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Abstract

We present a new formulation of pseudoscalar meson loop corrections to nucleon parton distri-

butions within a nonlocal covariant chiral effective field theory, including contributions from SU(3)

octet and decuplet baryons. The nonlocal Lagrangian, constrained by requirements of local gauge

invariance and Lorentz-invariant ultraviolet regularization, generates additional interactions asso-

ciated with gauge links. We use these to compute the full set of proton→ meson + baryon splitting

functions, which in general contain on-shell and off-shell contributions, in addition to δ-function

terms at zero momentum, along with nonlocal contributions associated with the finite size of the

proton. We illustrate the shapes of the various local and nonlocal functions numerically using a

simple example of a dipole regulator.
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I. INTRODUCTION

The important role played by chiral symmetry in hadron physics has been documented

for many decades. Traditionally the purview of low-energy hadron and nuclear physics,

more recently the relevance of chiral symmetry in QCD has become more prominent also

in high-energy reactions, in which the quark and gluon (or parton) substructure of hadrons

is manifest. One of the most striking expressions of the chiral symmetry and its approx-

imate breaking is in the nonperturbative structure of the sea quark distributions of the

nucleon [1, 2]. In particular, the breaking of chiral SU(3) symmetry was anticipated [3] to

generate unequal strange and (light) nonstrange sea quark distributions, and, even more

dramatically, an excess of d̄ antiquarks over ū. The latter was confirmed in proton-proton

and proton-deuteron Drell-Yan experiments at CERN [4] and Fermilab [5], following earlier

indirect indications from inclusive [6] and semi-inclusive [7] deep-inelastic scattering (DIS)

data on proton and deuteron targets.

The observation of a large d̄− ū asymmetry has also served to motivate more challenging

searches for other nonperturbative asymmetries, such as between strange and antistrange

quarks in the proton, s − s̄ [8, 9], or between the helicity dependent light antiquark distri-

butions, ∆d̄−∆ū [10]. The phenomenological success in describing the d̄− ū asymmetry, in

particular, in terms of nonperturbative models of the nucleon in which its peripheral struc-

ture is modeled by a pseudoscalar meson cloud suggested that signatures of chiral symmetry

breaking may also be found in other types of parton distribution functions (PDFs) [11–18].

While considerable experience has been accumulated with nonperturbative models, a

challenge has been to compute the chiral symmetry breaking effects on the PDFs in a model-

independent way from QCD. An important step in establishing a direct connection with QCD

was made with the observation [19] that the leading nonanalytic (LNA) behavior of moments

of the nonsinglet PDFs, expanded in powers of the pion mass, mπ, could be obtained from

chiral effective field theory, which encodes the same chiral symmetry properties as present

in QCD [20–22]. In addition to demonstrating how lattice QCD data on PDF moments and

other observables simulated at unphysically large pion masses could be extrapolated to the

physical point [23], the result [19] demonstrated unambiguously that a nonzero component

of d̄− ū arises as a direct consequence of the infrared structure of QCD.

Subsequent work [24–29] computed the full set of lowest order corrections to PDFs arising
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from pseudoscalar meson loops, both for the PDF moments and the Bjorken-x dependence.

The LNA behavior of the various contributions can be established model-independently

by considering the infrared limit; however, the computation of the full amplitude requires

specific choices for regularizing the divergences in the loop integrals. In the literature, regu-

larization prescriptions such as transverse momentum cutoffs, Pauli-Villars and dimensional

regularization have been used, as well as form factors or finite-range regulators. The latter

take into account the finite size of hadrons, while the others are generally more suitable for

theories that treat hadrons as pointlike.

In practice, the extended structure of the nucleon and other baryons does become im-

portant in many traditional hadronic physics applications. In nonrelativistic calculations,

if the regulators are in three-dimensional momentum space, charge conservation, which is

related to the time component of the current, is respected in the presence of form factors.

In relativistic calculations, on the other hand, the use of covariant or relativistic regulators

often leads to explicit violation of charge conservation.

The problem of preserving gauge invariance in theories with hadronic form factors can

be formally alleviated by introducing nonlocal interactions into the gauge invariant local La-

grangian. A method for constructing nonlocal Lagrangians with gauge fields was described

by Terning [30], based on the path-ordered exponential introduced by Wilson [31] and earlier

by Bloch [32]. Variants of the method were subsequently used in phenomenological appli-

cations to strange vector form factors and other nucleon matrix elements by a number of

authors [33–35]. The pion and σ meson properties have been studied by gauging nonlocal

meson–quark interactions in relativistic quark models [36, 37]. The nonlocal Lagrangian at

the hadron level was also recently constructed and applied to electromagnetic form factors

of nucleon [38, 39].

The presence of gauge links in the nonlocal Lagrangian connecting different spacetime

coordinates generates additional diagrams which are needed to ensure the local gauge in-

variance of the theory. This guarantees that the proton and neutron charges, for example,

are unaffected by meson loops, or that contributions to the strangeness in the nucleon from

diagrams with intermediate state kaons and hyperons sum to zero. These basic features of

the theory are not guaranteed for a local Lagrangian with a covariant regulator, but arise

naturally in the nonlocal theory in which the Ward identities and charge conservation are

automatically satisfied.
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In this paper we describe how the nonlocal formulation of the chiral SU(3) effective

theory can be used to derive the contributions from pseudoscalar meson loops to PDFs in

the nucleon. We include both the SU(3) octet and decuplet baryon contributions, using a

covariant regulator generated through the nonlocal Lagrangian that respects Lorentz and

gauge symmetry. In the present paper we focus on the formalism and the derivation of

the proton → baryon + meson splitting functions from the nonlocal chiral Lagrangian; a

follow-up paper [40] will report on the results for the nucleon PDFs, computed through

convolutions of the splitting functions and PDFs in the virtual mesons and baryons in the

loops.

We begin by reviewing in Sec. II the familiar local effective Lagrangian in the standard

chiral SU(3) effective field theory. The generalization of the effective Lagrangian to the

nonlocal case is described in Sec. III, a procedure which allows the preservation of gauge

invariance in the presence of covariant vertex functions for the nucleon–baryon–meson inter-

action. The main results for the proton → meson + baryon splitting functions are derived

in Sec. IV for the full set of lowest order diagrams, including rainbow, bubble, tadpole and

Kroll-Ruderman contributions, as well as additional terms that arise from the gauge links

generated from the nonlocal interactions. Here we present the model independent results for

the nonanalytic behavior of the moments of the splitting functions, and illustrate the rela-

tive shapes and magnitudes of the various functions using a simple example of a covariant

dipole vertex form factor. Finally, in Sec. V we summarize our results and outline future

applications of the new formalism.

II. LOCAL CHIRAL EFFECTIVE LAGRANGIAN

In this section we review the standard local chiral effective theory for mesons and baryons.

The lowest-order Lagrangian, consistent with chiral SU(3)L×SU(3)R symmetry, describing

the interaction of pseudoscalar mesons (φ) with octet (B) and decuplet (Tµ) baryons, is

given by [41, 42]

L = Tr
[
B̄(i 6D −MB)B

]
+DTr

[
B̄γµγ5{uµ, B}

]
+ F Tr

[
B̄γµγ5[uµ, B]

]
+ T

ijk

µ (iγµναDα −MTγ
µν)T ijkν + C

[
εijk T

ilm

µ Θµν(uν)
ljBmk + h.c.

]
− H T ijkµ γµναγ5(uα)kl T ijlν +

f 2

4
Tr
[
DµU(DµU)†

]
, (1)
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where MB and MT are the octet and decuplet masses, D and F are the meson–octet baryon

coupling constants, C and H are the meson–decuplet baryon couplings, f = 93 MeV is

the pseudoscalar decay constant, and “h.c.” denotes the Hermitian conjugate. The tensor

εijk is the antisymmetric tensor in flavor space, and we define the tensors γµν = 1
2
[γµ, γν ],

γµνα = 1
2
{γµν , γα} and

Θµν = gµν −
(
Z + 1

2

)
γµγν (2)

in terms of the Dirac γ-matrices, with Z being the decuplet off-shell parameter. The SU(3)

baryon octet fields Bij include the nucleon N (= p, n), Λ, Σ±,0 and Ξ−,0 fields, and are given

by the matrix

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 . (3)

The baryon decuplet fields T ijkµ , which include the ∆, Σ∗, Ξ∗ and Ω− fields, are represented

by symmetric tensors with components

T 111 = ∆++, T 112 = 1√
3
∆+, T 122 = 1√

3
∆0, T 222 = ∆−,

T 113 = 1√
3
Σ∗+, T 123 = 1√

6
Σ∗0, T 223 = 1√

3
Σ∗−,

T 133 = 1√
3
Ξ∗0, T 233 = 1√

3
Ξ∗−,

T 333 = Ω−.

(4)

In the meson sector, the operator U in Eq. (1) is defined in terms of the matrix of pseu-

doscalar fields φ,

U = u2, with u = exp

(
i
φ√
2f

)
, (5)

where φ includes the π, K and η mesons,

φ =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (6)

The pseudoscalar mesons couple to the baryon fields through the vector and axial vector

combinations

Γµ =
1

2

(
u∂µu

† + u†∂µu
)
− i

2

(
uλau† + u†λau

)
υaµ, (7)

uµ =
i

2

(
u∂µu

† − u†∂µu
)

+
1

2

(
uλau† − u†λau

)
υaµ, (8)
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where υaµ corresponds to an external vector field, and λa (a = 1, . . . , 8) are the Gell-Mann

matrices. The covariant derivatives of the octet and decuplet baryon fields in the chiral

Lagrangian (1) are defined as [43, 44]

DµB = ∂µB + [Γµ, B]− i〈λ0〉υ0
µB, (9)

DµT
ijk
ν = ∂µT

ijk
ν + (Γµ, Tν)

ijk − i〈λ0〉υ0
µ T

ijk
ν , (10)

where υ0
µ denotes an external singlet vector field, λ0 is the unit matrix, and 〈 · · · 〉 denotes a

trace in flavor space. For the covariant derivative of the decuplet field, we use the notation

(Γµ, Tν)
ijk = (Γµ)il T

ljk
ν + (Γµ)jl T

ilk
ν + (Γµ)kl T

ijl
ν . (11)

For the pseudoscalar meson fields, the covariant derivarive is written

DµU = ∂µU + (iUλa − iλaU) υaµ. (12)

Expanding the Lagrangian (1) to leading order in the baryon and meson fields, the

interaction part for a meson and baryon coupling to a proton can be written explicitly

as

Lint =
(D + F )

2f

(
p̄ γµγ5p ∂µπ

0 +
√

2 p̄ γµγ5n ∂µπ
+
)
− (D + 3F )√

12f
p̄ γµγ5Λ ∂µK

+

+
(D − F )

2f

(√
2 p̄ γµγ5Σ+ ∂µK

0 + p̄ γµγ5Σ0 ∂µK
+
)
− D − 3F√

12f
p̄ γµγ5p ∂µη

+
C√
12f

(
−2 p̄Θνµ∆+

µ ∂νπ
0 −
√

2 p̄Θνµ∆0
µ ∂νπ

+ +
√

6 p̄Θνµ∆++
µ ∂νπ

−

−p̄ΘνµΣ∗0µ ∂νK
+ +
√

2 p̄ΘνµΣ∗+µ ∂νK
0 + h.c.

