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We calculate the O(a®) hadronic-vacuum-polarization contribution to the muon anomalous mag-
netic moment for the first time from ab initio lattice QCD. We employ previously-published re-
sults for the Taylor coefficients of the renormalized vacuum polarization function that were ob-
tained on four-flavor QCD gauge-field configurations with physical light-quark masses. We obtain
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—9.3(1.3), in agreement with determinations from e

Te~ — hadrons data plus dis-

persion relations. The total uncertainty is below the target precision of the Muon g — 2 Experiment.
We also provide new expressions suitable for computing the O(a3) hadronic vacuum polarization

contributions from the renormalized vacuum polarization function ﬁ(qz)7 or directly from the lattice

vector-current correlator in Euclidean space.

I. INTRODUCTION

The anomalous magnetic moment of the muon (g, —2)
is one of the most precisely-determined observables in
particle physics, having been measured with an un-
certainty of 0.54 parts-per-million by BNL Experiment
E821 [1]. Because of this high experimental preci-
sion, and because the anomaly is mediated by quantum-
mechanical loops in the Standard Model, the muon g, —2
provides stringent constraints on new heavy or weakly-
coupled particles. The present Standard-Model theory
value lies below the BNL E821 measurement by more
than three standard deviations [2]. To identify defini-
tively whether this deviation is due to new particles or
forces, both the theory and measurement errors must be
improved. The Muon g,, — 2 Experiment recently began
running at Fermilab, and aims to reduce experimental
error by a factor of four [3]. In parallel, numerous efforts
are underway by the lattice-QCD community to tackle
the Standard-Model hadronic contributions [4-13], which
are the largest source of theory uncertainty [2].

The largest source of uncertainty in the Standard-
Model g, — 2 is from the O(a?) hadronic vacuum-
polarization (HVP) contribution [2], a}f¥F, which is
shown in Fig. 1.! This contribution can be obtained
by combining experimental measurements of electron-
positron inclusive scattering into hadrons with disper-
sion relations, and recent determinations from this ap-
proach quote errors of 0.4-0.6% [14-16]. The most pre-
cise calculation of the leading-order aEVP to-date from
Ref. [8] employed four-flavor lattice QCD with physical-
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1 The symbol « always denotes the electromagnetic coupling in
this work.

mass pions to achieve a total error of ~ 2%. A significant
source of systematic uncertainty in this and all lattice-
QCD results to-date is from the use of degenerate up- and
down-quark masses; phenomenological estimates of this
error are about 1% [17-19]. Recently, we calculated the
strong-isospin-breaking correction to the leading-order,
light-quark-connected contribution to aj; V¥ directly for
the first time with the physical values of m, and mg,
thereby removing this important uncertainty contribu-
tion [20]. To match the target experimental precision,

however, the error on aj;¥" must be further reduced to
about 0.2%.
The O(a®)  “higher-order” hadronic vacuum-

polarization contribution to g, — 2 is roughly 1.5%
that of the leading-order HVP contribution [2], and
therefore only needs to be determined to around 10%
to match the projected experimental precision. Experi-
mental determinations from combining electron-positron
inclusive scattering into hadrons data with dispersion
relations quote errors of 0.4-0.9% [14, 16, 21]. Never-
theless, it is important to check these phenomenological
values with ab-inito QCD calculations. Moreover, if the
disagreement between theory and experiment persists
or grows with the new Muon g, — 2 measurement, a
complete first-principles Standard-Model theory value
will be essential for drawing conclusions about the
presence or nature of new physics.

In this paper we calculate the higher-order HVP con-
tribution to aEVP for the first time in lattice QCD. To
enable us to focus on the methodology and error analysis,
we use previously published lattice-QCD results for the
Taylor coeﬁiciegts of the renormalized vacuum polariza-
tion function (I1(Q?)) from Refs. [8, 22-24] to construct
both Padé [23] and Mellin-Barnes approximants [25] for
II(Q?). Details on the lattice-QCD calculations can be
found in these works.
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FIG. 1. Leading hadronic contribution to the muon g, —
2. The shaded circle denotes all corrections to the internal
photon propagator from the vacuum polarization of u, d, s,
¢, and b quarks in the leading one-loop muon vertex diagram.

