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ABSTRACT

THE PROTON SPIN STRUCTURE FUNCTION GP
2 AT LOW

MOMENTUM TRANSFER

by

Toby Badman

University of New Hampshire, September, 2017

Over the past several decades Jefferson Lab National Accelerator Facility has proven

to be extremely successful in its endeavor to study the polarized structure of nucleons.

Measurements of these nucleon structure functions have proven to be powerful tools in

testing and understanding a number of effective theories of QCD. The neutron spin structure

functions, gn1,2, and the proton spin structure function, gp1 , have been measured to very high

precision over a wide kinematic range. However, the second proton structure function, gp2 ,

remained largely unmeasured. The primary goal of Jefferson Lab Hall A experiment E08-

027 was to perform an inclusive measurement of the proton g2 structure function for the

first time in the low momentum transfer range of 0.01 < Q2 < 0.13 GeV2. The experiment

acquired data at Jefferson Lab in Hall A during February - May of 2012.

Experiment E08-027 utilized a polarized frozen NH3 target and a polarized electron beam

to examine inclusive eP scattering in the resonance region. Dynamic Nuclear Polarization

was used to drive proton target polarizations to upwards of 70% at 5T and 15% at 2.5T

for high statistics measurements of the double spin asymmetry. Using a convolution of

the Bosted/Christy model and data for the unpolarized cross section contribution, the spin

structure function gp2 was extracted for two low Q2 bins. Results for the moments of these

structure functions find reasonable agreement with χPT predictions.
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Chapter 1

Introduction

The nature of physics is to understand and categorize the observable Universe. In a com-

pletely literal sense observations are done when light scatters off of an object and into the

eye. The brain interprets the scattered light and an image is formed. This is a kind of

‘scattering experiment’ in the most basic of forms and creates the foundation on which

significantly more complicated systems are built. The necessity for complexity arises when

we ask the question: What happens when the object we want to observe is too small for

the human eye to resolve? Lenses can be used to increase magnification and focus scattered

light as it enters the eye, but these tools can only bring us so far. It wasn’t until 1911

that a physicist by the name of Ernest Rutherford thought to scatter positively charged

alpha particles off of a gold foil material and detect the scattered particle in a scintillating

material instead [13]. With this method the structure of an individual atomic nucleus, with

a massive positively charged center, could be resolved. Thus the modern era of scattering

experiments was born.

Soon after, a complete picture of the atomic structure was formed. At it’s core, the atom

contains a cluster of positive and neutral charged nucleons called Protons and Neutrons,

with an orbital cloud of electrons around it. Fundamental observables like ‘mass’ and

‘charge’ for each of these particles allowed for a better understanding of how they interact

with the known forces. In 1922, two german physicists by the names of Otto Stern and

1



Walther Gerlach attempted a new kind of experiment where they passed a beam of silver

atoms through an inhomogeneous magnetic field [14]. To their surprise, the emerging par-

ticles were detected at two highly localized points. This could not be explained with the

understanding of electron properties at the time. The concept of ‘spin’, a new fundamental

observable, was introduced shortly after to attempt to account for this result.

Spin is an interesting phenomena. In theory a particle behaves like a tiny globe rotating on
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Figure 1-1: An overview of the Stern-Gerlach experiment. Vertical deflection of a beam of
silver atoms was observed as it passed through a magnetic field.

its axis. The direction of the particles spin is along it’s axis of rotation, pointing ‘up’ when

looking at the particle rotating ‘counter-clockwise’. When a charged particle rotates on its

axis, it creates a dipole magnetic field, defined as it’s ‘magnetic moment’, and so naturally

aligns itself with any external magnetic field. The problem with this approach comes from

the fact that the electron appears to be a point-like particle. All evidence to date indicates

that the electron is without any dimensionality whatsoever. So how can an object without

size rotate on it’s axis? We are simply forced to abandon the classical notion of spin and

assign it as a fundamental property of the particle.

The theorist Paul Dirac formulated the magnetic moment of a point-like spin-1/2 particle
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to be

µ =
e

2M
(1.1)

where e represents the particles charge, and M it’s mass. This agreed very well with

the experimental evidence for the electrons magnetic moment. In 1933 Stern and Gerlach

attempted their experiment again, but this time measuring the protons magnetic moment

[15]. The result was yet another surprise. It was found that the proton had a magnetic

moment that disagreed with Dirac’s prediction by 150%. This discrepancy was the first

clear indication that the proton was not a point-like particle.

The ability to peer inside of the proton to see what this internal structure looked like

required a huge leap in technological advancement. Decades after the discovery of the

proton’s ‘anomolous magnetic moment’, linear accelerators were used to verify that the

Proton did, indeed, have a substructure, and an entire field of Physics emerged that began

mapping out the nature and behavior of these constituents.

1.1 Scattering Experiments

Modern linear accelerators utilize the exact same method of scattering that Rutherford

developed in 1911. A beam of particles is incident on the target material of interest. The

particles in the beam are deflected by the target by some angle where a detector is set up to

record each event. This is exactly the Rutherford scattering experiment, the only difference

being the scale. Rutherford used a relatively low energy alpha beam to resolve the nucleus,

so the entire experiment was able to be set up on a table in a laboratory room. Modern

accelerators seek to peer much deeper into the atom, this requires significantly higher energy

and more statistics. The Jefferson Laboratory accelerator, where the work of this thesis

was done, is a quarter of a mile long with a detector stack three stories tall.
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Despite the difference in scale, the fundamental quantity that is measured in any scattering

experiment is the same. This quantity is known as the particle ‘cross section’. The cross

section defines the solid angle in which a particle is deflected into in terms of its closest

distance of approach to the scattering center and its energy, as shown in Figure 1-2. With

b

db

scattering

center

electron beam

�

d�

dA

R

d� =
dA_
R2

Figure 1-2: The basic machinery behind a scattering interaction. An incoming particle with
impact parameter ‘b’ is deflected by a fixed scattering center into some solid angle, dΩ.

this basic setup, inferences about the structure and behavior of the scattering center can

be made from the cross section as detected by the scattered particle. The details of this

process are discussed in the following sections.
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Chapter 2

Inclusive Electron Scattering

The fundamental observable in any scattering interaction is the cross section. Using the

knowledge of lepton scattering from the well understood framework of Quantum Electrody-

namics, the measured cross section can be a powerful tool in studying the internal structure

of the nucleon. This is done by relating the cross section to kinematically defined ‘structure

functions’ which describe the nucleons internal structure. This chapter will focus on the

derivation of the structure functions and the different kinematic regions of interest.

2.1 Kinematic Variables

Before deriving the details of the inclusive scattering cross section a number of commonly

used variables must be defined. The purpose of these variables is to represent the scattering

interaction in terms of its kinematic quantities. The first order Born approximation for such

an interaction is shown in Figure 2-1. In this interaction an incoming lepton (in the form

of an electron) with four momentum kµ =
(
E,~k

)
exchanges a single ‘virtual photon’ with

a fixed hadron target (in the form of a proton) with initial four momentum Pµ =
(
ε, ~P

)
which scatters the electron by an angle θ with final state four momentum k′µ =

(
E′, ~k′

)
giving the proton a final four momentum state of P ′µ =

(
ε′, ~P ′

)
. For an inclusive scattering

experiment the final proton state goes unobserved, but its kinematics can be reconstructed

from its initial state together with the initial and final states of the electron. The virtual
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k'�= (E', k')

P�= (�, P)

P'�= (�', P')

q� = (�, q)

�
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Scattering

center

Virtual
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Figure 2-1: First order Born approximation for the lepton-hadron scattering interaction.

photon exchanged in the interaction carries four momentum qµ = (ν, ~q). Using conservation

of energy and momentum we see that ν is just the energy carried away by the electron, while

q is the exchanged momentum and has the property q2 < 0 due to being a space-like virtual

photon. Since q2 is less than zero it is convenient to introduce a new variable Q2 = −q2,

the four momentum transfer squared of the process. Since only the electron final state

is observed, an additional quantity, called the invariant mass, is defined to represent the

proton final state, W =
√

(p+ q)2. If we consider the laboratory reference frame, where

Pµ = (M, 0), the following kinematic relations are defined:

ν = E − E′ = ε− ε′, (2.1)

Q2 = −q2 = 4EE′ sin2 θ

2
, (2.2)

W =
√
M2 + 2Mν −Q2. (2.3)
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2.2 Scattering Cross Sections

The formal definition of the scattering cross section as measured in the laboratory is given

by

σ ≡ P/δx

N
(2.4)

where P gives the probability of an event at a specific kinematic ‘unit’ δx, and N is the

number of scattering centers in the target. In reality the cross section must be defined in

a way that it can be compared to models created over a wide kinematic range. To achieve

this, the cross section is measured in bins that cover small kinematic regions over the area

of interest, and this specific ‘differential cross section’, d2σ/dΩdE, is integrated to find the

total cross section as defined in Equation 2.4.

Rutherford showed that the differential cross section for a positively charged nucleus can

be expressed in terms of measurable quantities as

(
dσ

dΩ

)
Rutherford

=
Z2e4

16E2

1

sin4(θ/2)
(2.5)

where Ze is the nuclear charge, E is the energy of the scattered particle, and θ is the scat-

tered angle [16]. The above equation for the cross section makes a number of assumptions,

namely that the target nucleus has no recoil effects, and is spin independent. If we include

a nuclear recoil factor of the form E/E′ and spin dependance of the interaction to conserve

helicity, we arrive at the familiar Mott cross section for a point particle,

(
dσ

dΩ

)
Mott

=
α2

4E2

(
cos2(θ/2)

sin4(θ/2)

)
E′

E
(2.6)

where α ' 1/137 is the fine structure constant. The Mott cross section represents helicity

dependent scattering of two particles with no internal structure. A measurement of this
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quantity experimentally for the proton would find some deviation due to internal contribu-

tions. The real experimental proton cross section is then given by

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

× |F (~q2)|2 (2.7)

where any internal structure of the proton is lumped together in the structure function

|F (~q2)|2. To determine information about the form and kinematic behavior of the structure

function a more rigorous approach to the cross section derivation is required.

2.2.1 Tensor Formulation

According to Fermi’s Golden Rule the differential cross section can be written as

dσ

dΩ
=

1

j

2π

~
|M|2 (2.8)

where j is the electron current density and M = 〈ψf |Hint|ψi〉 is the transition amplitude

for the specific hamiltonian of the interaction of interest which contains all of the physical

dynamics of the electron-nucleon interaction. The transition amplitude for an interaction

can be derived using the covariant Feynman Rules for quantum electrodynamics [17]. If we

consider the Feynman diagram for the scattering interaction of two point-like particles, as

shown in Figure 2-2, a transition amplitude can be constructed by assigning factors based

on the features of the diagram itself. For the specific case of electron-muon scattering this

results in a transition amplitude of

〈|M|2〉 =
(4πα)2

q4
Lµνe Lmµν (2.9)
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Figure 2-2: First order Feynman diagram interaction approximation for two particles with
no substructure.

where we have deconstructed the amplitude into electron and muon ‘tensors’ which contain

all of the relevant information for each particle,

Lµνe = 2
(
kµk′ν + kνk′µ + gµν(M2 − k · k′)

)
, (2.10)

Lmµν = 2
(
pµp
′
ν + pνp′µ + gµν(m2 − p · p′)

)
(2.11)

where k and p are momentum vectors as defined in Section 2.1 and gµν is the coupling

strength of each interaction vertex. Using the kinematic relations discussed earlier, and by

substituting Equations 2.9, 2.10 and 2.11 into 2.8 we arrive at a formal definition of the

differential cross section in terms of experimental quantities for electron-muon scattering

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E′

E

(
cos2 θ

2
− q2

2M2
sin2 θ

2

)
. (2.12)

If we consider the limiting case where the mass of the scattering center is much larger than

the scattering energy (M � q) we return to the Mott cross section result (Equation 2.6) as

derived in Section 2.2.
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To extend this formalism to the hadronic case, such as electron-proton scattering, the muon

tensor in Equation 2.9 must be replaced by a more complex hadron tensor

〈|M|2〉 =
(4πα)2

q4
Lµνe W proton

µν (2.13)

where W proton
µν is the new proton tensor function to be constructed. By considering all possi-

ble covariant four-vector terms in the lepton-hadron scattering interaction, and demanding

conservation of current, we arrive at the following definition for the hadron tensor [18]

Wµν = W1

(
ν,Q2

)(
−gµν +

qµqν
q2

)
+
W2

(
ν,Q2

)
M2

(
pµ +

(
q · p
q2

)
qµ

)(
pν +

(
q · p
q2

)
qν

)
(2.14)

where W1 and W2 are kinematic form factors which parameterize all of the physical infor-

mation at the interaction vertex between the lepton and the hadron. Substituting Equa-

tion 2.14 into the definition of the cross section and using known kinematic relations, in

similar fashion to the electron-muon derivation, we arrive at a formal cross section definition

for electron-proton scattering,

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E′

E

(
W2 cos2 θ

2
+ 2W1 sin2 θ

2

)
. (2.15)

The kinematic form factors W1 and W2 encompass all of the unknown behavior of the

interaction vertex between the proton and electron. To further understand these form

factors and interpret their physical meanings we must break down the kinematic regions

based on the Q2 of the interaction. The reasoning behind this is that changing the Q2 of the

scattering interaction acts to change the resolving power of the protons structure. At low

Q2 the proton begins to approach the behavior of a point-like particles where the scattering

occurs only at the surface, as Q2 is increased internal structure is revealed. It is clear from
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this behavior that the form factors are highly Q2 dependent and different approaches to

their physical meaning must be utilized depending on the resolving power being used.