)
+

i

4f 2
p̄ γµp

[
(π+∂µπ

− − π−∂µπ+) + 2(K+∂µK
− −K−∂µK+) + (K0∂µK̄

0 − K̄0∂µK
0)
]
.

(13)

The terms involving the couplingH are not present because of the restriction to proton initial

states. The current calculations below also do not involve the terms with the coupling H

for the proton initial states.

From the Lagrangian (1) one can also obtain the form of the electromagnetic current that
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couples to the external field υaµ,

Jµa = +
1

2
Tr
[
B̄γµ

[
uλau† + u†λau,B

]
+
D

2
Tr
[
B̄γµγ5

{
uλau† − u†λau,B

} ]
+
F

2
Tr
[
B̄γµγ5

[
uλau† − u†λau,B

] ]
+

1

2
T νγ

ναµ
(
uλau† + u†λau, Tα

)
+
C
2

(
T νΘ

νµ(uλau† − u†λau)B + h.c.
)

+
f 2

4
Tr
[
∂µU(U †iλa − iλaU †) + (Uiλa − iλaU)∂µU †

]
. (14)

For the SU(3) flavor singlet current coupling to the external field υ0
µ, one has

Jµ0 = 〈λ0〉Tr[B̄γµB] + 〈λ0〉T νγναµ Tα, (15)

where again λ0 is the unit matrix and 〈 · · · 〉 denotes a trace in flavor space.

The currents for a given quark flavor are then expressed as combinations of the SU(3)

singlet, triplet and octet currents,

Jµu =
1

3
Jµ0 +

1

2
Jµ3 +

1

2
√

3
Jµ8 , (16a)

Jµd =
1

3
Jµ0 −

1

2
Jµ3 +

1

2
√

3
Jµ8 , (16b)

Jµs =
1

3
Jµ0 −

1√
3
Jµ8 . (16c)

Using Eqs. (14), (15) and (16), the currents Jµu , Jµd and Jµs can be written explicitly as

Jµu = 2p̄γµp+ n̄γµn+ Λ̄γµΛ + 2Σ
+
γµΣ+ + Σ

0
γµΣ0 − 1

2f 2

(
p̄γµp π+π− + 2p̄γµpK+K−

)
+ 3∆

++

α γαβµ∆++
β + 2∆

+

αγ
αβµ∆+

β + ∆
0

αγ
αβµ∆0

β + 2Σ
∗+
α γαβµΣ∗+β + Σ

∗0
α γ

αβµΣ∗0β

+ i
(
π−∂µπ+ − π+∂µπ−

)
+ i
(
K−∂µK+ −K+∂µK−

)
− i(D + F )√

2f
p̄γµγ5nπ+ +

i(D + 3F )√
12f

p̄γµγ5ΛK+ − i(D − F )

2f
p̄γµγ5Σ0K+

+
C√
12f

(
i
√

6 p̄Θµν∆++
ν π− + i

√
2 p̄Θµν∆0

ν π
+ + i p̄ΘµνΣ∗0ν K+ + h.c.

)
, (17a)

Jµd = p̄γµp+ 2n̄γµn+ 2Σ
−
γµΣ− + Σ

0
γµΣ0 + Λ̄γµΛ +

1

2f 2

(
p̄γµp π+π− − p̄γµpK0

K0
)

+ ∆
+

αγ
αβµ∆+

β + 2∆
0

αγ
αβµ∆0

β + 3∆
−
αγ

αβµ∆−β + Σ
∗0
α γ

αβµΣ∗0β + 2Σ
∗0−
α γαβµΣ∗−β

− i(π−∂µπ+ − π+∂µπ−) + i(K
0
∂µK0 −K0∂µK

0
)

+
i(D + F )√

2f
p̄γµγ5nπ+ − i(D − F )√

2f
p̄γµγ5Σ+K0

− C√
6f

(
i
√

3 p̄Θµν∆++
ν π− + ip̄Θµν∆0

ν π
+ + ip̄ΘµνΣ∗+ν K0 + h.c.

)
, (17b)
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Jµs = Σ
+
γµΣ+ + Σ

0
γµΣ0 + Λ̄γµΛ +

1

2f 2

(
2p̄γµpK+K− + p̄γµpK

0
K0
)

+ Σ
∗+
α γαβµΣ∗+β + Σ

∗0
α γ

αβµΣ∗0β − i(K−∂µK+ −K+∂µK−)− i(K0
∂µK0 −K0∂µK

0
)

+
i(D − F )√

2f
p̄γµγ5Σ+K0 +

i(D − F )

2f
p̄γµγ5Σ0K+ − i(D + 3F )√

12f
p̄γµγ5ΛK+

+
C√
12f

(
−ip̄ΘµνΣ∗0ν K+ + i

√
2 p̄ΘµνΣ∗+ν K0 + h.c.

)
, (17c)

where the terms involving the doubly-strange baryons Ξ0,− and Ξ∗0,− and the triply-strange

Ω− are not present because they cannot couple to the proton initial states.

III. NONLOCAL CHIRAL LAGRANGIAN

In this section we describe the generation of the nonlocal Lagrangian from the local

meson–baryon Lagrangian in Sec. II. Evaluating the traces in Eq. (1) and introducing the

minimal substitution for the electromagnetic field Aµ, the local Lagrangian density can be

rewritten more explicitly in the form

L(local)(x) = B̄(x)(iγµDµ,x −MB)B(x) +
CBφ
f

[
p̄(x)γµγ5B(x) Dµ,xφ(x) + h.c.

]
+ T µ(x)(iγµναDα,x −MTγ

µν)Tν(x) +
CTφ
f

[ p̄(x)ΘµνTν(x) Dµ,xφ(x) + h.c.]

+
iCφφ†

2f 2
p̄(x)γµp(x)

[
φ(x)(Dµ,xφ)†(x)−Dµ,xφ(x)φ†(x)

]
+ Dµ,xφ(x)(Dµ,xφ)†(x) + · · · , (18)

where for the interaction part we show only those terms that contribute to a meson–baryon

coupling to a proton, and we keep the dependence on the space-time coordinate x explicitly.

The covariant derivatives here are written so as to indicate the coordinate with respect to

which the derivative is taken,

Dµ,xB(x) = [∂µ − ieqB Aµ(x)]B(x), (19a)

Dµ,xT
ν(x) = [∂µ − ieqT Aµ(x)]T ν(x), (19b)

Dµ,xφ(x) =
[
∂µ − ieqφ Aµ(x)

]
φ(x), (19c)

where eqB, eqT and eqφ are the quark flavor charges of the octet baryon B, decuplet baryon T

and meson φ, respectively. For example, for the proton one has the charges eup = 2edp = 2,

esp = 0, while for the Σ+ hyperon euΣ+ = 2esΣ+ = 2, edΣ+ = 0, and so forth. For the mesons,
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TABLE I. Coupling constants CBφ, CTφ and Cφφ† for the pBφ, pTφ and ppφφ† interactions,

respectively, for the various allowed flavor channels.

Bφ pπ0 nπ+ Σ+K0 Σ0K+ ΛK+

CBφ
1
2(D + F ) 1√

2
(D + F ) 1√

2
(D − F ) 1

2(D − F ) − 1√
12

(D + 3F )

Tφ ∆0π+ ∆+π0 ∆++π− Σ∗+K0 Σ∗0K+

CTφ − 1√
6
C − 1√

3
C 1√

2
C 1√

6
C − 1√

12
C

φφ† π+π− K0K
0

K+K−

Cφφ†
1
2

1
2 1

the flavor charges for the π+ are euπ+ = −edπ+ = 1 but eqπ0 = 0 for all q, and for the K+

these are euK+ = −esK+ = 1, edK+ = 0, and similarly for the charge conjugate states. The

coefficients CBφ in Eq. (18) depend on the coupling constants D, F and C, and are given

explicitly in Table I for the processes discussed in this work.

Using the methods described in Refs. [30, 35–39], the nonlocal version of the local La-

grangian (18) can be written as

L(nonloc)(x) = B̄(x)(iγµDµ,x −MB)B(x) + T µ(x)(iγµναDα,x −MTγ
µν)Tν(x)

+ p̄(x)

[
CBφ
f
γµγ5B(x) +

CTφ
f

ΘµνTν(x)

]
×
∫
d4aGqφ(x, x+ a)F (a) Dµ,x+aφ(x+ a) + h.c.

+
iCφφ†

2f 2
p̄(x)γµp(x)

∫
d4a

∫
d4b Gqφ(x+ b, x+ a)F (a)F (b)

×
[
φ(x+ a)(Dµ,x+bφ)†(x+ b)−Dµ,x+aφ(x+ a)φ†(x+ b)

]
+ Dµ,xφ(x)(Dµ,xφ)†(x) + · · · , (20)

where the gauge link Gqφ is introduced to preserve local gauge invariance,

Gqφ(x, y) = exp

[
−ieqφ

∫ y

x

dzµAµ(z)

]
, (21)

and the function F (a) is the meson–baryon vertex form factor in coordinate space. One can

verify that the nonlocal Lagrangian in Eq. (20), as well as local Lagrangian in Eq. (18), are
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invariant under the gauge transformations

B(x)→ B′(x) = B(x) exp [ieqB θ(x)] , (22a)

Tµ(x)→ T ′µ(x) = Tµ(x) exp [ieqT θ(x)] , (22b)

φ(x)→ φ′(x) = φ(x) exp
[
ieqφ θ(x)

]
, (22c)

for the matter fields, and

A µ(x)→ A ′µ(x) = A µ(x) + ∂µθ(x) (22d)

for the electromagnetic field, where θ(x) is an arbitrary function of the space-time coordi-

nate xµ.

The nonlocal Lagrangian density in Eq. (20) can be further decomposed by expanding

the gauge link (21) in powers of the charge eqφ,

Gqφ(x+ b, x+ a) = exp
[
− ieqφ (a− b)µ

∫ 1

0

dtAµ

(
x+ at+ b(1− t)

)]
= 1 + δGqφ + · · · , (23)

where the O(eqφ) term is

δGqφ = − ieqφ (a− b)µ
∫ 1

0

dtAµ

(
x+ at+ b(1− t)

)
(24)

and we have used a change of variables zµ → xµ+aµ t+bµ (1−t). This allows the Lagrangian

L(nonloc) to be written as a sum of free and interacting parts, where to lowest order the latter

consists of purely hadronic (L(nonloc)
had ), electromagnetic (L(nonloc)

em ), and gauge link (L(nonloc)
link )

components. The hadronic and electromagnetic interaction parts of the nonlocal Lagrangian

arise from the first term in Eq. (23), and are given by

L(nonloc)
had (x) = p̄(x)

[
CBφ
f

γµγ5B(x) +
CTφ
f

ΘµνTν(x)

]∫
d4aF (a) ∂µφ(x+ a) + h.c.

