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The finite-volume spectrum of the π+π+ and π+π+π+ systems is deduced using a previously de-
rived 3-body quantization condition. The results agree perfectly with the available lattice data from
NPLQCD collaboration (L = 2.5 fm and mπ ∈ {291, 352, 491, 591} MeV). Statistical uncertainties
are estimated and extrapolations to physical pion mass are performed.
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Introduction Rapid computational and algorithmic
advances of Lattice QCD occurred over the recent years,
allowing to gain new insights into the structure and inter-
action patterns of hadrons. Performed in a finite volume,
such ab-initio calculations result in a discrete eigenvalue
spectrum. The latter is related to the infinite volume one
by the virtue of the quantization condition.

Lüscher’s method [1, 2] is such a condition for 2-body
systems with generalizations to, e.g., higher spins and
multi-channel systems [3–8]. However, many open ques-
tions of modern hadron physics (e.g. the existence of
spin-exotics or the Roper-puzzle) are related to systems
with three particles. First Lattice QCD calculations
have already been performed [9–12]. The corresponding
3-body quantization condition has been explored thor-
oughly in last years [13–21] including some numerical in-
vestigations [20–23]. However, an analysis of physical
systems has not yet been performed.

In this work we present a first data-driven simultaneous
analysis of finite-volume spectrum of 2- and 3-body sys-
tems (π+π+ and π+π+π+) using the quantization condi-
tion derived in Ref. [20]. The importance of this channel
is twofold: 1) The ground state level is available from
the NPLQCD Collaboration [24, 25] for (L = 2.5 fm and
mπ ∈ {291, 352, 491, 591} MeV); 2) This repulsive ππ
channel is a critical test bed for our formalism [20, 26]
with respect to its flexibility.

In particular, our program consists of prediction of the
full (up to the 4π threshold) finite-volume spectrum using
experimentally available data. Subsequently, we will fix
the remaining parameter (genuine 3-body coupling) to
the ground-state energy level of the π+π+π+ system [24,
25], predicting higher levels up to the 5π threshold.
Quantization condition In the following, we will

use the 3-body quantization condition [20] derived from
the unitary, relativistic 3-body isobar scattering ampli-
tude [26]. After the projection to the irreducible rep-
resentations (irreps) of the cubic group (see Sec. IV of
Ref. [21]), it reads

det

(
BΓss′

uu′ +
2Es L

3

ϑ(s)
τ−1
s δss′δuu′

)
= 0 , (1)

where the determinant is taken with respect to the ba-
sis index u(′) for a given irrep Γ ∈ {A1, A2, E, T1, T2}
and s(′) denotes the sets of momenta related by cu-
bic symmetry (“shells”). On a shell s, the number of
points is denoted by ϑ(s) and the energy of pions by
Es := Ep :=

√
m2
π + p2, respectively. In the following,

we will work in the center of mass system of three pions
with the total four-momentum P = (W3,0), suppressing
the dependence of W3 for brevity.

Condition (1) contains two parts: the driving term
BΓss′

uu′ of the isobar-spectator interaction and the isobar
propagator τs. The form of these terms is fixed by 3-
body unitarity up to real valued functions C and K. In
particular, and before the projection to the irreps [21],
they read

Bqp = −f((P − 2q − p)2)f((P − q − 2p)2)

2Eq+p(W3 − Ep − Eq − Eq+p)
+ Cqp ,

(2)

τ−1
q = K−1

q − Jq
L3

∑
x∈ 2π

q Z3

∑
±

(
f
((
P ∗q ± 2k∗x,q

)2))2

4
√
σqEk∗x,q

(√
σq ± 2Ek∗x,q

) ,
where p/q are the three-momenta of the in/outgoing
spectator pions (being identical for the propagator) and
P ∗q := (

√
σq,0) is the four-momentum of the isobar (two-

pion system) boosted to its reference frame. The invari-
ant mass squared of the latter reads σq = W 2