Elastic Scattering

When electrons are scattered elastically the proton appears to be a point-like particle with

mass M . In this kinematic region the energy and scattering angle are fixed by conservation

laws. Here it is convenient to define two new quantities, GE and GM such that

G2
E ≡ (1 + τ)W2 −W1 (2.16)

G2
M ≡

W1

τ
(2.17)

where τ ≡ ν2/Q2. Substituting GE and GM into Equation 2.15 gives the well-known

Rosenbluth cross section formula

dσ

dΩ
=

α2

4E2 sin4(θ/2)

E′

E

(
2τG2

M sin2 θ

2
+
G2
E + τG2

M

1 + τ
cos2 θ

2

)
. (2.18)

GE and GM are known as the Sachs magnetic and electric form factors. The fourier trans-

form of these form factors gives the magnetic density and charge distributions of the proton,

respectively.

Deep Inelastic Scattering

As Q2 and the invariant mass of the proton final state continues to increase, i.e. the proton

is hit harder, individual structure within the hadron becomes distinguishable. In this limit

the form factors reduce to functions only of the kinematic quantities Q2 and the energy

transferred in the interaction [19]. We define a new dimensionless constant, Bjorken x, in
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this region that parameterizes the form factors

xb =
Q2

2Mν
. (2.19)

In this ‘Bjorken limit’ it is convenient to express the form factors as dimensionless functions

of x, which become independent of Q2,

F1(x) ≡MW1(ν,Q2), (2.20)

F2(x) ≡ νW2(ν,Q2). (2.21)

Where F1,2 are the unpolarized parton ‘structure functions’ which describe the momentum

distribution of partons within the proton. The fact that the structure functions are inde-

pendent of Q2 indicates that the partons are point-like particles with no internal structure.

The experimentally measured structure functions have been shown to share the following

relationship:

2xF1(x) = F2(x) (2.22)

which is known as the Callan-Gross relation and is predicted to hold for all spin-1/2 parti-

cles. The structure functions F1 and F2 continue to be measurements of interest in acceler-

ator experiments. Experimental results for the proton showing Q2 independence is seen in

Figure 2-3.

2.2.2 Polarized Structure Functions

To extend the formulation of Section 2.2.1 to the case of polarized lepton-hadron scattering

the lepton and hadron tensors must be broken down into symmetric and antisymmetric
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Figure 2-3: Scaling in the structure function F2 for several values of x.

components,

Lµν = LµνS + LµνA , (2.23)

Wµν = WS
µν +WA

µν . (2.24)

The symmetric components of the tensor functions are, by definition, invariant under the

exchange of the indeces µ and ν because the scattering is identical in all reference frames.

This is the case for unpolarized electron-proton scattering, so the full tensor formulation of

Section 2.2.1 can be lumped into the symmetric component. The antisymmetric component

13



of the tensor function arises from introducing spin to the scattering interaction. Following

reference [20], for a spin-1
2 lepton the antisymmetric tensor is calculated as

LµνA± = ∓2iεµναβk
αk′β (2.25)

while the most general antisymmetric hadron tensor is given by

WA
µν = iεµναβq

α

(
G1S

β +
G2

M2
(Sβp · q − pβS · q)

)
(2.26)

where εµναβ is the anitsymmetric Levi-Civita tensor and S is the proton spin vector as

defined in nonrelativistic quantum angular momentum theory. Just as the symmetric com-

ponent of the tensor gave rise to two unpolarized form factors W1 and W2, the antisymmetric

component gives rise to two polarized form factors G1 and G2. Analogous to the unpolarized

case, we define two new structure functions, g1 and g2, such that

g1 ≡MνG1 (2.27)

g2 ≡ ν2G2 (2.28)

then, by substituting Equations 2.27 and 2.28 into 2.26, we obtain the antisymmetric hadron

tensor in terms of the polarized structure functions,

WA
µν = iM

εµναβq
α

ν

(
g1S

β + g2

(
Sβ −MS · q

ν
pβ
))

(2.29)

Experimentally, access to the spin dependent structure functions is done by flipping the

lepton spin while keeping the hadron spin locked. An asymmetry measurement between the

two lepton spin directions allows for the symmetric tensor component of the cross section to

14



drop out, leaving only the antisymmetric component. Then by using the kinematic relations

in conjunction with Equation 2.4 the cross section differences can be written as

∆σ‖ =
dσ

dΩ
(↓⇑ − ↑⇑) =

4α2

MQ2ν

E′

E

(
(E + E′ cos θ)g1 −

Q2

ν
g2

)
(2.30)

∆σ⊥ =
dσ

dΩ
(↓⇐ − ↑⇐) =

4Eα2 sin θ cosφ

MQ2ν2

E′

E
(νg1 + 2Eg2) (2.31)

where the electron polarization direction is either parallel (↑) or antiparallel (↓) and the

proton polarization direction is either longitudinal (⇑) or transverse (⇐) to the electron

polarization. The addition of the cosφ term in the perpendicular case accounts for the fact

that the proton spin polarization vector is not aligned with the momentum vector, where φ

is the angle between the two. We finally arrive at a formal definition for the spin structure

functions in terms of the measured cross section differences.

2.3 The Parton Model

We now have a description of the proton made up of semi-free partons described by four

structure functions but the question remains, what exactly are these partons? In 1969

Feynman and Bjorken introduced the parton model which describes the structure of the

nucleon in terms of charged ‘quarks’ and neutral ‘gluons’ [21]. Quarks comprise two different

roles in the hadron: bound valence quarks which carry all of the information about the

nucleon, and sea-quarks, which are quark-antiquark pairs constantly being created and

annihilated in the vacuum. Gluons are the mediator of the strong force. Much like the

photon being categorized as either a positively or negatively charged boson in QED, the

gluon is categorized as a boson of one of six ‘color charges’ in QCD.

In this new parton model we can consider each quark to carry some fraction of the total

nucleon momentum. If we neglect parton mass and consider the nucleon mass M2 to be
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small compared to the momentum transfer Q2, this momentum fraction is just equal to the

scaling factor Bjorken x, discussed in the previous section. We may also define the structure

functions in terms of the probability distributions of quarks. By defining qf (x) and qf (x)

as the probability distribution of quarks and antiquarks in some region dx, the structure

functions can be expressed as

F1(x) =
1

2

∑
f

z2
f

[
qf (x) + qf (x)

]
(2.32)

g1(x) =
1

2

∑
f

z2
f

[
qf (x)− qf (x)

]
(2.33)

and, using the Callan-Gross relation discussed in the previous section, F2(x) = 2xF1(x).

In the parton model the g2 structure function has no physical meaning. Here is where the

simple quark parton model begins to break down. The problem arises from a fundamental

assumption of the parton model: In a fast moving reference frame, the transverse momentum

and nucleon rest mass can be neglected. In this scenario the entire nucleon structure can

be described by the longitudinal momentum of the constituent quarks. To determine g2 we

must begin to consider this previously neglected transverse momentum distribution.

2.4 Virtual Photoabsorption Cross Sections

Before diving into a detailed study of the g2 structure function it is useful to look at

an alternate approach to the cross section. Equivalent to using the structure functions

g1, g2, F1 and F2, the differential cross section can be described in terms of four virtual

photoabsorption cross sections as [22]

dσ

dΩ
= Γ

(
σT + εσL − hPx

√
2ε(1− ε)σLT + hPz

√
1− ε2σTT

)
(2.34)
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where h = ±1 is the polarization of the incoming electron, Pz(x) is the polarization of the

proton with respect to the virtual photon momentum and ε is the ratio of the longitudinal

to transverse virtual photon polarization, given by

ε =

(
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

)−1

(2.35)

where ν, Q2 and θ are kinematic variables, defined in Section 2.1, and the virtual photon

flux factor Γ, given by

Γ =
α

2π2Q2

E′

E

K

1− ε . (2.36)

The photon flux factor is a function of the convention dependent photon flux K. Three

common conventions for the flux factor are [23–25]

KA = ν (2.37)

which relates the flux to the energy ν carried by the virtual photon,

KG =
√
ν2 +Q2 (2.38)

called Gilman’s convention, which relates the flux to the four momentum of the virtual

photon, and

KH =
W 2 −M2

2M
= ν(1− x) (2.39)

called Hand’s convention, which relates the flux to an equivalent photon energy in terms

of the interactions missing mass, and the mass of the proton. The last convention can

be thought of as the energy required in an equivalent interaction with a real photon. At

Q2 = 0, that is, no four momentum carried by the virtual photon, all three conventions
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reduce to ν, the photon energy. The cross section also gives similar results for any chosen

convention in the deep inelastic region, but between these two regions the cross section is

very sensitive to the photon flux K, so care is required when choosing a convention.

The four virtual photon cross sections in Equation 2.34 (σT , σL, σTT , σLT ) are functions

of the photon energy and four momentum ν and Q2. σT (σL) represents the transverse

(longitudinal) photoabsorption cross section in the interaction, while σLL(σLT ) represent the

longitudinal-longitudinal (longitudinal-transverse) interference terms. For the unpolarized

case with Q2 = 0 the longitudinal term vanishes and the virtual photon cross section is

given in terms of only σT . σLT and σTT can only be measured with a polarized electron

and target, where the cross section is expressed relative to the two polarization directions.

The virtual photon cross sections can be related back to the structure functions, defined in

the previous section, as

σL =
4π2α

K

(
F2

ν

(
1 +

Q2

ν2

)
− F1

M

)
, (2.40)

σT =
4π2α

K
F1, (2.41)

σLT =
4π2α

K

Q2

ν2
(g1 + g2), (2.42)

σTT =
4π2α

MK

(
g1 −

Q2

ν2
g2

)
. (2.43)
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Chapter 3

The g2 Structure Function

In the previous chapter we related the measured differential cross section to four ‘structure

functions’ that parameterize the internal behavior of the proton. It was shown in Section 2.3

that these structure functions can be interpreted as quark momentum and spin distributions

but it was found that the second spin structure function, g2, has no physical meaning in

this context. In this chapter we will take a closer look at the characteristics of g2 and the

predictions about the behavior of its moments through the framework of QCD.

3.1 Chiral Perturbation Theory

A key concept in the discussion of QCD is the idea of ‘asymptotic freedom’, which refers to

the fact that the coupling strength between quarks increases as Q2 decreases. Asymptotic

freedom allows for a perturbative approach to QCD at high energies by expanding in powers

of the coupling constant in a method that is aptly named perturbative QCD (pQCD). For

low energy interactions
(
Q2 < 1 GeV2

)
, the coupling constant is of order one which makes

the perturbative method no longer useful and other approaches must be considered.

The complete QCD Lagrangian is [26]

LQCD =
∑
f

q̄f (i /D −mf )qf −
1

4
GαµνGµνα (3.1)
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where G is the field strength tensor, q is the quark spinor, m is the quark mass, the sum-

mation is over all six quark flavors and /D is the covariant derivative defined as

/Dαβqβ ≡
(
δαβ∂µ −

i

2
gλαβ

)
γµqβ. (3.2)

The up and down quark masses at the low energy scale of ≈ 1 GeV are [18]

mu = (4± 2)MeV, (3.3)

md = (8± 4)MeV. (3.4)

These masses are small compared to the composite hadron (mP = 938 MeV) so we consider

the quark masses to be zero and treat any deviation from this assumption as a perturbation.

In the zero quark mass picture the helicity of the particle, which is defined as the spin vector

projected onto the momentum axis (h = ~S · ~p) is indentical to its chirality, or ‘handedness’.

We introduce a ‘left’ and ‘right’ handed quark field as

qL,R =
1

2
(1∓ γ5)q (3.5)

which are decoupled from each other. The consequence of this is an additional symmetry in

the QCD Lagrangian, called chiral symmetry. The Lagrangian can now be rewritten as [27]

L0
QCD =

∑
f

(
q̄R,f i /DqR,f − q̄L,f i /DqL,f

)
− 1

4
GαµνGµνα (3.6)

where the summation is now over the massless quarks. This form of the QCD Lagrangian

exhibits a SU(3)L × SU(3)R symmetry. The existence of a small quark mass breaks this
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symmetry and can be treated as a perturbation in the Lagrangian

LQCD = L0 + L′ (3.7)

where L′ is the symmetry breaking part due to the quark mass

L′ = −
∑
f

q̄fmfqf . (3.8)

A low energy expansion in momenta is used in the result of any scattering amplitude calcu-

lation using this perturbed Lagrangian. The result is a power series in terms of the energy

or momenta of the interacting particles. The framework for this power series expansion is

called chiral perturbation theory (χPT) and is a very accurate extension of QCD in the low

energy scattering region.