+
iCφφ†

2f 2
p̄(x)γµp(x)

∫
d4a

∫
d4b F (a)F (b)

×
[
φ(x+ a)∂µφ

†(x+ b)− ∂µφ(x+ a)φ†(x+ b)
]
, (25)
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and

L(nonloc)
em (x) = eqB B̄(x)γµB(x) Aµ(x) + eqT T µ(x)γµναTν(x) Aα(x)

+ ieqφ
[
∂µφ(x)φ†(x)− φ(x)∂µφ†(x)

]
Aµ(x)

− ieqφ p̄(x)

[
CBφ
f

γµγ5B(x) +
CTφ
f

ΘµνTν(x)

]
×
∫
d4aF (a)φ(x+ a)A µ(x+ a) + h.c.

−
eqφCφφ†

2f 2
p̄(x)γµp(x)

∫
d4aF (a)

∫
d4b F (b)

× φ(x+ a)φ†(x+ b) [A µ(x+ a) + A µ(x+ b)] , (26)

respectively. For the δGqφ term in Eq. (24), which explicitly depends on the gauge link, the

nonlocal interaction with the external gauge field yields the additional contribution to the

Lagrangian density,

L(nonloc)
link (x) = −ieqφ p̄(x)

[
CBφ
f

γργ5B(x) +
CTφ
f

ΘρνTν(x)

]
×
∫ 1

0

dt

∫
d4aF (a) aµ ∂ρφ(x+ a)Aµ(x+ at) + h.c.

+
eqφCφφ†

2f 2
p̄(x)γρp(x)

∫ 1

0

dt

∫
d4a

∫
d4b F (a)F (b) (a− b)µ

×
[
φ(x+ a)∂ρφ

†(x+ b)− ∂ρφ(x+ a)φ†(x+ b)
]
Aµ

(
x+ at+ b(1− t)

)
. (27)

For the nonlocal theory the quark current has two contributions: the usual electromagnetic

current, Jµ,qem , obtained with minimal substitution from Eq. (26),

Jµq,em(x) ≡
δ
∫
d4yL(nonloc)

em (y)

δAµ(x)

= eqB B̄(x)γµB(x) + eqT Tα(x)γανµTν(x) + ieqφ
[
∂µφ(x)φ†(x)− φ(x)∂µφ†(x)

]
− ieqφ

∫
d4aF (a) p̄(x− a)

[
CBφ
f

γµγ5B(x− a) +
CTφ
f

ΘµνTν(x− a)

]
φ(x) + h.c.

−
eqφCφφ†

2f 2

∫
d4aF (a)

∫
d4b F (b)

[
p̄(x− a)γµp(x− a)φ(x)φ†(x+ b− a)

+ p̄(x− b)γµp(x− b)φ(x+ a− b)φ†(x)
]
, (28)
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and an additional term obtained from the gauge link,

δJµq (x) ≡
δ
∫
d4yL(nonloc)

link (y)

δAµ(x)

= −ieqφ
∫ 1

0

dt

∫
d4aF (a) aµ p̄(x− at)

[
CBφ
f

γργ5B(x− at) +
CTφ
f

ΘρνTν(x− at)
]

× ∂ρφ(x+ a(1− t)) + h.c.

+
eqφCφφ†

2f 2

∫ 1

0

dt

∫
d4aF (a)

∫
d4b F (b) (a− b)µ p̄

(
x− at− b(1− t)

)
γρp
(
x− at− b(1− t)

)
×
[
φ
(
x+ (a− b)(1− t)

)
∂ρφ

†(x− (a− b)t
)

−∂ρφ
(
x+ (a− b)(1− t)

)
φ†
(
x− (a− b)t

)]
, (29)

respectively. Compared with Eqs. (13) and (17), the nonlocal interaction Lagrangian and

currents in Eqs. (25)–(29) include the extra regulator function F (a). The local limit can be

obtained by taking F (a) to be a δ-function, F (a)→ δ(4)(a), which is equivalent to taking the

form factor in momentum space to be unity. Since the Fourier transform of the δ-function

in position space is a plane wave in momentum space, the value of the plane wave at the

origin is unity. With the nonlocal interaction and current obtained here, in the next section

we will discuss the splitting functions describing the interaction of the external field with

the proton dressed by the pseudoscalar fields.

IV. SPLITTING FUNCTIONS

In this section we will derive the general expressions for the proton→ pseudoscalar meson

+ baryon splitting functions for the full set of SU(3) octet and decuplet states. After giving

the model independent results for arbitrary regulating function F (a), we derive explicit

expressions for a specific choice of regulator in which the momentum dependence is given

by a dipole shape.

A. Model independent results

The interaction of an external probe with a proton dressed by pseudovector mesons at

leading order is given in Fig. 1 for octet intermediate states and in Fig. 1 for decuplet

intermediate states. The diagrams in Figs. 1(a)–1(c), 1(e), 1(f), 1(h)–1(j) correspond to

those in the local effective theory, while those in Figs. 1(d), 1(g) and 1(k) arise from the

12



FIG. 1. Diagrams representing the interaction of an external current (denoted by the crossed

circles) with the proton involving SU(3) octet [(a)–(g)] and decuplet [(h)–(j)] states: (a) and (h)

are for meson coupling rainbow diagrams; (b) and (i) are for octet and decuplet baryon coupling

rainbow diagrams; (c) and (k) are for Kroll-Ruderman; (d) and (j) are for Kroll-Ruderman type

diagrams generated by the gauge link (denoted by the filled circle); (e) is for meson tadpole; (f) is

for meson bubble; and (g) is for meson tadpole diagram generated by the gauge link.

new interactions in the nonlocal theory given by Eqs. (25)–(27). The resulting amplitudes

will be expressed in terms of specific meson–baryon splitting functions convoluted with

corresponding PDFs in the bare or undressed mesons and baryons. These will be used

to compute the contributions from meson loops to PDFs in the nucleon, the most direct

predictions for which will be for nonsinglet PDF combinations in which perturbative QCD

effects largely cancel. Examples include the light-antiquark flavor asymmetry d̄ − ū and

the strange asymmetry s− s̄. In the valence approximation for the undressed hadrons, the

former will only receive contributions from the direct meson coupling diagrams in Figs. 1(a),

1(f) and 1(h), while all the diagrams in Fig. 1 will be relevant for the s− s̄ asymmetry.
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1. SU(3) octet intermediate states

Beginning with the meson rainbow diagram in Fig. 1(a), the vertex function for the

nonlocal theory can be written as [45]

Γµ
φB (2π)4δ(4)(p− p) =

〈
p
∣∣i2∫ d4x d4y d4z L(nonloc)

had(B) (x) Jµq,em(y)L(nonloc)
had(B) (z)

∣∣p〉
=

i2C2
Bφ

f 2

〈
p
∣∣ ∫ d4x d4y d4z

∫
d4aF (a)

∫
d4b F (b) p̄(x) γνγ5B(x) ∂νφ(x+ a)

×
(
−i[φ(y)∂µφ†(y)− φ†(y)∂µφ(y)]

)
B̄(z)γργ5p(z) ∂ρφ

†(z + b)
∣∣p〉, (30)

where L(nonloc)
had(B) is the part of the hadronic nonlocal Lagrangian (25) that depends on the

octet baryon fields B. (Note also that we defined the vertex such that the quark flavor

charge eqφ is included explicitly in the bare meson and baryon PDFs discussed in the next

section.) Integrating over the space-time coordinates xµ, yµ and zµ, one has

Γµ
φB =

C2
Bφ

f 2
ū(p)

∫
d4k

(2π)4

∫
d4aF (a)

∫
d4b F (b) (6k γ5)

i [(6p − 6k) +MB]

DB

(γ5 6k)

× i

Dφ

2kµ
i

Dφ

u(p) exp[−ik · (a− b)], (31)

where the Dirac spinor u is normalized such that ūu = 1, and Dφ and DB denote the

propagator factors for the intermediate baryon and meson, respectively,

Dφ = k2 −m2
φ + iε, (32a)

DB = (p− k)2 −M2
B + iε, (32b)

where mφ and MB are for the meson and octet baryon masses. Defining the regulator in

momentum space as

F̃ (k) ≡
∫
d4a exp[−ia · k]F (a), (33)

the vertex operator becomes

Γµ
φB =

C2
Bφ

f 2
ū(p)

∫
d4k

(2π)4
(6k γ5) F̃ (k)

i[(6p − 6k) +MB]

DB

i

Dφ

2kµ
i

Dφ

(γ5 6k) F̃ (−k)u(p)

≡
∫

d4k

(2π)4
Γ̃µ
φB. (34)

Taking the µ = + component of the integrand Γ̃µ
φB, we define the splitting function f

(rbw)
φB (y)

in terms of the light-cone projection of Γ̃µ
φB,

f
(rbw)
φB (y) =

M

p+

∫
d4k

(2π)4
Γ̃+
φB δ

(
y − k+

p+

)
, (35)
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where k+ = k0 + kz and M is for the nucleon mass. From Eq. (34) the splitting function for

the meson rainbow diagram is then given by

f
(rbw)
φB (y) =

C2
Bφ

f 2

∫
d4k

(2π)4
ū(p)(6k γ5)

i[(6p − 6k) +MB]

DB

i

Dφ

(2k+)
i

Dφ

(γ5 6k)

× F̃ 2(k)u(p)
M

p+
δ

(
y − k+

p+

)
. (36)

Similarly, the splitting functions for the baryon rainbow diagram of Fig. 1(b) and the

Kroll-Ruderman (KR) diagram of Fig.1(c) can be expressed as

f
(rbw)
Bφ (y) =

C2
Bφ

f 2

∫
d4k

(2π)4
ū(p)(6k γ5)

i[(6p − 6k) +MB]

DB

γ+ i[(6p − 6k) +MB]

DB

(γ5 6k)

× i

Dφ

F̃ 2(k)u(p)
M

p+
δ

(
y − k+

p+

)
(37)

and

f
(KR)
B (y) =

C2
Bφ

f 2

∫
d4k

(2π)4
ū(p)

{
(iγ+γ5)

i[(6p − 6k) +MB]

DB

(γ5 6k)

+ (6k γ5)
i[(6p − 6k) +MB]

DB

(iγ5γ+)

}
× i

Dφ

F̃ 2(k)u(p)
M

p+
δ

(
y − k+

p+

)
, (38)

respectively.

