
multiple scattering. In the old Start Counter design [7],
there were two main contributions to the multiple
scattering: The 2-mm-thick carbon fiber beam pipe
surrounding the target, and the Start Counter scintillators.
To keep the multiple scattering angle due to the Start
Counter below that generated by the target and beam pipe
ð$1:5mradÞ the scintillators were 3mm thick. A double-
ended scintillator design was used to achieve the best
timing. However, the PMTs could not be placed down-
stream of the Start Counter because they would interfere
with the small angle acceptance of the CLAS or be
subjected to an intense and potentially damaging photon
flux. This led to a coupled paddle design [8]. In this design,
adjacent paddles are mechanically joined at the down-
stream end to form three double-ended paddles covering all
six sectors.

Although this design worked well for the initial low-
intensity ðo10 nAÞ running of the CLAS, it proved to be
inadequate for the high-intensity running (e.g. 440 nA)
that is needed for low cross-section experiments such as
Pentaquark searches [9]. The scintillator signals began to
‘‘sag’’ under the increased count rate due to the current
limitations of the PMT bases used, and the ability to form
triggers with several particles in the final state was severely
limited. In addition, the increasing multiple hits in the
coupled paddles severely degraded the timing resolution. A
new more highly segmented Start Counter was needed.
With the increase in segmentation, the smaller width of the
scintillators results in better light collection. This allows the
use of thinner single-ended scintillators. With a new and
improved support system the counter could be made more
hermetic, provided the gap between the scintillators could
be kept to a minimum. Finally, at these higher currents, the
rate limits of the tagger were being reached so increasing

the beam current was impractical. Thus, increasing the
luminosity required a longer target, which necessitated a
longer Start Counter to cover the desired acceptance.

2. New Start Counter

The new Start Counter was designed to provide full
acceptance coverage defined by the CLAS detector with a
40 cm long liquid hydrogen target. Based on the estimated
integrated rate load at the anticipated luminosity, the
number of paddles has been chosen to be 24. According to
Monte Carlo simulations [10], this segmentation is enough
to keep the rate due to electromagnetic background within
acceptable values by requiring the multiplicity of hit
paddles to be equal or greater than two. The Start
Counter, shown in Fig. 1, is built of six identical sectors
surrounding the target cell mounted on a foam scattering
chamber. Each sector consists of four EJ-200 scintillator
paddles coupled to an acrylic light guide. A paddle is a
continuous single piece of scintillator with a straight
section 502mm long, between two bends, and a tapered
end, the ‘‘nose’’ (Fig. 2). The paddles were 29mm wide and
2.15mm thick, which along with the wrapping and the
support material give a total thickness of about 0:26 g=cm2.
The two paddles in Fig. 2 along with their mirror images
make up one sector. The first bend, which couples to the
light guide, is 35& with a radius of curvature 25.4mm. The
second bend is 45& with a radius of curvature of 50.8mm.
The ‘‘nose’’ region of the middle paddles has a rectangular
section 52mm long and finishes off with a truncated
triangular section 41mm long. On the outer paddles, the
‘‘nose’’ section is a triangle about 30.0mm long. The
127mm long light guide tapers within a quasi-adiabatic
cross-section of the scintillator to the 15mm diameter
Hamamatsu 10-stage R4125HA photomultiplier tube.
Such long thin paddles present a formidable challenge
in obtaining enough useful light. Monte Carlo calculations
of the light-collection efficiency have shown that this
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Fig. 1. New Start Counter.
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Figure 3.10. Representation of the start counter [95].

The start counter is composed of 24 scintillator paddles that are arranged az-
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Figure 2.6: A 3-dimensional picture of the start counter. The scintillator paddles are
shown in light green. To allow for coverage of forward going particles, the paddles
are bent in the forward direction. The target cell is shown in purple. One can see
the light guides and the photomultipliers in the backward directions. The figure is
from [52].
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Time-of-flight Detector

The time-of-flight detector [45] is an array of scintillation counters (57 scintillation

paddles in each sector 1, 2, and 4 , and 56 paddles in each sector 3, 5, and 6) positioned

outside of the magnetic field. As with all the other CLAS detectors, the TOF counters

are positioned in a radially symmetric arrangement around the target and cover each

of the six sectors. The lengths of the paddles vary from 32 cm at the most forward

angle to 450 cm at larger angles. The TOF covers the entire azimuthal angle φ (with

the exception of the regions shadowed by the torus coils) and polar angles θ from

8◦ to 142◦. The TOF counters are used to measure the time of flight of final-state

particles inside the CLAS detector, and thus provide information about the speed

of these particles. This information, along with momentum information provided by

the drift chambers, allows for the reconstruction of charged-particle masses and, thus,

for charged-particle identification. The intrinsic time resolution of the TOF detector

varies from about 80 ps for the forward counters to 160 ps for the backward counters.

Figure 2.7 shows the arrangement of TOF paddles within a sector. Photons

are radiated after a charged particle passes through the scintillator and excites the

material. Then, these photons are transmitted towards the two sides of the paddle.

Finally, they are converted into current signals by photomultiplier tubes that are

attached at each end of the paddles.

Electromagnetic Calorimeter

The forward electromagnetic calorimeter, which covers polar angles up to 45◦, is

used to detect electrons, photons, and neutrons. Although, information from the

EC is not used in the analysis presented here, we give a short description of this

CLAS component due to its importance in the detection of charge-neutral particles.

This detection system also consists of 6 sectors. The structure of one sector of EC is

shown in Fig. 2.8. It is made of 39 alternating layers of 10-mm thick scintillator strips
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4.5 CLAS

and via discriminator modules to TDCs which record the size and timing of the pulses.
The scintillator paddles are uniformly 5.08 cm thick and vary in length from 32 cm to
445 cm depending on their location in the array. Their width is 15 cm in the forward
region (θ < 45◦) and 22 cm at larger polar angles. The paddles are tilted so that the
average particle trajectory at that location is normal to the paddle face (Fig. 4.16). The
time resolution of the ToF counters was measured using cosmic ray events and ranges
from ∼ 150 ps for the shortest to ∼ 250 ps for the longest paddles [115].

Figure 4.16: A diagram of a ToF sector, showing the scintillation counters arranged, in four
panels, perpendicular to the beam line. At both ends of each paddle is a light guide and a PMT
[115].

4.5.6 Forward Electromagnetic Calorimeter

The forward electromagnetic calorimeter (EC) in CLAS is a sampling calorimeter,
comprising a sandwich of alternating passive sheets of lead, providing a high-Z ma-
terial to produce electro-magnetic showers, and scintillator, to measure the location,
energy and timing of the charged particles in the resulting showers. The EC is primar-
ily responsible for the detection and event triggering on electrons above 0.5 GeV and
neutral particles (specifically neutrons and photons above 0.2 GeV from the decay of
π0 and η mesons). The calorimeter covers the region 8◦ – 45◦ in the polar angle and
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Figure 3.13. A set of 56 scintillator paddles that comprise one sector of the time-of-flight sys-
tem [85].

4. EXPERIMENTAL FACILITY - JEFFERSON LAB

consists of six modules, one for each sector, with the cross-section of an equilateral tri-
angle. Each module has a total of 39 lead-scintillator layers totalling approximately 16
radiation lengths. Each layer comprises a 2.2 mm thick lead sheet followed by a layer
of 36 side-by-side BC412 scintillator strips 10 mm in thickness and approximately
10 cm wide (Fig. 4.17).

Figure 4.17: Diagram showing the layered structure of the electromagnetic calorimeter and the
arrangement of scintillation bars inside. The bars are aligned parallel to one of the three long sides
of the module. The alignment is rotated for each consecutive layer, forming a grid [116].

Each successive layer is rotated through 120◦, effectively creating three orientations
and splitting the EC module into an array of triangular cells used to locate the area
of energy deposition. Every orientation is split into an inner stack, consisting of the
bottom five layers, and an outer stack for the top eight. In each stack, all the scintillators
on top of each other are coupled via fibre-optic light guides to the same PMT, thus
giving 72 PMTs in total for each of the three orientations. The PMTs have been chosen
to behave linearly over a very large dynamical range and for a typical signal from a
1 GeV electron have an amplitude resolution of ∼ 4% and time resolution of 100 –
150 ps. The PMT gain is monitored during data-taking by periodic illumination of the
PMT using UV light from a nitrogen laser [116].
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Figure 3.14. A diagram of the forward electromagnetic calorimeter. The successive layers of
alternating orientation are shown [87].
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Figure 2.7: Schematic diagram of a set of 56 scintillator paddles that comprise one
sector of the time-of-light system. Each TOF paddle covers a narrow range of polar
angle, which is important for matching the DC tracks with hits in the TOF. The
figure is from [45].

and 2.2-mm thick lead sheets, and its total thickness is 16 radiation length. Each

successive layer, whose shape is close to a triangle, consists of 36 stripes parallel to one

side of the triangle. One layer is rotated by 120◦ with respect to the previous one, so

3 layers (labelled U, V, and W) form a cell (there are 13 cells in total in each sector).

These cells are used to measure time and energy deposition of particles. Radiation,

emitted by the interaction between particles with the lead sheets, is detected by the

scintillators and converted into current signals by photomultiplier tubes [51].

2.3 The E06-103 Experiment

The E06-103 experiment (also referred to as g13 experiment) contains two run pe-

riods, g13a with circularly-polarized photon beam and g13b with linearly-polarized

photon beam. The data for this project were taken during the g13a period that ran

between October and December of 2006 with an additional week in March 2007. The

experiment was performed at two different electron beam energies (1.987 GeV and

2.649 GeV ). Table 2.1 lists three datasets according to the periods of the experiment
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4.5 CLAS

and via discriminator modules to TDCs which record the size and timing of the pulses.
The scintillator paddles are uniformly 5.08 cm thick and vary in length from 32 cm to
445 cm depending on their location in the array. Their width is 15 cm in the forward
region (θ < 45◦) and 22 cm at larger polar angles. The paddles are tilted so that the
average particle trajectory at that location is normal to the paddle face (Fig. 4.16). The
time resolution of the ToF counters was measured using cosmic ray events and ranges
from ∼ 150 ps for the shortest to ∼ 250 ps for the longest paddles [115].

Figure 4.16: A diagram of a ToF sector, showing the scintillation counters arranged, in four
panels, perpendicular to the beam line. At both ends of each paddle is a light guide and a PMT
[115].

4.5.6 Forward Electromagnetic Calorimeter

The forward electromagnetic calorimeter (EC) in CLAS is a sampling calorimeter,
comprising a sandwich of alternating passive sheets of lead, providing a high-Z ma-
terial to produce electro-magnetic showers, and scintillator, to measure the location,
energy and timing of the charged particles in the resulting showers. The EC is primar-
ily responsible for the detection and event triggering on electrons above 0.5 GeV and
neutral particles (specifically neutrons and photons above 0.2 GeV from the decay of
π0 and η mesons). The calorimeter covers the region 8◦ – 45◦ in the polar angle and
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Figure 3.13. A set of 56 scintillator paddles that comprise one sector of the time-of-flight sys-
tem [85].

4. EXPERIMENTAL FACILITY - JEFFERSON LAB

consists of six modules, one for each sector, with the cross-section of an equilateral tri-
angle. Each module has a total of 39 lead-scintillator layers totalling approximately 16
radiation lengths. Each layer comprises a 2.2 mm thick lead sheet followed by a layer
of 36 side-by-side BC412 scintillator strips 10 mm in thickness and approximately
10 cm wide (Fig. 4.17).

Figure 4.17: Diagram showing the layered structure of the electromagnetic calorimeter and the
arrangement of scintillation bars inside. The bars are aligned parallel to one of the three long sides
of the module. The alignment is rotated for each consecutive layer, forming a grid [116].

Each successive layer is rotated through 120◦, effectively creating three orientations
and splitting the EC module into an array of triangular cells used to locate the area
of energy deposition. Every orientation is split into an inner stack, consisting of the
bottom five layers, and an outer stack for the top eight. In each stack, all the scintillators
on top of each other are coupled via fibre-optic light guides to the same PMT, thus
giving 72 PMTs in total for each of the three orientations. The PMTs have been chosen
to behave linearly over a very large dynamical range and for a typical signal from a
1 GeV electron have an amplitude resolution of ∼ 4% and time resolution of 100 –
150 ps. The PMT gain is monitored during data-taking by periodic illumination of the
PMT using UV light from a nitrogen laser [116].
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Figure 3.14. A diagram of the forward electromagnetic calorimeter. The successive layers of
alternating orientation are shown [87].
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Figure 2.8: Schematic diagram of a sector of the forward electromagnetic calorimeter.
One can see the successive layers of alternating orientation. The figure is from [51].

Table 2.1: A list of the data acquired in the g13a experiment. The data are classified
according to electron beam energy and acquisition period. A run is a small set of
data collected continuously over a period of about 2 hours. Each run consists of up
to 100 data files. The experimental conditions were kept steady throughout a run.

Period Electron Beam Energy Run Number
October 30 – November 21, 2006 1.987 GeV 53164 – 53532
November 28 – December 22, 2006 2.649 GeV 53538 – 53862

March 12 – March 15, 2007 1.987 GeV 53998 – 54035

and their electron beam energies. The polarization of the electron beam was up to

85%. A current of –1500 A in the torus magnet produced a magnetic field that bent

negatively-charged particles away from the beamline. The current was chosen such

as to maximize the CLAS acceptance for low-momentum π− that originated from

hyperon decays [3]. A total of 20 billion events were collected during g13a. During

g13b the total collected number of events was 30 billion.

The g13a experiment used a 40-cm-long unpolarized liquid deuterium (LD2) target

(see Fig. 2.9). The center of the target was located 20 cm upstream from the CLAS
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center in order to increase the acceptance for forward-scattered particles. The LD2

target with a thickness of 6.5 cm2/g and a density of 162 mg/cm3 had the advantage

of producing a luminosity that was more than an order of magnitude higher for a given

set of running conditions than the luminosity that could have been obtained with a

standard 5-cm-long polarized target. For systematic checks and detector alignment,

a small set of data were acquired with a liquid hydrogen (LH2) target of the same

length and at the same location as the deuterium target.

Target

The liquid-deuterium target used in the g13 experiment is shown in Fig. 3.15. The

40-cm long target had a slightly conical shape with a diameter at its widest point of 4 cm

and a density of 0.1625 g/cm3 [79]. The dimensions of the target yielded high luminosities

while maintaining an acceptable rate of electrons in the tagger. In addition, the diameter

of the target allowed for sufficient coverage of the ∼1-cm spread of the photon beam, as

well as for any slight beam-position misalignments. The center of the target was positioned

20 cm upstream from the center of the CLAS to maximize acceptance for forward-going

particles.
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Figure 4.12 : The data and Monte-Carlo-simulated photon energy distributions produced from an
electron beam incident on a diamond radiator, after removing the 1/Eγ bremsstrahlung energy-
dependence [89].