3.2 Operator Product Expansion

The Operator Product Expansion (OPE) is a method developed by K. Wilson in 1968 as an

attempt to provide direct QCD predictions for moments of the structure functions [28]. The

underlying idea behind the OPE is to evaluate the product of operators by separating the

product into two parts, a perturbative part and a non-perturbative part. As an example,

the product of two operators can be expressed as the sum over local operators as

lim
x→0
Oa(x)Ob(0) =

∑
k

Cabk(x)Ok(0) (3.9)

in the limit of the spatial four-vector x→ 0, where Cab are known as the ‘Wilson coefficients’

which contain all of the spatial dependence of the sum. Because of the nature of asymptotic

freedom in QCD, the coupling constant is small at short distances. This allows the Wilson
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coefficients to be calculated perturbatively in the spatial four-vector limit.

To interpret the spin structure functions in terms of the OPE, the hadron tensor is first

written in terms of the commutator of electromagnetic currents Jµ and Jν :

Wµν =
1

2π

∫
d4xeiq·x〈P, S| [Jµ(x), Jν(0)] |P, S〉. (3.10)

where x is the virtual photon four-momentum and P and S are the target four-momentum

and spin, respectively. By taking the Fourier transform of Equation 3.9 we get the momen-

tum space version of the OPE

lim
q→∞

∫
d4xeiq·xOa(x)Ob(0) =

∑
k

Cabk(q)Ok(0). (3.11)

In the limit that q → ∞, the Fourier transform in Equation 3.10 forces x → 0 so the

OPE can be used. The result is an expansion of the electromagnetic currents in terms of

local operators multiplied by coefficients which are functions of q. The local operators in

the expansion are quark and gluon operators with arbitrary dimension d and spin n. The

contributions of any of these operators to the tensor product is of the order [29]

x−n
(
M

Q

)τ−2

(3.12)

where τ ≡ d−n is defined as the ‘twist’. As higher twist terms are suppressed by increasing

powers of M
Q the leading twist terms dominate in the Bjorken limit. For small values of Q2

higher twist becomes more important. Using dispersion relations the OPE can be applied

to the hadron tensor to find expressions for the moments of the structure functions [30]

∫ 1

0
xn−1g1(x,Q2)dx =

1

2
an−1; for n = 1, 3, 5... (3.13)
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∫ 1

0
xn−1g2(x,Q2)dx =

n− 1

2n
(dn−1 − an−1); for n = 3, 5... (3.14)

where an−1 and dn−1 are matrix elements of the twist-2 and twist-3 quark and gluon oper-

ators, respectively.

3.2.1 Wandzura-Wilczek Relation

Equation 3.13 relates the g1 structure function to the twist-2 matrix element an. If we

replace an with the corresponding moments of g2 we get

∫ 1

0
xn−1

(
g1

(
x,Q2

)
+

n

n+ 1
g2

(
x,Q2

))
dx =

1

2
dn; for n = 3, 5... (3.15)

where the leading twist terms have cancelled. Using the convolution property of Mellin

transforms we are able to invert Equation 3.15 as:

g1(x,Q2) + g2(x,Q2) =

∫ 1

0

dy

y
g1(y,Q2) (3.16)

where we have set the twist-3 dn term equal to zero. This is known as the Wandzura-Wilczek

relation [31]

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

0

dy

y
g1(y,Q2). (3.17)

This relation shows that the leading twist term in g2 is determined entirely by g1. As a

direct consequence of this, the leading twist part of g2 is interpretable in the naive parton

model.

We can now express g2 in terms of the leading twist contribution and higher order terms

g2(x,Q2) = gWW
2 (x,Q2) + ḡ2(x,Q2). (3.18)
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In the Bjorken limit it is a reasonable approximation to define g2 entirely in terms of g1

through the Wandzura-Wilczek relation. As Q2 decreases higher twist terms can no longer

be ignored and ḡ2 becomes increasingly important.

The higher twist component of g2 can be further broken down into a transversity twist-2

term and a twist-3 term as [32]

ḡ2(x,Q2) = −
∫ 1

x

∂

∂y

[mq

M
hT (y,Q2) + ξ(y,Q2)

]
. (3.19)

The transversity term, hT , is due to transverse quark polarization distributions, and is

suppressed by the quark mass (mq � M). The second term, ξ(x,Q2), is a twist-3 term

that comes from quark-gluon interactions. At gp2 kinematics the structure function deviates

strongly from leading twist behavior which allows for the unique measurement of higher

twist effects.

3.2.2 Burkhardt-Cottingham Sum Rule

It is important to note that the OPE for the g2 structure function, Equation 3.14, does

not say anything about the n = 1 term of the expansion. In 1970, H. Burkhardt and W.

Cottingham proposed a sum rule to describe the first moment of g2 [33]:

Γ2

(
Q2
)

=

∫ 1

0
g2

(
x,Q2

)
dx = 0, (3.20)

which is expected to hold at all values of Q2. The result of this moment, called the ‘BC

Sum Rule’, is derived from the relation of the g2 structure function to the virtual Comp-

ton scattering amplitude. If this sum rule is violated it could imply one of the following

circumstances,

1. g2 is so singular that the integral
∫ 1

0 g2(x,Q2)dx does not exist.
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2. g2 has a delta function singularity at x = 0.

3.2.3 Higher Twists

The Wandzura Wilczek relation splits the g2 structure function into a leading twist term plus

higher orders. As discussed in Section 3.2.1, the leading order term can be expressed entirely

in terms of g1 and is thus representable in the classical parton model. The interesting part

of g2 resides in the higher order term, ḡ2, which can be expressed in terms of it’s moments

using Equation 3.14 as

∫ 1

0
xnḡ2(x,Q2)dx =

n

4(n+ 1)
dn(Q2). (3.21)

These moments are of twist-3, which can be thought of as interactions involving more than

one parton in the hadron scattering process [34]. Parton-parton interactions are manifested

as helicity exchanges in the scattering interaction which arise from either transversely ori-

ented angular momentum in the parton, or interaction of the parton with a transversely

polarized gluon. In other words, where leading order twist describes individual quark be-

havior in the nucleon, the twist-3 interaction is beginning to probe the interaction of quarks

through gluon exchange. These higher twist interactions allow us to paint a more complete

picture of the hadron as a network of interacting particles, instead of single, non-interacting,

parton distributions.

3.3 Spin Polarizabilities

The spin polarizabilities, γ0 and δLT , describe the relation between the structure functions

and the virtual Compton scattering amplitudes [35]. They can be thought of as a nucleon’s

helicity response to a polarized virtual photon. Since the Compton scattering amplitudes
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can be calculated theoretically, the polarizabilities allow for a unique benchmark test in the

framework of QCD.

To derive the polarizabilities we consider the forward doubly-virtual Compton scattering

of a virtual photon with space-like four-momentum q2 = −Q2 < 0. The absorption of a

virtual photon is related to the inclusive cross sections σT , σL, σTT and σLT , as discussed in

Section 2.4. For this discussion we will concentrate on the spin-dependent partial cross sec-

tions, σTT and σLT . By considering a scattering amplitude, gTT , an unsubtracted dispersion

relation leads to [36]

<
[
gTT (ν,Q2)− gpoleTT (ν,Q2)

]
=

ν

2π2
P
∫ ∞
ν0

K(ν ′, Q2)σTT (ν ′, Q2)

ν ′2 − ν2
dν ′ (3.22)

where gpoleTT is the elastic contribution to the scattering amplitude, K is the virtual photon

flux, σTT is the Compton scattering cross section (both discussed in Section 2.4), and the

integral over ν begins at the pion threshold, ν0. A low energy expansion gives:

<
[
gTT (ν,Q2)− gpoleTT (ν,Q2)

]
=

2α

M2
ITT (Q2)ν + γ0(Q2)ν3 +O(ν5)., (3.23)

where ITT (Q2) is the coefficient of the O(ν) term which leads to a sum rule for the gen-

eralized Gerasimov-Drell-Hearn integral [22] and γ0 is the coefficient to the O(ν2) term

which leads to the generalized forward spin polarizability. Using Equations 2.40-2.43 the

polarizability can be related back to the spin dependant structure functions g1 and g2:

γ0(Q2) =
1

2π2

∫ ∞
ν0

K(ν,Q2)

ν

σTT (ν,Q2)

ν3
dν

=
16αM2

Q6

∫ x0

0
x2

[
g1(x,Q2) +

4M2

Q2
x2g2(x,Q2)

]
dx.
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If we look instead at the Compton scattering amplitude for the longitudinal-transverse cross

section, gLT , and use the same method as discussed above, we arrive at an expression for

the longitudinal-transverse polarizability in terms of the spin structure functions,

δLT (Q2) =
1

2π2

∫ ∞
ν0

K(ν,Q2)

ν

σLT (ν,Q2)

Qν2
dν

=
16αM2

Q6

∫ x0

0
x2
[
g1(x,Q2) + g2(x,Q2)

]
dx,

where δLT represents the coefficient to the second order term in the expansion of gLT .

3.4 Model Predictions

Several models exist which fit existing structure function world data in order to make

predictions in currently unmeasured kinematic regions. Before moving on to discuss the gp2

experiment and analysis we will take a brief aside to discuss some of these models and their

contributions to the analysis of E08-027.

3.4.1 Polarized MAID Model

The Unitary Isobar Model (MAID) [37] contains phenomenological fits to world pion photo-

and electroproduction data. The major resonances are modeled using Breit-Wigner func-

tions:

σ 1
2( 3

2) =
4M

W0Γ0
A2

1
2( 3

2)B(ν,Q2) (3.24)

where B(ν,Q2) is the generalization of the Breit-Wigner form to electroproduction, A2
1
2( 3

2)

are the photoproduction helicity amplitudes, W0 is the relevant resonance mass, and Γ0 is

the resonance width. The fit covers a region from the single-pion production threshold to

the resonance region limit of 2 GeV.
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3.4.2 Polarized CLAS EG1b

The CLAS EG1b model [38] will be referred to in this work as the polarized ‘Hall B’ model.

The model is comprised of a fit to the virtual photon asymmetries A1 and A2 which can

then be related back to the spin structure functions g1 and g2. The Hall B model becomes

increasingly useful as the low Q2 region is constrained by existing photo-production data and

parameterizations exist in both the resonance and DIS regions. At DIS the g2 contribution

is given by the Wandzura-Wilczek relation (Section 3.2.1) which assumes only leading twist

behavior.

3.4.3 Unpolarized Bosted-Christy Model

The Bosted-Christy model was developed by P. Bosted and M.-E. Christy to represent an

empirical fit to inclusive measurements of inelastic electron-deuteron scattering [39]. The

fit covers the resonance region for Q2 < 10 GeV2.

The Bosted model can be described as a convolution of two fits, one parameterizing the ‘dip’

region between the quasi-elastic peak and the ∆(1232) resonance, and the other parame-

terizing the average nucleon cross section integrated over the nucleon Fermi momentum,

~k,

σ(W,Q2) = σdip(W,Q
2) +

∫
σ(W ′, Q′2)Φ2(~k)d3~k. (3.25)

The agreement between the fit and data in the gp2 kinematic region is on the order of 5%.
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Chapter 4

The Experiment

Experiment E08-027 (gp2) ran in February - May of 2012 in Hall A of Thomas Jefferson

National Accelerator Facility (JLab) in Newport News, Virginia. The experiment mea-

sured inclusive polarized electron cross sections in the low momentum transfer region of

0.01 < Q2 < 0.13 GeV2. Full kinematic coverage for the experiment is shown in Figure 4-

1. To calculate the spin dependent structure functions, g1

(
x,Q2

)
and g2

(
x,Q2

)
, both a

total electron cross section and a scattering asymmetry are needed. For this purpose a

longitudinally polarized electron beam with incident energy between 1.1 GeV and 3.3 GeV

was scattered off of a stationary proton target with polarization direction either transverse

or longitudinal to the electron beam polarization. E08-027 ran at a total of five beam-

energy/target polarization ‘configurations’. The details of each configuration are shown in

Table 4.1. The hall A beamline was outfitted with new beam diagnostic hardware and

Table 4.1: E08-027 Experimental Configurations.