This paper is organized as follows. In Sec. II, we
provide theoretical background on the hadronic-vacuum-
polarization contributions to g, — 2, and discuss our
method for calculating the higher-order contributions.
Next, in Sec. III we present our analysis and error budget.
Last, in Sec. IV, we show our final result for a'1VP-HO and
compare with non-lattice determinations. Appendix A
provides expressions suitable for computing the O(a?)
hadronic vacuum-polarization contribution to amVF di-
rectly from lattice-QCD simulations, while App. B pro-
vides the definition of the N = 2 4 1 + 1 Mellin-Barnes
approximant for the I1(Q?) used in this paper. For com-
pleteness, App. C gives the values of the quark-connected
Taylor coefficients employed in our analysis.

II. THEORETICAL BACKGROUND

The leading hadronic contribution to the muon anoma-
lous magnetic moment arises from QCD corrections to
the internal photon propagator in the O(a?) one-loop
muon vertex diagram, as shown in Fig. 1. At O(a?),
higher-order hadronic contributions arise from adding a
second internal photon line (as in Fig. 2 (a)), adding a
lepton loop to the existing photon line (as in Figs. 2 (a)
and (b)), or adding a second insertion of the hadronic vac-
uum polarization bubble on the photon line (as in Fig. 2
(c)). Both the leading- and NLO HVP contributions can
be obtained, with the help of dispersion relations, from
the energy scan of the experimental “R-ratio” [14-16, 21]:

_o(ete” — v* — hadrons)
By (s) = dma(s)2/(35) ’

(2.1)

where s is the square of the center-of-mass energy. Table I
two recent evaluations of the leading contribution and the
individual higher-order contributions from diagrams (a),
(b), and (c) by Jegerlehner [14] and Keshavarzi et al. [16].
The higher-order contributions are roughly 1.5% of the
leading contribution, and do not contribute substantially
to the total error on the Standard-Model theory value for
ay,.
MIntegrals for the O(a3) contributions from diagrams
(a)—(c) have been presented in the literature in terms
of R,(s) [26, 27]. These formulations, however, are not

TABLE I. Determinations of the O(a?) (first column) and
O(a?) hadronic-vacuum-polarization contributions (remain-
ing columns) to g, — 2 from recent analysis of experimental
data for the e"e™ — hadrons cross section by Jegerlehner [14]
(top row) and Keshavarziet al. [16] (bottom row).
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Lowest order (a) (b) (c) total HO

688.07(4.14) -20.613(130) 10.349(63) 0.337(5) -9.927(67)

693.27(2.46)  -20.77(8)  10.62(4) 0.34(1)  -9.82(4)

suited for our use, particularly in the case of contribution
(a). We therefore provide in Appendix A new expres-
sions for these contributions that are amenable to use
with lattice-QCD data. For each contribution, we pro-
vide two formulations to obtain a,(f);i = {a,b,c}. First,
we use the following relationship between R, (s) and the
renormalized vacuum polarization function [28],

~ 2 [ R, (s
H(QQ)Z%/O dsis +(5)

Gtgd) (2.2)

to derive expressions in terms of the renormalized vac-
uum polarization function I1(Q?) = TI(Q?) — TI(0).2
These are the higher-order analogs of the original Blum
formula for the leading HVP contribution [29], and are
given in Egs. (A1), (A6), and (A13). We also provide ex-
pressions for the contributions from diagrams (a)—(c) di-
rectly in terms of the Euclidean vector-current correlator
at zero momentum G(t) using the relationship between

I1(Q?) and G(t) below [28]:

M(w?) = 47> (T1(w?) - 11(0)) (2.3)
= tl; OOO dt G(t) [thQ — 4sin? (“;)} (2.4)

These are the higher-order analogs of the time-
momentum representation formulated by Bernecker and
Meyer for the leading HVP contribution, and are given
in Egs. (A3), (All), and (A14).

The higher-order HVP contributions are sensitive to
the value of the renormalized vacuum polarization func-
tion at larger values of @2 than the leading-order con-
tribution. Figure 3, left, plots the integrands for the
leading-order and higher-order contributions as a func-
tion of Q% using the N = 2 + 1 + 1 Mellin-Barnes ap-
proximant for I[(Q2) from Ref. [25]. The integrand for
the leading-order contribution is also shown for compari-
son. The integrand of contribution (a) has large positive
and negative contributions below Q% = mi that cancel
substantially. Because of this, the large-Q? region is nu-

merically important, with about 5% of the value of a,(f)

2 We use ¢? and Q? to denote the squared four-momenta in
Minkowski and Euclidean space, respectively.



FIG. 2. Higher-order hadronic-vacuum-polarization contributions to g, — 2. For contribution (a), diagrams that are reflections
across the horizontal midpoint and diagrams in which the tree and corrected photon propagators are interchanged are not

shown.

coming from Q2 > 10GeV?2. The integrand of contribu-
tion (b) peaks around Q? = mi/2\/§7 and more than

95% of the value of a!”) comes from Q2 < 0.5GeV?2. The
integrand of contribution (c) peaks around Q? = Qmﬁ.