Figure 4.13 : Conical liquid-deuterium target used for the g13 experiment [92]. It was 40 cm long,
and 4 cm in diameter at its widest point. The beamline ran through the center of the target.

Figure 3.15. Conical 40-cm-long liquid-deuterium target, with a 4 cm diameter used in the g13
experiment [100].

Trigger and data acquisition

Event triggering is essential for every experiment using the CLAS to select events

of interest for recording. During the g13 experiment, events were recorded at a rate of about

10 kHz, with a dead time of ∼15%. This time indicates the percentage of the time when the

data-acquisition system (DAQ) is busy recording a physics event and does not accept any

other events. There are two stages at which data-acquisition triggering can occur with the

CLAS. The Level-1 trigger acts on the prompt signals from the various detector systems
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Figure 2.9: Schematic diagram of the 40-cm long LD2 target cell used in the g13
experiment. The figure is from [53].

A two-level hierarchical trigger system was used in the g13 experiment in order

to acquire events of interest while minimizing deadtime. The deadtimeless Level

1 trigger processed all prompt photomultiplier signals through a pipelined memory

lookup with a period of about 100 ns. After the Level 1 trigger signal had occurred,

the event was stored, unless a fast-clear signal was issued within a period of time called

the fast-clear window. The Level 2 trigger made use of this fast-clear capability to

clear events that satisfied Level 1, but which had no tracks in DC [45]. During the

g13a experiment, a two-sector trigger with a two-track Level-2 requirement was used,

i.e. data acquisition required a coincidence between the ST and the TOF in at least
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two of the six sectors of the CLAS detector [54].

To evaluate the g13a data quality, we extracted the number of exclusive −→γ d →

K+−→Λn events (details in Chapter 4) in each data file and divided that number by

the corresponding number of photons incident on the target 1. The timeline of the

normalized yield for g13a data is shown in Fig. 2.10. The timeline shows that the data

taken at electron energy of 1.987 GeV yield a lower normalized yield than the one

taken at 2.649 GeV (which is expected as reaction rates depend on the experimental

conditions). Within each of these data groups, the normalized yields show good

consistency from file to file. To quantify the consistency, the yield distributions

were fitted to a Gaussian (see Fig. 2.11) and the fit quality was examined - no bad

data files were identified. The timeline of the photon-flux-normalized yield allows to

identify significant changes in the overall detector response, i.e. CLAS and/or tagger

acceptance, or in beam quality.

Further studies of data quality involving polarization-dependent control variables

(details can be found in Section 3.1) identified several data runs inconsistent with the

rest of the data set. Those were removed from further analysis.

1For each data file, the number of corresponding photons incident on the target is produced
routinely at raw-data processing by using a standard CLAS method [55].
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Figure 2.10: Timeline of the K+Λn photon-flux-normalized yield. One can see that
the data cluster around two distinct mean values. The latter correspond to the two
different electron beam energies at which g13 ran. Within each cluster the normalized
yields are consistent from file to file. Data of runs 53168 – 53862 are only used for
this study. Runs 53164 – 53167 were not included in the data sample because they
were not stable during the g13 experiment. Runs 53998 – 54035 are not shown on
the figure as the number of the corresponding photons incident on the target for each
of these runs was not available at the time of the study.
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Figure 2.11: Distributions of normalized K+Λn yields. Left: 1.987-GeV data files.
Right: 2.649-GeV data set. The red lines show fits to a Gaussian function. The
widths of the distributions are due to statistical fluctuations. No bad-quality data
files are identified.
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Chapter 3

Helicity and Polarization of the Photon Beam

3.1 Photon-Beam Helicity

In order to determine the absolute sign of the photon helicity for each run and to

evaluate the quality of polarization data, we extracted the polarization transfer coef-

ficient Cz for the quasi-free mechanism of the −→γ d → K+−→Λn reaction (i.e. for K+Λ

photoproduction off the bound proton). The value of Cz was determined for each

data run, while integrating over all photon energies and center-of-mass scattering

angles. Previously published CLAS results [30] have shown that for the reaction
−→γ p→ K+−→Λ , Cz is positive (close to 1) over the full kinematic range covered by the

g13a experiment. Since Cz for QF events should be close to that for −→γ p→ K+−→Λ , we

expect the integrated value of Cz over the full kinematic range covered by the CLAS

to be positive and large. Negative values of the integrated Cz would mean that the

status of the HWP was flipped and we could correct the sign of photon helicity for

the corresponding data accordingly.

To extract the integrated value of Cz, for each data run −→γ d → K+−→Λn exclu-

sive yields were first obtained, and then a missing-momentum cut was applied to

remove final-state interaction events. Details about the yield extraction and the

missing-momentum cut are given in Chapter 4. Finally, the distribution of the helic-

ity asymmetry as a function of cos θz was fitted to a straight line. The slope of the

line is directly proportional to Cz. The fitting method is described in Section 5.1.

Figure 3.1 shows the timeline of the fitted slope. Runs for which the slope is negative
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were taken with inverted definition of “positive” helicity due to inverted status of

the HWP. For all the events in those runs, the sign of the helicity was redefined.

Several points on the timeline have large statistical uncertainties and fall within one

to two standard deviations from the average slope. An example of the fitted helicity

distribution for one such point is shown on Fig. 3.2. The statistical uncertainties

of the data are large and the slope, although positive, is consistent with zero. In

addition, some distributions do not exhibit a linear trend as expected. Low statistics

and non-linear data have been removed from the analysis presented here.

Run number
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Figure 3.1: Timeline of the slope of a linear fit to the distribution of helicity asymme-
try vs. cos θz. Negative slope means inverted definition of “positive” helicity, due to
a reversed status of the HWP at the injector. For these runs the sign of the photon
helicity was redefined.

3.2 Electron Beam Polarization

In order to extract polarization observables from the g13a data, the magnitude of the

photon polarization must be known. In order to obtain the latter, the electron beam

polarization is needed. In Hall B of JLab, a Møller polarimeter located upstream

from CLAS was used to directly measure the electron beam polarization. During the

special runs when the Møller polarimeter was used, the tagger and the standard CLAS

data acquisition were turned off. The results of electron polarization measurements
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Figure 3.2: Helicity asymmetry vs. cos θz for a bad-quality run. The red line shows
a linear fit to the distribution. Low statistics data (as the one shown) and non-linear
data are excluded from the analysis discussed in this work.

during the 1.987-GeV and 2.649-GeV run periods in 2006 of the g13a experiment are

shown in Fig. 3.3, where the x axis shows the Møller run numbers. During the 1.987-

GeV run period in 2007, i.e. runs 53998–54035 (not shown in the figure), only one

electron beam polarization measurement was taken which yielded a polarization of

84.1%±1.1% (as shown in Table 3.1). One can see that even though the electron beam

energy was kept constant, the polarization of the electrons changed. The polarization

change was traced back to a changing Wien angle at the injector. For a fixed value

of the Wien angle, the Møller measurements randomly fluctuate about a mean value

and there is no systematic dependence on the status of the half-wave plate. Thus,

four weighted averages of the electron beam polarization, as shown in Table 3.1, were

calculated for the four distinct run ranges.

3.3 Photon Beam Polarization

The polarization of the photon beam can be calculated using the Olsen and Maximon

relation [56]
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Figure 3.3: Electron-beam polarization measurements taken during the 1.987-GeV
and 2.649-GeV run periods in 2006 of the g13a experiment. The two run periods
are separated by the first vertical solid black line. The runs within the two vertical
solid black lines were taken with a different Wien angle at the injector. The g13a
experiment covers data taken at three different Wien angles, 92.246◦, 90.844◦, and
90.043◦.

Table 3.1: Electron-beam polarization values obtained by averaging the set of Møller
measurements taken throughout g13a. The four distinct run ranges, characterized
with different values of the polarization, correspond to different values of the Wien
angle at the injector.

Run Electron Beam Energy Wien Angle Weighted Average
53164-53532 1.987 GeV 92.246◦ 84.97%±0.28%
53538-53547 2.649 GeV 90.844◦ 80.60%±0.18%
53550-53862 2.649 GeV 90.043◦ 78.47%±0.18%
53998-54035 1.987 GeV 93.247◦ 84.11%±1.1%
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Pγ =
Eγ(E + 1

3E
′)Pe

E2 + E ′2 − 2
3EE

′ , (3.1)

where Eγ is the photon energy, E is the electron beam energy, E ′ is the recoiling

electron energy, and Pe is the electron beam polarization. In particular, with x =

Eγ/Ee and Eγ = E − E ′ , the photon beam polarization Pγ is given by

Pγ = Pe
4x− x2

4− 4x+ 3x2 . (3.2)

Figure 3.4 shows the relation of the photon polarization (as fraction of electron

polarization) versus the photon energy (as a fraction of the electron energy) for the

final-state of interest in g13a. One can see that the photon polarization varies from

40% to 100% of the electron polarization, depending on the photon energy.
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Figure 3.4: Ratio of Pγ to Pe as a function of the ratio of Eγ to Ee. The black line
shows the function from Eq. (3.1). The colors reflect the amount of actual K+Λn
data for each photon energy.
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Chapter 4

Data Analysis

This chapter describes in details the procedure to select the events of interest as well

as identify and reconstruct the reaction −→γ d→ K+−→Λn.

4.1 Particle Identification (PID)

The main particle-identification method for charged particles detected in the CLAS

is based on time-of-flight measurements. In this work, the method was applied as

follows. The speed of the particle (in units of the speed of light, c), βmeas, was

determined as

βmeas = l

ct
, (4.1)

where, t and l are the flight time and the flight path from the production vertex to the

TOF detector. Then, for the same track, the expected speed, βcalc, was determined

under a specific assumption for the particle identity, i.e. for its nominal mass

βcalc =
√

p

p2 +m2 , (4.2)

where p is the measured momentum of the particle and m is the nominal mass for a

specific assumed identity. The difference

∆β = βmeas − βcalc (4.3)
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was then formed. When the nominal mass is the true particle mass, then ∆β should

be consistent with zero within the experimental resolution. The particles of interest

K+, proton, and π− were each identified by applying a ∆β cut. To make particles of

interest stand out, extra cuts, including event vertex, photon selection, and kinematic

cuts were applied firstly, and then distributions of ∆β vs. p were studied for K+,

proton, and π−, separately. Figures 4.1 and 4.2 show event distributions of ∆β vs. p

for proton and K+ candidates, respectively. The red solid lines show the cut ranges

we used to identify if a track was a proton or a K+. The points on the curves

were determined by dividing the momentum range into sub-ranges and fitting the

∆β distribution in each sub-range to a Gaussian. The points on the curves show the

±3σ range for each momentum bin. The discrete upper and lower range points were

fitted to 3rd order polynomials (parameters are shown in Figs. 4.1 and 4.2), and the

polynomials were used as PID cuts. The π− were selected by applying the ∆β cut

in the range of −0.2 to 0.2 where pions overwhelmingly dominate (see Fig. 4.3). The

extra cuts were removed after the PID selection was finalized.
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Figure 4.1: ∆β as a function of momentum for proton candidates. The red lines show
the proton PID cut range. The curves are 3rd order polynomials, the parameters of
which are given in the equations.
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Figure 4.2: ∆β as a function of momentum for K+ candidates. The red lines show
the kaon PID cut range. The curves are 3rd order polynomials, the parameters of
which are given in the equations.
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Figure 4.3: ∆β as a function of momentum for π− candidates. Pions overwhelmingly
dominate in the ∆β range of −0.2 to 0.2.
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Vertex Determination

In general, at least two final-state charged-particle tracks are needed in order to

reconstruct the event vertex. For our final-state of interest, however, another solution

is used since two (namely the proton and the π−) out of the three detected particles

do not originate from the primary K+Λ vertex. For this reaction, we use the tracks

from the γ and K+ to determine the event vertex. A line parallel to the beam

line was used to represent the γ, with the beam x- and y-positions determined for

each run using all multi-charged-track events for that run (the beam position was

determined during the initial processing of the g13a data). The two tracks are not

exactly coplanar due to the finite position resolution of the CLAS. Therefore, we

applied a method called DOCA (Distance Of Closest Approach) to determine the

location of the reaction vertex. Firstly, the line which was perpendicular to both

tracks was determined. Secondly, the intersection point of the perpendicular line

and each track was determined. Finally, the reaction vertex was determined by

finding the bisector between these two points. Schematically, the reaction vertex and

its determination from the kaon and the photon tracks are visualized in Fig. 4.4.

Figure 4.5 shows the event distribution over the z-component of the reaction vertex.

Only events with z-vertices from -40 cm to 0 cm were kept for further analysis.

4.2 Photon Selection

The g13a ran at an electron beam current of about 40 nA, with electron bunches

delivered every 2.004 ns from CEBAF. The trigger window for digitizing data by the

CLAS electronics was about 30 ns wide. Since the latter is an order of magnitude

larger than the time between different beam bunches, and given the beam intensity,

typically, 14 good electron hits on average were recorded in the tagger for each trig-

ger event. For kinematic calculations, we have to identify which of these electrons

radiated the photon that produced the final-state particles detected by the CLAS.
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Figure 4.4: Schematic diagram visualizing the DOCA method to determine the vertex
position. The straight lines L1 and L2 visualize the γ and the K+ tracks in the target.
In general, the two tracks are not coplanar. L is vertical to both tracks. P1 and P2
are the intersection points between L and L1 and L2, respectively. M is midway
between P1 and P2 and represents the location of the reaction vertex.
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Figure 4.5: Event distribution over the z-component of the reaction vertex. The red
lines show the z-vertex range from −40 cm to 0 cm outside of which no events are
considered for further analysis. Distances along the z axis are measured relative to
the center of the CLAS, which is located at 0 cm. The z-vertex distribution reflects
the fact that the center of the target during the g13 experiment was located 20 cm
upstream from the center of the CLAS.
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The photon identification was done by studying the correlation between the arrival

time of the photon at the event vertex, tγ (determined by tagger timing), and the

kaon vertex time, tν , calculated using information from the CLAS as indicated in

Eq. (4.4). For each event, the difference ∆t = tν − tγ was then formed as follows

∆t = tν − tγ = (tSC −
dSC
cβcalc

)− (tTAGR + z + 20
c

), (4.4)

where tSC is the time measured by the scintillation counters of the TOF system with

respect to the global start time, dSC is the length of the track from the kaon vertex

to the TOF paddle, βcalc is the particle’s speed as a fraction of the speed of light

calculated using the measured track’s momentum and the nominal mass of the K+

(see Eq. 4.2), tTAGR is the photon arrival time at the center of the target, and z is

the position of the event vertex along the beam axis measured relative to the CLAS

center (the 40-cm long target was placed with its center 20 cm upstream of the CLAS

center). The ∆t distribution of events in our sample is shown in Fig. 4.6. The photon

that gives a ∆t within the range of −1 ns to 1 ns is selected as the good photon.