Beam Energy Target Field Target Orientation Approximate Q2

3.350 GeV 5T 90◦ 0.12 GeV2

2.254 GeV 5T 90◦ 0.086 GeV2

2.254 GeV 5T 0◦ 0.043 GeV2

2.254 GeV 2.5T 90◦ 0.048 GeV2

1.710 GeV 2.5T 90◦ 0.025 GeV2

1.157 GeV 2.5T 90◦ 0.010 GeV2

raster tools to account for the low current running required to maintain target polarization,

the details of which will be discussed in Section 4.2. A beam current of <100nA was used
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Figure 4-1: Kinematic coverage for the six settings of E08-027. An exponential fit to the
central scattering angle was used to find the Q2 of each momentum setting. Also shown
is the ∆(1232) resonance, which is used as the extrapolation point of each setting to a
constant Q2 (Section 7.5.1).

to allow for slower target depolarization.

The experiment utilized two indentical High Resolution Spectrometers positioned at ±12.5◦

relative to the beamline. This represents the smallest possible angle that the High Resolu-

tion Spectrometer arms are capable of closing to. The kinematic range of the experiment

required detection of electrons at an angle of roughly ±6◦ so a septum magnet was added

to allow for the selection of scattered electrons at previously inaccessible angles.

The High Resolution Spectrometers contained 3 quadrupole focusing magnets and 1 dipole

magnet to bend scattered electrons into the detector housing. A sieve slit was placed be-

fore the septum magnet to be used in conjuction with the Vertical Drift Chambers in the

detector housing for the reconstruction of detected electron positions at the target. Gas
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Čerenkov and lead glass scintillators were used for particle ID and energy measurements in

the detector housing.

In this chapter, the Electron Beam Injector and Linear Accelerator at JLab will be discussed

in detail, along with the various components of experimental Hall A that were directly uti-

lized in the running of E08-027.

4.1 The Accelerator

The JLab Continuous Electron Beam Accelerator Facility (CEBAF) can be broken down

into four major components. The Injector is where the polarized electron beam is produced

and accelerated by 45 MeV onto the main ring. The north and south Linacs, or Linear

Accelerators, are a series of RF cavities capable of accelerating the beam by approximately

400 MeV per pass. The recirculation arcs connect the two linacs to allow for up to 5

passes and a maximum beam energy of 12 GeV [3]. It is important to note that at the

running of the experiment the accelerator had a maximum beam energy of 6 GeV, it has

since been upgraded with an additional experimental hall and improved beamline tools.

Since these upgrades occured after the running of E08-027 they will not be discussed in this

work. Finally, after reaching the required beam energy, the beam is delivered to the three

experimental halls for data taking. A detailed overview of the accelerator and its various

components is shown in Figure 4-2.

4.1.1 Injector

There are three main components required to generate a polarized electron beam. The

first is a light sensitive material called a photocathode from which electrons will be ejected

when excited with an energy source. The second is a laser light source which provides the

energy required to excite the electrons into the conduction band. Finally an electric field is
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Figure 4-2: Jefferson Lab Linear Accelerator. See text for details. Reproduced from [3].

used to accelerate electrons in the conduction band. At the CEBAF accelerator a Gallium

Arsenide (GaAs) photocathode is used as an electron source. A circularly polarized 1.497

GHz diode laser is incident on the GaAs crystal with a wavelength of 780 nm which matches

the bandgap energy of the material. Unfortunately, the valence band of GaAs is degenerate.

This means there are four possible valence states at the same energy level, so when polarized

laser light of the correct frequency is incident on the crystal it will excite 3 electrons to one

spin state for every 1 electron excited to the opposite spin state, as per the Clebsch Gordan

coefficients for such a transition. This is shown in more detail in Figure 4-3. This will

S1/2

P1/2,P3/2
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Figure 4-3: Possible transition states for GaAs before (left) and after (right) mechanically
strained with phosphorus.

result in a theoretical maximum electron polarization of 50%. To increase the maximum

polarization the GaAs crystal is mechanically strained with phosphorus which separates the
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P3/2 and P1/2 states. Then incident laser light with only enough energy to excite electrons

from the P3/2 states is applied, giving a theoretical maximum polarization of 100% [40].

In order to measure asymmetries and cross section differences, and to minimize time de-

pendent polarization effects in the experimental hall equipment, a pseudo-random bitwise

algorithm is used to flip the polarization direction of the laser light at a 30Hz frequency.

The polarization of the laser is flipped using a quarter-wave retardation plate called a Pock-

els Cell. When a high voltage is applied to the Pockels Cell it will act to flip the state of

the circularly polarized laser, thus flipping the helicity, or direction of polarization, of the

electron beam. The high voltage sent to the Pockels Cell is regulated by a logic generator

called the Helicity Control Board which is running a 30-bit pseudo-random algorithm that

generates a 0 or 1, corresponding to + or − laser polarization, at 30Hz [41]. The algorithm

1 1 1 1..... .....

XOR
(=1)

XOR
(=1)

XOR
(=0)

30 29 28 27 7 3 2 1

result

example

sequence

bit number

Figure 4-4: The 30-bit shift register in the Helicity Control Board. The new pattern is
determined using an XOR (exclusive ‘or’ logic statment) on bit 30, 29, 28 and 7 of the
register. The resulting bit value (green box) determines the beam polarity, then the entire
register is shifted left by one bit and the calculation is repeated. Reproduced from [4].

is shown in Figure 4-4. The signal from the Helicity Control Board is also sent directly

to the experimental hall where it can be decoded so the real helicity state of the detected

electron can be known. This process is known as helicity reconstruction, and is discussed

in more detail in Ref [4]. The polarized electrons are then accelerated up to 67 MeV before

being injected into the accelerator.
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4.1.2 Accelerator

The main facility consists of 2 antiparallel linear accelerators (north and south linacs) and 2

recirculation arcs. Each linac consists of 20 cryomodules each containing 8 superconducting

niobium RF cavities cooled to 2 Kelvin [3]. Electrons passing through the cavities are

accelerated by the 1.497 MHz RF wave in each cavity. At the end of the linac the beam

enters a chicane system, called a CEBAF spreader, which sorts the beam according to its

energy. From here the beam enters the recirculation arc which bends the beam 180◦ into

the south linac. After undergoing a second acceleration stage the beam hits the extraction

elements where an RF separator magnet can direct the beam into the experimental halls

for data taking, or send it into another separator and into the second recirculation arc to

make another full pass. One electron bunch can make up to 5 passes, reaching a maximum

beam energy of just under 6 GeV.

4.2 The Hall A Beamline

The electron beam enters the Hall A beamline from the RF separator and travels approx-

imately 20 meters through several beam diagnostic sensors before reaching the stationary

target at the center of the hall. The beamline itself consists of several isolated sections

separated by vacuum ports. The pressure is maintained at 6 10−6 Torr by an ion pump

system. Due to the unique conditions required for the running of E08-027, a large portion

of the beamline equipment was newly introduced for the experiment. Each component of

the beamline will be carefully addressed in the following sections.

4.2.1 Beam Current Monitors

The first component that the beam sees as it enters the hall is the Beam Current Monitor

(BCM). The monitor consists of two resonant cavities, an Unser monitor and associated
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electronics. The entire system is enclosed in a temperature stabilized box around the

beamline. The two RF cavities are stainless steel cylindrical waveguides tuned to the beam

frequency of 1.497 GHz [42]. This results in an output voltage from the cavity that is

proportional to the beam current.

Between the two cavities is a Parametric Current Transformer, called an Unser monitor,

which is normally used as a calibration tool for the RF cavities. This is done by passing a

known current through a wire inside the beam pipe. The current is ramped between zero

and a maximum current several times to improve the accuracy of the voltage output on

the cavity. Using the known current and the output voltage, a constant of proportionality

can be determined and used for the duration of the experiment with a stability of ±0.5%.

Unfortunately, this method is only accurate down to roughly 1µA, below this current the

absolute uncertainty in the Unser monitor, 250 nA, becomes a problem. The low current

running of E08-027 required an alternate method for beam current measurements.

In lieu of an Unser monitor, an invasive tungsten calorimeter was used to calibrate the RF

cavities. The calorimeter consisted of a vacuum chamber containing a block of tungsten with

a known heat capacity of 8.55 kJ/K [43]. During calibration the tungsten was invasively

moved into the beamline where it heated as charge was deposited onto the block. After a

set amount of time the beam was shut off and the block was given time to thermalize before

a temperature measurement was taken. The relationship between temperature and charge

is given by

Qbeam = K × T (4.1)

where K is the heat capacity of the tungsten and T is the measured temperature. The

calculated charge was then compared to the voltage read out by the RF cavities during

the same period of time, and a constant of proportionality was found. The BCM monitors

could then be used, non-invasively, for an extended period of time to determine the beam
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Figure 4-5: Raster patterns at the target, units are arbitrary. Fast raster(a) is roughly 2mm
in diameter, slow raster(b) is roughly 2cm in diameter.

charge.

4.2.2 Rasters

When the electron beam enters the hall it has an approximate diameter of 100 µm. To

prevent rapid depolarization, uneven heating and uneven densities in the target material,

a method is required to spread the beam heat load out to a larger, uniform diameter. The

standard method for doing this is a dual horizontal and vertical air core magnet coil called

the fast raster. Each coil accepts a 20 kHz oscillating triangular wave pattern with a 90◦

phase separation [44] which result in a 2mm diameter square beam pattern on the target

as shown in Figure 4-5a.

E08-027 used a target with a circular cross-sectional diameter of 2cm. To reduce rapid

depolarization of the target material due to concentrated radiation dose, a second raster

was introduced. This second raster, called the slow raster, was powered by three waveform

generators. Two waveforms generated 100Hz sine waves with a 90◦ phase separation, while

the third waveform performed a 30Hz amplitude modulation of the function r(t) ∼
√
t.

These waveform generators drive the x and y directional slow raster deflection magnets [45].

The resulting raster is a 2cm circular raster pattern at the target, shown in Figure 4-5b.
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4.2.3 Møller Polarimeter

A high precision measurement of the beam polarization in the hall was required to calculate

the electron scattering asymmetry. The standard Hall A beamline is equipped with a

Møller polarimeter which exploits the well understood cross section of Møller scattering to

determine the beam polarization. The polarimeter uses a ferromagnetic foil, magnetized

in a 24 mT field for scattering. The Møller scattering interaction, ~e − + ~e − → e− + e−,

will occur between the polarized beam and foil and the resulting scattered asymmetry is

measured in a pair of lead-glass calorimeter modules.

The reaction cross section of Møller scattering is a function of both the beam and target

foil polarization as

dσ

dΩ
=

(
dσ

dΩ

)
0

1 +
∑

i=X,Y,Z

(
Ai,i · P target

i · P beam
i

) (4.2)

where i = X,Y, Z defines the projections of the polarizations on each axis and Ai,i is defined

as the analyzing power and is a function of only the center of mass scattering angle, θCM [5].

Here
(
dσ
dΩ

)
0

is the unpolarized cross section:

(
dσ

dΩ

)
0

=

[
α(1 + cos θCM )(3 + cos2 θCM )

2me sin2 θCM

]2

(4.3)

where α is the fine structure constant and me is the electron mass. So the beam polar-

ization is directly calculable with a well understood target polarization and cross section.

Experimentally, the asymmetry is measured instead of the cross section. This allows many

cross section systematic uncertainties to cancel in the ratio.

A diagram of the Møller polarimeter is shown in Figure 4-6. The target material is a Cobalt-

Iron alloy cooled to 115K in a 28 mT target field. Polarizations on the order of 7.95±0.24%

were obtained. The error includes uncertainty in the foil size, as well as uncertainty in the

37



-80

-60

-40

-20

0

20

40

0 100 200 300 400 500 600 700 800
Z cm

Y
 
c
m

(a)

T
a

rg
e
t

C
o

ll
im

a
to

r

Coils Quad 1 Quad 2 Quad 3 Dipole

Detector

non-scattered
beam

-20

-15

-10

-5

0

5

10

15

20

0 100 200 300 400 500 600 700 800
Z cm

X
 
c
m

(b)

B
→

Figure 4-6: Side view (a) and top down view (b) of the Møller polarimeter. Beam enters
from the left and scatters off the target. Scattered events are bent out of plane in the dipole
and detected below the beam line. Reproduced from [5].

stability of the target field. The polarimeter measurements are invasive and take approx-

imately one hour of beam time. Because of the invasive nature of the measurement and

the stability of the beam polarization, only 9 beam polarization measurements were taken

during the experiment. The results are shown in Table 4.2. Measurements are considered

constant to within statistical uncertainty for the duration between measurements. Flips in

sign correspond to the beam line insertion of a polarity flipping half-wave plate.

Table 4.2: Møller Polarimeter results [1].

Measurement Date (2012) Result

1 March 3 -79.91 ± 0.20 (stat.) ± 1.7% (sys.)
2 March 30 -80.43 ± 0.46 (stat.) ± 1.7% (sys.)
3 March 30 +79.89 ± 0.58 (stat.) ± 1.7% (sys.)
4 April 10 -88.52 ± 0.30 (stat.) ± 1.7% (sys.)
5 April 23 +89.72 ± 0.29 (stat.) ± 1.7% (sys.)
6 May 4 -83.47 ± 0.57 (stat.) ± 1.7% (sys.)
7 May 4 -81.82 ± 0.59 (stat.) ± 1.7% (sys.)
8 May 4 +80.40 ± 0.45 (stat.) ± 1.7% (sys.)
9 May 15 +83.59 ± 0.31 (stat.) ± 1.7% (sys.)
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4.2.4 Beam Position Monitors

Two Beam Position Monitors (BPMs) were located directly upstream of the target for high

precision measurements of the beams x and y coordinates within the beamline. The BPM

monitors are resonant cavities with resonant frequency tuned to match the beam frequency.