Because it is proportional to ﬁ(Qz)Q, it decreases less
rapidly with Q? than the other contributions; about 10%

of the value of aff) comes from Q2 > 1GeV?. Thus, it is

important to employ approximants of ﬁ(Qz) that accu-
rately reproduce the large-Q? behavior when calculating
the higher-order contributions to aj;"'".

The higher-order HVP contributions are sensitive to
the value of the Euclidean-time correlator at similar times
as the leading-order contribution. Figure 3, right, plots
the integrands for the leading-order and higher-order con-
tributions (a) and (b) as a function of correlator time ¢
using G(t) obtained from the spectral representation of
R, (s). (The kernel for contribution (c) depends upon the
product of the correlator at two times G(¢)G(t’) and thus
the integrand cannot be conveyed in a one-dimensional
plot.) The leading-order (higher-order) kernels are pro-
portional to ¢ (#2) at small Euclidean times, and are pro-
portional to 1/t (approach a constant )at large times,
and the integrands all peak at around ¢ ~ 0.8-1.0 fm.
The contributions to aIIfVP from correlator data beyond
4 fm, which is approximately half the temporal extent
(or less) of lattices employed in recent g — 2 calculations,
are about 0.5% or less [8, 11, 12, 30].

III. ANALYSIS

In this section we calculate the O(a?) contributions to
af}vp from the diagrams in Fig 2. First, in Sec. IIT A, we
describe the approximants of the renormalized vacuum

function used to calculate the higher-order HVP contri-
butions. Next, we calculate the quark-connected contri-
bution from light and heavy quarks in Sec. III B Last, in
Sec. III C, we estimate the size of the quark-disconnected
contribution.

A. Approximants of ﬁ(QQ)

We calculate the higher-order contributions to aEVP

using both Padé and Mellin-Barnes approximants of the
renormalized vacuum polarization function in the QED
integrals given in Appendix A. Both approaches employ
the Taylor coefficients IT; of ﬁ(Qz) expanded about Q? =
0:

Q%) = Q% (3.1)
i=1

As observed in Ref. [23], the II; are proportional to the
time-moments of the vector-current correlation function,
and can be computed with small statistical errors in
lattice QCD. Further, with both the Padé and Mellin-
Barnes approches, only the first few Taylor coeflicients
are needed to obtain the leading-order HVP with a sub-
percent systematic uncertainty associated with the pa-
rameterization of I1(Q?) [8, 25].

Following the method introduced by the HPQCD Col-
laboration [23], we construct the [n,m] Padé approxi-
mants for the renormalized hadronic vacuum polariza-
tion function from the II;’s. The true result for ﬁ(Q2)
is guaranteed to lie between the [n,n] and [n,n — 1]
Padé approximants. For the leading-order HVP con-
tribution, the Padé approximants provide a sufficiently
accurate approximation of II(Q?) both at low and high
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FIG. 3. (color online.) Left: integrands of Eqs. (A1) (blue dots), (A6) (green dashes), and (A13) (purple dot-dashes) obtained
from the N = 2+ 1+ 1 Mellin-Barnes approximant for ﬁ(QQ) given in Ref. [25], which employs preliminary moments of R, (s)
provided by Keshavarzi et al. [16]. The leading-order integrand is also shown as a solid magenta line for comparison. Right:
integrands of Egs. (A3) (blue squares) and (A11) (green diamonds) obtained from the parameterization of R, (s) provided by
Jegerlehner in his public alphaQED FORTRAN package [31]. The leading-order integrand is also shown as magenta circles for

comparison.

Q? that the associated uncertainty in aEVP is below 1%
by n = 2 [8]. Unfortunately, however, one cannot use
the [n,n — 1] approximants I1(Q?) to calculate the con-
tributions to aEVP from diagrams (a) and (c). This is
because ﬁ[”’”’l](Qz) ~ Q2% as Q?> — oo, making the
integrals diverge in this limit. The integrals using the
[n,n] Padé approximants are well behaved, but another
approach is needed to quantify the uncertainty in the
higher-order contributions to aEVP from the parameter-
ization of II(Q?).