As discussed in Sec. III, the current generated by the gauge link in Eq. (29) produces

the additional diagrams in Fig. 1(d), 1(g) and 1(k). The amplitude for the Kroll-Ruderman

additional diagram in Fig. 1(d) can be written as

δΓµ
B (2π)4δ(4)(p− p) =

〈
p
∣∣i∫ d4y d4z

(
L(nonloc)

had(B) (y) δJµq (z) + δJµq (y)L(nonloc)
had(B) (z)

)
=

iC2
Bφ

f 2

∫ 1

0

dt
〈
p
∣∣ ∫ d4y d4z

∫
d4aF (a)

∫
d4b F (b)

×
[
− i bµ p̄(y)γνγ5B(y) ∂νφ(y + a) B̄(z − bt)γργ5p(z − bt) ∂ρφ†(z + b(1− t))

+ i aµ p̄(y − at)γνγ5B(y − at) ∂νφ(y + t(1− a)) B̄(z)γργ5p(z) ∂ρφ
†(z + b)

]∣∣p〉, (39)

which after Wick contraction and integration over xµ, yµ and zµ, becomes

δΓµ
B =

iC2
Bφ

f 2
ū(p)

∫
d4aF (a)

∫
d4b F (b)

∫
d4k

(2π)4

×
{
−ibµ (6k γ5)

i[(6p − 6k) +MB]

DB

(6k γ5)
i

Dφ

+ iaµ (6k γ5)
i

Dφ

i[(6p − 6k) +MB]

DB

(6k γ5)

}
× u(p) exp[−ik · (a− b)]. (40)
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Performing the integrations over the space-time coordinates aµ and bµ, the vertex can be

further simplified to

δΓµ
B =

iC2
Bφ

f 2
ū(p)

∫
d4k

(2π)4

{
−∂F̃ (−k)

∂kµ
F̃ (k)(6k γ5)

i[(6p − 6k) +MB]

DB

(6k γ5)

−∂F̃ (k)

∂kµ
F̃ (−k)(6k γ5)

i[(6p − 6k) +MB]

DB

(6k γ5)

}
i

Dφ

u(p). (41)

In analogy with the definition of the splitting function in Eq. (34), the splitting function for

the nonlocal Kroll-Ruderman diagram in Fig. 1(d) induced by the gauge link can be written

as

δf
(KR)
B (y) =

2C2
Bφ

f 2

∫
d4k

(2π)4
ū(p)(i 6k γ5)

i[(6p − 6k) +MB]

DB

i

Dφ

(− 6k γ5)u(p)

× ∂F̃ 2(k)

∂k−
M

p+
δ

(
y − k+

p+

)
. (42)

The main additional feature here compared with the splitting functions in the local theory

is the dependence on the derivative of the hadronic form factor F̃ on k−.

For the remaining meson tadpole and bubble diagrams in Fig. 1(e) and 1(f), the splitting

functions are given by

f
(tad)
φ (y) =

Cφφ†

f 2

∫
d4k

(2π)4
ū(p) γ+ i

Dφ

u(p) F̃ 2(k)
M

p+
δ

(
y − k+

p+

)
, (43)

and

f
(bub)
φ (y) = −

iCφφ†

f 2

∫
d4k

(2π)4
ū(p) 2 6k k+

(
i

Dφ

)2

u(p) F̃ 2(k)
M

p+
δ

(
y − k+

p+

)
, (44)

where the coupling constant Cφφ† is listed in Table I.

Finally, the vertex associated with the nonlocal tadpole diagram in Fig. 1(g) geneated by

the gauge link is defined by

δΓµ
φ (2π)4δ(4)(p′ − p) =

〈
p′
∣∣ ∫ d4x δJµq (x)

∣∣p〉, (45)

and can be reduced to

δΓµ
φ =

Cφφ†

f 2

∫
d4k

(2π)4
ū(p) 6k i

Dφ

u(p)

[
F̃ (−k)

∂F̃ (k)

∂kµ
+ F̃ (k)

∂F̃ (−k)

∂kµ

]
. (46)

The splitting function for the nonlocal tadpole diagram is then given by

δf
(tad)
φ (y) =

Cφφ†

f 2

∫
d4k

(2π)4
ū(p) 6k i

Dφ

u(p)
2∂F̃ 2(k)

∂k−
M

p+
δ

(
y − k+

p+

)
. (47)
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2. Decuplet intermediate states

For the splitting functions associated with the decuplet intermediate states in Fig. 1, the

diagrams in Figs. 1(h), 1(i) and 1(j) arising from the local Lagangian are supplemented by

the additional nonlocal Kroll-Ruderman diagram in Fig. 1(k) induced by the gauge link in

the nonlocal theory. Similarly to the meson rainbow contribution in Eq. (30), the vertex

function for the meson rainbow diagram in Fig. 1(h) with an intermediate decuplet baryon

T can be written

Γµ
φT (2π)4 δ(4)(p− p) =

〈
p
∣∣i2∫ d4x d4y d4z L(nonloc)

had(T ) (x) Jµq,em(y)L(nonloc)
had(T ) (z)

∣∣p〉
=

i2C2
Tφ

f 2

〈
p
∣∣ ∫ d4x d4y d4z

∫
d4aF (a)

∫
d4b F (b) p̄(x)ΘαβTβ(x) ∂αφ(x+ a)

×
{
−i[φ(y)∂µφ†(y)− φ†(y)∂µφ(y)]

}
T ρ(z)Θρσp(z) ∂σφ

†(z + b)
∣∣p〉, (48)

where L(nonloc)
had(T ) is the part of the hadronic nonlocal Lagrangian (25) that depends on the

decuplet baryon fields T , and the operator Θαβ is given in Eq. (2). Integrating over the

space-time coordinates, one finds

Γµ
φT =

i2C2
Tφ

f 2
ū(p)

∫
d4k

(2π)4

∫
d4b F (b)

∫
d4aF (a) kαΘαβ −i[(6p − 6k) +MT ]Pβρ(p− k)

DT

× i

Dφ

2kµ
i

Dφ

Θρσkσ u(p) exp[−ik · (a− b)], (49)

where the decuplet baryon propagator DT is the same as DB in Eq. (32b), but with MB

replaced by decuplet baryon mass MT . The spin-3/2 projection operator Pαβ depends on the

off-shell parameter Z, defined in Eq. (2). To simplify the form of the spin-3/2 propagator,

in our calculation we choose Z = 1/2, following Refs. [46, 47], in which case the projector

Pαβ is written

Pαβ(p) = gαβ −
1

3
γαγβ −

γαpβ − γβpα
3MT

− 2 pαpβ
3M2

T

. (50)

Note that for this choice one then has the operator Θαβ = gµν − γµγν . Performing the

integrations over the space-time coordinates aµ and bµ then gives

Γµ
φT =

i2C2
Tφ

f 2
ū(p)

∫
d4k

(2π)4
kαΘαβ F̃ (k)

−i[(6p − 6k) +MT ]Pβρ(p− k)

DT

× i

Dφ

2kµ
i

Dφ

Θρσkσ F̃ (−k)u(p). (51)
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The splitting function for the meson rainbow diagram with decuplet intermediate state is

therefore given by

f
(rbw)
φT (y) =

C2
Tφ

f 2

∫
d4k

(2π)4
ū(p) kαΘαβ −i[(6p − 6k) +MT ]Pβρ(p− k)

DT

× i

Dφ

2k+ i

Dφ

(−Θρσkσ)u(p) F̃ 2(k)
M

p+
δ

(
y − k+

p+

)
. (52)

Following similar procedures as for the octet baryon case, the splitting functions for the

decuplet baryon rainbow diagram in Fig. 1(i) and the decuplet Kroll-Ruderman diagram in

Fig. 1(j) can be written as

f
(rbw)
Tφ (y) =

C2
Tφ

f 2

∫
d4k

(2π)4
ū(p) kµΘµν −i[(6p − 6k) +MT ]Pνα(p− k)

DT

γαβ+

× −i[(6p − 6k) +MT ]Pβρ(p− k)

DT

i

Dφ

(−Θρσkσ)u(p)

× F̃ 2(k)
M

p+
δ

(
y − k+

p+

)
(53)

and

f
(KR)
T (y) =

C2
Tφ

f 2

∫
d4k

(2π)4
ū(p)

{
i

Dφ

(iΘ+ν)
−i[(6p − 6k) +MT ]Pνα(p− k)

DT

(−Θασkσ)

+ kµΘµν −i[(6p − 6k) +MT ]Pνα(p− k)

DT

(−iΘα+)
i

Dφ

}
u(p)

× F̃ 2(k)
M

p+
δ

(
y − k+

p+

)
, (54)

respectively. Finally, the splitting function for the nonlocal Kroll-Ruderman decuplet dia-

gram in Fig. 1(k) induced by the gauge link is

δf
(KR)
T (y) =

2C2
Tφ

f 2

∫
d4k

(2π)4
ū(p) (ikσΘσν)

−i[(6p − 6k) +MT ]Pνα(p− k)

DT

i

Dφ

(−Θασkσ)u(p)

×∂F̃
2(k)

∂k−
M

p+
δ

(
y − k+

p+

)
. (55)

The set of functions
{
f

(rbw)
φB , f

(rbw)
Bφ , f

(KR)
B , δf

(KR)
B , f

(bub)
φ , f

(tad)
φ , δf

(tad)
φ

}
for the octet

baryons, and
{
f

(rbw)
φT , f

(rbw)
Tφ , f

(KR)
T , δf

(KR)
T

}
for the decuplet baryons, then represent the

complete set of functions that describe the dressing at one loop of the interaction of an

external current with the proton in the nonlocal meson–baryon field theory.
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B. Covariant dipole form factor

To evaluate the splitting functions derived in the previous section requires a specific

choice for the meson–baryon vertex form factor F̃ (k). Consistency with Lorentz invariance

restricts the form factor to in general be a function of the meson virtuality k2 and the baryon

virtuality (p− k)2. For convenience, we choose the regulator to have a simple dipole shape

in k2 with a cutoff parameter Λ [33, 34], independent of the details of the baryon state,

F̃ (k) =

(
Λ

DΛ

)2

, (56)

where DΛ = k2 − Λ2 + iε and we define Λ
2 ≡ Λ2 −m2

φ.