Four antenna are located inside each cavity, 2 ‘x-directional’ antenna and 2 ‘y-directional’

antenna [5]. An asymmetry measurement of the voltages in antenna opposite each other

gives the central beam position in that corresponding direction.

To get the absolute beam position, the BPM’s were calibrated using an intrusive mechanism

called the Harp. The Harp consists of three wires stretched across a metal tong. One wire

is vertical with respect to the beam direction, while the other two are at 45◦ to the beam

direction. During calibration the Harp is stepped across the beamline using a high precision

stepper motor. A spike is seen in the signal from the wire when it crosses the beam location.

Using the step motor location and signal from the three wires the exact beam position can be

calculated and used to calibrate the beam position monitors for non-intrusive measurements.

4.2.5 Chicane

Experiment E08-027 ran in a total of six different beam energy and target field configura-

tions. Of the six configurations, five of them called for a target field perpendicular to the

beam direction. For these settings the beam would experience out-of-plane bending while

it travels through the target field so two additional dipole magnets had to be installed up-

stream of the target field to ensure the beam hit the target center [46]. The beam trajectory

through the chicane and target field is shown in Figure 4-7.

The chicane consisted of two dipole magnets, the first to kick the beam out of plane, and

the second to bring the beam back into the target chamber. The vertical positioning of

the magnets was unique to each beam energy setting such that it would hit at exactly
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Figure 4-7: Side view of the chicane setup for E08-027. Beam enters from the left.

the target center. The angular deflection of the upstream chicane for each energy setting

is shown in Table 4.3. After hitting the target cup the beam will continue to experience

Table 4.3: Vertical deflection of incident electron beam in the chicane

Energy (GeV) Deflection Angle

1.157 11.7o

1.710 7.6o

2.254 5.9o

3.350 3.9o

downward bending by the target field. In two specific beam energy settings, 3.350 GeV

and 2.254 GeV at 5T, the bending downstream of the target cup was such that the beam

would be unable to reach the Hall A beam dump, for these situations a local beam dump

was installed immediately downstream of the target. The beam dump system is discussed

in more detail in Section 4.2.7.

4.2.6 Septum

Several experiments in Hall A called for forward angle scattering measurements less than

12.5◦. However, the High Resolution Spectrometer arms are only capable of closing to 12.5◦.

The reason for this is that the HRS dipole magnets, which act to bend scattered electrons

up into the detector stack, cannot move to smaller angles without physically overlapping

the beam pipe. To overcome this issue a superconducting dipole magnet, called the septum,

was placed in front of the acceptance for each spectrometer arm. The septum allowed for
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6◦ central angle scattered electrons to be bent into the HRS acceptance window.

During the running of E08-027 the septum encountered several issues. About 8 weeks into

the experiment one of the coils on the right dipole shorted. The standard coil configuration

was three groups of coils, one with 48 turns and two with 12 turns each (the 48-12-12

configuration). After one of the coils shorted, one of the groups was bypassed entirely.

This resulted in a second coil configuration, aptly named the 48-0-12 configuration for

the number of coils used. Several weeks later a second coil group shorted and had to be

bypassed. We introduced a third coil configuration, called 48-0-0, for the last few weeks

of experiment running. The current in each configuration was adjusted so that the effect

on the acceptance was minimal. But, due to the septum field changing because of the

different geometric orientation of the coils, different optics matrices had to be found for

each configuration. This quickly became one of the most prominent complications for the

analysis of experiment E08-027. At the time of this writing an acceptance study is still

underway which is discussed in more detail in Section 6.5.

4.2.7 Local and Hall Dump

After traveling through the target field the beam continues along the beamline to the far

end of Hall A and into the beam dump. The dump consists of two 6.3 mm thick beryllium

foils with water flowing between them that act to diffuse the beam before being deposited

on the surface of the dump itself, 23 m inside the dump tunnel. The dump is designed to

operate at a maximum current of 190 µA [5].

For those settings where the beam was unable to reach the hall beam dump due to downward

bending of the target field, a localized beam dump was installed immediately downstream

of the target chamber. The local beam dump consisted of a single tungsten block which the

beam was deposited on to. Due to the increased irradiation, the use of the local beam dump
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was kept to a minimum, and used only during the last two configurations of the experiment.

4.3 High Resolution Spectrometers

Hall A contains two spectrometer arms able to pivot around the target chamber so as

to detect scattering from various angles. The two spectrometers are nearly identical and

contain three quadrupole focusing magnets, labeled Q1, Q2 and Q3 and one dipole bending

magnet, labeled D1. The spectrometer arms are arranged in a QQDQ configuration as

shown in Figure 4-8 with D1 capable of a 45◦ vertical bending of scattered particles and

a momentum resolution on the 10−4 level over a 0.8 to 4.0 GeV/c momentum range. The

quadrupoles are arranged such that Q1 provides focusing in the vertical plane while Q2

and Q3 provide focusing in the transverse plane. This provides an angular resolution of <1

mrad in both the horizontal and vertical direction.

Q1
Q2

Q3

VDC Plane

From Septum

20.76m

10.37m

Figure 4-8: Side view of one High Resolution Spectrometer in Hall A. Beam enters from
the left.

The magnetic field of each dipole is measured using an array of three NMR field probes

which provide a measurement range from 0.17 to 2.10 T with an accuracy at the 10−5 level.
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The spectrometer central momentum is then selected by setting the dipole field under the

relation:

P0 = Γ ·B0 (4.4)

where Γ is a calibrated spectrometer constant and B0 is the dipole field.

4.4 Detector Package

Experiment E08-027 used the standard Hall A detector package for each spectrometer arm.

A general overview of each component of the detector housing can be found in the Hall A

Nuclear Instruments and Methods (NIM) paper [5]. This includes a vertical drift chamber

in each arm to be used in conjunction with a sieve plate for position tracking, lead-glass

shower counters and a gas Čerenkov for particle ID, and a pair of plastic scintillator planes

for triggering. The two detector housings were virtually identical for E08-027 so only the

left spectrometer arm will be discussed in the following sections. It can be assumed that

the right spectrometer mirrors this discussion exactly, unless otherwise stated.

4.4.1 Detector Hut Shielding

All of the detector panels discussed in this section are housed inside of a concrete shielding

hut located 10 meters above the Hall floor. There are two main components to the detector

shielding: a block meant to protect the detectors from direct line of site to the scattering

chamber, and the shielding hut itself, meant to protect the detectors from radiation sources

in any direction. The Line-of-Sight block is a 2 meter thick concrete block position above

quadrupoles Q1 and Q2 which serve to limit the muon rate seen at the detectors. The

shielding hut is a square enclosure around the detectors. It consists of a 5 cm lead layer

sandwiched between a 10 cm steel frame, surrounded by up to 100 cm of concrete. The

radiation level inside the shielding hut is below 1 mrem per hour with a beam luminosity
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Figure 4-9: Diagram of the detector housing for both the left and right spectrometers. It is
important to note that for the running of gp2 the FPP chambers and the Carbon Analyzer
were not used.

on the order of 1038 cm−2s−1.

4.4.2 Vertical Drift Chambers

The vertical drift chambers (VDC) provide position and angle tracking of scattered particles

in the detector housing. Each VDC detector consists of two wire planes separated by about

335 mm. The wires in each plane are oriented 90◦ to each other, and lie flat as seen in

Figure 4-9. Each plane consists of 368 ‘sensing’ wires spaced 4.24 mm apart [47]. The
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entire wire chamber volume is sealed and filled with a gaseous mixture composed of 62%

argon and 38% ethane. An electric field is applied to each wire plane using gold-plated

Mylar and kept at a voltage differential of -4.0 kV. The argon in the gas mixture acts as

an ionizing medium for electrons traveling through the detector. The ionized electrons will

accelerate along the electric field lines in the detector which in turn ionize more argon, the

resulting avalanche of electrons travel down to the closest wire and produce a detectable

signal on the wire itself. The signal is read out by a LeCroy amplifier card positioned 30

cm away from the chamber.
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Figure 4-10: Vertical Drift Chambers (VDCs). Reproduced from [5].

The VDC plane is positioned parallel to the hall floor. Electrons passing through the wire

chamber in this configuration will enter at an angle, causing them to nominally cross four

to six wires per plane. By using time-to-digital converters (TDCs) the drift distance of

each electron avalanche is determined and a cross-over point of the electron track can be

45



determined. This is shown more clearly in Figure 4-10. Using the cross-over point on each

VDC plane the particle trajectory can be calculated with an angular resolution on the order

of 0.5 mrad.

4.4.3 Scintillators and Triggers

Two plastic scintillator planes are used to form the triggers for E08-027. Triggers are a

set of logical statements, using signals from these detectors, that must be satisfied in order

for the data acquisition system (DAQ) to record the signal as an ‘event’ to be stored and

analyzed. The detectors used in forming the triggers are two sets of plastic scintillator

planes, called s1 and s2m. The s1 scintillator plane consists of six 5 mm thick pieces of

scintillating material in a 1 x 6 arrangement, while the s2m consists of sixteen 5 cm thick

paddles in a 1 x 16 arrangement. The two scintillator planes are separated by about two

meters in the detector hut.

The main trigger for E08-027, called T1 on the right spectrometer and T3 on the left

spectrometer, was defined by a signal in both scintillator planes. It was formed using the

following logic statement:

• The left and right PMTs on a paddle of s1 both fire.

• The left and right PMTs on a paddle of s2m both fire.

• The event causes both s1 and s2m to fire.

This trigger is formed after introducing a signal delay to s1 to account for the travel time

of particles between the two scintillator planes, on the order of several nanoseconds. A

second trigger, called the efficiency trigger, was created to persistently check the efficiency

of the scintillator planes. This trigger, T2 on the right spectrometer and T4 on the left

spectrometer was formed using the following logic statement:

46



• The left and right PMTs on a paddle of either s1 OR s2m fire, but not on both.

• The signal is seen in the gas Čerenkov.

If an event is seen in the gas Čerenkov (Section 4.4.4) it is potentially a good event that

one of the scintillator planes failed to detect. The efficiency of the scintillator planes is then

defined as

εtrigger =
T1(3)

T1(3) + T2(4)
(4.5)

where T1(3) and T2(4) are the total right(left) spectrometer main and efficiency triggers,

respectively.

After the triggers are formed, they are sent to the trigger supervisor module which deter-

mines if the event should be recorded. After an event is recorded there is a set recovery

time before the data acquisition system can accept another event. If an event is accepted

by the trigger supervisor during this window it is unable to be recorded, contributing to

the data acquisition deadtime, or DT. To minimize the DT during periods of high event

rates, a prescale factor was introduced that limits the number of recorded events by a set

amount. For example, by setting a prescale value to 3, only every third event from the

trigger supervisor was recorded. This fixed limiter made it possible to keep the DT to a

minimum during high event rate situations.

4.4.4 Gas Čerenkov Detector

A gas Čerenkov detector was used as a pion rejector. The Čerenkov detector exploits the fact

that the velocity of light is fractionally reduced by 1/n when traveling through a gas with

index of refraction ‘n’. If a particle traveling through the same medium exceeds the speed

of light (in the medium) a conical wave of light, called Čerenkov radiation, will be emitted
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along the particles trajectory. The threshold for the production of Čerenkov radiation is

βc ≥ c

n
(4.6)

where β is the particles velocity in the medium. This allows for a very effective method of

particle discrimination based on its velocity (or, as a direct consequence, its momentum)

simply by picking a medium with the appropriate index of refraction.

For the E08-027 experiment, a gas Čerenkov detector in each spectrometer arm was filled

with atmospheric CO2 with an index of refraction of 1.00041 [48]. Plugging this into Equa-

tion 4.6 and using the relation

Pth =
mc√
1− β2

(4.7)

results in an electron threshold momentum of 18 MeV/c and a pion threshold of 4.87 GeV/c.

The momentum range for E08-027 was 0.52 GeV/c to 3.0 GeV/c which is well below the

pion threshold. So all incident electrons will emit Čerenkov radiation, while pions will not.

This provides a very effective method for pion rejection.

Each detector houses 10 spherical mirrors, in a 2 x 5 configuration, positioned at the correct

conical half angle to reflect Čerenkov radiation into the corresponding photomultiplier tubes.

The half angle position is a function of the index of refraction of the medium.