Recently de Rafael and Charles et al. introduced the
method of “Mellin-Barnes approximants” to obtain aEVP

from the Taylor coefficients of ﬁ(QQ) [25, 32]. This ap-
proach uses the fact that the hadronic spectral function
Imﬁ(qQ) /7 in QCD is positive and approaches a constant
as Q2 — oo to identify a class of functions that can be
employed as successive approximants to the Mellin trans-
form M(s) of the hadronic spectral function. Given N
moments of the Mellin transform M(—n), the Mellin-
Barnes approximant M smoothly interpolates between
these known values, and approaches the asymptotic value
of M(s) from leading-order perturbative QCD as s — co.
The Mellin moments are trivially related to the Taylor
coefficients of I1(Q?) as

M(=n) = dwa(—1)"(4m2) "+ V1L, (3.2)
The first term in the moment expansion of the hadronic
spectral function provides a rigorous upper bound on
I(Q?) and affVF [33]. In practice, the N = 1 approx-
imant obtained using M(0) from experimental R, data
yields a value for the leading-order HVP contribution

that already agrees with the full result to better than
1% [25].

Figure 4 plots the Padé and Mellin-Barnes approxi-
mants for ﬁ(QQ) calculated from the first four moments
of R,(s) [16], and compares them with the exact result
obtained from direct integration of R,(s). The Mellin-
Barnes approximants are closer to the exact II(Q?) than
the Padés because they are constrained to satisfy the
asymptotic perturbative-QCD behavior as Q? — oo.
Note, however, that the rate at which the Mellin-Barnes
approximants approach the true ﬁ(QZ) depends upon the
specific functional form employed at each order. In par-
ticular, the difference between successive approximants
is not guaranteed to decrease with increasing N.

B. Quark-connected contribution

We calculate the O(a?®) quark-connected contribution
to alIfVP using the Taylor coefficients of ﬁ(Qz) obtained
by the HPQCD Collaboration in Refs. [8, 22-24]. The
u, d, and s-quark Taylor coefficients were calculated on
the MILC Collaboration’s QCD four-flavor gauge-field
configurations with highly-improved staggered (HISQ)
sea and valence quarks [35, 36]. The b-quark Tay-
lor coefficients were also calculated on the HISQ en-
sembles, but with a radiatively-improved nonrelativis-
tic QCD action for the b quarks [37, 38]. The c-quark
Taylor coefficients were calculated with HISQ valence
quarks, but on MILC’s three-flavor ensembles with asq-
tad sea quarks [39-41]. The MILC ensembles are isospin-
symmetric, ¢.e. the up and down sea-quark masses are
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FIG. 4. (color online.) First four Padé approximants
(“[1,0]-[2,2] Padé”) and Mellin-Barnes approximants (“N=1-
N=2+1+1 M-B”) of the renormalized vacuum polarization
function calculated from the moments of R-(s) analysis of
Keshavarzi et al. [16] and quoted in Ref. [25]. The exact re-
sult is shown as a solid black line for comparison [34].

degenerate. The light-quark mass varies from m; = my/5
to Nature’s value m; ~ mg/27, making a chiral extrap-
olation unnecessary, and the strange- (and charm-) sea-
quark masses are fixed to close to their physical values.

We employ light- and strange-quark Taylor coeffi-
cients on two ensembles with physical light-quark masses
and lattice spacings a ~ 0.15 fm and 0.12 fm from
Refs. [8, 23]. Table IV gives the light- and strange-quark
connected Taylor coefficients used in our analysis. The
values of Hz(.u{i) include corrections for the finite lattice
spatial volume and and nonzero lattice spacing computed
at one-pion-loop order within scalar QED [18]. We em-
ploy charm- and bottom-quark Taylor coefficients from
Refs. [22, 24], which provide values of HZ(-C) and Hgb) at
the physical light-quark mass and in the continuum. For
convenience, Table V gives the heavy-quark connected
Taylor coefficients used in our analysis.

To calculate the connected contribution to a&HO), we

first sum the individual Taylor coefficients ngd), Hgs),
HEC), and Hgb), and then use the total to construct the
Padé and Mellin-Barnes approximants for I1(Q?). Be-
yond N = 2, the functional forms of the Mellin-Barnes
approximants are not unique; Appendix B gives the form
of Tz41+1(Q?) used here. We then use the resulting ap-
proximants for II(Q?) in the QED integrals, Eqs. (A1),
(A6), and (A13), to obtain the quark-connected contri-
butions to aEVP from the diagrams in Fig. 2. On each en-
semble, and for each contribution (a)—(c), we average the
values from the Padé and Mellin-Barnes approximants,
and take half the difference between the two as the sys-
tematic uncertainty from the parameterization of ﬁ(QQ)

TABLE II. O(c®) hadronic-vacuum-polarization contribu-
tions to g, —2 on two physical-mass HISQ ensembles obtained
using [2,2] Padé and N = 2 + 1 4+ 1 Mellin-Barnes approxi-
mants for IAI(QQ) The uncertainties are from the errors on
the Taylor coefficients and, for the averages, from the use of
approximants for ﬁ(QZ).