For a portion of events, two or more photons with a time coincidence |∆t| < 1

ns were detected. The additional photons occurred from background hits in the T-

counters that happened in the same time window. Figure 4.7 shows that 9.2% of

our events contain two photons within the ±1-ns coincidence time window. Overall,

less than 10% of events contain two or more photons within the ±1-ns coincidence

range. In order to be able to use these events in our analysis, an additional photo-

selection criterion must be implemented. We performed additional studies of the

two-photon events in order to evaluate if an appropriate photon-selection procedure

can be established. We used two control variables in the studies, the coincident time

and the energy of the photon. The latter was used to calculate the mass of the

missing state in the γd→ K+ΛX reaction (based on 4-momentum conservation, see

section 4.4). If one of the two photons is the good photon, it should yield a missing-
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Figure 4.6: Vertex time difference distribution after PID and a narrow IM cut. For
each event, only ∆t for the photon that is closest in time to the kaon is included in
the distribution. One can clearly see the 2.004 ns structure of the electron beam as
photons due to electrons from different beam bunches show to be clustered in peaks
that are about 2-ns apart. The large peak around ∆t of 0 contains photons and kaons
that are coincident in time. The red vertical lines show the range of ∆t within which
we chose the good photon for the event.

state mass, MX ≡ MM, consistent with the nominal neutron mass (X = n for the

events of interest from the reaction γd → K+ΛX). Event distributions over MM

for the photon with the smaller ∆t and for the one with the larger ∆t are shown in

Fig. 4.8.

One can see that the photons with smaller ∆t had no advantage relative to the

photons with larger ∆t, i.e. they both produced consistent kinematic distributions.

This means that the good photon has randomly smaller or larger ∆t and an additional

timing criterion cannot be used for photon selection when more than one photon

fall within the ±1-ns coincidence window. We decided against kinematic selection,

based on MM, as this procedure would skew the shape of the background in the MM

distribution. Because of these reasons and since the events under question are less

than 10% of the full dataset, events with two or more photons were removed from

the dataset, and only events with one good photon after the ∆t selection were kept

for further analysis.
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Figure 4.7: Fractions of events with different number of photons within our ±1-ns
coincidence window (after PID, a narrow IM cut, and the ∆t cut). The x-axis shows
the number of photons in each event within a coincidence time |∆t| < 1 ns. The
events with two or more photons within ±1 ns are less than 10% of the full data
sample. These events were removed from further analysis.
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Figure 4.8: Missing-mass distributions of events with two photons giving |∆t|<1
ns (50 runs of the g13a dataset were used in this study). The left figure shows
MM distribution for photons with the smaller |∆t|. The right figure shows MM
distribution for photons with the larger |∆t|. The distributions were fit around the
neutron peak to Gaussian functions. The black lines show ±3σ ranges. The areas
bound by the red lines contain the events from the reaction of interest. For the
photons with smaller |∆t|, the ratio of signal to the sum of signal and background is
approximately 78%. For the photons with larger |∆t|, the ratio of signal to the sum
of signal and background is approximately 76%.
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Energy Loss and Momentum Corrections

We applied energy loss and momentum corrections to the detected particles momenta

in an attempt to eliminate bias in the reconstructed kinematics of each event. In

addition, the corrections brought real experimental distributions in consistency with

simulated distributions, which was critical for unbiased estimate of the background

in our data sample. The latter allowed to reduce the systematic uncertainties of

the background subtraction. The energy loss corrections account for the energy lost

by the charged particle via ionization when it passed through the target, beam-

line components, and start counter [57]. The momentum corrections account for

energy lost by the particles in the gas of the drift chambers, DC misalignments,

and differences between the actual toroidal field and the field map used for track

reconstruction [58]. A correction to the photon energy was also applied due to a small

gravitational sag in the tagger scintillator paddles [59]. Standard CLAS software

packages [60] were used to implement all of these corrections in the data analysis

presented here.

4.3 Additional Selection Cuts

Photon Energy Cut

The quasi-free and the Λn FSI mechanisms of interest in this work involve the reaction

γp → K+Λ in the first step. This is a threshold reaction, which means that the

incoming photon needs to have a minimum energy, Eγ,threshold, in order to be able to

initiate the reaction. The threshold energy value can be obtained by using energy

conservation in CM and the Lorentz invariance of the Mandelstam variable s

√
s =

√
p∗2 +m2

K+ +
√
p∗2 +m2

Λ =
√

2Eγmp +m2
p = W, (4.5)

where s denotes the square of the center-of-mass energy, W denotes the invariant
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mass of the initial or the final state, p∗ is the magnitude of the CM K+ or Λ three-

momentum, mK+ , mΛ, and mp are the nominal masses of the K+, Λ, and proton,

respectively, and Eγ is the photon beam energy in the lab frame. With p∗ = 0, the

threshold photon energy is given by

Eγ,threshold =
(mK+ +mΛ)2 −m2

p

2mp

= 0.911 GeV. (4.6)

This value, combined with the observed kinematic distributions of the events of

interest, led to the removal of all events with photon energy smaller than 0.9 GeV

from further analysis.

Invariant-Mass Cut

In the data sample, not all detected proton and π− pairs originate from a Λ decay.

Even when other selection cuts, such as PID, photon selection, and Eγ cuts, were

applied, background events were not completely removed as can be seen in Fig. 4.9,

which shows the invariant-mass (IM) distribution of p and π−. The IM is given by

IM =
√

(p̃p + p̃π−)2, (4.7)

where p̃p and p̃π− are the four-momentum vectors of p and π−, respectively. The dis-

tribution exhibits low- and high-invariant-mass tails containing non-Λ events. These

events were removed from further analysis by applying a constraint on the allowed

invariant mass. Only events yielding invariant mass in the range between 1.11075

GeV/c2 and 1.12125 GeV/c2 were selected. The cut was defined by using the width

of a Gaussian fit to the Λ peak in the IM distribution as shown in Fig. 4.9.
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Figure 4.9: Invariant-mass distribution after PID, photon selection, and Eγ cuts. The
Λ peak was fitted to a Gaussian and a 3σ cut was applied to select the events where
the pπ− pair was produced by a Λ decay. The red lines show the cut range.

Missing-Momentum Cut

The −→γ d → K+−→Λn measurement discussed here is fully exclusive, i.e. the full kine-

matics of each initial- and final-state particle is known. This provides a powerful

means to separate QF from FSI events in a completely model-independent way. This

is a great advantage for Λn scattering studies, compared to inclusive measurements,

since the relatively small FSI signal can be identified and isolated from the domi-

nant QF events. Extracting FSI observables should decrease the uncertainties in the

model interpretation stemming from the imprecise modeling of the first-step process.

Neutrons are spectators in the QF mechanism of the reaction−→γ d → K+−→Λn, while

neutrons fully participate in the FSI mechanisms. Therefore, the magnitude of the

neutron momentum in a QF event should be its Fermi momentum and should be

in general smaller than the momentum of a neutron in a FSI event. In the analysis

presented here, the final-state neutron momentum is reconstructed using momentum

conservation as shown below

MP = |−→p γ − (−→p K+ +−→p p +−→p π−)|, (4.8)
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where −→p γ, −→p K+ , −→p p, and −→p π− are the momentum vectors of γ, K+, p, and π−

respectively. The magnitude of the neutron 3-momentum is referred to as missing

momentum (MP). We separate QF from FSI events by using the neutron momentum,

MP. Events with MP smaller than 0.2 GeV/c are classified as QF events, while events

with MP larger than 0.2 GeV/c are classified as FSI events. Figure 4.9 shows the

experimental MP event distribution of the g13a data sample. The missing-momentum

cut is indicated by the solid red line. To evaluate the appropriateness of the value

of 0.2 GeV/c we extracted Cx, Cz, and Py for the QF mechanism for different MP

cut ranges: 0.1 – 0.2 GeV/c, 0.05 – 0.1 GeV/c, and 0 – 0.05 GeV/c. The results

with the three different cuts do not exhibit systematic differences, which means the

upper limit of 0.2 GeV/c for the neutron momentum is an adequate choice to select

QF events. The details of this study are described in section 7.3. Additionally, we

performed a study using simulated data to estimate the amount of QF events with

neutron momenta above 0.2 GeV/c. The results showed that a lower limit of 0.2

GeV/c was an adequate choice to select FSI events.
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Figure 4.10: Missing-momentum distribution after PID, photon selection, Eγ, and
invariant-mass cuts. The red vertical line shows our missing-momentum cut to sepa-
rate QF and FSI events. To the left of the line, the distribution is dominated by QF
events, whereas, to the right of the line the distribution is dominated by FSI events.
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4.4 Background Subtraction

The mass of the missing state in the γd→ K+ΛX reaction, referred to as the missing

mass, is defined as

MM =
√

((p̃γ + p̃d)− (p̃K+ + p̃p + p̃π−))2, (4.9)

where p̃γ, p̃d, p̃K+ , p̃p, and p̃π− are the four-momentum vectors of γ, d, K+, p, and

π−, respectively. The MM distribution of the reduced data set (after the application

of selections discussed in the previous sections) is shown in Fig. 4.11. For better

visualization of the MM patterns, Fig. 4.11 shows the 2-dimensional spectrum of Eγ

vs. MM. One can see that in addition to the events of interest, clustered around

the nominal neutron mass, there are background events from other physical chan-

nels (predominantly Σ and Σ∗ production) as well as accidental background events.

Since contribution from background can result in false asymmetries, it was impor-

tant to separate signal events from background events. To this end, a background

subtraction method was applied. The critical step in this method was to obtain an

independent description of the shape of the MM distributions of the physical and

the accidental backgrounds. This was accomplished by a realistic simulation of the

reaction dynamics.

Simulation of Reaction Mechanisms and Background

Channels

MM distributions of the physical background were simulated by the use of the Monte

Carlo method. Firstly, events from the elementary mechanisms of our reaction and

from the background channels were generated using a realistic event generator. The

development of the generator is part of the work discussed here. Then, the generated

data were processed through the standard CLAS simulation software GSIM and were
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One can see the events of interest clustered around the nominal neutron mass (labelled
as Λ production) and the physics backround events from Σ and Σ∗ production. Partial
evidence for accidental background can be seen in the existence of low-missing-mass
events.

analyzed in exactly the same manner as were the real data. GSIM is a GEANT3-based

simulation of the CLAS detector [61].

In the generator, the four main mechanisms of our reaction, including π0 mediated

scattering, π+ mediated scattering, Kn re-scattering, and Λn re-scattering, as well

as three background channels, including Σn re-scattering, Σ∗0 quasi-free production,

and Σ∗− quasi-free production were implemented. Table 4.1 lists these 7 physical

processes. For the two-step mechanisms, the first-step mechanism was generated first

and then one of the final-state particles of that step was used as the beam particle

for the generation of the second-step mechanism. The proton and the neutron in the

deuteron target were assigned Fermi momentum generated from the Paris potential.

Of the two target nucleons, the spectator in the second step was assigned its nominal

mass. The mass of the other nucleon was determined so that the sum of the energies

of the two nucleons yielded the deuteron rest mass. Decays of Λ, Σ, Σ∗0, and Σ∗−
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Table 4.1: Reaction channels implemented in our realistic event generator.

Channel Channel Name First Step Second Step
1 π0 mediated for signal γn→ π0n π0p→ K+Λ
2 Kn re-scattering for signal γp→ K+Λ K+n→ K+n
3 Λn re-scattering for signal γp→ K+Λ Λn→ Λn
4 π+ mediated for signal γp→ π+n π+n→ K+Λ
5 Σn re-scattering for Σ production γp→ K+Σ Σn→ Σn
6 Quasi-free for Σ∗0 production γp→ K+Σ∗0 Σ∗0 → Λπ
7 Quasi-free for Σ∗− production γn→ K+Σ∗− Σ∗− → Λπ−

were done in GSIM. Additionally, two extra channels were processed through GSIM

and were analyzed, although no extra events were generated. One of the channels is

the quasi-free mechanism of our reaction, which shares the final-state particles with

the Kn and the Λn rescattering channels. The other channel is the quasi-free Σ

production, which shares its final-state particles with the Σn rescattering channel.

Cross sections were implemented for some of the channels. The acceptance-rejection

method was implemented so that the generated events were distributed according to

a cross section.

Figure 4.12 shows the flow chart of the generator. Firstly, the photon beam

energy and the Fermi momentum of the target nucleons were generated. Then, a

uniformly-distributed random number, called RN1, was used to select the channel to

be generated. Several steps were executed after a channel was selected.

• Step 1: Generate the kinematics for the first step of the channel based on a

phase-space distribution.

• Step 2: Determine whether unpolarized or polarized cross section is to be used

to weight the current event (this is done via a command-line option “p”).

• Step 3: Generate uniformly distributed random number 2 (RN2) and random

number 3 (RN3). The range of values of RN2 and RN3 is from 0 to the maximum
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differential cross section for the current mechanism (unpolarized for RN2 and

polarized for RN3) as determined from cross-section tables. The cross-section

tables are based on SAID and Kaon-MAID unpolarized cross sections, as well

as polarization observable values obtained in this work.

• Step 4: Calculate the polarized or unpolarized cross section for the current

event using its kinematics. Then remove or keep the event by comparing the

calculated cross section to the value of RN2 or RN3.

• Step 5: Calculate kinematics for the second step of the channel using a phase-

space distribution.

Generate	  Energy	  for	  the	  Photon	  Beam	  

Generate	  Fermi	  Momentum	  for	  the	  Target	  Nucleons	  	  
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Figure 4.12: Flow chart of the comprehensive event generator used in the simulation
of physics backgrounds to the reaction −→γ d→ K+−→Λn.

The simulated detection environment generated by GSIM does not match exactly

the true experimental conditions. We found that the functions of momentum cor-
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rections extracted by the experimental data could not be applied to the simulated

data. Therefore, functions of momentum corrections specifically for the simulated

data were produced by comparing the value of reconstructed particle momentum, p,

in the simulated data sample to the true momentum value, p0, from the generator

(the difference, ∆p = p−p0 was our control variable). To this end, a simple generator

for the reaction γp→ K+Λ was produced. After PID cuts and photon selection was

applied to the simulated data, we divided the events in bins of the azimuthal angle

and the polar angle of K+ in the lab system as well as of the reaction vertex. Then,

∆p vs. p distribution of the events in each bin was plotted for K+, p, and π−. Mo-

mentum corrections for each particle type were obtained by fitting the corresponding

∆p vs. p distribution to an exponential function defined as

f(x) = p0e
p1x+p2 + p3, (4.10)

where p0, p1, p2, and p3 are free parameters determined by the fit. Figure 4.13

shows an example of the momentum correction for protons. The red solid line shows

the momentum correction function. The points on the curve were determined by

dividing the momentum range into sub-ranges and fitting the ∆p distribution in each

sub-range to a Gaussian. The points with the bars on the curve show the mean with

3σ uncertainties for each momentum bin.