3 + m2
π −

2W3Eq. The three-momentum of pions x boosted by
q is denoted by k∗xq with Jq being the corresponding
Jacobian. Furthermore, the form-factor f(Q2) yields a
smooth cutoff of an otherwise log-divergent self-energy
part of the isobar propagator (second term in τ−1 of
Eq. (2)). Note, that this cutoff-dependence cancels in
the full quantization condition (1) by the functions C
and K. Specifically, we have chosen here f(Q2) =

1/(1 + e−(Λ/2−1)2+Q2/4).
In conclusion, we emphasize that the above expres-

sions are equivalent to the originally derived ones [20]
when multiplying the matrix expression in Eq. (1) from
left and right with the regular function λq – the disso-
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FIG. 1. Left: Comparison of available phase-shift data [27–29] with the prediction of the considered models. Right: Prediction
of 2-body energy levels (full) as a function of mπ with dashed lines denoting non-interacting levels. The inset shows a zoom-in
on the ground level, where the red points denote the result of the lattice calculation [24, 25].

ciation vertex of the isobar (two-pion system) with the
four-momentum P−q. In particular, Kq = λ2

q/(σq−M2
0 )

for parameter M0 as used in the original quantization
condition [20]. In general, the quantization condition (1)
is a coupled-channel equation with respective “copies“
of Eq. (2) and parameters therein. Dealing here with a
3-pion system of maximal isospin in S-wave, only one iso-
bar (π+π+ sub-system) is of interest, while the irrep will
be fixed throughout this work to Γ = A+

1 .
Two-body subsystem The 3-body scattering ampli-

tude [26] corresponding to the quantization condition (1)
fulfills 2- (in every sub-channel) and 3-body unitarity
by construction. The corresponding normalized 2-body
scattering amplitude, projected to the S-wave, reads

T2(σ) = −(λ(σ)f(4m2
π − σ))2 τ̂(σ)

32π
for (3)

1

τ̂(σ)
= K−1(σ)−

∑
±

∫
d3k

(2π)3

(f((
√
σ ± 2Ek)2 − 4k2))2

4Ek
√
σ(
√
σ ± 2Ek)

,

where τ̂ is the infinite-volume counterpart of the isobar
propagator τ and σ is the invariant mass squared of the
2-body system. The yet unknown parameters (λ and
M0) will be constrained using the available experimental
phase-shifts [27–29] in the following.

We have explored several ansatzes for the functional
form of λ, collecting the outcome as depicted in Fig. 1. In
the simplest case (λ = const.) we fit λ and M0 to the ex-
perimental data obtaining a sufficiently good agreement
with data. This, however, cannot be guaranteed at un-
physical pion masses, unless one uses input from chiral
perturbation theory. The perturbative amplitude of the
next-to-leading chiral order [30] and the unitarized am-
plitude using only the leading chiral order describe the
data well only in close proximity to the ππ-threshold.
We found that the Inverse Amplitude Method (IAM),
see Refs. [31, 32], i.e. T 2

LO/(TLO − TNLO), shows the

best agreement with the data. Furthermore, it can be
expressed in the form of Eq. (3), demanding

λ2 = (M2
0 − σ)

(
d

4π2
+
TLO − T̄NLO

T 2
LO

)−1

, (4)

where T̄NLO denotes the next-to-leading order chiral am-
plitude [30] without the s-channel loop, which depends on
low-energy constants (LECs) taken from the same refer-
ence. The constant d compensates for the fact that di-
mensional regularization was used in Ref. [30], while in
the present ansatz we use form-factors to regulate the
divergences. We found that choosing Λ = 42mπ corre-
sponds to d = 0.86 such that the both formulations of
the scattering amplitude coincide perfectly, see, e.g., left
panel of Fig. 1, which also holds for all pion masses in
question. In particular, the scattering lengths read for
unphysical pion masses

a291 = −0.1478+0.0356
−0.0550 , a352 = −0.2016+0.0663

−0.1008 , (5)

a491 = −0.3622+0.1914
−0.1395 , a591 = −0.5406+0.3645

−0.1728 ,

and a139.57 = −0.0433(37) for the physical one, which
compares perfectly with −0.0444(10) from Roy equation
analysis [33]. The uncertainties are determined from re-
sampling of the LECs taking uncorrelated error bars from
Ref. [30].