101001;[07 conn.

~ a (fm) 11 approx. (a) (b) (c)
0.15 Padé  -19.24(32) 10.34(10) 0.3186(79)
M-B -20.82(35) 10.40(19)  0.339(12)
Average -20.03(82) 10.37(11)  0.329(12)
0.12 Padé  -19.05(29) 10.176(87) 0.3111(69)
M-B -20.58(27) 10.23(15)  0.3307(89)
Average -19.82(79) 10.204(91) 0.321(11)

Table IT gives the results on the two ensembles employed
in our analysis.

Figure 5 shows the total O(a?®) quark-connected con-
tribution to VP — obtained by summing contributions
(a)—(c) in the rows labeled “average” in Table IT — ver-
sus squared lattice spacing. The data do not display any
significant lattice-spacing dependence, so we fit them to

constant to obtain the continuum-limit value of aEVP’HO.
We also consider an alternative linear extrapolation in a?

to a function of the form

GEVP,HO (1 toegs (aA)2> |
s

- (3.3)

with A = 500 GeV a typical QCD scale. The linear-fit
result for ¢,z is consistent with zero, and for ofVF-HO
is close to the value from the constant fit. We there-
fore conclude that discretization effects are smaller than
the fit error on aTVPHO and do not assign a separate
systematic error from this source.

The HPQCD Collaboration reduced the statistical er-
rors in the light-quark connected Taylor coefficients in
Ref. [8] by using fit results for the vector-current correla-
tors for times greater than 1.5 fm. Although the lowest-
energy states in these correlators are I = 1 7x pairs, no
evidence of such states was seen in the two-point fits,
and the ground-state energies obtained are consistent
with the experimental p° meson mass. HPQCD esti-
mate the contribution to the leading-order light-quark
connected contribution to af}vp from the omitted 77
states within scalar QED to be 3 x 1071, We expect
w7 contributions to be similar in size for the dominant
higher-order diagrams (a) and (b) because the integrands
in Eqs. (A1) and (A6) are proportional to I1(Q2), just
as for the leading-order hadronic vacuum polarization.
Hence, we take the same percentage error of 0.5% as the
uncertainty in a7VP-HO from 77 states below the p pole.

The four-flavor gauge-field ensembles employed in our
analysis have degenerate up and down sea-quark masses.
Recently the Fermilab Lattice, HPQCD, and MILC Col-
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FIG. 5. (color online.) Continuum extrapolation of O(a?®)
quark-connected contribution to aEVP. The filled cyan band
shows the result of our preferred constant fit, while the solid
blue lines show the result of a linear fit to Eq. (3.3) with the
slope ¢,2 constrained with a Gaussian prior 0 £ 1.

laborations calculated the strong-isospin-breaking correc-
tion to af}vp for the first time with physical values m,,
and my [20]. They obtain 4+1.5(7)% for the relative cor-
rection that should be applied to the leading-order light-
quark connected contribution, in agreement with phe-
nomenological estimates [17-19]. Here we use +1.5(1.0)%
to correct the continuum-limit value of aVFPHO from
Fig. 5, where we have taken a larger uncertainty of 1%
on the relative correction to account for the fact that
the shift was not calculated directly for the higher-order
hadronic vacuum polarization.

The QCD gauge-field ensembles employed in our anal-
ysis do not include effects due to the quarks’ nonzero
electromagnetic charges in Nature. The dominant QED
effect in aEVP arises from producing a hadron polariza-
tion bubble consisting of a 7%~ pair. Following Hagiwara
et al. [42] we calculate the contribution to aEVP’HO from
ete” — 70y in the region 0.6 < /s < 1.03 GeV using
the latest experimental data for this channel from the
SND Experiment [43]. We obtain

AaHO™) = —0.056(8) x 1071, (3.4)
which is approximately 0.6% of the total quark connected
contribution. We therefore take 1% as the error from the
omission of electromagnetism in the simulations.