Accidental Background

Even though the particle identification selection we use in this work removes a sub-

stantial fraction of tracks that are inconsistent with the final state of interest, back-

ground from accidental tracks remains in the data sample. The accidental background

consists of misidentified particles, i.e. particles that were identified to be p, π−, or

K+, but had a different true identity.
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Figure 4.13: An example of momentum correction function (red curve) for the simu-
lated data. The curve is described by an exponential function.

In order to obtain the shape of the accidental background, which is needed in the

application of our background subtraction procedure, a study of misidentified p, π−,

or K+ was performed. For each of these particles, the accidental background was

obtained by using the event-mixing technique.

Firstly, we obtained a relatively clean sample of signal events by applying PID,

photon selection, IM, and MM cuts. Then, for every event in the clean sample, we

replaced the p, π−, or K+ with a randomly selected track from a randomly selected

another event in the full g13 dataset. We randomly extracted positive particles to

replace K+ or p and negative particles to replace π−. Finally, the MM for that signal

event was recalculated using the four-momenta of the random track and the two good

tracks. The MM distributions for particles misidentified as p, π−, or K+ are shown

in Fig. 4.14 in green, red, and blue, respectively. These distributions were input in

the background subtraction procedure as accidental backgrounds.
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Figure 4.14: Missing-mass distributions of accidental quasi-free (left) and final-state
interaction (right) events. The green, red, and blue colors show distributions when
the p, π−, or K+ good track was substituted with an accidental track. See text for
more details.

Background Subtraction Method

After obtaining the MM distributions of the physical and the accidental backgrounds,

we fitted the MM distributions of the experimental data for each kinematic bin to

the function

f(x) =
6∑
i=0

par[i] ∗ hist[i] +Gaus, (4.11)

where hist[0] – hist[3] denote the MM distributions of the physical background for

the Σn re-scattering channel, the Σ∗0 quasi-free production channel, the Σ∗− quasi-

free production channel, and the Σ0 quasi-free production channel, respectively, for

the corresponding kinematic bin of the simulated data. The setup of kinematic bins

for the simulated data was the same as for the experimental data. hist[4] – hist[6]

denote the MM distributions of the accidental background for particles misidentified

as p, π−, or K+, respectively. p[0] – p[6] are free paramters determined by the MM

fits. The accidental backgrounds are independent of kinematics, so all kinematic

bins have the same accidental background distributions. Gaus is a double Gaussian

function, which models the signal. A double Gaussian is used since the signal events,

even though they form a symmetric peak around the mean, have long non-Gaussian

tails. One of the Gaussians has a small amplitude and a large width and describes
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the tails, the other Gaussian has a large amplitude and a smaller width and describes

the rest of the peak. Both Gaussian functions have a common mean. Figure 4.15

shows an example of MM fitting for one kinematic bin. After fitting, the signal was

obtained as the difference between the initial distribution of all events and the fitted

background. The signal was then fitted to a Gaussian function to determine a 3σ

range. The reaction yield was obtained as the sum of all the events within the 3σ

range of the background-subtracted distribution.
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Figure 4.15: An example of MM fitting for one kinematic bin. The red line shows the
full fit over the MM range of the histogram, 0.82 GeV/c2 – 1.15 GeV/c2. The black
part shows the accidental background. The green part shows the physical background,
which contains the K+Σ, K+Σ∗0, and K+Σ∗− channels.

Quality of Missing-Mass Fit

Good fits of the MM distributions are important to ensure that extracted observables

are reliable. Thousands of bins were set in this study, and it is impossible to show

all fitting plots in this document. The quality of the fits is evaluated by the χ2

test. During fitting, χ2/NDF (χ2 per degree of freedom) was extracted for each bin,

and the distribution of these values is shown in Fig. 4.16. Most χ2/NDF values

are between 1 and 2, which indicates that our description of the shape of the MM
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distributions is overall good and the fitting had not failed. χ2/NDF was high for

some low-statistic kinematic bins. We removed these bins from further analysis, by

requesting a minimum of 50 signal events in a bin, after background subtraction, in

order to keep that bin in our data.
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Figure 4.16: Distribution over χ2 per degree of freedom of the fits to MM histograms.
The distribution contains 8800 entries in total. The χ2 test suggests that the fitting
function describes well the MM distribution and that there are no failed fits.
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Chapter 5

Determination of Cx, Cz, and Py

5.1 Observable-Extraction Methods

Introduction to Three Different Observable-Extraction

Methods

For obtaining optimized results of the polarization observables Cx, Cz, and Py, dif-

ferent observable-extraction methods were compared. Three different methods can

be applied to extract the double polarization observables Cx and Cz. The simplest

method, which has been commonly used in CLAS analyses, is a 1-dimensional (1D)

fit method. After integrating the polarized differential cross section of Eq. (1.4) over

cos θy and one of cos θz and cos θx, the beam-helicity asymmetry can be expressed as

Asym(cos θx/z) = Y + − Y −

Y + + Y −

=
∫ ∫ dσ+

dΩ d(cosθy)d(cos θz/x)−
∫ ∫ dσ−

dΩ d(cosθy)d(cos θz/x)∫ ∫ dσ+

dΩ d(cosθy)d(cos θz/x) +
∫ ∫ dσ−

dΩ d(cosθy)d(cos θz/x)

= αPcircCx/z cos θx/z,

(5.1)

where Y + and Y − denote positive and negative helicity event yields. During the

derivation of the 1D fit method, all of formulas are correct under the assumption that

the CLAS acceptance is constant over cos θy and cos θz or cos θy and cos θx. This

method was used to obtain the previously published CLAS results for Cx and Cz

for the reaction −→γ p → K+−→Λ off the free proton [30]. Similarly, a 2-dimensional

fit method (referred to as 2D method here) can be applied to extract Cx and Cz
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simultaneously. In the 2D method, the beam-helicity asymmetry is obtained by

integrating the differential cross section over cos θy

Asym(cos θx, cos θz) = Y + − Y −

Y + + Y −

=
∫ dσ+

dΩ d(cosθy))−
∫ dσ−

dΩ d(cosθy)∫ dσ+

dΩ d(cosθy)) +
∫ dσ−

dΩ d(cosθy)

= αPcircCx cos θx + αPcircCz cos θz.

(5.2)

During the derivation of the 2D fit method, all of formulas are correct under the

assumption that the CLAS acceptance is constant over cos θy. An event-by-event

maximum likelihood (ML) fit method can be used to extract Cx, Cz, and Py simul-

taneously. The results reported in this work were obtained with this method. We

define the probability density function for the maximum likelihood method as

f(cos θx, cos θz, cos θy|Cx, Cz, Py) = c(1± αPcircCx cos θx ± αPcircCz cos θz

+ αPy cos θy),
(5.3)

where c represents the unpolarized differential cross section. The total log-likelihood

is the product of the log-likelihoods for all individual events

logL = b+
n+∑
i=1

log[(1 + αP i
circCx cos θix + αP i

circCz cos θiz + αPy cos θiy)wi]

+
n−∑
j=1

log[(1− αP j
circCx cos θjx − αP

j
circCz cos θjz + αPy cos θjy)wj],

(5.4)

where b is a constant obtained from the unpolarized differential-cross-section term,

and is cancelled in the further derivative calculations over Cx, Cz, and Py since b is

independent of them, and wi or wj is a weight value of the signal probability for the

ith or jth event. Figure 5.1 shows how we determine the weight for each event. After

fitting the missing-mass distribution for a given kinematic bin, the number of signal
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events is obtained by subtracting the background from the total number of events in

the MM histogram. For an event i located in a given missing-mass-histogram bin, we

calculate the weight wi as the ratio of the number of signal events to the number of

all events in that MM bin

R = Nall −Nbackgrounds

Nall

. (5.5)

All events in the same MM bin are assigned the same weight. Further details, about

the determination of the observables of interest using the maximum likelihood method

are given in section 5.2.
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Figure 5.1: Information about the number of background events obtained from MM
fitting is used to determine the weight wi for the ith event in a given kinematic
bin. When constructing the corresponding MM histogram (blue histogram), the ith
event falls in one of the histogram bins. Background subtraction yields the number of
background events in that MM bin (red histogram). The weight wi is then determined
by applying Eq. 5.5. All events in the same MM bin are assigned the same weight.

Analytical Studies of the Observable-Extraction Methods

The three methods, 1D fit, 2D fit, and the maximum likelihood methods were stud-

ied analytically in an effort to understand their potential biases. This study was

important in order to determine if results obtained with the three methods should
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be expected to be consistent with each other and if they can be used for systematic

checks.

We consider the 1D method first. According to Eq. (5.1), both distributions of

Asym vs. cos θx and Asym vs. cos θz should be linear. However, when extracting the

observables using the 1D fit method, we found that distributions of Asym vs. cos θz

were indeed linear, while distributions of Asym vs. cos θx were not linear (see Fig. 5.2).

This was true for both the experimental and the simulated data. Throughout fur-

ther analysis, we realized that the acceptance of the CLAS needed to be considered

rather than be cancelled in the calculation of Asym even if the detector performance

could not depend on the helicity state of the incident beam. The next step was to

understand why the effect of acceptance was much smaller for Cz than for Cx.
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Figure 5.2: Examples of distributions of Asym vs. cos θx (left column) and cos θz
(right column) from the results for quasi-free events in −→γ d→ K+−→Λn. The top figures
show real experimental data. The bottom distributions show simulated data.The red
lines show fits to linear functions.

Firstly, we need to indicate that the direction cosines, cos θx, cos θy, and cos θz,

of the three-momentum vector of the decay proton are not independent as they obey

the relation
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cos θ2
x + cos θ2

y + cos θ2
z = 1. (5.6)

Therefore, it is not correct to integrate the polarized differential cross section over

cos θy and cos θx, or cos θy and cos θz, simultaneously. To make a more quantitative

statement about the effect of acceptance on each of the double-polarization observ-

ables, we proceed as follows. In a spherical coordinate system, cos θx, cos θy, and

cos θz can be expressed in terms of two independent angles, a polar angle θ and an

azimuthal angle φ 1



cos θx = sin θ cosφ

cos θy = sin θ sinφ

cos θz = cos θ.

(5.7)

Here, we have set θ ≡ θz. Then, experimental event yields for positive and negative

beam helicity can be expressed as

Y ±(θ, φ) = N±γ NTσ
±(θ, φ)A(θ, φ), (5.8)

where N±γ is the number of photons with a positive or negative helicity, NT is the

number of scattering centers in the target, σ±(θ, φ) represents the polarized differen-

tial cross section depending on the independent variables of θ and φ, and A(θ, φ) is

the detector acceptance. For simplicity, we will neglect the momentum dependence

of the acceptance within a kinematic bin. Since the beam helicity was flipped very

frequently during the experiment, N+
γ is equal to N−γ . Additionally, NT is constant.

Therefore, we can use a constant c to replace the product N±γ NT . After integrating

over φ, the event yields can be expressed as

1Please, note that the angles θ and φ here denote some general polar and azimuthal angles, and
should not be confused with the measured particle angles in the experiment.
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Y ±(θ) = c[A(θ)± αPcircCx sin θAx(θ)± αPcircCz cos θA(θ)

+ αPy sin θAy(θ)],
(5.9)

where

A(θ) =
∫ 2π

0
A(θ, φ)dφ, (5.10)

Ax(θ) =
∫ 2π

0
A(θ, φ) cosφdφ, (5.11)

Ay(θ) =
∫ 2π

0
A(θ, φ) sinφdφ. (5.12)

Next, the beam-helicity asymmetry, Asym, can be constructed from the event

yields with positive and negative helicity as

Asym = Y + − Y −

Y + + Y −

= αPcircCx sin θAx(θ) + αPcircCz cos θA(θ)
A(θ) + αPy sin θAy(θ)

.

(5.13)

Equation (5.13) tells us that Asym does not just depend on Cz and θ, but also

depends on Cx and Py. If the acceptance is constant over φ within the kinematic bin,

so that Ax and Ay are 0, or if Cx and Py are 0, then the Cx and Py terms disappear. In

these two cases, Asym as a function of cos θ is linear. In reality, nothing guarantees

that these conditions are fulfilled, so Asym is generally not a linear function.

However, both real and simulated data yielded distributions of Asym vs. cos θz

that were linear. There are two reasons for this. Firstly, Ax(θ) and Ay(θ) can be

proved to be much smaller than A(θ) (see Eq. (5.14) and Eq. (5.15)). Secondly, the

actual results of Cx, Cz, and Py for QF showed that |Cx| was generally much smaller

than |Cz|, while |Py| was smaller than |Cz|. Thus, the Cx term in Eq. (5.13) is much

68



smaller than the Cz term, while the PyAy(θ) term is much smaller than the A(θ)

term, which means that the Asym is mostly a linear function of cos θz.

Ax(θ) =
∫ 2π

0
A(θ, φ) cosφdφ

<
∫ 2π

0
A(θ, φ)| cosφ|dφ

< | cosφ|max
∫ 2π

0
A(θ, φ)dφ

=
∫ 2π

0
A(θ, φ)dφ

= A(θ),

(5.14)

Ay(θ) =
∫ 2π

0
A(θ, φ) sinφdφ

<
∫ 2π

0
A(θ, φ)| sinφ|dφ

< | sinφ|max
∫ 2π

0
A(θ, φ)dφ

=
∫ 2π

0
A(θ, φ)dφ

= A(θ).

(5.15)

For the convenience of discussing Cx, we define another spherical coordinate sys-

tem (see Eq. (5.16)). Similar to the case of Cz, Asym can be expressed by Eq. (5.17).

However, in this case the Cz and Py terms in Eq. (5.17) do not disappear because

generally |Cx| is smaller than |Cz| and |Py|.



cos θx = cos θ

cos θy = sin θ cosφ

cos θz = sin θ sinφ.

(5.16)

Asym = Y + − Y −

Y + + Y −

= αPcircCx cos θA(θ) + αPcircCz sin θAz(θ)
A(θ) + αPy sin θAy(θ)

,

(5.17)
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where,

Az(θ) =
∫ 2π

0
A(θ, φ) sinφdφ, (5.18)

Ay(θ) =
∫ 2π

0
A(θ, φ) cosφdφ. (5.19)

In conclusion, the effect of detector acceptance cannot be ignored in the 1D fit

method, especially for Cx. The acceptance effect on Py should be somewhere between

the effect on Cx and Cz, when Py is extracted by a 1D fit method. The 2D fit can

reduce the effect of acceptance to some extent because the acceptance is approxi-

mately fixed, i.e. it is constant over a bin, when the experimental data is binned in

two angles. The maximum likelihood method is the most efficient way to reduce the

effect of acceptance since it is an event-by-event method.

Statistical Studies of the Observable-Extraction Methods

To quantify any potential biases in each method, we performed studies with simulated

data. The idea is to generate a large number, N, of experiments with each experiment

yielding one set of estimates for Cx, Cz, and Py. This will produce samples of N

estimates for Cx, Cz, and Py, respectively. We will use the mean of each sample as an

estimate of the total bias in the method. The standard deviation of the sample yields

the statistical uncertainty of each outcome in the sample. The latter is important

for the maximum likelihood method where we need an independent estimate of the

statistical uncertainty of each Cx, Cz, and Py.