1. Octet splitting functions

With the dipole regulator in Eq. (56), after reduction of the γ matrices in Eq. (36) the

splitting function for the meson rainbow diagram in Fig. 1(a) can be written as

f
(rbw)
φB (y) =

iC2
BφΛ

8

f 2

∫
d4k

(2π)4

[
yM

2
(∆2 −m2

φ)

D2
φDBD4

Λ

− yM
2

DφDBD4
Λ

+
y(M∆− 2p · k)

D2
φD

4
Λ

]

× δ

(
y − k+

p+

)
, (57)

where the average mass M and mass difference ∆ are defined as

M = M +MB, ∆ = MB −M. (58)

It will be convenient to perform the d4k integration in terms of light-cone momentum com-

ponents k± = k0 ± kz and transverse momentum k⊥. The first two terms in Eq. (57) have

poles both on the upper and lower half-plane, so the integration over k− can be obtained

using the residue of DB or Dφ. For the third term, proportional to 1/D2
φ, when k+ 6= 0 both

Dφ and DΛ have poles on same half-plane, so the integral vanishes. On the other hand,

when k+ = 0 the integral becomes divergent. We can simplify this term using∫
d4k

2y p · k
D2
φD

4
Λ

=
∂4

6 ∂Ω4

∫ 1

0

dz

∫
d4k

2p · k y(1− z)z3

(k2 − Ω + iε)2

=
∂4

6 ∂Ω4

∫ 1

0

dz

∫
d4k

(1− z)z3

(k2 − Ω + iε)
, (59)
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where we define

Ω ≡ (1− z)m2
φ + zΛ2. (60)

The integration over k− in Eq. (59) can be written as [24, 48]∫ ∞
−∞

dk−
1

k2 − Ω + iε
= 2πi log

(
k2
⊥ + Ω

µ2

)
δ(k+). (61)

where µ is a momentum independent constant. After the k− integration, the splitting

function for the meson rainbow diagram can be expressed as a sum of an on-shell term,

f
(on)
B , and δ-function terms, f

(δ)
B and δf

(δ)
B , generated by the contact interaction,

f
(rbw)
φB (y) =

C2
BφM

2

(4πf)2

[
f

(on)
B (y) + f

(δ)
B (y)− δf (δ)

B (y)
]
. (62)

The on-shell function is given by

f
(on)
B (y) = Λ

8
∫
dk2
⊥
y
[
k2
⊥ + (yM + ∆)2

]
ȳ2D2

φBD
4
ΛB

, (63)

where ȳ = 1− y, and we employed the shorthand notations [29]

DφB = −
k2
⊥ + yM2

B − y ȳ M2 + ȳ m2
φ

ȳ
, (64a)

DΛB = −k
2
⊥ + yM2

B − y ȳ M2 + ȳΛ2

ȳ
. (64b)

The δ-function contributions are nonzero only at y = 0, and arise from the local and nonlocal

interactions. The local δ-function term is given by

f
(δ)
B (y) = − Λ

8

M
2

∫
dk2
⊥

∫ 1

0

dz
z3

(k2
⊥ + Ω)4

δ(y)

=
1

M
2

∫
dk2
⊥

[
log

Ωφ

ΩΛ

+
Λ

2
(11 Ω2

Λ − 7 ΩΛΩφ + 2 Ω2
φ)

6Ω3
Λ

]
δ(y), (65)

with

Ωφ = k2
⊥ +m2

φ , ΩΛ = k2
⊥ + Λ2. (66)

The log Ωφ term in Eq. (65) gives rise to the leading nonanalytic contribution, which is

independent of the regularization method, as we have verified using various methods, in-

cluding Pauli-Villars, dimensional regularization or a hadronic form factors. In the limit

when Λ → ∞, the second term in Eq. (65) ∼ Λ
2
/ΩΛ becomes a constant. Within dimen-

sional regularization, the integral of a constant is defined to be zero, in which case the result

coincides with that in Ref. [28],

f
(δ)
B (y) −→

Λ→∞

1

M
2

∫
dk2
⊥ log

Ωφ

ΩΛ

δ(y). (67)
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The nonlocal δ-function contribution, δf
(δ)
B , in Eq. (62) is given by

δf
(δ)
B (y) = − Λ

8

M
2

∫
dk2
⊥

∫ 1

0

dz
z4

(k2
⊥ + Ω)4

δ(y)

=
1

M
2

∫
dk2
⊥

[
−4

Ωφ

Λ
2 log

Ωφ

ΩΛ

−
3Ω3

Λ + 13Ω2
ΛΩφ − 5ΩΛΩ2

φ + Ω3
φ

3Ω3
Λ

]
δ(y). (68)

In the Λ→∞ limit the first term in the integrand of δf
(δ)
B vanishes, while the second term

becomes a constant, independent of k⊥. In dimensional regularization the latter can again

be taken to be zero. The local function f
(δ)
B , on the other hand, retains a dependence on k⊥

through the log Ωφ term, so that the splitting function for the rainbow diagram in Eq. (62)

will reduce in this limit to the local splitting function. In the same limit, for the case φ = π

and B = N , the integrand of Eq. (63) reduces to the familiar on-shell form found in the

literature [1, 49, 50],

f
(on)

π+n(y) −→
∫
dk2
⊥

y
(
k2
⊥ + y2M2

)[
k2
⊥ + y2M2 + ȳ m2

π

]2 (69)

for the specific dissociation p→ π+n.

For the baryon coupling rainbow diagram, Fig. 1(b), the splitting function in Eq. (37)

can be reduced to

f
(rbw)
Bφ (y) =

iC2
BφΛ

8

f 2

∫
d4k

(2π)4

[
ȳ M

2
(∆2 −m2

φ)

D2
BDφD4

Λ

− ȳM
2

D2
BD

4
Λ

+
(2− y)M∆

DBDφD4
Λ

+
1

DφD4
Λ

]

× δ

(
y − k+

p+

)
. (70)

Performing the k− integral, this can then be expressed as a sum of on-shell, local and

nonlocal off-shell, and δ-function terms,

f
(rbw)
Bφ (y) =

C2
BφM

2

(4πf)2

[
f

(on)
B (y) + f

(off)
B (y) + 4 δf

(off)
B (y)− f (δ)

B (y)
]
. (71)

Note that the on-shell splitting functions for the baryon and meson couplings are equivalent,

while the δ-function contribution f
(δ)
B is as in Eq. (65). The off-shell contributions in Eq. (71)

include local and nonlocal terms. The local off-shell contribution,

f
(off)
B (y) =

2Λ
8

M

∫
dk2
⊥

(yM + ∆)

ȳ DφBD4
ΛB

, (72)

is similar to that derived in Refs. [25, 28], while the nonlocal off-shell term is given by

δf
(off)
B (y) = Λ

8
∫
dk2
⊥
y
[
k2
⊥ + (yM + ∆)2

]
ȳ2DφBD5

ΛB

. (73)
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In the Λ→∞ limit, the nonlocal term behaves as Λ
8
/D5

ΛB ∼ 1/Λ2, so vanishes, as expected.

For the Kroll-Ruderman diagram in Fig. 1(c), the splitting function in Eq. (38) for the

dipole regulator becomes

f
(KR)
B (y) = −

2iC2
BφΛ

8

f 2

∫
d4k

(2π)4

[
(yM + ∆)M

DφDBD4
Λ

+
1

DφD4
Λ

]
δ

(
y − k+

p+

)
, (74)

which after the k− integration can be written in terms of the off-shell and δ-function terms,

f
(KR)
B (y) =

C2
BφM

2

(4πf)2

[
− f (off)

B (y) + 2f
(δ)
B (y)

]
, (75)

as given in Eqs. (65) and (72). (Note that the notation used here differs slightly from that

of Ref. [29], where for strange octet baryons coupled to kaons the Kroll-Ruderman function

was labelled by f
(KR)
Y K ; here we drop the meson label, as for a proton target the choice

of baryon intermediate state uniquely specifies the meson, and also label the δ-function

contribution by the baryon involved rather than the meson.) For the nonlocal gauge link

contribution in Fig. 1(d), reduction of the Dirac matrices with the dipole form factor allows

the corresponding splitting function δf
(KR)
B to be rearranged as

δf
(KR)
B (y) =

iC2
BφΛ

8

f 2

∫
d4k

(2π)4

[
−

4yM
2
(∆2 −m2

φ)

DφDBD5
Λ

+
4yM

2

DBD5
Λ

− 4y(M∆− 2p · k)

DφD5
Λ

]

× δ

(
y − k+

p+

)
. (76)

After the k− integration, this reduces to a sum of the nonlocal off-shell and δ-function

contributions,

δf
(KR)
B (y) =

C2
BφM

2

(4πf)2

[
−4 δf

(off)
B (y) − δf

(δ)
B (y)

]
, (77)

as given in Eqs. (68) and (73), respectively. From Eqs. (62), (71), (75) and (77) one can

verify that the splitting functions satisfy the relation

f
(rbw)
φB (y) = f

(rbw)
Bφ (y) + f

(KR)
B (y) + δf

(KR)
B (y), (78)

which generalizes the result in Ref. [28] to the nonlocal theory. Note that the local and

nonlocal off-shell contributions f
(off)
B and δf

(off)
B cancel between the three terms on the right

hand side of Eq. (78). As noted above, in the Λ → ∞ limit each of the functions induced

by the nonlocal gauge link, δf
(off)
B and δf

(δ)
B , vanishes, reproducing the local result from

Ref. [25] that does not include the gauge link function δf
(KR)
B . Remarkably, the nonlocal
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generalization (78) means that gauge invariance is satisfied even in the presence of a finite

form factor cutoff Λ!

A similar analysis can be applied to the tadpole and bubble diagrams in Fig. 1(e), 1(f)

and 1(g) in the presence of a hadronic form factor. From Eq. (43), the splitting function for

the tadpole contribution with the dipole form factor can be written as

f
(tad)
φ (y) = −

Cφφ†M
2

(4πf)2
f

(δ)
φ (y), (79)

where the function f
(δ)
φ is equivalent to that in Eq. (65),

f
(δ)
φ (y) = f

(δ)
B (y). (80)

For the bubble diagram in Eq. (44) the corresponding splitting function is given by

f
(bub)
φ (y) = −

Cφφ†M
2

(4πf)2

[
f

(δ)
φ (y)− δf (δ)

φ (y)
]
, (81)

where the nonlocal function δf
(δ)
φ is given by Eq. (68),

δf
(δ)
φ (y) = δf

(δ)
B (y). (82)

Finally, the splitting function for the nonlocal tadpole gauge link diagram in Fig. 1(g) from

Eq. (47) with a dipole regulator is

δf
(tad)
φ (y) =

Cφφ†M
2

(4πf)2
δf

(δ)
φ (y). (83)

Combining Eqs. (79)–(83), one finds that the tadpole and bubble diagrams satisfy the gen-

eralized relation

f
(bub)
φ (y) = f

(tad)
φ (y) + δf

(tad)
φ (y), (84)

which confirms the gauge invariance of the nonlocal theory.

2. Decuplet splitting functions

Turning now to the splitting functions for the decuplet baryon intermediate states in

Fig. 1(h)–1(k), the contribution from the rainbow diagram with coupling to the pseudoscalar
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meson in Eq. (52) for the covariant dipole form factor (56) is given by

f
(rbw)
φT (y) =

iC2
Tφ Λ

8

6M2
Tf

2

∫
d4k

(2π)4

[
y(M

2

T −m2
φ)2(∆2

T −m2
φ)

D2
φDT D4

Λ

−
y(M

2

T −m2
φ)(M

2

T + 2∆2
T − 3m2

φ)

DφDT D4
Λ

+
y(2M

2

T + ∆2
T − k2 − 2m2

φ)

DT D4
Λ

+
y

D2
φD

4
Λ

(
4(p · k)2 − 2(M

2

T − k2) p · k + (M2
T − k2)2

+M(2M3
T −M3 − 2M2MT )− 2Mk2(2M +MT )

)]
δ

(
y − k+

p+

)
, (85)

where the coupling constants CTφ for the decuplet intermediate states are listed in Table I,

and the masses MT and ∆T here are defined in analogy with Eq. (58),

MT = M +MT , ∆T = MT −M. (86)

After performing the k− integration, the splitting function can be decomposed in terms of

on-shell decuplet, end point, and local and nonlocal δ-function terms,

f
(rbw)
φT (y) =

C2
TφM

2

T

(4πf)2

[
f

(on)
T (y) + f

(on end)
T (y)− 1

18
f

(δ)
T (y) +

M
2

T −m2
φ

6M2
T

(
f

(δ)
φ (y)− δf (δ)

φ (y)
)]
.