Finally, as discussed in Appendix A, in order to ex-
press higher-order contribution 2(a) in Fig. 1 in terms of
the renormalized vacuum polarization function, we must
drop terms in the original integrand [26, 27] that are pro-
portional to (m? /)" logz(mi/s). We have calculated the
numerical size of these terms from experimental R (s)
data [31] and, although they are small, they are not negli-
gible given the size of our statistical and other systematic

TABLE III. Error budget for O(a®) quark-connected contri-
bution to g, — 2.

a(HO,ud) (%)

o

Omission of log? terms 10.6
Padé approximants 5.8
Isospin-breaking and electromagnetism 14
Taylor coefficients 1.2
ww states (%) 0.5
Total 12.2

uncertainties. To account for the omission of the “log?”
in our calculation of contribution 2(a) via Eq. (Al), we
therefore include an additional systematic uncertainty of
1 x 107!% which is almost twice the size of these terms
calculated from R,(s) data.

Table III gives the complete error budget for the O(a?)

quark-connected contribution to aEVP. The largest un-

certainties are associated with the omitted “log?” terms
in contribution 2(a) and from the use of Padé and Mellin-
Barnes approximants for the renormalized vacuum polar-
ization function. Although the estimated uncertainties
from the omission of QED and isospin breaking in the
gauge-field configurations, and from low-lying 77 states
in the vector-current correlators, are based on calcula-
tions for the leading-order vacuum polarization, they are
about four times smaller, and do not contribute sub-
stantially to the total error. We obtain for the quark-
connected contribution to aj} V" with all systematics
included
101oa§FO,conn.) _ —9-45(18)1at.(55)ﬁ_appmx.(1'0)log2 ,

(3.5)
where “lat.” denotes the sum of contributions associated
with the underlying lattice-QCD calculations of the Tay-
lor coefficients.

C. Quark-disconnected contribution

Although several lattice-QCD calculations of the
leading-order quark-disconnected contribution to aEVP
are available [7, 12, 44], these publications do not pro-
vide the Taylor coefficients of the renormalized vacuum
polarization function.®> We therefore estimate the values
of the quark-disconnected Taylor coefficients assuming

ground-state dominance of the vector-current correlators

3 In Ref. [10], the BMW Collaboration provides the first two Tay-

lor coefficients H%disc') and Hgdisc'), which are not sufficient to
construct the [2,2] Padé and N = 2 + 1 + 1 Mellin-Barnes ap-
proximants.



as in Ref. [44]. Using Eq. (11) of that work,

QQHEdisc.) 1 m§j+2f3
= | 1 (3.6)
mg " f

with {M,,, M.} = {0.77526(25),
the PDG [45] and {f,, f.} =
yields

anz(.conn.) 10

0.78265(12)} GeV from
{0.21(1),0.20(1)} GeV

Q2HgdiSC»)/Q2H§C°nn') = —0.013(12), (3.7)

and similar results for the higher Taylor coefficients.
Both the leading O(a?) contribution to aEVP and the
domiant O(a?) contributions from diagrams (a) and (b)
are proportional to the Taylor coefficient II; at lowest
order in the small-Q? expansion. Further, the domi-
nant quark-connected contribution is from the light up
and down quarks. We therefore take —1.3(1.2)% as
the correction and uncertainty due to the omission of
quark-disconnected contributions in our analysis. We
note that our estimate in Eq (3.7) is consistent with re-
cent lattice-QCD calculations of the leading-order quark-
disconnected contribution with physical-mass pions from

the BMW [12] and RBC/UKQCD Collaborations [7],

who obtain for the ratio aELLO’diSC')/aLLO’u/d conn.) approx-

imately -2.0% and -1.5%, respectively.

IV. RESULT AND OUTLOOK

We obtain the total O(a3,;) hadronic vacuum polar-
ization contribution to g, — 2 by adding our calcula-
tion of the the quark-connected contribution, Eq. (3.5),
to our estimate of the quark-disconnected contribution,
Eq. (3.7). Our final result is

10"%aVPHO = —9.3(0.6) conn. (0.1)dise. (1.0)10g2 ,  (4.1)

where the first two errors errors are from the quark-
connected and quark-disconnected contributions, respec-
tively. We list the error from omission of the “log?” terms
separately, since it does not arise from the use of lattice
QCD to obtain the renormalized vacuum polarization
function. This error could be eliminated with a different
trick for expressing contribution (a) in terms of II(Q?)
than the one employed here. The uncertainty on the
quark-connected contribution stems primarily from our
use of Padé and Mellin-Barnes approximants for 11(Q?),
which we employ so that we can exploit already-published
values of the Taylor coefficients. We anticipate reducing
this error in a future paper that also includes an update of
our determination of the leading-order hadronic vacuum
polarization contribution [8] by calculating the higher-
order contributions directly from the lattice correlation
functions using the alternative formulae in Appendix A,
and by analyzing a larger data set with more ensembles
and finer lattice spacings.