We setup a generator to generate events distributed according to the polarized

cross section of the reaction −→γ p→ K+−→Λ . During the generation, we ensured that the

number of events with positive and negative beam helicities were the same. Then, we

randomly produced values of the polarization observables Cx, Cz, and Py in reasonable

ranges derived from the experiment (Cx: [0, 0.15], Cz: [0.5, 1], and Py: [-0.4, 0]),
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and input these values into the polarized differential cross section. Next, we let

the generated data pass through the detector simulation and analyzed them as we

did real data. Then, the helicity dependent observables Cx and Cz were extracted

using the three different methods described earlier, while the helicity independent

observable Py was extracted only using the maximum likelihood method. Totally,

we generated 6000 experiments, with 1 million events in each experiment, i.e., we

obtained 6000 estimates for Cx, Cz, and Py. Figure 5.3 shows distributions of the

differences between the 6000 extracted values with the fitting methods and the values

put in the generator (true values) for Cx and Cz, separately. Table 5.1 lists the means

and the standard deviations of the means of the difference distributions. One can see

that of all the methods the 1D fit method is biased the most. The estimate of Cx is

about 261 standard deviations from zero. Cz has a smaller but still significant bias

that is about 22 standard deviations from zero. The biases in the 2D fit method are

about 20 standard deviations from zero (for Cx) and about 30 standard deviations

from zero (for Cz). For both observables, the bias of the maximum likelihood method

is an order of magnitude smaller than that of the 2D fit. For Cx the bias is about

10 standard deviations from zero, while for Cz it is about 6 standard deviations

from zero. This residual bias can be explained by the fact that an unnormalized

probability density function (PDF) was used in the fits. In a normalized PDF the

normalization constant would depend on the polarization observables, due to the non-

constant detector acceptance. The biases of the observables estimated via the ML

method will be reported as systematic uncertainties. We choose to rather not correct

the observables for the bias due to the uncertainties of the CLAS acceptance.

The results of the simulated studies are consistent with the conclusions of the

analytical studies. Our overall conclusion is that the 1D fit method is biased due

to the effect of the acceptance. The bias is especially large for Cx and cannot be

neglected. Biases can be significantly reduced if the observables are extracted by

71



Table 5.1: Means and standard deviations of the means of distributions over the
differences between Cx and Cz values extracted by the different fitting methods and
the true values of Cx and Cz.

Fitting Method ∆Cx ± σ∆Cx
∆Cz ± σ∆Cz

∆Py ± σ∆Py

1D 0.14085±0.00054 -0.01108±0.00050 —
2D 0.01030±0.00052 -0.01647±0.00051 —

Maximum Likelihood 0.00486±0.00048 -0.00261±0.00046 0.00803 ± 0.00043

the maximum likelihood method. All of our final results were extracted by the ML

method.
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Figure 5.3: Differences between the extracted and true values for Cx (left) and Cz
(right). The red lines show difference distributions with estimates from the 1D
method, the green lines show difference distributions with estimates from the 2D
fit method, and the blue lines are difference distributions with estimates from the
maximum likelihood method.

To prove that the observed biases of the observable-extraction methods were in-

deed caused by the CLAS acceptance, we compared estimates of Cx, Cz, and Py

obtained by the three methods from analysis of simulated data affected and not af-

fected by the CLAS acceptance. The estimates from data affected by the CLAS

acceptance were taken from the study described above. To obtain estimates from

data not affected by the CLAS acceptance, we generated the data using the same

generator as described above, but did not let the generated data pass through the

detector simulation, rather we directly extracted the observables using the three dif-

ferent methods. Combining both sets of estimates, we obtained the biases of the
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observable-extraction methods due only to detector acceptance. The comparison is

show in Fig. 5.4. Biases are negligible for the case of ideal (constant) acceptance.

However, when the data are subjected to the CLAS acceptance, the estimates of the

observables are biased and the different methods cause different amounts of bias.
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Figure 5.4: Means of differences between 6000 extracted values and true values with
and without consideration of the CLAS acceptance for Cx (solid circles), Cz (solid
squares), and Py (open circles). The red color is used for estimates without consider-
ation of the acceptance, while the blue color is used for estimates with consideration
of the acceptance. The black horizontal line shows the y-value of zero.

5.2 Statistical Uncertainties of Cx, Cz, and Py

Our estimates of Cx, Cz, and Py for each kinematic bin are obtained as a set of

parameters that maximizes the total log-likelihood function desribed in Eq. (5.4).

Since the function is complicated, analytical solutions of the estimates cannot be

obtained. Therefore, the fit was done numerically, by the use of the software analysis

package ROOT [62]. In the software, we set the log-likelihood function as

logL = −
n+∑
i=1

log[(1 + p1 cos θix + p2 cos θiz + p3 cos θiy)wi]

−
n−∑
j=1

log[(1− p1 cos θjx − p2 cos θjz + p3 cos θjy)wj],
(5.20)
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where p1 represents αCx, p2 represents αCz, and p3 represents αPy. The ROOT

class “TFitterMinuit” [63] was applied to find a set of values of p1, p2, and p3 that

maximizes Eq. (5.20). From the solutions p1, p2, and p3, the observables are obtained

as



Cx = p1
α

Cz = p2
α

Py = p3
α
.

(5.21)

The statistical uncertainties of the observables should reflect the counting statistics

in the K+Λn FSI event yields. Thus, the statistical uncertainties of the observables

are obtained by propagating the statistical uncertainties of p1, p2, and p3 as follows



σCx = σp1
α

σCz = σp2
α

σPy = σp3
α
,

(5.22)

where σp1 , σp2 , and σp3 are the statistical uncertainties of the fit parameters returned

by “TFitterMinuit”.

To test that the statistical uncertainties of the Cx, Cz, and Py extracted from

the maximum likelihood method are reasonable, a study using simulated data was

performed. The same generator used in the study described in section 5.1 was applied

to generate events. Then, Cx, Cz, and Py were extracted by the maximum likelihood

method. Totally, 12 sets of experiments were implemented, and each set included

6000 experiments. The number of experimental events for each set was 40, 80, 100,

400, 700, 1K, 3K, 10K, 100K, 400K, 700K, and 1M.

For each set of experiments, a distribution of the differences between the 6000

extracted values and the true values of Cx, Cz, and Py (see Figures 5.5, 5.6, and 5.7)

was constructed and fitted to a Gaussian function. The standard deviation of each
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distribution is an estimate of the statistical uncertainty of each outcome in the sample

and this is the value we compared to the statistical uncertainty obtained from the ML

fits. Figures 5.5, 5.6, and 5.7 show that the difference distributions were Gaussian

distributions except for the first experimental set due to the low statistics in each

experiment. Therefore, we excluded this set from further analysis. To determine the

dependence of the statistical uncertainty of one estimate on the number of events

in the experiment, we plotted the standard deviation as a function of the number of

events in an experiment. This was done individually for Cx, Cz, and Py (see Fig. 5.8).

The correlations were then fitted to exponentials

f(x) = [0]x−[1] + [2], (5.23)

where [0], [1], and [2] are free parameters determined from the fits.

The fit parameters of the exponentials describing the statistical uncertainties of

Cx, Cz, and Py, are shown in Fig. 5.8 top, middle, and bottom, respectively. Then,

for an experiment where Cx, Cz, and Py are determined from a sample with a number

of events x, the statistical uncertainty, σstd, of each observable can be obtained by

using Eq. (5.23). Relative differences (σest − σstd)/σstd for each set of simulated

experiments were calculated and are shown in Fig. 5.9. The relative differences are

close to zero, especially when the number of sample events is between a hundred and

a few thousand. Statistics for kinematic bins of the real data is located in this range.

Thus, the statistical uncertainties for Cx, Cz, and Py extracted by the maximum

likelihood method are reliable and the data in this work are reported with these

uncertainties.
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Figure 5.5: 12 difference distributions between the values extracted by the maximum
likelihood method and the true values for Cx. The red lines show fits to Gaussian
functions.

76



-1 -0.5 0 0.5 10

50

100

Set 1: 40 events
Constant  1.9±   121 

Mean      0.00529± 0.02462 

Sigma     0.0037± 0.3867 

Set 1: 40 events

-1 -0.5 0 0.5 10

50

100

150

200 Set 2: 80 events
Constant  2.7± 169.2 

Mean      0.003714± 0.003604 

Sigma     0.0027± 0.2792 

Set 2: 80 events

-1 -0.5 0 0.5 10

50

100

150

200
Set 3: 100 events

Constant  3.0± 188.7 

Mean      0.0032998± 0.0008661 

Sigma     0.0024± 0.2509 

Set 3: 100 events

-1 -0.5 0 0.5 10

100

200

300

400
Set 4: 400 events

Constant  6.1± 387.3 

Mean      0.0015982± -0.0007721 

Sigma     0.0011± 0.1229 

Set 4: 400 events

-1 -0.5 0 0.5 10

200

400

Set 5: 700 events
Constant  8.1± 508.1 

Mean      0.0012171± -0.0008845 

Sigma     0.00087± 0.09379 

Set 5: 700 events

-1 -0.5 0 0.5 10

200

400

600
Set 6: 1000 events

Constant  9.6±   610 

Mean      0.001014± 0.000644 

Sigma     0.00071± 0.07805 

Set 6: 1000 events

-0.1 -0.05 0 0.05 0.1

50

100

Set 7: 3000 events
Constant  1.8± 107.8 

Mean      0.0006166± 0.0007915 

Sigma     0.00054± 0.04353 

Set 7: 3000 events

-0.1 -0.05 0 0.05 0.10

50

100

150

200
Set 8: 10000 events

Constant  3.0± 190.8 

Mean      0.0003238± -0.0001311 

Sigma     0.00023± 0.02476 

Set 8: 10000 events

-0.1 -0.05 0 0.05 0.10

200

400

600
Set 9: 100000 events

Constant  9.6± 613.4 

Mean      1.010e-04± -2.607e-05 

Sigma     0.000070± 0.007764 

Set 9: 100000 events

-0.1 -0.05 0 0.05 0.10

500

1000

Set 10: 400000 events
Constant  19.1±  1218 

Mean      5.085e-05± 3.921e-05 

Sigma     0.000035± 0.003927 

Set 10: 400000 events

-0.1 -0.05 0 0.05 0.10

500

1000

1500
Set 11: 700000 events

Constant  24.9±  1592 

Mean      3.882e-05± 4.383e-05 

Sigma     0.000027± 0.003003 

Set 11: 700000 events

-0.1 -0.05 0 0.05 0.10

500

1000

1500

Set 12: 1000000 events
Constant  29.2±  1860 

Mean      3.343e-05± -1.506e-05 

Sigma     0.00002± 0.00257 

Set 12: 1000000 events

Co
un

ts
	  

Czesti
� Cztrue

Figure 5.6: 12 difference distributions between the values extracted by the maximum
likelihood method and the true values for Cz. The red lines show fits to Gaussian
functions.
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Figure 5.7: 12 difference distributions between the values extracted by the maximum
likelihood method and the true values for Py. The red lines show fits to Gaussian
functions.
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Figure 5.8: Dependence of the statistical uncertainty, σstd, of Cx (top), Cz (middle),
and Py (bottom) on the number of sample events. The values of σstd are the standard
deviations of distributions of 6000 observable estimates, which were obtained from
simulated experiments (see text). The red curves show exponential fits.

5.3 Determination of Cx, Cz, and Py for the Quasi-Free Mechanism

Axis Convention

For the QF mechanism of −→γ d → K+−→Λn, the neutron bound in the deuteron is a

spectator, so the reaction can be simplified into −→γ p→ K+−→Λ . Figure 5.10 shows the

axis convention of this reaction, which is defined in center-of-mass system (CMS).

The reaction takes place in a single plane, also called the production plane, defined

by the photon and K+ momenta. The z-axis points in the direction of the incoming

photon. The y-axis is in the direction of the vector product of the photon and the K+
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Figure 5.9: Relative differences between the statistical uncertainties of Cx (top), Cz
(middle), and Py (bottom) obtained from TFitterMinuit and from a large number
of experiments (see text for more detail). The number of experiment set on the x-
axis corresponds to different number of sample events as shown on Figures 5.5, 5.6,
and 5.7. The black lines are drawn to show visually the y-value of zero.

CM momenta. The x-axis complements z and y to a right-handed reference frame.

In Fig. 5.10, θKCM is the angle between the γ and K+ momenta. θx, θy, and θz,

which are defined in the Λ rest frame, denote directions of the momentum vector of

the decay proton in the xyz system. Axis conventions, which are not unique, are

important for the extraction of Cx, Cz, and Py. The axis convention we adopted was

suggested in [64] and is the same as the convention used for the previously published

CLAS results on −→γ p→ K+−→Λ from the g1c experiment [30, 35]. This will enable us

to compare our results to the published results.
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Figure 5.10: Definition of coordinate system for the determination of the observables
Cx, Cz, and Py for quasi-free K+Λ photoproduction off the bound proton. The
observables are reported in bins of Eγ and the kaon polar angle in CM, θKCM .

Kinematic Bins

For the extraction of the polarization observables for the QF mechanism, data were

binned in two layers. The first layer contains two independent kinematical variables

describing the reaction −→γ p → K+−→Λ , Eγ and cos θKCM . The second layer contains

two variables that characterize the Λ decay, cos θx and cos θz. Additionally, the data

were binned in photon helicity. For each bin in Eγ and cos θKCM , data were binned

in cos θx, cos θz, and photon helicity.

During the extraction of Cx, Cz, and Py, firstly we binned the QF data as described

above, and then for each bin we performed background subtraction using the MM

distribution for that bin. This procedure allowed us to determine the weight of each

event in the data sample. Secondly, cos θx, cos θy, cos θz, and the weight of each event

were input into the PDF of the maximum likelihood method (see Eq. (5.4)) according

to the photon helicity for that event. After inputing all events for a given kinematic

bin, Cx, Cz, and Py were extracted. Our QF results of Cx, Cz, and Py are then
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reported in bins of Eγ and cos θKCM .