(87)

As for the octet case, the first term in Eq. (87) is the on-shell splitting function for the

meson rainbow with a decuplet spectator,

f
(on)
T (y) =

Λ
8

6M2
T M

2

T

∫
dk2
⊥
y (M

2

T −m2
φ)

ȳ

[
(M

2

T −m2
φ)(∆2

T −m2
φ)

D2
φT D

4
ΛT

−
3(∆2

T −m2
φ) + 4MMT

DφT D4
ΛT

]
(88)

where DφT and DΛT are defined analogously to Eqs. (64),

DφT = −
k2
⊥ + yM2

T − y ȳ M2 + ȳ m2
φ

ȳ
, (89a)

DΛT = −k
2
⊥ + yM2

T − y ȳ M2 + ȳΛ2

ȳ
. (89b)

Since Λ
8
/D4

ΛT → 1 in the Λ → ∞ limit, the decuplet on-shell function (88) reduces to the

pointlike result found in Ref. [27].

The function f
(on end)
T in Eq. (87) is finite for finite values of Λ,

f
(on end)
T (y) =

Λ
8

6M2
T M

2

T

∫
dk2
⊥

y

ȳ2D4
ΛT

×
[
k2
⊥ + y2M2 − 2y(M

2

T −M∆T )− 2ȳ m2
φ + 3M

2

T − 4MMT

]
, (90)
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but in the Λ→∞ limit corresponds to the end point function in Ref. [27], with a singularity

at y = 1. To see this, first note that DΛT in Eq. (89b) can be written in the form ȳDΛT =

−(XT + ȳΩΛ), where XT = yΩT − yȳM2 and ΩT = k2
⊥ +M2

T . In the Λ→∞ limit, one can

then write the factor

Λ
8

ȳ4D4
ΛT

−→
Λ→∞

lim
Ω0→∞

∫ ΩT

Ω0

dt
−4yΛ

8

(y t− y ȳM2 + ȳΩΛ)5

∣∣∣∣∣
Λ→∞

=
Λ

6

ȳ3Ω3
Λ

lim
Ω0→∞

(
Λ

2
ȳ3Ω3

Λ

ȳ4D4
ΛT

− Λ
2
ȳ3Ω3

Λ

ȳ4D4
0

)
Λ→∞

, (91)

where ȳD0 = −(X0 + ȳΩΛ), with X0 = yΩ0 − yȳM2 and Ω0 is a Λ-independent constant.

At finite Λ, the term involving D0 vanishes; however, care must be taken when evaluating

this for Λ→∞. Replacing ȳΩΛ in the first and second terms in Eq. (91) by (−ȳDΛT −XT )

and (−ȳD0 −X0), respectively, one obtains

Λ
8

ȳ4D4
ΛT

−→
Λ→∞

− Λ
6

ȳ3Ω3
Λ

lim
Ω0→∞

[(
Λ

2

ȳDΛT

− Λ
2

ȳD0

)
+ 3

(
Λ

2
XT

ȳ2D2
ΛT

− Λ
2
X0

ȳ2D2
0

)

+ 3

(
Λ

2
X2
T

ȳ3D3
ΛT

− Λ
2
X2

0

ȳ3D3
0

)
+

(
Λ

2
X3
T

ȳ4D4
ΛT

− Λ
2
X3

0

ȳ4D4
0

)]
Λ→∞

. (92)

Since in the Λ→∞ limit one has ȳDΛT → −Λ
2
(ȳ +XT/ΩΛ), the first term in parentheses

in Eq. (92) can be written(
Λ

2

ȳDΛT

− Λ
2

ȳD0

)
Λ→∞

= −

(
1

ȳ +XT/ΩΛ

− 1

ȳ +X0/ΩΛ

)
Λ→∞

(93)

where we have taken Ω0 � Λ2. The right hand side of Eq. (93) has the properties that it

vanishes if ȳ 6= 0, is divergent if ȳ = 0, and becomes log(XT/X0) when integrated over ȳ, so

that it can be represented by a δ function,(
Λ

2

ȳDΛT

− Λ
2

ȳD0

)
Λ→∞

= δ(ȳ) log
XT

X0

. (94)

Similarly, for the 1/(ȳDΛT )n terms in Eq. (91) with n ≥ 2, one can write in the Λ → ∞

limit

Λ
2
Xn−1
T

(−ȳ)nDn
ΛT

∣∣∣∣∣
Λ→∞

=
(XT/Λ

2)n−1

(ȳ +XT/ΩΛ)n

∣∣∣∣∣
Λ→∞

=
δ(ȳ)

n− 1
, n ≥ 2. (95)

Since the same result is obtained when XT is replaced by X0, the 1/(yDΛT )n and 1/(yD0)n

terms cancel for n ≥ 2, and one obtains

Λ
8

ȳ4D4
ΛT

−→
Λ→∞

− 1

ȳ3
log

ΩT

Ω0

δ(ȳ) = − 1

ȳ3

(
log

ΩT

µ2
− 1

)
δ(ȳ), (96)
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where µ is defined such that log(ΩT/µ
2) = log(ΩT/Ω0) + 1. With this result, one can finally

write the end point splitting function in the Λ→∞ limit as

f
(on end)
T (y) −→

Λ→∞

1

6M2
T M

2

T

∫
dk2
⊥

{[
ΩT − 2(∆2

T −m2
φ)− 6MMT

]
log

ΩT

µ2
− ΩT

+2(∆2
T −m2

φ) + 6MMT

}
δ(ȳ). (97)

This expression is identical to that for the end point term in Ref. [27], except for the k⊥-

independent terms in (97). For dimensional regularization, however, these are again defined

to be zero, so that the result does indeed match that in [27].

For the δ-function contributions at y = 0, there are three distinct terms in the decuplet

rainbow function f
(rbw)
φT . The new decuplet δ-function term in Eq. (87) for the nonlocal case

is given by

f
(δ)
T (y) =

Λ
8

M2
TM

2

T

∫
dk2
⊥

∫ 1

0

dz
z3

(k2
⊥ + Ω)3

δ(y)

=
1

M2
TM

2

T

∫
dk2
⊥

1

2Ω2
Λ

[
6Ω2

ΛΩφ log
Ωφ

ΩΛ

+ (Ωφ − ΩΛ)(Ω2
φ − 5ΩφΩΛ − 2Ω2

Λ)

]
δ(y), (98)

where Ωφ and ΩΛ are as in Eq. (66). In the Λ→∞ limit, only the first term in the integrand

of Eq. (98) survives, so that the local limit of the function f
(δ)
T is

f
(δ)
T (y) −→

Λ→∞

3

M2
TM

2

T

∫
dk2
⊥

[
Ωφ log

Ωφ

µ2
− Ωφ

]
δ(y), (99)

where the constant µ here is defined by log(Ωφ/µ
2) = log(Ωφ/ΩΛ) + 17/6.

The remaining δ-function terms in Eq. (87), namely, the local f
(δ)
φ and nonlocal δf

(δ)
φ

functions, are given in Eqs. (80) and (82), respectively. The combined contribution of the

δ-function terms to f
(rbw)
φT in the local limit is then

1

18

(
3(M

2

T −m2
φ)

M2
T

f
(δ)
φ − f

(δ)
T

)
−→
Λ→∞

1

6M2
TM

2

T

∫
dk2
⊥

[
Ωφ +

(
M

2

T −m2
φ − Ωφ

)
log

Ωφ

µ2

]
δ(y).

(100)

Note that this expression differs from the total local δ(y) contribution in Ref. [27], which

was computed using the projector Pαβ in Eq. (50) but with Z = −1/2 for the interaction

Θµν in Eq. (2). The result here supercedes that in Ref. [27].
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For the decuplet baryon coupling rainbow diagram in Fig. 1(i), reduction of the γ-matrices

in Eq. (53) yields

f
(rbw)
Tφ (y) =

iC2
Tφ Λ

8

6M2
Tf

2

∫
d4k

(2π)4

[
ȳ(M

2

T −m2
φ)2(∆2

T −m2
φ)

DφD2
T D

4
Λ

+
ȳ
[
(k2 +m2

φ) (2M
2

T + ∆2
T −m2

φ)−M4

T − 2M
2

T∆2
T − k4

]
D2
T D

4
Λ

−
(M

2

T −m2
φ)
[
(y − 2)M2

T − 2yMMT + (y + 2)(M2 −m2
φ)
]

DT DφD4
Λ

+
(y + 2)(2M2 −m2

φ − k2) + (yMT + 2M)2MT

DT D4
Λ

+
M

2

T + 2yMTMMT − 2y p · k − 3k2

D2
φD

4
Λ

]
δ

(
y − k+

p+

)
. (101)

Integrating over k−, the splitting function for the decuplet coupling rainbow diagram can

be written analogously to the function f
(rbw)
φT in Eq. (87),

f
(rbw)
Tφ (y) =

C2
TφM

2

T

(4πf)2

[
f

(on)
T (y) + f

(on end)
T (y)− 2

(
f

(off)
T (y) + f

(off end)
T (y)− 2 δf

(off)
T (y)

)
+

1

18

(
f

(δ)
T (y)− 3 δf

(δ)
T (y)

)
−
M

2

T + 3m2
φ

6M2
T

f
(δ)
φ (y)

]
. (102)

The first term in Eq. (102) is the on-shell splitting function for the decuplet baryon rainbow,

and is identical to that for the meson coupling rainbow in Eq. (87). The second term is the

same as the end point function contribution in Eq. (90).