Our result in Eq. (4.1) is the first lattice-QCD determi-
nation of the higher-order hadronic vacuum polarization

contribution to g, — 2, and is consistent with determina-
tions from e*e~ — hadrons data [14, 16, 21]. Although
the lattice-QCD uncertainty is approximately ten times
larger than from experiment plus dispersion relations, it
is still below the target uncertainty of the Muon g — 2
Experiment of 0.14 ppm, or da, ~ 1.6 x 1071 [3]. It
therefore provides a new necessary ingredient in reaching
the goal of obtaining a purely ab-initio-QCD determina-
tion of the hadronic contributions to g,, — 2.
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Appendix A: Formulae for higher-order HVP
contributions to g, — 2

Here we present integrals that can be used to calculate
the higher-order hadronic-vacuum-polarization contribu-
tions to g, —2 from lattice-QCD data. Our starting point
is the expressions derived by Krause in Ref. [27] for the
contributions from diagrams (a)—(c) in Fig. 2 in terms of
R,(s) [Eq. (2.1)]. Contributions (b) and (c) can be ex-
pressed as the 1-loop QED integral for the lowest-order
contribution from Blum [29] with a simple replacement
of TI(Q?), whereas contribution (a) is a nontrivial result
of this work.



1. Contribution (a)

A complete analytical result for the contribution from
the diagrams in (a) of Fig. 2 was first presented by Bar-
bieri and Remiddi in Ref. [26]; in this work they also
provide an expansion to first order in mi /s. Later, in
Ref. [27], Krause derived an asymptotic expansion for
the kernel function in terms of the parameter r = mi /s,
which is more amenable to numerical integration. We
start with the asymptotic expression given in Eq. (7) of
Krause, which contains powers and logarithms of r.

Equation (7) does not have the form needed to exploit
the relationship between R, (s) and the renormalized vac-
uum polarization function in Eq. (2.2). As suggested by
Groote et al. [46], however, one can exploit generating
integral representations of " and r™log(r) to express the
pure polynomial and log terms in theAasymptotic expan-
sion of the kernel function in terms of II. Using Egs. (39)—
(42) of that work, and discarding terms proportional to
log”(r) yields the following integral expression for contri-
bution (a) in terms of the renormalized vacuum polariza-

J

3

- (a 1 [t 1 .
Ké )(t) = t—z/o dx{wQZaia:l [w2t2 — 45sin? (

=0

and
(A5)

The factors of 2 and 1/t? in Eqs. (A3) and (A4), respec-
tively, are chosen to make the kernel function K (%) (t) di-
mensionless. With these formulae, contribution (a) can
be obtained from a simple weighted sum of G(t) as in the
leading-order case.

2. Contribution (b)

We start from Eq. (9) of Ref. [27] and make the change
of variables Q* = mZ?/(1 — x). The contribution from
diagram (b) in Fig. 2 is then given in terms of the renor-
malized vacuum polarization function by

(A6)

tion function:

3 rl ~ [ m?
al(f) = (%) /0 dz |(ap + a1x + axx® + aza®) 11 (;)
bo + iz + box? + bsz?) ~
4 Lot 1“;‘” 07 )H(miz)] , (A1)
with
23 61791297 — 781820072
a=-—-, b= ;
18 1200
. = 367 _ 124746871 1528797
YT 1087 T 1200 2
. _ 10079 5364282053 377219 (A2)
27771800 0 2 3600 2
. _ 6517 _ 70906297 37397572
57 900 0 T 72 3

Checking the size of the omitted logarithmic terms using
experimental data for R,(s) [31], we find that they are
below 1 x 10710,

Alternatively, contribution (a) is given in terms of the
Fuclidean zero-momentum correlator by

4 3 oo -
o = 4 / dt 2 G(t) K1), (A3)

™ Jo

with

wt 1< ; w't
2>:| + E Zbixl l:w/2t2 - 4sin2 <2>:| } s (A4)

=0

(

where the lepton loop function is

and Kp(Q?) is the standard kernel function introduced
by Blum in Ref. [29]:

Ko@) =5 8- 2()° 1+52(5)2° (49)
Z(é):—é_V;;Hé, s=5 . (A10)

Thus, the expression in Eq. (A6) is simply the leading-
order QED integral with the replacement II1(Q?) —
8ma x 11 (Q?) F* (m2,Q?). The analogous contribution
from the 7 lepton is negligible because it is suppressed
by m2 /m2.