The bin width is important for the extraction of observables due to the statistical

limitation of the dataset. The common idea would be to set the same width for each

bin. However, that would lead to statistics in some bins that is too low to implement

the background subtraction method. To avoid this situation, a technique was applied

to make all Eγ and cos θKCM bins have similar statistics. Figure 5.11 shows the setup

of bins for fixed Eγ, while Fig. 5.12 shows the setup of bins for fixed cos θKCM . The

data were binned in 16 bins in Eγ and in 10 bins in cos θKCM . Additionally, the ranges

of cos θx and cos θz are both from −1 to 1, and the bin width for these variables is

0.5. With 2560 bins for each photon helicity, the total number of bins is thus 5120.

Background subtraction using the MM distributions (see section 4.4) was applied for

each of these bins.
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Figure 5.11: Choice of kinematic binning for the extraction of Cx, Cz, and Py for the
quasi-free mechanism of the reaction −→γ d → K+−→Λn. The bin widths are chosen so
that the bins contain similar number of events. Each red box corresponds to one bin.
This binning allows to obtain the observables as a function of cos θKCM for fixed Eγ.
One can also see the CLAS angular and energy coverage for that mechanism. The
data cover cos θKCM range from −0.9 to 0.8 and photon energy range from 0.9 GeV
to 2.54 GeV.
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Figure 5.12: Choice of kinematic binning for the extraction of Cx, Cz, and Py for the
quasi-free mechanism of the reaction −→γ d → K+−→Λn. The bin widths are chosen so
that the bins contain similar number of events. Each red box corresponds to one bin.
This binning allows to obtain the observables as a function of Eγ for fixed cos θKCM .

Results

Figures 5.13, 5.14, and 5.15 show the quasi-free-mechanism Cx, Cz, and Py as func-

tions of cos θKCM for fixed Eγ, respectively. The results suggest that:

• Generally, Cx is independent of cos θKCM at low Eγ, and the variations of Cx

become larger as Eγ increases.

• Cz is close to 1 and is independent of cos θKCM at lower Eγ. However, at higher

Eγ, Cz has a lower value at low cos θKCM , and it generally increases from this

lower value to 1 as cos θKCM increases.

• Py decreases as cos θKCM increases except for some points at high Eγ and low

cos θKCM .

Figures 5.16, 5.17, and 5.18 show Cx, Cz, and Py as a function of Eγ at fixed

cos θKCM bins. The results suggest that:
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Figure 5.13: Cx as a function of cos θKCM at fixed Eγ for the quasi-free mechanism
of the reaction −→γ d → K+−→Λn. The cos θKCM values at which our results for Cx are
reported, are the averages of the cos θKCM values of all the events in the corresponding
Eγ and cos θKCM bins.
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Figure 5.14: Cz as a function of cos θKCM at fixed Eγ for the quasi-free mechanism
of the reaction −→γ d → K+−→Λn. The cos θKCM values at which our results for Cz are
reported, are the averages of the cos θKCM values of all the events in the corresponding
Eγ and cos θKCM bins.
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Figure 5.15: Py as a function of cos θKCM at fixed Eγ for the quasi-free mechanism
of the reaction −→γ d → K+−→Λn. The cos θKCM values at which our results for Py are
reported, are the averages of the cos θKCM values of all the events in the corresponding
Eγ and cos θKCM bins.
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• Generally, Cx has a strong dependence on Eγ for all angular bins up to cos θKCM

of 0.5. For cos θKCM above 0.5, Cx has a much weaker dependence on Eγ.

• Cz has a strong dependence on Eγ up to cos θKCM of 0.35. For cos θKCM between

0.35 and 0.52, Cz is practically constant with Eγ. For cos θKCM above 0.52, one

observes Cz to decrease as Eγ becomes larger than about 1.8 GeV. Overall Cz

is large and positive for all kinematic bins.

• At the very backward cos θKCM bin, Py shows a peak-like Eγ dependence. Above

cos θKCM of −0.13, Py is a smooth function of Eγ. It increases as Eγ increases

for cos θKCM up to 0.52 and is practically constant with Eγ for cos θKCM larger

than 0.52.

The three polarization observables for K+Λ production off the free nucleon are

related by the expression

R ≡
√
C2
x + C2

z + P 2
y ≤ 1 (5.24)

as pointed out in [65]. The expression only places an upper limit on R and does

not constrain R to a specific value. It is interesting to construct R from our results

for Cx, Cz, and Py for two reasons. First, R serves as a systematic check of the

analysis. If the data yield R values systematically above the upper limit, it would

mean that there is a source of systematic error that needs to be eliminated. Second,

previously published CLAS results for Cx, Cz, and Py for K+Λ photoproduction off

the free proton suggested that R = 1 across all angles and kinematics covered in the

g1c experiment [30]. It would be interesting to check if the reaction off the bound

proton would yield a similar result.

Figure 5.19 shows R as a function of θKCM at fixed Eγ. Our results satisfy the

relationship of Eq. (5.24). Basically, R is close to 1 at low Eγ. However, at high

87



 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [-1, -0.13]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [-0.13, 0.036]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.036, 0.16]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.16, 0.26]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.26, 0.35]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.35, 0.44]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.44, 0.52]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.52, 0.6]KCMθcos

 (GeV)γE
1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.6, 0.68]KCMθcos

 (GeV)γE1 1.5 2 2.5

x
C

-0.4
-0.2

0
0.2
0.4 : [0.68, 1]KCMθcos

Figure 5.16: Cx as a function of Eγ at fixed cos θKCM for the quasi-free mechanism of
the reaction −→γ d→ K+−→Λn. The Eγ values at which our results for Cx are reported,
are the averages of the Eγ values of all the events in the corresponding Eγ and
cos θKCM bins.

Eγ, R is less than 1 at low θKCM , and it generally increases from lower value to 1 as

θKCM increases.

Figure 5.20 shows our results for R as a function of Eγ in fixed θKCM bins. Our

results satisfy Eq. (5.24), which means that our data pass successfully this system-

atic test. The kinematical dependence of R is interesting as our results are indeed

consistent with 1, but only for some kinematics, mainly at lower energies. At Eγ

between 1.5 GeV and 1.9 GeV, R is consistent with 1 only at forward and backward

angles and is smaller than 1 at mid-angles. Above 1.9 GeV, R is consistent with 1

only at forward angles. An in-depth study of the observed discrepancies between the

g1c and the g13 results is not a subject of this work, although some potential causes

of systematic bias in the g1c results are discussed here.
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Figure 5.17: Cz as a function of Eγ at fixed cos θKCM for the quasi-free mechanism of
the reaction −→γ d→ K+−→Λn. The Eγ values at which our results for Cz are reported,
are the averages of the Eγ values of all the events in the corresponding Eγ and
cos θKCM bins.

5.4 Determination of Cx, Cz, and Py for Final-State Interactions

Axis Convention

Figure 5.21 shows the axis convention we adopted for the determination of polariza-

tion observables for FSI of −→γ d→ K+−→Λn. This convention is exactly the same as the

one used in the theoretical calculation [6] of Cx, Cz, and Py. The axes are defined in

the lab frame. The z-axis points in the direction of the incoming photon, −→p γ. The

y-axis is in the direction of the vector product −→p γ ×−→p K+ . The x-axis complements

z and y to a right-handed reference frame. θK is the angle between −→p K+ and the z

axis. θ′Λ is the angle between the Λ momentum, −→p Λ, and the momentum transferred
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Figure 5.18: Py as a function of Eγ at fixed cos θKCM for the quasi-free mechanism of
the reaction −→γ d→ K+−→Λn. The Eγ values at which our results for Py are reported,
are the averages of the Eγ values of all the events in the corresponding Eγ and
cos θKCM bins.

to the Λn system.

Kinematic Bins

Similar to the analysis of the quasi-free events, data for FSI were binned in two layers.

The first layer contains kinematic variables of −→γ d → K+−→Λn, such as Eγ, θ
′
Λ, pK ,

θK , and the invariant mass of Λn (IMΛn). The choice of variables is driven by the

physics motivating the determination of observables in this study, access to Λn elastic

scattering dynamics. The variables θ′Λ and IMΛn characterize the reaction Λn→ Λn,

where the former is the hyperon scattering angle with respect to −→p Λ + −→p n and the

latter is the total center-of-mass energy in the Λn system. The other three variables,
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Figure 5.19: R as a function of cos θKCM at fixed Eγ for the quasi-free mechanism
of the reaction −→γ d → K+−→Λn. The cos θKCM values at which our results for R are
reported, are the averages of the cos θKCM values of all the events in the corresponding
Eγ and cos θKCM bins. The black lines are drawn to visually show R = 1.
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Figure 5.20: R as a function of Eγ at fixed cos θKCM for the quasi-free mechanism of
the reaction −→γ d→ K+−→Λn. The Eγ values at which our results for R are reported, are
the averages of the Eγ values of all the events in the corresponding Eγ and cos θKCM
bins. The black lines are drawn to visually show R = 1.

Eγ, θk, and pk, characterize the first-step mechanism, γp→ K + Λ. The second layer

of variables is the same as in the QF analysis, and contains variables specific to the

extraction of observables, such as photon helicity, cos θz, and cos θx.

Since the reaction of interest involves a three-body final state, it is described kine-

matically by five independent kinematic variables. Thus, the polarization observables

are five-fold differential. Ideally, they would be extracted from data in simultaneous

bins of five variables. Due to the limited statistics of the g13a sample, we could not

bin the FSI data in five kinematic variables, and our results of Cx, Cz, and Py are

one-fold and two-fold differential estimates. It must be noted that the limitation to

the number of variables in the first binning layer originates mostly by the statistics

requirements of the background procedure combined with the fact that events in each
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Figure 5.21: Axis convention used in the extraction of polarization observables for
final-state interactions in the reaction −→γ d → K+−→Λn. Observables are reported in
bins of Eγ, θ

′
Λ, pK , θK , and IMΛn. The cosine directions of the proton momentum in

the Λ rest frame are used during the extraction of Cx, Cz, and Py.

bin in the first layer need to be binned simultaneously in all the variables in the sec-

ond layer. Background is then subtracted for any individual kinematic bin resulting

from the two layers of variables. The number of variables in the first layer could be

increased up to four if the background subtraction procedure is not applied or the

background is determined by other means.

For one-fold differential estimates, the data were divided into 10 bins in Eγ, θ
′
Λ,

pK , θK , and IMΛn, separately. For two-fold differential estimates, the data were

divided into 5×5 bins in θ′Λ and one of Eγ, pK , θK , and IMΛn. The same technique as

used in the quasi-free analysis to make all bins have similar statistics, was also applied

here. In order to determine the probability of each event being a signal event, the

MM background subtraction (as described in section 4.4) was performed for each bin.
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Results

One-fold Differential Estimates

Figure 5.22 shows event distributions and binning over Eγ, θ
′
Λ, pK , θK , and IMΛn for

the extraction of one-fold differential estimates of Cx, Cz, and Py. Figure 5.23 shows

Cx, Cz, and Py as a function of each kinematic variable. The red points are for Cx,

the blue points are for Cz, and the green points are for Py. The results suggest that:

• Cx is small and varies around 0.

• Cz varies between 0.4 and 0.8

• Py varies between -0.4 and 0.1.

• Overall, Cx, Cz, and Py have a weaker dependence on Eγ than on any other

kinematic variable.

For the extraction of a spin-averaged Λn scattering length, estimates of observables

in the range of IMΛn from 2.05 GeV/c2 to 2.1 GeV/c2 are needed [27]. However, the

statistics of our data is too low in this range to implement the background subtraction

method. Figure 5.24 shows that the signal of −→γ d→ K+−→Λn is very nearly background

free in the IMΛn range of interest. Thus, the observables were extracted after a MM

cut was applied. Figure 5.25 shows Cx, Cz, and Py as a function of IMΛn. The

data points have adequate statistical uncertainties for further physics analysis. The

results suggest that Cx, Cz, and Py are weekly dependent on IMΛn in the limited

IMΛn range. We need to point out that fits to each observable, Cx, Cz, or Py, are

not expected to yield the same scattering length since the observables are different

combinations of the Λn helicity amplitudes.
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Figure 5.22: Event distributions and binning over Eγ (top left), θ′Λ (top right), pK
(middle left), θK (middle right), and IMΛn (bottom left) for the extraction of one-fold
differential estimates of Cx, Cz, and Py. The vertical red lines show the upper and
the lower limits of the kinematic bins into which the data were divided. The widths
of the bins were chosen such that the bins contained similar statistics.

Two-fold Differential Estimates

Figures 5.26 and 5.27 show the setup of kinematic binning in Eγ and θ
′
Λ and our

results for Cx, Cz, and Py as a function of θ′Λ at fixed Eγ, respectively. Our results

show that

• Generally, Cx has a weaker dependence on θ′Λ at low Eγ, and the variations of

Cx become larger as Eγ increases.

• Cz decreases as θ′Λ increases at lower Eγ. However, at higher Eγ, Cz has a

weaker dependence on θ′Λ.
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Figure 5.23: Cx, Cz, and Py as a function of Eγ (top left), θ′Λ (top right), pK (middle
left), θK (middle right), and IMΛn (bottom left) for FSI of the reaction−→γ d→ K+−→Λn.
The red points show Cx, the blue points show Cz, and the green points show Py.

• Overall, Py decreases firstly and then increases as θ′Λ increases for all Eγ.

Figures 5.28 and 5.29 show the setup of kinematic bins in pK and θ
′
Λ and our

results for Cx, Cz, and Py as a function of θ′Λ for fixed pK , respectively. Our results

show that

• Overall, Cx varies around 0, and the variations on θ
′
Λ become larger as pK

increases.

• Overall, Cz decreases as θ′Λ for all pK . However, the variation degree becomes

lower as pK increases.
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Figure 5.26: Setup of kinematic bins in Eγ and θ
′
Λ for the FSI data. Each red

box corresponds to one bin. Data do not seem to show any significant kinematic
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Figure 5.27: Cx, Cz, and Py as a function of θ′Λ for fixed Eγ. The red points are for
Cx, the green points are for Cz, and the blue points are for Py.
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• Overall, Py decreases firstly and then increases as θ′Λ increases for all pK .
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Figure 5.28: Setup of kinematic bins in pK and θ′Λ for the FSI data. Each red box
corresponds to one bin. The upper limit of pK increases first and then decreases
as θ′Λ increases, while the lower limit of pK decreases first and then increases as θ′Λ
increases.
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Figure 5.29: Cx, Cz, and Py as a function of θ′Λ for fixed pK . The red points are for
Cx, the green points are for Cz, and the blue points are for Py.

Figures 5.30 and 5.31 show the setup of kinematic bins in θK and θ
′
Λ and our

results for Cx, Cz, and Py as a function of θ′Λ for fixed θK , respectively. Our results

show that
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• Generally, Cx decreases slowly as θ′Λ increases at lower θK , while Cx increases

slowly first and then decreases slowly as θ′Λ increases at higher θK .

• Generally, Cz decreases as θ
′
Λ increases for all θK .

• Generally, Py increases as θ′Λ increases at all θK .
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Figure 5.30: Setup of kinematic bins in θK and θ
′
Λ for the FSI data. Each red box

corresponds to one bin. The upper limit of θK increases first and then decreases as
θ
′
Λ increases, while the lower limit of θK decreases as θ′Λ increases.
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Figure 5.31: Cx, Cz, and Py as a function of θ′Λ for fixed θK . The red points are for
Cx, the green points are for Cz, and the blue points are for Py.
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Figures 5.32 and 5.33 show the setup of kinematic bins in IMΛn and θ′Λ and our

results for Cx, Cz, and Py as a function of θ′Λ for fixed IMΛn, respectively. Since the

distribution of IMΛn significantly depends on MM (see Fig. 5.24), the bin setup for

this specific two-fold differential estimates was processed after applying a wide MM

cut around the mass of neutron, otherwise the statistics of some θ′Λ bins would be

too low for the application of the background subtraction method at the next step of

the analysis. This wide MM cut was applied only for the setup of kinematic bins and

was removed during background subtraction and extraction of the observables. Our

results show that

• Overall, Cx varies around 0 and has a weak dependence on θ′Λ for all IMΛn.