Unitarity, correct description of data and proper chi-
ral behavior are the only features required for the realis-
tic prediction of the finite volume spectrum. Therefore,
having fixed λ as described before, we predict the π+π+

finite-volume spectrum (L = 2.5 fm), determining the
roots of τ−1 from Eq. (2) in the 2-body energy

√
σ. Note

that this is equivalent to Lüscher’s method [1, 2] up to
exponentially suppressed terms.

The result is depicted in the right panel of Fig. (1),
while the numerical values for the physical and the pion
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mπ [MeV] 139.57 291 352 491 591

E1
2 [mπ] 2.1228+0.0068

−0.0069 2.0437+0.0071
−0.0086 2.0334+0.0076

−0.0086 2.0233+0.0105
−0.0098 2.0204+0.0200

−0.0106

Refs. [24, 25] − 2.0471(27)(65) 2.0336(22)(22) 2.0215(16)(13) 2.0171(16)(19)

E2
2 [mπ] − − 3.6245+0.0746

−0.0299 2.9556+0.0728
−0.0263 2.7045+0.0827

−0.0271

E3
2 [mπ] − − − 3.7114+0.1482

−0.0737 3.2911+0.1241
−0.0688

E4
2 [mπ] − − − − 3.6802+0.0707

−0.0902

E5
2 [mπ] − − − − 3.9829+0.0500

−0.0299

E1
3 [mπ] 3.6564+0.1014

−0.0847
∗3.1444+0.0171

−0.0192
∗3.1058+0.0091

−0.0147
∗3.0655+0.0029

−0.0095
∗3.0537+0.0048

−0.0119

Refs. [24, 25] − 3.1458(49)(125) 3.1050(27)(27) 3.0665(26)(22) 3.0516(27)(53)

E2
3 [mπ] − − 4.7301+0.1577

−0.1027 4.0031+0.0196
−0.1836 3.7315+0.0309

−0.0742

E3
3 [mπ] − − − 4.7043+0.0126

−0.5923 4.2621+0.0001
−0.1739

E4
3 [mπ] − − − 4.7890+0.0506

−0.1722 4.3155+0.0837
−0.1341

E5
3 [mπ] − − − − 4.5913+0.0001

−0.1995

E6
3 [mπ] − − − − 4.6634+0.0001

−0.1070

E7
3 [mπ] − − − − 4.6995+0.0001

−0.0661

TABLE I. Energy levels of the π+π+ (E2) and π+π+π+ (E3) system (level order is denoted by the subscript) with error
bars from a re-sampling procedure. The Lattice QCD results [24, 25] are quoted in bold font with statistical and systematic
uncertainties in first and second parenthesis, respectively. Those fitted to the lattice data via the constant genuine 3-body
coupling c are denoted by an asterisk.

masses used in the lattice calculation [24, 25] are collected
in Tab. I. The quoted error bars are determined in a
re-sampling procedure varying the LECs from [30]. For
the energy levels determination our Monte-Carlo sample
is restricted to a smaller set (40) for technical reasons,
which makes the uncertainties on higher levels somewhat
indicative.

The result for the post-dicted ground state level agrees
nicely with the lattice calculation (χ2

p.p. = 0.35), and is in
agreement with the large-volume expansion formula [34]
using the scattering lengths from Eq. (5) as input. No-
tably and unexpectedly, the IAM-like chiral extrapola-
tion seem to work well up to very high pion masses. The
excited energy levels quoted in Tab. I and shown in the
right panel of Fig. 1 are predictions. Note that no 4-
particle cuts have been discussed, such that the predic-
tion is reliable and quoted, therefore, up to E2 = 4mπ.