Contribution (b) can also be obtained from a weighted
sum of the Euclidean zero-momentum correlator as in the

J

. 1 oo A2 K 2
KO (t;my) = 7/ X E(w?)
0

12 w?

3. Contribution (c)

We start from Eq. (13) of Ref. [27]. Diagram (c) in
Fig. 2 contains two hadronic insertions, and thus the con-
tribution depends upon the square of the renormalized
vacuum polarization function:

3 [o° ~
of =an(2) [ a@PKe@Q . (a13)
|

47T2KE(U)2)

1 o0
dw
tQt/Q /O w2

This formulation is slower to implement numerically than
the analogous formulae for contributions (a) and (b) due
to the double integral.

KOt =

Appendix B: Definition of ﬁ2+1+1(Q2)

In this paper we employ a slightly different form for
the N =241+ 1 approximant for the Mellin transform
of the hadronic spectral function than of the one given
in Ref. [25], using

2
Moayi11(s) = QZ?);Qf { .

r(1—s)m+r(1—s)rgd_l)},

with @y the charge of each quark flavor in units of e.
We obtain the coefficients a—d by solving the matching
conditions

Mai141(=n) = Mrqep(—n), n={0,1,2,3}, (B2)

where Mp,qcp(—n) are the lattice Mellin moments, and
choosing the solution that satisfies Re(a,b,c,d) > 1,

[w2t2 — 4sin? <a;t>} F* (m?,wz) .

t t/
w2t? — sin? hadd Ww2t’? — sin? “r .
2 2

leading-order case:

80[3 oo ~
al)(me) = = /0 dtt? G(t) K" (t;me), (A11)

with the dimensionless kernel

(A12)

(

In this case, the expression in Eq. (A13) has the form
of the 1-loop QE‘LD integral, but with the replacement
1(Q?) — 4ma x TI(Q?)2.

When contribution (c) is expressed in terms of the Eu-
clidean zero-momentum correlator, the two powers of the
vacuum polarization function above yield two integrals
over times ¢ and ¢':

ald) = 167ra3/ dttQG(t)/ dt' PG KO (1),
0

0
(A14)
with the dimensionless kernel

(A15)

(

Im(a,b) = 0, and ¢ = d*. The corresponding approx-
imant for I1(Q?) is then given by the following sum of
generalized hypergeometric functions:

. ay ; Q7 [(a—1) 11a
II 2y f=f F .
2+1+1(Q) p Z{(b—1)32 9 p’ z
1 11 1 11
F . F .-
+7(c—1)2 1 o z +(d—1)2 1 d Z]};
(B3)
with
_ @
C 4m2 (B4)

Appendix C: Quark-connected Taylor coefficients

Here we tabulate the values of the Taylor coefficients
employed in our analysis. The light-quark connected II;s
in Table IV include corrections for finite-volume and dis-
cretization effects as described in Ref. [8]. The charm-
and bottom-quark connected Il;s in Table V have already
been extrapolated to the continuum in Refs. [22, 24].
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TABLE IV. Light-quark-connected Taylor coefficients H§-“d) and strange-quark-connected Taylor coefficients H;S) in units of
1/GeV? [8, 23]. The quoted errors include statistics, the uncertainty on the vector-current renormalization factor, the (corre-
lated) uncertainty from setting the lattice spacing, and the uncertainty on the corrections. The factor of the quarks’ electro-
magnetic charges (Q2 + Q32) is included in the definition of the II;s.

~ a (fm) Y g I Y n 1 1 )
0.15  0.0889(12)  -0.1983(93) 0.728(69) -4.05(55) 0.007387(83) -0.00581(12)  0.00509(17)  -0.00453(20)
0.12  0.08704(97) -0.1884(80) 0.682(62) -3.82(49) 0.007361(82) -0.00584(12)  0.00522(17)  -0.00477(21)

TABLE V. Charm- and bottom-quark-connected Taylor co-
efficients H;f ) in units of 1/GeV? [22, 24]. The quoted er-
rors include statistics and all systematics. The factors of the
quarks’ electromagnetic charges Q? are included in the defi-
nition of the Il;s.

flavor 10 TI{? 10° 1159 10° T1§? 10° I

¢ 1.840(49) -0.1240(43) 0.01081(43) -1.030(41)e-3
b 0.0342(48) -2.28(37)e-4 1.82(41)e-6 -1.57(49)e-8
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