• Overall, Cz decreases as θ
′
Λ increases for all IMΛn.

• Overall, Py decreases first and then increases as θ′Λ increases at lower IMΛn,

while Py increases first and then decreases as θ′Λ increases at higher IMΛn.
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Figure 5.32: Setup of kinematic bins in IMΛn and θ′Λ for the FSI data. Differently
from the setups of kinematic bins for other two-fold differential estimates, the data
are binned over these two kinematic variables after MM cut is applied since IMΛn
has a strong dependence on MM. Each red box corresponds to one bin. The upper
limit of IMΛn increases as θ′Λ increases, while the lower limit of IMΛn increases first
and then decreases as θ′Λ increases.
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Figure 5.33: Cx, Cz, and Py as a function of θ′Λ for fixed IMΛn. The red points are
for Cx, the green points are for Cz, and the blue points are for Py.
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Chapter 6

Systematic Uncertainties

The total uncertainty of each of our estimates of Cx, Cz, and Py has two components:

a statistical uncertainty and a systematic uncertainty. The error bars of each of our

estimates for Cx, Cz, and Py shown in any figure in this document reflect the statistical

uncertainty of that estimate, which is determined by the counting statistics in each

bin. Systematic uncertainties are independent of the number of signal events in a

bin, and are more concerned with effects that could introduce random biases in our

results. This chapter describes our studies to estimate the systematic uncertainties

of Cx, Cz, and Py from various sources.

In general, to estimate the systematic uncertainty originating from our specific

choice of the various cuts described in Chapter 4, we extracted the same set of ob-

servables by applying a narrower range of the cut under study. The full analysis was

performed, including background subtraction. This procedure yielded a new sample

of estimates for each observable. The mean value of the distribution over the relative

difference between the new and the nominal estimates is then reported as the sys-

tematic uncertainty of that observable due to the cut under study. Data points over

cos θKCM for fixed Eγ for the quasi-free mechanism and data points over θ′Λ for fixed

pK for the final-state interactions (185 data points in total) are included together in

the relative-difference distributions. Further details are given in the following sec-

tions.
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6.1 Acceptance

The study described in section 5.1 established that the acceptance of CLAS had

different effects on observables extracted with different methods. Most importantly,

it was found that the maximum likelihood method is a subject to small biases that

are acceptance dependent. As shown in Table 5.1, the biases of Cx, Cz, and Py caused

by the maximum likelihood method are 0.00486, -0.00261, and 0.00803, respectively.

To estimate the corresponding systematic uncertainties, we calculated the relative

differences (Obsext − Obstrue)/Obstrue, where Obs stands for Cx, Cz, or Py. For each

of the 6000 experiments, we obtained one value of the relative difference for each

observable. The distribution of the 6000 relative differences for Cx, Cz, and Py,

are shown in Fig. 6.1 left, middle, and right, respectively. The mean value of each

distribution is reported as a systematic uncertainty of the corresponding observable

due to the CLAS acceptance. The uncertainties of Cx, Cz, and Py are 5.5%, 0.3%, and

3.5%, respectively. Alternatively, one could use the mean values shown in Fig. 6.1 to

correct our estimates of the observables and to eliminate the bias. However, one needs

to remember that the simulated CLAS acceptance is not necessarily consistent with

the true CLAS acceptance. Moreover, the discrepancies between the simulated and

the true acceptance can vary with kinematic bins. In this situation, correcting the

data for the deviations observed in Fig. 6.1 would not be a good approach. Rather,

we consider the deviations to be representative of the magnitudes of the biases due

to detector acceptance and, therefore, report them as systematic uncertainties. This

uncertainty could eventually be reduced by using a normalized probability density

function in the maximum likelihood method.
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Figure 6.1: Distributions of relative difference (Obsext−Obstrue)/Obstrue for Cx (left),
Cz (middle), and Py (right). The values in the distributions are obtained from simula-
tions of 6000 independent experiments as described in section 5.1. The mean value of
each distribution is denoted by µ and is shown on each figure. We report each of these
values as the systematic uncertainty due to detector acceptance of the corresponding
observable.

6.2 Fiducial Cuts

Since the efficiency of particle detection in the CLAS drift chambers decreases to zero

at the detector boundaries, it is necessary to estimate the effect of varying acceptance

in these regions on our results. In order to quantify the effect, observables were

estimated from a data sample in which the boundaries of the CLAS detector, where

the acceptance strongly varied, were removed. These results were then compared

with our nominal results. Events detected at the boundary regions were removed by

applying fiducial cuts [55] to our data sample. Since the fiducial area of the CLAS

depends on particle charge and type, we applied different fiducial cuts for the K+, p,

and π− (see Fig. 6.2 for an example of fiducial cuts).

Figure 6.3 shows distributions of the relative differences between the nominal

estimates of Cx, Cz, and Py (without fiducial cuts) and the estimates obtained with

fiducial cuts. The distributions are well described by Gaussian functions and the mean

values are reported as systematic uncertainties due to the varying CLAS acceptance

in the fiducial regions. The uncertainty is 0.1%, 0.3%, and 0.1% for Cx, Cz, and Py

respectively.
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Figure 6.2: Fiducial cuts (indicated by the solid red lines) for protons with momenta
between 0.4 GeV/c and 0.8 GeV/c. Only events within the red solid lines were kept
for further analysis. The fiducial cuts were determined in [55]. The red lines show
the cut ranges.
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Figure 6.3: Distributions of the relative differences of observables estimated without
(nominal values) and with applied fiducial cuts. The relative difference is defined
as (Obs − ObsFC)/Obs, where Obs denotes our nominal estimate of Cx, Cz, or Py,
and ObsFC denotes the estimate with applied fiducial cuts. The left figure is for Cx,
the middle figure is for Cz, and the right figure is for Py. The red lines show fits to
Gaussian functions. The mean value of each distribution is reported as the systematic
uncertainty of the corresponding observable due to varying CLAS acceptance at the
fiducial boundaries.
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6.3 Particle Identification

The systematic uncertainty due to our specific choice of PID cuts is quantified by

comparing our nominal estimates of Cx, Cz, and Py (obtained with 3σ ∆β PID cuts

for K+ and p and ±0.2 cut for π−) to estimates obtained with 2σ ∆β PID cuts for

K+ and p and ±0.05 cut for π− (see section 4.1 for details on the PID method).

Figure 6.4 shows ∆β as a function of momentum for proton candidates with the 3σ

and the 2σ PID cuts shown by the solid red and black lines, respectively. A 3σ cut

would allow more events from the tails of the ∆β vs. momentum distribution in the

sample. Similarly, 2σ PID cut was applied to select K+ tracks. The cut range of

∆β changed from ±0.2 to ±0.05 for the π− PID. The three narrower PID cuts were

applied simultaneously.
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Figure 6.4: ∆β as a function of momentum with 3σ and 2σ cuts for proton PID. The
red curves show the 3σ cut, and the black curves show the 2σ cut.

Figure 6.5 shows distributions of relative differences between our nominal esti-

mates for Cx, Cz, and Py and estimates obtained with narrower PID cuts. The

distributions are well described by Gaussian functions. The mean value of each dis-

tribution is reported as the systematic uncertainty of the corresponding observable

due to our specific choice of PID cut. The uncertainty is 2.7%, 2.7%, and 0.2% for
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Cx, Cz, and Py, respectively.
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Figure 6.5: Distributions of the relative differences of observables estimated with a
broader PID selection cut (nominal values) and with a narrower PID selection cut.
The relative difference is defined as (Obs − Obsnarr)/Obs, where Obs denotes our
nominal estimate of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower
PID cut. The left figure is for Cx, the middle figure is for Cz, and the right figure is for
Py. The red lines show fits to Gaussian functions. The mean value of each distribution
is reported as the systematic uncertainty of the corresponding observable due to our
specific choice of PID selection cuts.

6.4 Vertex Cut

To estimate the uncertainty due to our specific choice for the range of the vertex cut,

the latter was varied from [-40, 0] cm (nominal range) to [-39, 1] cm. Figure 6.6 shows

distributions of relative differences between our nominal estimates for Cx, Cz, and

Py and estimates obtained with the narrower vertex cut. The distributions are well

described by Gaussian functions. The mean value of each distribution is reported

as the systematic uncertainty of the corresponding observable due to our specific

choice of the vertex cut. The uncertainty is 1.4%, 0%, and 0.1% for Cx, Cz, and Py,

respectively.

6.5 Photon Selection

In order to quantify the systematic uncertainty due to our specific choice of a cut range

for photon selection, the cut was varied from ±1 ns (our nominal cut) to ±0.6 ns.

Figure 6.7 shows distributions of relative differences between our nominal estimates
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Figure 6.6: Distributions of the relative differences of observables estimated with
a broader vertex cut (nominal values) and with a narrower vertex cut. The relative
difference is defined as (Obs−Obsnarr)/Obs, where Obs denotes our nominal estimate
of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower vertex cut. The
left figure is for Cx, the middle figure is for Cz, and the right figure is for Py. The
red lines show fits to Gaussian functions. The mean value of each distribution is
reported as the systematic uncertainty of the corresponding observable due to our
specific choice of the vertex cut.

for Cx, Cz, and Py and estimates obtained with the narrower photon selection cut.

The distributions are well described by Gaussian functions. The mean value of each

distribution is reported as the systematic uncertainty of the corresponding observable

due to our specific choice of the photon selection cut. The uncertainty is 0.1%, 0.3%,

and 0.1% for Cx, Cz, and Py, respectively.
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Figure 6.7: Distributions of the relative differences of observables estimated with a
broader photon selection cut (nominal values) and with a narrower photon selection
cut. The relative difference is defined as (Obs−Obsnarr)/Obs, where Obs denotes our
nominal estimate of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower
photon selection cut. The left figure is for Cx, the middle figure is for Cz, and the
right figure is for Py. The red lines show fits to Gaussian functions. The mean value
of each distribution is reported as the systematic uncertainty of the corresponding
observable due to our specific choice of the photon selection cut.
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6.6 Invariant Mass Cut

The systematic uncertainty due to our specific choice of IM cut is quantified by

comparing our nominal estimates of Cx, Cz, and Py (obtained with a 3σ IM cut)

to estimates obtained with a 2σ IM cut. Figure 6.8 shows distributions of relative

differences between our nominal estimates for Cx, Cz, and Py and estimates obtained

with the narrower IM cut. The distributions are well described by Gaussian functions.

The mean value of each distribution is reported as the systematic uncertainty of the

corresponding observable due to our specific choice of the IM cut. The uncertainty is

1.4%, 0.7%, and 0.3% for Cx, Cz, and Py, respectively.
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Figure 6.8: Distributions of the relative differences of observables estimated with a
broader IM selection cut (nominal values) and with a narrower IM selection cut. The
relative difference is defined as (Obs−Obsnarr)/Obs, where Obs denotes our nominal
estimate of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower IM cut.
The left figure is for Cx, the middle figure is for Cz, and the right figure is for Py.
The red lines show fits to Gaussian functions. The mean value of each distribution
is reported as the systematic uncertainty of the corresponding observable due to our
specific choice of IM selection cuts.

6.7 Missing Momentum Cut

To estimate the uncertainty due to our specific choice of the missing-momentum

value that divides our data between the quasi-free mechanism and the final-state

interactions, the MP cut for QF was varied from 0.2 GeV/c to 0.15 GeV/c, and

the MP cut for FSI was varied from 0.2 GeV/c to 0.25 GeV/c. Figure 6.9 shows

distributions of relative differences between our nominal estimates for Cx, Cz, and
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Py and estimates obtained with the narrower MP cut. The distributions are well

described by Gaussian functions. The mean value of each distribution is reported

as the systematic uncertainty of the corresponding observable due to our specific

choice of the MP cut. The uncertainty is 0.6%, 0.2%, and 0.1% for Cx, Cz, and Py,

respectively.
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Figure 6.9: Distributions of the relative differences of observables estimated with a
broader MP selection cut (nominal values) and with a narrower MP selection cut. The
relative difference is defined as (Obs−Obsnarr)/Obs, where Obs denotes our nominal
estimate of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower MP cut.
The left figure is for Cx, the middle figure is for Cz, and the right figure is for Py.
The red lines show fits to Gaussian functions. The mean value of each distribution
is reported as the systematic uncertainty of the corresponding observable due to our
specific choice of MP selection cuts.

6.8 Missing Mass Cut

The systematic uncertainty due to our specific choice of a MM cut is quantified by

comparing our nominal estimates of Cx, Cz, and Py (obtained with a 3σ MM cut)

to estimates obtained with a 2σ MM cuts. Figure 6.10 shows distributions of rel-

ative differences between our nominal estimates for Cx, Cz, and Py and estimates

obtained with the narrower MM cut. The distributions are well described by Gaus-

sian functions. The mean value of each distribution is reported as the systematic

uncertainty of the corresponding observable due to our specific choice of the MM cut.

The uncertainty is 1.6%, 3.2%, and 2.1% for Cx, Cz, and Py, respectively.
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Figure 6.10: Distributions of the relative differences of observables estimated with a
broader MM selection cut (nominal values) and with a narrower MM selection cut.
The relative difference is defined as (Obs − Obsnarr)/Obs, where Obs denotes our
nominal estimate of Cx, Cz, or Py, and Obsnarr denotes the estimate with a narrower
MM cut. The left figure is for Cx, the middle figure is for Cz, and the right figure is for
Py. The red lines show fits to Gaussian functions. The mean value of each distribution
is reported as the systematic uncertainty of the corresponding observable due to our
specific choice of MM selection cuts.

Table 6.1: Summary of the systematic uncertainties for Cx, Cz, and Py. The total
uncertainty is obtained by adding all the uncertainties in quadrature and taking a
square root of the sum. Overall, the total systematic uncertainty of each observable
is less than 10%.

Source Cx Cz Py
CLAS Acceptance 5.5% 0.3% 3.5%

Fiducial Cut 0.1% 0.3% 0.1%
PID 2.7% 2.7.% 0.2%

Vertex Cut 1.4% 0% 0.1%
Photon Selection 0.1% 0.3% 0.1%

IM Cut 1.4% 0.7% 0.3%
MP Cut 0.6% 0.2% 0.1%
MM Cut 1.6% 3.2% 2.1%

Λ Self-analyzing Power 2.0% 2.0% 2.0%
Total 7.0% 4.7% 4.6%

6.9 Summary of Systematic Uncertainties

The systematic uncertainties due to various sources are summarized in Table 6.1.