Three-body energy shift Having made a prediction
for the π+π+ energy levels, we turn now to the main
point of the present paper, the finite-volume spectrum of
the π+π+π+ system, which depends on the 2-body in-
put. In a 3-particle system, the invariant mass of the
two-particle system can be sub-threshold (

√
σq < 2mπ)

for a sufficiently large momentum of the spectator q.
Note that only right-hand (physical) 2-body singulari-
ties are included in the derivation of the 3-body scatter-
ing amplitude [20, 26], leading to the quantization con-
dition (1). This is all what is needed for the infinite-
volume extrapolation. Furthermore, in the absence of
2-body bound states, the infinite-volume 2-body ampli-

tude, derived through a dispersion relation [26], has to
be real and regular in the sub-threshold region. In the 3-
body framework, this 2-body sub-threshold contribution
is compensated by the (still) unknown real function Cqp.
Furthermore, in finite volume, corrections from this re-
gion are exponentially suppressed. In summary, one can
simply fix K−1

q in the unphysical region to a (real) con-
stant, smoothly connected to the physical region, where
it reproduces the IAM-type of scattering amplitude as
described before.

The remaining unknown piece of the quantization con-
dition (1) is the isobar-spectator function Cqp in Eq. (2),
corresponding to the 3-body contact interaction. This
function can only be determined from a fit to actual
data. Fortunately, lattice data are available for the
ground state [24, 25] in the same setup as for the two-
pion system. Note that in general, Cqp is a function
of the in/outgoing spectator momenta (q/p) for a given
set of parameters such as cutoff in the form factor and
in pion mass. We found that already the simplest choice
Cqp = c δ(3)(p−q) leads to a good fit to the data [24, 25],
i.e. χ2

dof = 0.05 for c = 0.2 ± 1.5 · 10−10. The statistical
and systematic data uncertainty were added for this fit,
which explains the low value of χ2

dof .

The result of the fit to the ground level as well as
prediction of higher levels are depicted in Fig. 2 (cen-
tral values). The corresponding numerical values are
collected in Tab. I with the uncertainties from a re-
sampling due to variations of LECs as before. As
an additional check we have fitted the ground state
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FIG. 2. Prediction of excited energy levels for the π+π+π+-
system as a function of pion mass with non-interacting levels
represented by dashed lines. The inset shows the zoom-in on
the ground level, where the lattice data [24, 25] are shown in
red.

levels [24, 25] using the large-volume expansion for-
mula [34] using our scattering lengths (5) and adjust-
ing the unknown 3-body contribution ηL3 (Eqs. (1-5)
of [34]). The fit yields χ2

dof = 1.32 for ηL3 = 1.8 · 10−12

and E1
3 = {3.1277, 3.1003, 3.0695, 3.0623} mπ for mπ =

{291, 352, 491, 591}MeV, respectively. It is interesting to
see that not only this confirms our result for the lowest
level, but also that the genuine 3-body contribution is
similar to c determined before, keeping in mind that the
latter was introduced on the level of amplitudes and not a
Hamiltonian as ηL3 . Furthermore, it should be noted that
in our framework (which is not a Lagrangian framework)
c does not directly correspond to a three-body Hamilto-
nian piece. Besides the emission of a spectator and an
isobar it also contains the unstructured emission of three
pions from a real-valued three-body term.

On a qualitative level, we observe that the energy lev-
els mimic the pattern of the non-interacting ones shifted
to higher energies. This is similar to the 2-body case with
the novelty that interacting energy levels not always oc-
cur between two non-interacting ones. Furthermore, we
have found that all singularities of the argument of the
determinant in Eq. (1) are actually simple poles (located
at the position of the non-interacting levels), which is a
non-trivial fact in 3-body systems.

Conclusion The finite volume spectrum for the
π+π+ and π+π+π+ systems has been analyzed. Using
experimental data and a non-perturbative ansatz for the
2-body amplitude we have predicted the π+π+ energy
levels in finite volume which are in perfect agreement
with the lattice data available for the ground state. Fi-
nally, using this input and fitting the genuine 3-body
contact term to the threshold level determined by the
NPLQCD collaboration we have predicted the finite vol-
ume spectrum of the π+π+π+ system up to W3 = 5mπ.

This is the first prediction of excited levels in a physi-
cal three-body system. Possible sources for systematic
(choice of parametrization of the 2-body amplitude and
its sub-threshold behavior, three-body force, and regular-
ization) and statistical uncertainties have been identified
and estimated.
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