4.4.5 Lead Glass Detectors

When a high energy particle travels through a very dense material it produces a cascade of

secondary particles and photons. As this secondary ‘shower’ of particles continues through

the dense material eventually all of its energy is converted into light. The light can then be

detected using photomultiplier tubes. Two such detectors were used for E08-027, named

the ‘pre-shower’ and ‘shower’ detectors. The pre-shower detector consisted of 48 lead glass
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blocks, with each block measuring 10 cm x 10 cm x 35 cm in a 24 x 2 block configuration.

The second shower detector consisted of 80 lead glass blocks, with each block measuring

15 cm x 15 cm x 35 cm in a 16 x 5 block configuration. The shower detector is the final

detector that the traveling particle sees in the detector hut, and it is sufficiently thick to be

considered a ‘total absorption’ calorimeter. This means that all of the particle’s energy is

converted to light while traveling through the lead glass blocks. A measure of the emitted

light in the photomultiplier tubes is directly proportional to the total energy of the particle.

4.4.6 Data Acquisition System

The gp2 experiment used the standard HRS data acquisition (DAQ) system to record event

information. The DAQ system consisted of three fastbus modules, the trigger supervisor

and one HAPPEX crate in each HRS detector stack. The trigger signals (Section 4.4.3)

were fed into the trigger supervisor. When a trigger was satisfied by an event, all detector

information about the event was fed into a data file in the Hall A DAQ (ADAQ) machines

in the counting house. The data files contained timestamp information for the events, along

with beam and electron helicity information, electron position and momentum information

from the detectors, and EPICS information from the accelerator such as beam energy,

polarization and current. Data was organized into segmented, user controlled, lengths of

time called ‘runs’. A dedicated run operator chose when to start and end a run using the

CEBAF Online Data Acquisition system (CODA). During a run all event information was

appended to a single data file to simplify the analysis process. Run lengths were chosen to

be roughly one hour long, or seven million detected events, whichever came first. All run

files were copied to the JLab tape library daily for long term storage and offline analysis.
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Chapter 5

Polarized Target

Calculation of the proton spin structure function requires two main components, an unpo-

larized proton cross-section and a proton double spin asymmetry. In order to measure the

spin asymmetry it is necessary to have a highly polarized proton target. For this purpose

the gp2 experiment used an irradiated solid NH3 target submersed in a LHe bath cooled

to approximately 1K. High proton polarizations are necessary to reduce the final uncer-

tainties in the double spin asymmetry measurement. The NH3 material was polarized in

a high magnetic field using the well understood process of Dynamic Nuclear Polarization

(DNP). An accurate method for continuously measuring the polarization was also needed as

material depolarization happened rapidly while the target material was exposed to beam.

Polarization was measured every few seconds by Nuclear Magnetic Resonance (NMR) using

a small coil embedded in the target material.

The original target system intended to be used for gp2 was previously designed for the JLab

Hall C SANE experiment [49]. Due to issues during target setup the SANE target system

had to be scrapped and replaced by a modified version of the JLab Hall B target. The

final magnet setup consisted of a superconducting Helmholtz coil capable of being rotated

so that both the longitudinal and transverse double spin asymmetries could be measured.

The performance of the target system and polarization results are published in Nuclear

Instruments and Methods [50]. A detailed description of the magnet systems, DNP and
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NMR processes, and polarization analysis are discussed in the following sections.

5.1 Target Setup

The target system consisted of three components. First, the magnet system, which con-

tained the superconducting Helmholtz coils submersed in a 4K liquid Helium (LHe) bath

capable of on axis rotations for polarization measurements in various directions. Second,

the evaporation refrigerator, located at the center of the magnet, was used to cool LHe

from 4K down to the necessary 1K for high material polarization. Finally, the target insert,

located inside the refrigerator, was used to hold several material samples at the center of

the target field in the 1K fridge bath and contained NMR components for polarization mea-

surements along with microwave components for DNP. A diagram of where these systems

were in relation to each other is shown in Figure 5-1.

5.1.1 Magnet System

A 5 Tesla superconducting Helmholtz coil was used for the gp2 experiment. The coils were

obtained from the JLab Hall B polarized target and suspended in the Hall C helium dewar.

The magnet system contained four openings, two longitudinal to the magnetic field and

two perpendicular. Figure 5-2 shows a photograph of the magnet system wrapped in super

insulation. The entire cryostat system was rotatable from the top plate so both field config-

urations could be used during the experiment. The coils produced a relative field uniformity

at the center of < 10−4 over a cylindrical volume 20mm in diameter and 20mm long [50].

Unfortunately the size of the target material was larger than the field uniformity at 25mm

in diameter and 30mm long, but no adverse affects on the polarization were observed.

The magnet coils were required to be submersed in 4K LHe for the duration of the experi-

ment to maintain superconductivity. To achieve this the magnet volume was connected to

51



Figure 5-1: The various components of the gp2 target system.

a large Helium buffer reservoir capable of storing up to 80 liters of LHe. A helium level

probe in the cryostat monitored the liquid level while LHe was continuously supplied to

the reservoir from the JLab liquefier. The reservoir in the cryostat was connected to the

magnet volume by a small stainless steel hose. The entire magnet volume was suspended

inside of a vacuum sealed shell, called the scattering chamber, to insulate the LHe reservoir

and refrigerator from the room temperature air around it. The scattering chamber was

evacuated to 10−7 Torr using a diffusion pump.

5.1.2 Evaporation Refrigerator

The 4K LHe supplied by the JLab liquefier is too warm to achieve the polarization levels

required by gp2 . To further cool the LHe, an evaporation refrigerator was installed in the
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Figure 5-2: The gp2 polarized target magnet covered in insulation suspended from the LHe
cryostat. The magnet is in the longitudinal field configuration from the perspective of the
camera.

center of the magnet coil volume. The refrigerator worked by siphoning LHe from the 4K

LHe reservoir into a 1 liter stainless steel cylindrical volume called the ‘separator’. The

separator was bisected by a 1mm thick perforated plate that allowed liquid to pass though

while vapor was pumped away through a series of copper heat exchangers by a continuously

running diaphragm pump. The vapor flow was monitored and kept at around 5 liters per

minute to ensure the heat exchangers were brought down to around 70K. The liquid in

the separator was drained through another series of heat exchangers before being deposited

into a small bath at the bottom of the fridge called the ‘nose’. Helium vapor produced in

the bath was quickly pulled away by a large, 12,000 m3hr−1 Roots pump set which further
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Figure 5-3: Diagram of the gp2 evaporation refrigerator and its various components.

cooled the heat exchangers [50]. A needle valve on the LHe fill line was connected to a

computer-controlled feedback loop to maintain a constant LHe level in the nose. With this

setup a base temperature of about 0.9K at the nose could be achieved.

At the center of the fridge, traversing its entire length, was a 2 in. stainless steel tube for

easy access to the nose volume. Various temperature and pressure sensors were attached

to the insert tube for monitoring LHe levels and temperatures at the nose. Finally, a small

wire heating element was attached to the bottom of the tube for annealing (Section 5.4.4).
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5.1.3 Target Insert

The next piece of the target system was the removable target stick which contained the

various gp2 target materials. The target stick was a long carbon fiber tube with an aluminum

ladder attached to one end. The ladder had four cups attached to it as seen in Figure 5-4.

Figure 5-4: Side view of the ladder attached to the end of the target stick resting in a liquid
nitrogen bath. From left to right the cups are: Empty cup (contains only LHe), dummy
cup (contains a wire coil and foil endcaps), bottom NH3 target material, a hole (for optics
and alignment), top NH3 target material. The bottom of the microwave horn can be seen
on the far right.

One of the cups contained only foil windows and an NMR coil for background subtraction

studies, the second had a carbon disk in it for optics and dilution studies, while the remaining

two contained NH3 target material. The entire stick was placed vertically in the center of

the fridge volume and could be raised or lowered to place any of the four cups in the beam

line, depending on what the experiment called for. The top of the target stick was attached

to a stepper motor and the physical position of each cup position was calibrated to the

center of the target field, making it trivial to switch between target cups when necessary.

An extended interaction oscillator (EIO) tube at the top of the magnet system generated

70GHz (140GHz) microwaves necessary for the DNP process in a 2.5T (5.0T) magnetic

field. The tube was connected to a waveguide that transmitted the microwaves down the

target stick and into the target material via a microwave horn. The microwave system was

capable of transmitting about 1W of power at 140GHz and more than 2W of power at

70GHz.
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Small CuNi induction pickup coils were embedded in each of the NH3 material cups on the

target stick. The coils were connected to copper wire that travelled up the length of the

target stick and into the NMR system for measuring the NH3 polarization.

5.2 Dynamic Nuclear Polarization

The method used during the gp2 experiment to polarize the proton target material is called

dynamic nuclear polarization (DNP). This process involves exploiting electron-proton (eP)

spin coupling interactions by injecting microwaves into the target material at the correct fre-

quency to drive eP pair spin flips. This, combined with low temperatures and high magnetic

fields, allowed for proton polarizations sufficient enough for gp2 asymmetry measurements.

In this section the details of DNP and why it was necessary will be discussed.

5.2.1 Thermal Equilibrium Polarization

Polarization can be achieved simply by placing a nucleon with an intrinsic spin in a magnetic

field. Due to the nucleon’s nonzero magnetic moment, it will tend to align its spin with the

magnetic field. Zeeman splitting dictates that for a spin 1
2 particle in a magnetic field two

energy sublevels are created whose population ratio is defined by Boltzmann statistics as

N↑
N↓

= e
2µB
kT (5.1)

where ±~µ · ~B is the energy of each state due to Zeeman splitting, k is the Boltzmann

constant, T is the temperature and
N↑
N↓

is the ratio of spin +1
2 to spin −1

2 particles. From

here it is useful to look at the degree of polarization (or vector polarization1), representing

1For a spin 1
2

particle the tensor polarization component is always zero.
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the net polarization of all particles in the target field.

PTE =
e
µB
kT − e−µBkT
e
µB
kT + e

−µB
kT

= tanh

(
µB

kT

)
(5.2)

Assigning some known quantities to Equation 5.2 the problem with this simplistic approach

to polarization becomes apparent. For a 5T magnetic field at 1K the electron polarization

is approximately 92%, but the proton polarization, with a substantially smaller magnetic

moment, is only about 0.3% [51]. This is insufficient for an effective proton asymmetry

measurement so the method of dynamic nuclear polarization has to be used in order to

drive proton polarizations higher.

5.2.2 Zeeman Interactions and the Solid-State Effect

The process of dynamic nuclear polarization (DNP) involves doping a material of polariz-

able nucleons with paramagnetic radicals, or free electrons. As seen in the previous section

the electron polarization is much higher than that of the nucleon. By introducing free

electron radicals into the material the dipole-dipole interaction between the electron and

nucleon can be exploited, effectively having the electron ‘pull’ the nucleon into a polarized

state [52]. This dipole-dipole interaction in a magnetic field leads to four possible energy

levels, as shown in Figure 5-5. The energy difference between levels is well known so, by

introducing microwaves at the correct frequency, a spin flip to the desired state can be in-

duced in the dipole-dipole system. For example, by introducing microwaves at the frequency

νµ = νEPR− νNMR, the spin flip e↓p↓ → e↑p↑ is induced. The electron spin relaxation time

is on the order of milliseconds, while the proton spin relaxation time is tens of minutes.

This difference in relaxation time allows the electron to relax to the lowest energy state

and polarize another proton, continuously driving proton polarization. Positive and neg-

ative proton polarization can both be achieved using this method simply by altering the
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Figure 5-5: Hyperfine splitting due to the dipole-dipole interaction of the electron-proton
pair in a magnetic field.

microwave frequency to match the desired final spin state. Where the transition to the

spin-up state is driven by νµ = νEPR− νNMR, the proton spin-down state can be driven by

νµ = νEPR + νNMR. This conveniently allows for polarization flipping during experimental

running to remove any systematic effects from polarization in a single direction.

The above process is known as the solid-state effect, an idealized method developed in 1958.

Unfortunately this method makes several assumptions that cannot be neglected in practice.

The first is the electron doping concentration. Typically the electron concentration in the

lattice crystal is on the order of 10−4 − 10−3 electrons per nucleus. This means that one

electron is required to polarize several protons an a large area. A ‘leakage’ term has to

be introduced to account for proton relaxation via other means in the imperfect lattice

when free neighboring electrons are not available. This term acts to reduce the maximum

achievable proton polarization.

In present day polarizable target materials, such as the frozen NH3 used in gp2 , the abun-

dance of free radicals introduces another complication to the process of DNP. Spin-spin

interactions between electron pairs in the material can’t be ignored. These interactions are

weak compared to the Zeeman interaction from the electron-proton pairs, so what is effec-
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tively created is a quasi-continuous energy state at each Zeeman level that represents the

various electron energy states from electron spin-spin interactions. Instead of requiring a

single microwave frequency, νµ, to induce an electron-proton spin flip, a range of frequencies

is acceptable, defined by νµ −∆. Here ∆ represents the energy absorbed by the electron-

electron pair. The acceptable range for energy absorption at each Zeeman level is defined

by a Boltzmann distribution with temperature given by the electron spin-spin interaction

reservoir. This is a simplified description of what is called the ‘Equal Spin Temperature

Theory’ [53] which further modifies the solid-state effect.