The off-shell decuplet contributions to f
(rbw)
Tφ appear as three individual terms — a local

off-shell piece, f
(on)
T , an off-shell end point contribution, f

(off end)
T , and a purely nonlocal term,

δf
(off)
T . The local off-shell function is given by

f
(off)
T (y) =

Λ
8

6M2
TM

2

T

∫
dk2
⊥

(M
2

T −m2
φ)
[
ȳ (M2 −m2

φ)− (1 + y)M2
T

]
ȳ DφT D4

ΛT

, (103)

which in the Λ→∞ limit reduces to

f
(off)
T (y) −→

Λ→∞

1

6M2
TM

2

T

∫
dk2
⊥

(M
2

T −m2
φ)
[
ȳ (M2 −m2

φ)− (1 + y)M2
T

]
ȳ DφT

. (104)

In addition to the end point function for the on-shell contribution in Eq. (90), a separate

end point contribution exists for the off-shell case, f
(off end)
T , and is given by

f
(off end)
T (y) = − Λ

8

6M2
TM

2

T

∫
dk2
⊥

[
k2
⊥ + ȳ2M2 + ȳ (M

2

T −m2
φ)−M2

T

]
ȳ D4

ΛT

. (105)
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Using the relation in Eq. (96), one can show that in the Λ→∞ limit this term is proportional

to a δ function at y = 1,

f
(off end)
T (y) −→

Λ→∞

1

6M2
TM

2

T

∫
dk2
⊥

{[
ΩT − 2M2

T

]
log

ΩT

µ2
− ΩT

}
δ(ȳ). (106)

As for the octet case in Eq. (73), the decuplet splitting function also includes a nonlocal

decuplet off-shell term, given by

δf
(off)
T (y) =

Λ
8

6M2
TM

2

T

∫
dk2
⊥
y
[
k2
⊥ + (yM −MT )2

]2[
k2
⊥ + (yM + ∆T )2

]
ȳ4DφT D5

ΛT

, (107)

The presence of the 1/D5
ΛT in the integrand of (107) ensures that in the Λ → ∞ limit the

nonlocal function vanishes, δf
(off)
T → 0.

For the δ-function contributions at y = 0, the local terms f
(δ)
φ and f

(δ)
T in Eq. (102) are

given above in Eqs. (80) and (82), respectively, while the new nonlocal δ-function term,

δf
(δ)
T , is given by

δf
(δ)
T (y) =

Λ
8

M2
TM

2

T

∫
dk2
⊥

1

Ω3
Λ

δ(y). (108)

As with the other nonlocal contributions, this term also vanishes in the Λ→∞ limit.

The final diagram in Fig. 1 is that for the Kroll-Ruderman contribution with a decuplet

intermediate state, Fig. 1(j). The splitting function corresponding to this diagram, after

reducing the γ-matrices in Eq. (54), can be written

f
(KR)
T (y) = −i

C2
TφΛ

8

3M2
T f

2

∫
d4k

(2π)4

[
(M

2

T −m2
φ)2
[
(1 + y)M2

T − ȳ(M2 −m2
φ)
]

DφDT D4
Λ

+
(1− y)k2 − 2(1 + y) p · k + y(2M2 +M

2

T ) +M2
T

DφD4
Λ

+
2yM2

T − ȳ(k2 +m2
φ − 2MMT )

DT D4
Λ

]
δ

(
y − k+

p+

)
. (109)

After integrating over k−, the splitting function for the decuplet KR diagram can be ex-

pressed in terms of local and nonlocal off-shell and δ-function terms,

f
(KR)
T (y) =

C2
TφM

2

T

(4πf)2

[
2
(
f

(off)
T (y) + f

(off end)
T (y)

)
− 1

9

(
f

(δ)
T (y)− δf (δ)

T (y)
)

+
M

2

T +m2
φ

3M2
T

f
(δ)
φ (y)

]
(110)
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each of which have been defined previously. Finally, the splitting function for the additional

decuplet diagram induced by the gauge link, Fig. 1(k), is obtained from Eq. (55),

δf
(KR)
T (y) = −2i

C2
TφΛ

8

3M2
Tf

2

∫
d4k

(2π)4
y

[
(M

2

T −m2
φ)2(∆2

T −m2
φ)

DφDT D5
Λ

+
(k2 +m2

φ)(2M
2

T + ∆2
T −m2

φ)− (M
2

T − 2∆2
T )M

2

T − k4

DT D5
Λ

+
1

DφD5
Λ

(
4(p · k)2 + 3m4

φ − (3k2 + 3M
2

T + ∆2
T −MT∆T )m2

φ

−(4k2 − 6m2
φ + 2M

2

T ) (p · k) + k2M
2

T +M
3

T ∆T + k4
)

− 1

D5
Λ

(
3M2

T + 5M2 + 4MMT − 3m2
φ − 6 p · k

)]
δ

(
y − k+

p+

)
. (111)

With integration over k−, the splitting function for the nonlocal KR gauge link diagram can

be simplified to a sum of nonlocal off-shell and δ-function contributions,

δf
(KR)
T (y) =

C2
TφM

2

T

(4πf)2

[
− 4 δf

(off)
T (y) +

1

18
δf

(δ)
T (y)−

M
2

T −m2
φ

6M2
T

δf
(δ)
φ (y)

]
. (112)

From Eqs. (87), (101), (110) and (112), one can then explicitly verify that gauge invariance

for the decuplet baryon contributions is satisfied through the relation

f
(rbw)
φT (y) = f

(rbw)
Tφ (y) + f

(KR)
T (y) + δf

(KR)
T (y). (113)

This generalizes the result from Ref. [29] to nonlocal interactions in the presence of vertex

functions parametrizing the extended nature of the proton.

C. Leading nonanalytic behavior

Having derived the complete set of splitting functions for the one-loop diagrams in Fig. 1

for the dissociation of a proton to a pseudoscalar meson (φ) and an SU(3) octet (B) or

decuplet (T ) baryon, in the rest of this section we discuss the characteristics of each of the

functions and illustrate their relative shapes and magnitudes numerically. The full set of

functions includes 8 basis functions that are nonzero in the local limit, {f (on)
B , f

(off)
B , f

(on)
T ,

f
(on end)
T , f

(off)
T , f

(off end)
T , f

(δ)
T , f

(δ)
φ }, and 4 nonlocal functions, {δf (off)

B , δf
(off)
T , δf

(δ)
T , δf

(δ)
φ },

that vanish for pointlike particles. All of the diagrams in Fig. 1 are then represented by

splitting functions that can be written as linear combinations of these basis functions.
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Before presenting the numerical results for the splitting functions for the case of the

covariant dipole form factor in Eq. (56), we first identify some features of the basis functions

that do not depend on details of the regularization method, but are entirely determined by

the infrared behavior of the chiral loops. Namely, expanding the lowest moments 〈 fi 〉 of

the basis splitting functions,

〈fi〉 =

∫ 1

0

dy fi(y), (114)

as a series in the pseudoscalar meson mass mφ, the coefficients of terms that are nonanalytic

in m2
φ (either odd powers of mφ or logarithms of mφ) are determined by the low-energy

properties of the nucleon and do not depend on the ultraviolet behavior of the functions [19–

23]. In particular, the moments of the on-shell and off-shell functions f
(on)
B , f

(off)
B , f

(on)
T , f

(off)
T

and the δ-function terms f
(δ)
φ and f

(δ)
T all receive leading nonanalytic (LNA) contributions,

while the purely nonlocal functions and the decuplet end-point contributions f
(on end)
T and

f
(off end)
T are purely analytic.

For the octet intermediate states, we find the LNA term for the on-shell moment 〈f (on)
B 〉

is given by

M
2 〈
f

(on)
B

〉∣∣∣
LNA

=


(4m2

φ − 6∆2) logm2
φ + 6R∆ log

∆−R
∆ +R

, ∆ > mφ,

(4m2
φ − 6∆2) logm2

φ + 6R∆
(
π − 2 arctan

∆

R

)
, ∆ < mφ,

(115)

where R =
√

∆2 −m2
φ and R =

√
m2
φ −∆2. For the off-shell moment 〈f (off)

B 〉, the LNA

contribution is

M
2 〈
f

(off)
B

〉∣∣∣
LNA

=


−2m2

φ logm2
φ −

2R3

MB

log
∆−R
∆ +R

, ∆ > mφ,

−2m2
φ logm2

φ +
2R

3

MB

(
π − 2 arctan

∆

R

)
, ∆ < mφ.

(116)

The LNA behavior of the moment of the δ-function term, 〈f (δ)
φ 〉, is

M
2 〈
f

(δ)
φ

〉∣∣∣
LNA

= −m2
φ logm2

φ. (117)

These results generalize the LNA expressions given for hyperons and kaons in Ref. [29].
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For the decuplet intermediate states, the LNA term for the on-shell moment 〈f (on)
T 〉 is

M
2

T

〈
f

(on)
T

〉∣∣∣
LNA

=



(8m2
φ − 12∆2

T )

3
logm2

φ + 4RT∆T log
∆T −RT

∆T +RT

, ∆T > mφ,

(8m2
φ − 12∆2

T )

3
logm2

φ + 4RT∆T

(
π − 2 arctan

∆T

RT

)
, ∆T < mφ,

(118)

where RT =
√

∆2
T −m2

φ and RT =
√
m2
φ −∆2

T . The LNA contribution to the moment of

the decuplet off-shell function 〈f (off)
T 〉 is given by

M
2

T

〈
f

(off)
T

〉∣∣∣
LNA

=



2

3
m2
φ logm2

φ +
4R3

T

3MT

log
∆T −RT

∆T +RT

, ∆ > mφ,

2

3
m2
φ logm2

φ −
4R

3

T

3MT

(
π − 2 arctan

∆T

RT

)
, ∆ < mφ,

(119)

while the decuplet δ-function moment has the LNA term

M
2

T

〈
f

(δ)
T

〉∣∣∣
LNA

= −2

3
m2
φ logm2

φ. (120)

The decuplet results agree with those for the π∆ intermediate states derived in Ref. [27].

We stress that these results are completely general, depending only on the infrared prop-

erties of pseudoscalar meson loops, following directly from the symmetries of the chiral

Lagrangian. They are independent of short-distance contributions, which are model depen-

dent, and so provide us with a powerful tool that can be used to verify whether any model

is consistent with the chiral symmetry properties of QCD.

D. Phenomenology of meson–baryon splitting functions

In this section we explore the features of the meson–baryon splitting functions for the

various octet and decuplet contributions that are nonzero at y > 0, for a finite dipole cutoff

parameter Λ in Eq. (56). For illustration, we consider the nucleon and lightest Λ hyperon

states for the octet baryons, and the ∆ and Σ∗ for the decuplet states. Unless otherwise

indicated, we will use a typical value for the cutoff mass of Λ = 1 GeV.

In Fig. 2 we show the basis splitting functions for the on-shell f
(on)
B,T , off-shell f

(off)
B,T , and

nonlocal off-shell δf
(off)
B,T contributions, as well as the on-shell and off-shell end point functions

f
(on end)
T and f

(off end)
T for the decuplet ∆ and Σ∗ states. For all baryon intermediate states, the
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FIG. 2. Splitting functions versus meson momentum fraction y for the proton dissociations into

(a) N+π, (b) Λ+K, (c) ∆+π, and (d) Σ∗+K state, for the on-shell f (on) (red solid curves), off-shell

f (off) (blue dashed), and nonlocal off-shell δf (off) (black dotted) contributions. For the decuplet ∆

and Σ∗ states, additional contributions from on-shell end point f (on end) (red dot-dashed) and off-

shell end point f (off end) (blue dot-dot-dashed) are included. All results correspond to the covariant

dipole form factor in Eq. (56) with cutoff mass Λ = 1 GeV.

on-shell functions f
(on)
B,T are positive at all y values and peak at around y = 0.1−0.2, depending

on the mass of the baryon. The main difference between the on-shell functions for the

different baryons is the magnitude: for the strange baryons the functions are approximately

an order of magnitude smaller than for the non-strange.