The total systematic uncertainty is obtained by adding in quadrature each of the

individual uncertainties and taking a square root of the sum. The total systematic

uncertainty of Cx is 7.0%, of Cz is 4.7%, and of Py is 4.6%.
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Chapter 7

Discussion

7.1 Comparison to Published Results

In section 1.4, we point out that the results for the FSI of −→γ d→ K+−→Λn are the first

ever obtained, but the QF results can be compared to the published results from the

reaction−→γ p→ K+−→Λ . To compare our results to the published CLAS results from the

g1c experiment [29, 66], we rebinned data in Eγ and θKCM so that the bin setup was

consistent between the g1c and the g13 results. Since statistics of our data were too

low to obtain reliable results in bins of low Eγ and low θKCM , we compared our results

of bins with high statistics to the published results. Figures 7.1, 7.2, and 7.3 show

comparisons between the g1c and g13 experiments for Cx, Cz, and Py, respectively.

In general, Cz and Py are consistent with each other, while there are systematic

differences for Cx. The g1c results were extracted by the 1D fit method. In section 5.1,

we established that the 1D fit method causes biases of the polarization observables due

to the effect of detector acceptance, especially for Cx. We also determined that the

biases can be significantly reduced if the observables were extracted by the maximum

likelihood method. Thus, we attribute the discrepancies between ours and the g1c

results for Cx to bias in the 1D fit method used in the g1c analysis. The agreement

of Cz with the g1c results suggests that there are no big systematic problems in the

determination of the photon polarization and helicity in the g13a data and analysis.
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Figure 7.1: Comparison of Cx between the g1c and g13 experiments. Overall, the g13
results are systematically larger than the g1c results. This is attributed to the bias in
the 1D fit method used in the g1c analysis. The g13a data points have significantly
smaller statistical uncertainties due to the larger number of events collected in g13
than in g1c.
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Figure 7.2: Comparison of Cz between the g1c and g13 experiments. Overall, the
agreement between the two sets of results is reasonable. This suggests that there
are no big systematic problems in the determination of the photon polarization and
helicity in the g13a data and analysis.
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Figure 7.3: Comparison of Py between the g1c and g13 experiments. The two sets of
results are consistent with each other within their statistical unsertainties.

7.2 Comparison between FSI and QF observables

Figures 7.4, 7.5, and 7.6 show comparisons of Cx, Cz, and Py over Eγ, θ
′
Λ, pK , θK ,

and IMΛn between FSI and QF, respectively. The results suggest that:

• Cx varies around 0 for both FSI and QF.

• Cz for QF is close to 1, and is systematically larger than Cz for FSI for all

kinematic variables.

• Py for FSI is generally larger than QF except at large values of θK and large

values of IMΛn.

• Cx, Cz, and Py have a weaker dependence on Eγ than on other kinematic

variables.

• The QF observables cover a much more limited θ′Λ range than the FSI observ-

ables.
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• The differences between the FSI and the QF observables are significant, which

suggests that the FSI data sample is not dominant by QF events.
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Figure 7.4: Cx comparison between FSI and QF for one-fold differential estimates.
The top left figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is
for pK , the middle right figure is for θK , and the bottom figure is for IMΛn. The
comparison shows significant differences between the QF and the FSI observable in
some kinematic ranges.

7.3 Dependence of QF Observables on Missing Momentum

During this study, we could not find a way to completely separate the quasi-free events

from the final-state-interactions events. In section 4.3, the missing momentum cut

was applied to obtain a sample dominated by QF events and a sample dominated by

FSI events. The choice of the cut value of 0.2 GeV/c is based on some considerations.
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Figure 7.5: Cz comparison between FSI and QF for one-fold differential estimates.
The top left figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is
for pK , the middle right figure is for θK , and the bottom figure is for IMΛn. The QF
observable is systematically larger than the FSI observable for all kinematic variables.

Firstly, both QF and FSI data should have enough statistics for further analysis.

Secondly, the effect of one on the other needs to be reduced to a low level. To test

the effect of FSI on the QF results, the QF data were divided into three data groups

called D1, D2, and D3. Their corresponding missing momentum cut ranges are 0.1 –

0.2 GeV/c, 0.05 – 0.1 GeV/c, and 0 – 0.05 GeV/c. Figure 7.7 shows comparison of Cx,

Cz, and Py extracted from the different data groups. The QF data in D3 should be

cleaner than the data in D1 and D2. The results for the D1 and D2 were subtracted

from the values for D3. Figure 7.8 shows the differences. The figures show that the

results for the different cut ranges are close, which suggests that the effect of FSI on
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Figure 7.6: Py comparison between FSI and QF for one-fold differential estimates.
The top left figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is
for pK , the middle right figure is for θK , and the bottom figure is for IMΛn. The FSI
observable is systematically larger than the QF observable for all kinematic variables,
except at large values of θK and large values of IMΛn.

the QF results is small. The small differences are reported as systematic uncertainties

in section 6.7.

7.4 Comparison of FSI Observables to Theoretical Calculations

Figure 7.9 shows comparisons of Cx, Cz, and Py between our four-fold differential

estimates and the Miyagawa’s model. Since the CLAS acceptance constrained the

kinematics of our data, especially θK , the direct comparison cannot be done. The

data and the model predictions are plotted in the same figure only to demonstrate
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Figure 7.8: Difference of Cx, Cz, and Py between different missing momentum cut
ranges at 0.15 ≤ cos θKCM ≤ 0.35. The left figure is for ∆Cx, the middle figure
is for ∆Cz, and the right figure is for ∆Py. The red points represent differences of
results between 0.1 – 0.2 GeV/c and 0 – 0.05 GeV/c, and the green points represent
differences of results between 0.05 – 0.1 GeV/c and 0 – 0.05 GeV/c. The black lines
are drawn to show visually the y-value of zero.

the statistical uncertainties of the data and the predicted sensitivity to different YN

potentials. In the figure, data error bars include only statistical uncertainties. Our

results indicate that the expected statistical uncertainties of four-fold differential

estimates are reasonable for the YN study, especially in view of the fact that the full

set of observables will be simultaneously fitted.

7.5 Physics Studies of the Reaction −→γ d→ K+−→Λn

Some physics studies of the reaction −→γ d → K+−→Λn were done by simulations. The

QF results for Cx, Cz, and Py from the g13 data were input into the polarized differ-
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Figure 7.9: Comparison to the Miyagawa’s model. Right column: Cx, Cz, and Py
as a function of θ′Λ for FSI in the bin (Eγ = 1.38 GeV, pK = 856 GeV/c, and θK =
23.20). Left column: Model predictions [6] for Cx, Cz, and Py in a similar kinematic
bin. Dotted curves are for QF only, while the solid and dashed-dotted curves are for
QF and FSI with two different hyperon-nucleon potentials, respectively.
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ential cross section of the QF mechanism in our generator (details are given in the

section 4.4). Two channels were then generated, the QF mechanism (according to

the polarized differential cross section) and the K+n re-scattering (according to phase

space distribution). The generator produced equal number of events for each of the

two channels. This means that each kaon produced in the QF mechanism scattered

then off the spectator neutron. Simulated data were obtained after the generated

data passed through the detector simulation and were analyzed the same way as were

the real data.

To study the mutual effects between QF and FSI, the simulated data were sep-

arated into two data samples by the MP cut at the same point of 0.2 GeV/c as

the experimental data. The QF sample (events with missing momentum lower than

0.2 GeV/c) was smeared with 3% of the Kn re-scattering events, while the Kn re-

scattering sample (events with missing momentum above 0.2 GeV/c) was smeared

with 12% of the QF events. Figure 7.10 shows comparison of Cx, Cz, and Py ex-

tracted from the clean and the smeared (quasi-clean) samples. The observables on

the left part of the figure were extracted from the clean and the smeared QF samples,

and the observables on the right part of the figure were extracted from the clean and

the smeared Kn re-scattering samples. The comparison between the two QF results

show that 3% FSI events in the QF sample, do not lead to significant bias in the ex-

tracted observables, which is expected. The comparison between the two FSI results

show that 12% QF events in the FSI sample could lead to a small bias in the extracted

observables. This work indicates that even if the FSI events are significantly smeared

by the QF events (up to 12%), the observables extracted from the experimental data

are reliable, and the small bias can be absorbed into systematic uncertainties.

In the generator, the only difference between the QF and Kn re-scattering chan-

nels is that the former does not have Kn scattering. Thus, the 3-momenta of the

final-state kaon and neutron were different for the two channels. In order to esti-
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Figure 7.10: Comparison of Cx, Cz, and Py between clean and quasi-clean channels.
The left figure shows Eγ-dependent observables extracted from a data sample with
MP lower than 0.2 GeV/c, and the right figure shows Eγ-dependent observables ex-
tracted from a data sample with MP higher than 0.2 GeV/c. The observables in
the left part of the figure were extracted from the clean and smeared QF samples,
and the observables in the right part of the figure were extracted from the clean and
smeared Kn re-scattering samples. One could see a small difference between Py from
the clean and the quasi-clean FSI samples. The difference is due to the effect of 12%
QF events in the FSI sample. In real data such a difference can be absorbed into a
systematic uncertainty.
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mate the effects of Kn scattering on the QF Cx, Cz, and Py the observables were

separately extracted from the QF and the Kn re-scattering events and compared.

Figures 7.11, 7.12, and 7.13 show these comparisons. In this study, the axis conven-

tion and the bin setup were the same as in section 5.4. The results suggest that:

• The Eγ-dependent Cz is consistent between QF and FSI, because the Kn re-

scattering does not change the kinematic variables Eγ and cos θz.

• Other kinematic-variable-dependent observables are significantly different, be-

cause pK , θK , θ
′
Λ, IMΛn, cos θx, and cos θy are changed by the Kn re-scattering.

• The observable distributions for FSI become smoother, because the kinematic-

variable-dependent observables for QF are redistributed after Kn scattering.
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Figure 7.11: Cx comparison between FSI and QF for simulated data. The top left
figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is for pK , the
middle right figure is for θK , and the bottom figure is for IMΛn. While Kn re-
scattering changes very slightly the Eγ dependence of Cx, the other dependences are
significantly affected by the Kn FSI.
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Figure 7.12: Cz comparison between FSI and QF for simulated data. The top left
figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is for pK , the
middle right figure is for θK , and the bottom figure is for IMΛn. The Eγ dependence
of Cz is not changed by the Kn re-scattering. The other kinematic dependences are
affected by the Kn FSI.
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Figure 7.13: Py comparison between FSI and QF for simulated data. The top left
figure is for Eγ, the top right figure is for θ′Λ, the middle left figure is for pK , the middle
right figure is for θK , and the bottom figure is for IMΛn. All kinematic dependences
of the recoil polarization are strongly affected by the Kn FSI.
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Chapter 8

Summary

In this work we report experimental estimates of the polarization observables, Cx,

Cz, and Py, for both the quasi-free mechanism and the final-state interactions of the

reaction −→γ d → K+−→Λn in the energy region Eγ = 0.9 – 2.5 GeV. These results are

obtained by analysing data collected during the CLAS g13 experiment in which a

circularly-polarized tagged photon beam produced via the bremsstrahlung technique

was incident on an unpolarized liquid-deuterium target. The FSI results have been

the primary objective of this project, while the QF results are an extra outcome.

Both sets of results are new (there are no previously published data) and carry in-

teresting physics insights. This document contains details of the analysis procedure

and the statistical methods applied to extract the observables and to estimate their

uncertainties.

In Chapter 3, the helicity and polarization of the photon beam are extracted

event by event. In Chapter 4, the reaction is reconstructed by applying particle

identification, photon selection, and invariant-mass cuts. A missing-momentum cut is

used to obtain two data samples, one dominated by QF events and another dominated

by FSI events, respectively. A custom background subtraction method is applied to

each kinematic bin to determine the probability of each event in that bin to be a

signal event and to obtain event yields. In Chapter 5, three different observable-

extraction methods, the 1-dimensional fit method, the 2-dimensional fit method, and

the maximum likelihood method, are studied in detail. The conclusion of the study is

that the CLAS acceptance cannot be cancelled out in the extraction of the observables
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and causes significant biases in the results of the 1D method. The maximum likelihood

method is the most robust to effects due to detector acceptance and the results

reported here are obtained with this method. Various axis conventions and kinematic-

variable binnings are used in the determination of observables, depending on the

physics objective driving their extraction. To make full use of the data, a method is

applied to let all kinematic bins have similar statistics, which causes different bins to

have different widths. The QF observables are extracted in bins of Eγ and cos θKCM .

One-fold differential FSI observables are extracted as functions of Eγ, θ
′
Λ, pK , θK ,

or IMΛn, and two-fold differential FSI estimates are extracted in bins of different

combinations of the above kinematic variables. Four-fold differential estimates are

also obtained for a very restricted kinematics. In Chapter 6, systematic uncertainties

of the observables due to various sources are estimated and the total systematic

uncertainty of each observable is reported.

The comparison of our QF observables to published results for kaon photopro-

duction off the free proton siggests that nuclear effects such as nucleon binding,

off-shellness and Fermi motion do not seem to significantly influence the quasi-free

polarization observables Cx, Cz, and Py when the spectator nucleon has a small mo-

mentum. The observed Cx discrepancy can be explained qualitatively by our findings

about the acceptance-related biases in the 1D observable-extraction method that was

used in the published analyses. A more detialed study of the dependence of QF ob-

servables on the spectator-nucleon momentum, discussed in Chapter 7, paves the way

to explore new methods of extracting free-nucleon observables from bound-nucleon

data, which is extremely relevant for analyses of scattering data off neutrons bound in

deuteron or other light nuclei. A comparison between our QF and FSI results shows

that the effect of FSI on the observables is significant and that the FSI sample is not

dominated by QF events. More detailed studies of the effect of FSI on the QF ob-

servables using comprehensive simulated data can help to explore model-independent
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methods to identify kinematics where Λn FSI dominate ovser other FSI.

A comprehensive Monte Carlo generator, including the main mechanisms of the

reaction −→γ d→ K+−→Λn and the largest background channels, was developed and used

extensively in this work. Firstly, simulated missing-mass distributions of background

channels were used to do background subtraction in the analysis of real data. Then, a

simulated study explored inherent biases in three observable-extraction methods and

was used to identify the best method to use in this work. Additionally, mutual effects

between QF and Kn FSI on Cx, Cz, and Py were investigated. The event generator

is a significant product of this work and it will continue to be used extensively in

further physics studies of Cx, Cz, and Py.

Our estimates for FSI observables are the first to be obtained. They are expected

to significantly contribute to the effort to understand the dynamics of Λn scattering

in the low-energy region of QCD. The observables extracted from our data will be

fitted to theoretical calculations to constrain the free parameters of YN potentials.

Ultimately, the data should be included in the global fit of YN scattering data. Our

results for Cx, Cz, and Py as functions of IMΛn below the Σn threshold offer an

opportunity to extract a spin-averaged Λn scattering length.
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