5.3 Nuclear Magnetic Resonance

A high precision measurement of the polarization provided by the DNP method is essential

to the analysis of a double spin asymmetry experiment. The method for measuring target

polarization during gp2 is known as nuclear magnetic resonance (NMR). This well established

method exploits the same energy level splitting of a dipole in a magnetic field that DNP

uses, but on a much smaller scale. By embedding a small inductance coil in the material and

varying the current a small, time varying, magnetic field is generated which induces spin flips

in the nuclei. The total energy absorbed or emitted by these spin flips is proportional to the

number of polarized particles. This gives a convenient, non-intrusive, way to continuously

measure the material polarization.

5.3.1 NMR Theory

In the gp2 experiment the target material was placed in an induction pickup coil connected

to a series tuned LCR circuit. An RF generator was connected to the circuit and used to

sweep a frequency around the proton Larmour frequency. Similar to using microwaves to

induce electron spin flips in DNP, when the RF generator matches the Larmour frequency
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of the proton it caused a spin flip in the small secondary field generated by the pickup coil.

The act of spin flipping the polarized nucleons alters the inductance of the LCR circuit due

to the magnetic susceptibility of the material [52].

L (ω) = L0 (1 + 4πηχ (ω)) , (5.3)

χ (ω) = χ′ (ω)− iχ′′ (ω) (5.4)

where χ (ω) is the magnetic susceptibility as a function of the frequency, ω, applied by

the RF generator and L0 is the inductance of the coil. The polarization of the nucleons is

related to the magnetic susceptibility by the function

P = K

∫ ∞
0

χ′′ (ω) dω (5.5)

where K is a constant of proportionality to be determined later. For the proton the mag-

netic susceptibility is zero everywhere except for a very small region around the Larmour

frequency, so the integral could be carried out in a small frequency ‘sweep’ range set by the

RF generator.

It is convenient at this point to express the polarization integral in term of the coil impedance,

Z.

Z = r + iωL (ω) (5.6)

where ‘r’ is the resistance of the coil and L (ω) is the coil inductance. Using Equation 5.3

and looking at only the real part of Equation 5.6 it is now possible to write the polarization

in terms of the measurable coil impedance, integrated over RF frequency.

<(Z) = r + 4πηωχ′′(ω) (5.7)
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P =

∫ ∞
0

<(Z)− r
4πηω

dω (5.8)

5.3.2 NMR Setup

The series LCR circuit, called the ‘Q-meter’ [54] was tuned using a variable capacitor so

that the circuit resonated at the proton Larmour frequency of 213MHz (106.5MHz) for 5T

(2.5T). When tuned correctly, and using an RF generator to sweep around the Larmour
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Figure 5-6: Q-curve signal without (left) and with (right) polarizable material in the induc-
tance coil. The LCR circuit resonance is seen as the background curve. After embedding
the pickup coil in the target material the effect on the coil impendence becomes apparent.

frequency, the characteristic resonance curve, called a ‘Q-curve’, of the circuit could be seen

in the output, as shown in Figure 5-6. The Q-curve of the circuit in the absence of any

target material is called the baseline, it represents the background signal of the circuit and is

subtracted from the signal curve to remove any circuit dependent background effects. After

embedding the pickup coil in target material a signal peak forms around the proton Larmour

frequency due to the circuits response to the change in impedance. The material polarization

was obtained by storing this ‘enhanced’ signal, removing the baseline, and integrating the

resulting curve. Unfortunately this integrated value is only proportionally related to the

polarization. One further step was required to find the constant of proportionality and the

real material polarization.
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Figure 5-7: Circuit diagram for the Q-meter and surrounding systems. See text for more
detail.

5.3.3 Calibration Constants

To find the constant of proportionality, or ‘calibration constant’ for the material, the Q-

curve needed to be measured at a known target polarization. Thankfully, this is the case

when the material is at thermal equilibrium with the lattice as described in Section 5.2.1.

At thermal equilibrium the proton polarization is simply a function of temperature and

magnetic field,

PTE = tanh
µB

kT
. (5.9)

The target material will obtain thermal equilibrium with the lattice in a magnetic field

naturally over time if no microwaves are being introduced. Once the material is thermalized

the Q-curve can again be measured and integrated to find the thermal equilibrium area,

ATE. The thermal equilibrium area and polarization can then be related to the ‘enhanced’
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area and polarization linearly.

PE

PTE
=

AE

ATE
(5.10)

where ‘E’ stands for enhanced and ‘TE’ stands for thermal equilibrium polarizations and

integrated areas.

Since the thermal equilibrium measurements required the polarizing microwaves be shut

off this was a very intrusive calibration. Unfortunately it is also a material dependent

calibration so it had to be done several times for each target material used during gp2 . To

accelerate the time it took for the material to thermalize during a TE measurement, the

fridge system was warmed up slightly to ∼1.5K. This allowed the material to thermalize on

the order of a few tens of minutes compared to several hours at 0.9 K. See Section 5.5 for

more information on the gp2 TE measurements and results.

5.4 Target Material

When choosing a target material, the critical quantity to be considered for any nuclear

physics experiment is the optimization of the counting rate for the reaction of interest. For

the case of gp2 this reaction was electron scattering from spin polarized protons. Several

factors must be considered to optimize the counting rate; high luminosity L , defined as

the product of the target density and the electron beam current; large target polarization

P , for the case of a spin polarized scattering experiment; a good ‘dilution factor’ f , defined

as the ratio of polarizable nucleons of interest to the total number of nucleons in the target

material; and running time t, a longer running time for the experiment clearly leads to more

reaction counts.

It is convenient to define a target material ‘figure of merit’, FOMexp [51], to quantize the
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importance of each of the previously discussed quantities to help in choosing a target.

FOMexp = f2P 2L (5.11)

To maximize a materials figure of merit several things must be considered.

• Sufficient free electrons (radicals) present in the material to initiate the DNP process

as described in Section 5.2.

• Maximized dilution factor by using a target material with a large number of polarizable

nucleons compared to unpolarizable background.

• Rapid polarization of the material at temperatures and magnetic fields suitable for

the experiment.

• Resistance to radiation damage in the material while being subjected to the high

luminosity electron beam.

An extensive study of various potential target materials to satisfy these requirements [55]

led to the discovery of doped alcohols as a leading contender in fixed target experiment use.

The most commonly used materials today are NH3, LiH, their deuterated counterparts ND3,

LiD, and butanol. Deuterated material replaces the polarizable protons with deuterons to

allow for neutron measurement experiments.

Ideally for a proton scattering experiment pure H2 would be used to give a dilution factor of

100%. Unfortunately at cryogenic temperatures H2 is in a spin zero state and therefor is not

polarizable. For gp2 , irradiated NH3 was the target material of choice. After irradiation (to

introduce free electron radicals, Section 5.4.2) it polarizes well in experimental conditions

with a maximum theoretical polarization of ∼ 90% at 5T and 1K or ∼ 25% at 2.5T and 1K,

it is highly resistant to beam irradiation and so depolarizes slowly, and provides a decent
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dilution factor (∼ 18%) with three polarizable protons for every nitrogen atom. Ammonia

is not an easy target material to deal with. At room temperature it is an extremely toxic

and unpolarizable gas. Several steps had to be performed before the material was ready to

be polarized at JLab.

5.4.1 Preparing Solid Material

The first step in creating a polarized ammonia target was to create small beads of solid

ammonia. Ideally the finished target material will be a container full of ammonia beads

each about 2mm in diameter. This configuration allows maximum thermal contact and

ensures the material is of a uniform temperature in the target chamber. To first create

solid ammonia, ammonia gas was flowed into an aluminum cylinder submersed in a bath of

liquid nitrogen at 77K. The freezing point of ammonia is 195.5K so this process freezes the

ammonia into a solid sheet which can then be crushed through a series of screens to obtain

beads of approximately the size needed for the experiment. Once the beads are created they

are collected and stored in small ‘pill’ bottles which are kept in a bath of liquid nitrogen

indefinitely.

5.4.2 Irradiation

Solid ammonia beads have no free electron radicals present so will not undergo the DNP

process. The next step in preparation was then material irradiation to produce free radicals.

The material was transported to the Medical Industrial Radiation Facility (MIRF) at the

National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. The

MIRF electron beam is capable of striking a fixed target with a beam energy of about 19

MeV and a current of 10-15 µA. The material was placed in an aluminum mesh target

stick and lowered into a bath of liquid Argon at 87K, then subject to the MIRF electron

beam for approximately one hour, with a 180o rotation halfway through to ensure a uniform
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irradiation.

The process of irradiation knocks a proton out of the NH3 to create N
•
H2 paramagnetic

radicals. This process was continued until the desired dosage of free electron radicals was

roughly 1017e−/cm2. The irradiation process turns the color of the ammonia beads from a

Figure 5-8: Ammonia target material after freezing (left) and after irradiation in the MIRF
electron beam (right). The ammonia changes to a deep purple hue when free electron
radicals are introduced.

pale white to a deep purple, as shown in Figure 5-8. The irradiated material was once again

stored in a liquid nitrogen bath. At liquid nitrogen temperatures the radicals are able to

stay in the material for years. At that point the target material could undergo the DNP

process and was ready to be polarized at JLab.

5.4.3 Material Depolarization

Once the ammonia target material was placed in the refrigerator (Section 5.1.2) it was

cooled to roughly 1K and the magnetic field was ramped up to 5.0T or 2.5T depending on

the experiment configuration. The material was then showered with microwaves to initiate

the DNP process for polarization. When the maximum polarization was achieved it was

hit with a ∼100nA high energy electron beam. As expected with an incident electron

beam introducing heat to the material, the temperature would rise slightly. This initial
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temperature rise causes the polarization to dip according to Curie’s Law (Equation 5.2).

The refridgerator system was very efficient as dissipating deposited heat from the beam

with a cooling power of ∼ 3 W at 1.4 K, so this effect was small.

The electron beam used in experiment E08-027 had a high enough energy to act as an ionizer

for the target material. This meant that over long periods of time the beam broke apart NH3

molecules into excited radicals, identical to the process of irradiation from Section 5.4.2.

Initially this would cause a gradual increase in polarization as more spin-flip channels are

created. An optimal does for the DNP process at 5T is ∼0.9 × 1017 e/cm2. Over time,
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Figure 5-9: Ammonia target polarization during experimental beam running for gp2 . An
exponential decay in polarization is seen over the timescale of a few hours. Spikes in
polarization correspond with a decreased heat load on the target from beam trips.

continual ionization from the experimental beam increases the material dosage past this

optimal level. The result is more channels for proton depolarization, decreasing the efficiency

of the DNP process. This was seen as an exponential decay in the maximum polarization
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of the material over time, as shown in Figure 5-9. While experimental beam ionization

continued to produce N
•
H2 radicals, it was also creating other, more complex, radicals such

as hydrazine, N2

•
H4, at a much lower rate. This is important to note because it was directly

responsible for the materials ‘end of life’, in which it had to be discarded for another sample.

5.4.4 Annealing and End of Life

As shown in Figure 5-9 the maximum target polarization dropped significantly over a few

hours. This was because the ∼50nA experimental beam quickly created an overabundance

of paramagnetic radicals in the material, hindering the DNP process substantially. After

roughly eight hours in beam, the target material polarization dropped to unacceptable lev-

els for data taking. The standard process used in DNP to remedy initial polarization loss is

to install a small heating coil above the target insert on the fridge. When the polarization

drops too low the target stick is raised so the material cups are inside the heating coil.

The heating coil is then turned on and the material is brought up to roughly 90K for 30

minutes, a process called ‘annealing’. This temperature is sufficient enough to recombine

radicals in the material. The temperature was closely monitored during anneals to ensure

the material did not heat up too much (> 100K), causing more radical recombinations than

was desired. After roughly 30 minutes of annealing the target stick was lowered back into

the experimental beam line to continue data taking.

As mentioned in Section 5.4.3, beam ionization acted to create a small amount of more com-

plex radicals, such as hydrazine, over time. These radicals had a much higher recombination

temperature and so were not removed from the material during anneals. The creation of

these radicals was slow but permanent since the temperatures required to remove them

could not be achieved without potentially damaging the material. This factor led to a slow

increase in the number of relaxation channels for polarized protons. This was seen as a
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Figure 5-10: Temperature in the top and bottom target cups during an anneal. Yellow
dashes indicated the amount of current being sent to the heating element. From [6].

shorter and shorter material depolarization half-life over the course of many anneal periods.

After some time (on the order of days) it was no longer efficient to continue annealing and

the material had to be replaced. The predictable nature of the material lifetime while in

beam allowed us to estimate how many samples would be needed for the ∼3 month running

of gp2 . In total, 10 NH3 material cups were pre-irradiated and used during the experiment.