The off-shell functions f
(off)
B,T for the octet baryons are negative, with magnitude com-

parable to the on-shell functions. For decuplet baryons, the off-shell functions increase as

y → 0, and in fact dominate the small-y region. The nonlocal off-shell functions f
(off)
B,T have

the same sign as the on-shell contributions, but are somewhat smaller in magnitude. The

additional on-shell and off-shell end point contributions for the decuplet intermediate states
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FIG. 3. Normalized splitting functions fi(y)/〈fi〉 for the (a) on-shell end point and (b) off-shell

end point contributions for the ∆ + π intermediate state, for different values of the dipole cutoff

mass Λ (1 GeV to 1 TeV) and a fixed value of the constant Ω0 = 100 GeV2.

are positive and negative, respectively, with the former vanishing at y = 0 and the latter

increasing in magnitude as y → 0.

Interestingly, both the on-shell and off-shell end point functions at Λ = 1 GeV both peak

at rather small values of y, while formally they become δ-functions at y = 1 for Λ → ∞.

The dramatic change in the shape of the end point functions with increasing Λ is illustrated

in Fig. 3, which shows the on-shell and off-shell end point terms as a function of y for a

range of Λ values from 1 GeV to 1 TeV.

Note that the derivation of the local limit of the end point splitting functions, as in

Eq. (91), includes the D0 term. There, it was assumed that the constant Ω0 in D0 is

very large, although in the local limit it also satisfies Ω0 � Λ2 [see Eq. (93)]. In order

to observe the D0 contribution to Eq. (92) in practice, we fix the parameter Ω0 to a very

large value, Ω0 = 100 GeV2. As shown in Fig. 3, when Λ is small, the contribution of D0

is negligible, and the on-shell and off-shell end point distributions coincide with those in

Fig. 2(c) for Λ = 1 GeV. (The end point functions decrease in magnitude at y < 1 with

increasing Λ, so for clarity these are normalized by their integrals, 〈fi〉, over all y. This

then renders the ratio for the off-shell end point function in Fig. 3(b) positive, whereas the

unnormalized distribution in Fig. 2(c) is negative.) The D0 term can therefore be dropped

when considering the contribution of the nonlocal end point functions for finite values of

Λ. On the other hand, Fig. 3 clearly indicates that as Λ → ∞ the peaks of the end point
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FIG. 4. Splitting functions versus y for proton dissociations into various meson–baryon intermediate

states as in Fig. 2, but for the total contributions to the meson-coupling rainbow diagrams in

Fig. 1(a) and (h) (red solid curves), baryon-coupling rainbow diagrams in Fig. 1(b) and (i) (blue

dashed), KR diagrams in Fig. 1(c) and (j) (green dot-dashed), and nonlocal KR diagrams in

Fig. 1(d) and (k) (black dotted). Contributions from the tadpole and bubble diagrams in Fig. 1(e)–

(g) at y = 0 are not shown here.

functions migrate to higher values of y, approaching a shape that resembles a δ-function,

δ(1− y), in the local limit.

The combinations of the various basis functions corresponding to the rainbow and KR di-

agrams in Fig. 1 are illustrated in Fig. 4 for the same intermediate states as in Fig. 2. Again

the main difference between the nonstrange and strange baryon contributions is the mag-

nitude of the functions, with the strange being an order of magnitude or more suppressed.

The total meson-coupling rainbow functions, f
(rbw)
φB and f

(rbw)
φT , generally have very similar

shape to the corresponding on-shell functions in Fig. 2. The baryon-coupling rainbow func-

tions, f
(rbw)
B φ and f

(rbw)
T φ , have similar magnitude and are generally positive at intermediate
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FIG. 5. Decomposition of the splitting function for the nucleon-coupling rainbow digram in

Fig. 1(b) for (a) the nonlocal chiral theory with dipole regulator, and (b) the local chiral theory with

a symmetry preserving Pauli-Villars regulator. The value of the Pauli-Villars mass parameters Λ is

determined by normalizing to the momentum carried by the interacting nucleon, 〈y〉 =
∫ 1

0 dy y f(y),

for the dipole regulator with Λ = 1 GeV.

y, but become more negative as y → 0. The latter behavior is canceled by the KR func-

tions f
(KR)
B,T at small y, such that the sum of the baryon-coupling rainbow and KR diagrams

satisfies Eqs. (78) and (113). The nonlocal KR functions, δf
(KR)
B,T , at nonzero y values are

proportional to −4 times the nonlocal off-shell functions [Eqs. (77) and (112)], and hence

are negative at y > 0.

The pattern of cancelations between the various contributions from the basis functions

to particular diagrams in Fig. 1 is further explored in Fig. 5, which shows the decomposition

of the splitting function for the nucleon-coupling rainbow diagram, f
(rbw)
Nπ . For the case

of the covariant dipole form factor with Λ = 1 GeV, Fig. 5(a), one observes very strong

cancelation between the positive on-shell and negative off-shell contributions, with the total

closely resembling the purely nonlocal off-shell function δf (off). At first sight this may be

perplexing, if one interprets the result to suggest that the total nucleon-coupling rainbow

function may be very small in the pointlike limit, where δf (off) vanishes. In practice, however,

the on-shell and off-shell functions vary differently with Λ, so that the degree of cancelation

does depend on the cutoff.

This is illustrated in Fig. 5(b), which shows the decomposition of f
(rbw)
Nπ for the case of

a local theory with a Pauli-Villars regulator, which preserves the necessary symmetries of

the theory [28, 29]. In this case there is no nonlocal contribution, and the total is given
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by the sum of the on-shell and off-shell terms. For the on-shell splitting function f
(on)
N the

Pauli-Villars regulating function takes the form

F̃
(on)
PV (k) = 1−

D2
φB

D2
ΛPV

, (121)

while for the off-shell splitting function f
(off)
N the regulator is given by

F̃
(off)
PV (k) = 1− DφB

DΛPV

. (122)

In order to compare the shapes more directly, we choose the Pauli-Villars regulator to give

the same total momentum 〈y〉 =
∫ 1

0
dy y f(y) carried by the interacting nucleon in f

(rbw)
Nπ ,

which yields ΛPV = 0.34 GeV. These have similar general features as the functions for the

nonlocal theory with covariant dipole regulator, with the small differences in magnitude for

the on-shell and off-shell contributions for the dipole and Pauli-Villars regulators allowing a

sizeable nonzero total to remain.

While the contributions of the various splitting functions at y > 0 are illustrated in Figs. 2

and 4, the relative importance of the δ-functions terms at y = 0 is demonstrated in Fig. 6

by the integrated values of the basis functions, 〈f〉 as a function of the covariant dipole form

factor cutoff mass Λ. As expected, the magnitude of each of the integrated functions increases

with Λ, as more short-distance contributions are included. For the nominal Λ = 1 GeV used

in Figs. 2 and 4 the πN intermediate states dominate, with the hyperon and decuplet

contributions an order of magnitude smaller. The picture changes for larger cutoff values,

and for Λ & 1.2 GeV some of the π∆ contributions become as large as the πN . Of course,

the validity of a one-loop calculation for larger cutoffs is more questionable, as contributions

from higher-order terms become increasinbly more important. Interestingly, for the octet

baryons, the on-shell and nonlocal off-shell contributions are positive, while the local off-

shell and both the (local and nonlocal) δ-function contributions are negative. In contrast,

for the decuplet states, all contributions are positive, with the exception of the off-shell end

point terms, as already indicated in Fig. 2.
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FIG. 6. Integrals of splitting functions over all y, for (a) N + π, (b) Λ + K, (c) ∆ + π and (d)

Σ∗ + K intermediates states, for the on-shell (red solid curves), off-shell (blue dashed), nonlocal

off-shell (blue dotted), local δ-function (green dot-dashed), and nonlocal δ-function (green dotted)

contributions. The decuplet states include additional contributions from on-shell end point (red

dot-dot-dashed) and off-shell end point (blue dot-dot-dashed) terms. All results correspond to the

covariant dipole form factor in Eq. (56) with cutoff mass Λ = 1 GeV.

V. CONCLUSION

In this paper we have for the first time used a nonlocal covariant formulation of SU(3)

chiral effective theory to construct the framework necessary for systematically computing

the contributions from pseudoscalar meson loops to parton distributions in the nucleon.

The main result of the present work has been the derivation from the nonlocal theory of the

lowest order proton → meson + baryon splitting functions arising from transitions of the

initial state to intermediate states involving octet and decuplet baryons, as well as those

involving contact interactions at zero momentum.
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Since the contributions from the loop diagrams are ultraviolet divergent, care must be

taken to ensure that the integrals are regularized in a way that preserves the underlying

symmetries of the effective theory, such as gauge invariance, Lorentz invariance, and chiral

symmetry. A common approach adopted in the literature involves the use of local inter-

actions with regulators that explicitly depend on the 3-momentum of the meson. While

this does take into account the extended nature of hadrons and renders finite results, this

approach is in practice ad hoc and destroys the local gauge and Lorentz invariance of the

theory.

The virtue of the nonlocal formulation, on the other hand, is that it allows the use of

a 4-dimensional regulator while preserving all the necessary symmetries. In this case the

regulator is generated directly from the nonlocal Lagrangian, and gives rise to additional

diagrams that appear from the expansion of the gauge link [see Fig. 1(d), (g) and (k)].

To illustrate the characteristic features of the new nonlocal splitting functions, we have

used a simple dipole function for the 4-dimensional regulator. This reveals some novel patters

of cancelations among the local and nonlocal functions in the rainbow and Kroll-Ruderman

diagrams, and reveals importance of nonlocal contributions for finite values of the regulator

mass Λ. For the decuplet intermediate states, our analysis is able to study numerically

the transition from the case of a finite Λ to the pointlike limit, which is realized most

dramatically for the on-shell and off-shell end point contributions to the baryon-coupling

rainbow and Kroll-Ruderman diagrams. We verify explicitly that in the Λ → ∞ limit the

nonlocal generalization does indeed reproduce the results of the local theory.

The results derived here will serve as a basis for future applications of the formalism

to computing meson loop contributions to parton distributions in the nucleon. Within the

effective theory, these can be computed by matching twist-two quark level and effective

hadronic level operators, which leads to a convolution representation for the PDFs,

q(x) =
∑
j

∫ 1

0

dy

y
fj(y) qvj

(x
y

)
, (123)

where fj(y) are the meson–baryon splitting functions, and qvj is the valence distribution for

the quark flavor q in the hadronic configuration j. In a forthcoming paper [40], we will use

this formalism to study flavor asymmetries in the nucleon generated through meson loops,

such as in the light antiquark sea (d̄− ū) or for strange quarks (s− s̄), consistently within

the 4-dimensional chiral effective theory framework.
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