5.5 Polarization Analysis

The target analysis setup consisted of three stations. The Q-meter and microwave generator

were located directly on top of the scattering chamber to minimize signal travel distance.

The Q-meter was placed inside of a metal housing to protect the delicate electronics from

radiation damage. The rest of the electronics were located on the hall floor roughly 10 feet

from the target system behind a large protective concrete wall. This station included the
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electronics for all of the target subsystems including the magnet power supply, target stick

stepper motor controller, RF generator, microwave controller, vacuum meter, and temper-

ature sensors. These systems were networked directly to a computer in the counting house

running the Polarization Display Panel (PDP), written in LabView, with the exception of

the microwave frequency counter, which was controlled separately. PDP was used during

the experiment to run all of the target subsystems by a dedicated target expert. The RF

generator was set to sweep around the Larmour frequency of the proton every 5 seconds

and the resulting Q-meter output impedance was recorded to a text file for each sweep, as

well as the temperature at each location in the fridge and the magnet current.

5.5.1 Thermal Equilibrium Measurements

During the gp2 experiment ten different NH3 target materials were used. For each target

material several TE measurements were performed to calibrate the Q-meter measurement

for accurate polarization readings. During a TE measurement the target expert shut off

the microwave generator and roots pumps, and waited for the polarization to thermalize.

Thermalization times varied depending on the field value but took an average of 1 to 2

hours. Once the target expert determined that the material had thermalized a separate
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Figure 5-11: A typical Thermal Equilibrium measurement. Each NMR area point (top) is
the integrated value of the Q-meter output from an RF sweep. Data taking began after the
temperature and area had sufficiently thermalized.
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Table 5.1: Target Materials and Associated Calibration Constants

Material TE measurement Online CC

7 11 -1.734839
13 -1.753021
19 -1.7417065
21 -1.7435
23 -1.72013

8 12 -1.5207665
14 -1.4936905
16 -1.5108
20 -1.463427
22 -1.400362
24 -1.386324

11 29 -1.7541085
12 34 -1.5466705
13 47 -1.5102705
14 48 -1.8436115
17 51 -1.4249
18 52 -1.7233
19 53 -1.596351
20 54 -1.862160

python script was run to begin collecting Q-curve integration values every 5 seconds for

the duration of the TE. The amount of data taken during the TE varied depending on

available time, but was always more than 10 points. Once enough data had been collected

the TE was stopped and an automated script used the average integrated area, target field

and temperature to calculate an ‘online calibration constant’. Figure 5-11 shows the data

taking period for one such TE measurement. The calibration constant was then inserted

into PDP for use in determining online polarizations. The online calibration constants for

TE measurements done on all materials during gp2 are shown in Table 5.1.

Online TE measurements were done quickly to minimize the amount of time that data was

not being taken and were only used to give a general idea of the polarization. A very precise

measurement of the polarization was required for an accurate asymmetry measurement so

additional polarization analysis was done after the running of the experiment. For this

secondary analysis, the temperature and integrated area were both fit linearly starting
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with the final five data points of the measurement. Points were iteratively added to the

beginning of the fit until the reduced χ2 of the fit rose above one. At that point it could be

said that the fluctuations in the points were no longer statistical and the integrated area

and temperature were beginning to trend out of thermal equilibrium. This method also
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Figure 5-12: Fit to the contributing points for TE 15. The reduced χ2 and fit result (average
integrated area) are shown in the plot. The horizontal axis is arbitrary (point index number,
where each point is roughly 1 minute).

increased the number of points that could be used in each TE measurement, which further

reduced the statistical uncertainty on the result. An example fit to a TE measurement is

shown in Figure 5-12. The thermal equilibrium polarization term was an exact calculation

and did not have to be altered for the secondary analysis. Only a more rigorous uncertainty

analysis needed to be done.
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5.5.2 Calibration Constant Uncertainties

The calibration constant is calculated using the equation

CC =
PTE

ATE
(5.12)

where PTE is the TE polarization and ATE is the TE integrated area from the Q-meter

output. As discussed in Section 5.2.1, the TE polarization is a function of only the target

field and temperature so the uncertainty in the polarization is, although lengthy, a simple

function of the uncertainty in the temperature and magnetic field.

δPTE
=
µB

kT

√√√√[(1− tanh

(
µB

kT

)2
)
δB

B

]2

+

[(
1− tanh

(
µB

kT

)2
)
δT

T

]2

. (5.13)

The uncertainty in the temperature, δT was determined by taking the difference in temper-

ature readings between two sensors (a 3He and 4He manometer) located at the target cup

while the uncertainty in the magnetic field, δB, was dictated by the precision of the magnet

power supply which was quoted at 0.3% [56].

The final contributing factor to the calibration constant uncertainty was the uncertainty

in the Q-curve integration method, δATE
. For the uncertainty in the integration method a

Gaussian of known area was generated and integrated using the same method. The variance

between the integrated area and the known area was then applied to the integration as a

total systematic uncertainty. This uncertainty varied largely based on the quality of the

NMR signal but was never larger than 3%. Each calibration constant uncertainty was then

propagated as

δCC =
PTE

ATE

(
δPTE

PTE
+
δATE

ATE

)
(5.14)
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for each point taken during the TE measurement. The final value of the calibration constant

for a TE measurement was taken as the weighted average of all contributing points. For

materials 7, 8, 19 and 20 multiple TE’s were taken. In these instances the weighted average

of all calibration constants were weighted again to give one resulting value for each material.

The final offline calibration constants with associated uncertainties are shown in Table 5.2.

Table 5.2: Material Calibration Constants

Material Offline CC CC Uncertainty % Uncertainty

7 -1.773 0.017 0.97
8 -1.443 0.014 0.94
11 -1.806 0.060 3.35
12 -1.599 0.048 2.99
13 -1.502 0.067 4.46
14 -1.840 0.068 3.67
17 -1.447 0.030 2.06
18 -1.752 0.025 1.43
19 -1.621 0.015 0.95
20 -1.879 0.048 2.58

5.5.3 Run Polarizations

During production data taking the integrated area from the Q-meter output was recorded

roughly every 5 seconds. The polarization was calculated in real time as

P = A× CC (5.15)

where A was the integrated area and CC was the calibration constant, discussed in Sec-

tion 5.5.1. In this way the target polarization could easily be monitored during the ex-

periment. For the final polarization values the online calculated calibration constants were

replaced by those from Table 5.2 and the final polarization uncertainties were propagated
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through as

δP = AδCC (5.16)

where the uncertainty in the integration method for an enhanced polarization signal was

determined to be negligible due to the size of the enhanced signal. For analysis purposes it

was convenient to express the polarization results in terms of a single, time-averaged, value

for each run. An exponential decay was fit to the polarization for each run and the average

value was taken as the final run averaged polarization, with the spread in polarization

within a run being added to the final systematic. Figure 5-13 shows the final polarization

values for all gp2 production runs at 2.5T and 5T. The experiment averaged polarizations

were approximately 15% for 2.5T and 70% for 5T. The experiment averaged polarizations

are only rudimentary approximations and not meant to be used for anything other than a

gauge of the targets performance as the polarizations varied by upwards of ±5− 10% over

the course of the experiment.
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Figure 5-13: Final 5T polarizations (top) and 2.5T polarizations (bottom) for all runs.
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Chapter 6

Analysis

As discussed in Section 2 the two quantities needed to extract the proton spin structure func-

tion are the physics asymmetry and the unpolarized cross section. Before these quantities

could be calculated the raw data from the experiment had to go through several calibra-

tion, reconstruction and correction stages. In this chapter, the format for data storage and

analysis, along with each stage in data reconstruction, will be discussed.

6.1 Data Acquisition and Storage

The gp2 experiment collected raw data over the course of 2 months. During acquisition, data

was segmented into small tabular files called ‘runs’, as discussed in Section 4.4.6. These runs

were stored locally at the accelerator site on the Hall A data acquisition (ADAQ) machines.

At the end of each day the data files were automatically copied over to tape storage at the

CEBAF computer center for long term storage.

During the 2 months of running, gp2 collected upwards of 25 billion events segmented into

about 5000 runs. Each of the runs contained tabular information such as energy, position

and timing, read out from the various detectors and beamline systems in Hall A for all of

the 25 billion detected events. The storage requirements for this amount of information

equated to several tens of terabytes. Jefferson Lab utilizes an array of magnetic tape drives,

called the ‘mass storage system’ (MSS) to permanently store the data. A suite of user
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programs and server processes called ‘Jasmine’ is used to interface with MSS for writing

and reading purposes, while a toolkit called ‘Analyzer’ is used to deconstruct the data files

into a useable format. Analyzer is a data analysis framework built on top of the (CERN)

ROOT framework typically used in accelerator experiments. Analyzer adds several Hall

A exclusive libraries to ROOT to help with data calibration and deconstruction. The

procedure for bringing the gp2 data to a local machine for analysis went as follows:

• Experimental data from the Hall A detector suite is piped through CODA and stored

locally at the accelerator site on the ADAQ machines in segmented run files.

• High priority scheduled tasks in Jasmine shuttle the experimental data from ADAQ

to MSS at the CEBAF center for long term storage.

• Users request data for analysis by submitting jobs through a software system called

‘Auger’.

• Cached data is fed into the Analyzer toolkit where each stored attribute (energy,

helicity, position, etc...) is populated with the value corresponding to each event in

the data file. The populated attributes are written to ‘tree structured’ data files called

rootfiles.

• Rootfiles are saved locally for calibration and analysis work.

Rootfiles are an extremely efficient way to analyze the large quantities of data received from

the experimental hall. The tree structure of a rootfile allows for the user to call a specific

attribute, or ‘branch’, of interest and plot the corresponding values of all events stored in

that run. Furthermore, the tree structure allows a user to perform logical tasks on one

branch, while observing the change in output of another branch, making data selection very

simple. For example, by implementing the line of code
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T.Draw(“particle energy”,“helicity==1”)

the user can draw the event attribute ‘particle energy’ for all particles in the positive

‘helicity’ state.

More complex commands than the code snippet above were written to extensive scripts

that could be executed directly in Analyzer. These scripts were custom written for any

task that needed to be done on the data files, and typically written in C++ or Python

scripting languages. The output drawn attributes were stored in histogram format for

physics extraction.

6.2 Asymmetry and Cross Section Overview

As discussed in Chapter 2 the spin polarized proton structure function, g2, is calculated

from a combination of the transverse and longitudinal polarized cross section differences(
∆σphys‖,⊥

)
. The cross section differences are calculated as the product of the physics asym-

metry and the unpolarized cross section as

∆σphys‖,⊥ = 2Aphys‖,⊥ σphys0 (6.1)

where Aphys‖,⊥ is the parallel(perpendicular) physics asymmetry and σphys0 is the unpolarized

proton cross section.

The physics asymmetry is the difference over the sum of polarized electron scattering off of

polarized protons in antiparallel polarization states. This quantity can be calculated from

the detected events in each helicity state, with a correction factor to account for scattering

off of unpolarized material.

Aphys‖,⊥ =
1

fPbPt
Araw‖,⊥ (6.2)
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Araw‖,⊥ =

N+

LT+Q+
− N−

LT−Q−
N+

LT+Q+
+ N−

LT−Q−

(6.3)

where Pb,t is the measured beam(target) polarization, f is the calculated ‘dilution factor’

which accounts for scattering off of anything other than polarized protons, LT± and Q± are

the measured live-time and accumulated charge for events in the positive(negative) helicity

state, respectively, and N± are recorded events.

The unpolarized cross section is a scaled quantity related to the total number of detected

events. A well understood region in kinematic space is required to extract the cross section

so, unlike the asymmetry, a defined acceptance and energy region are required.

σphys0 =

(
f

psN

QLTεdet

)(
1

∆Ω∆E′∆Z

)
(6.4)

where the first term defines the ‘proton yield’ with N detected events, and the second term

defines the kinematic region of interest with ∆Ω the solid angle subtended by the detectors,

∆E′ the momentum region seen by the detectors and ∆Z the target length seen in the

acceptance.

The cross section and asymmetry are now defined in terms of measurable quantities obtained

from the detector suite. The first step in extracting these measurable quantities was to

isolate ‘good’ events in the data using the known characteristics of the detectors, as well

as their corresponding efficiencies, this is known as the detector calibration process. The

efficiency of the trigger system, defined as the ratio of triggered events over the total number

of ‘good’ events, also needed to be determined. The following several sections explain the

calibration process, as well as the results of the calibrations and efficiency studies, for each

detector.
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6.3 Detector Calibrations and Efficiencies

The HRS detector stack contained two vertical drift chambers (VDCs), a gas Čerenkov, two

scintillator planes and two lead glass calorimeters. The details of each detector is discussed

in Section 4.4. The scintillators were used in conjunction with the gas Čerenkov for event

triggering and particle identification selections, while the VDCs and calorimeters measured

particle energy and position information.

The calibration stage of each detector had three parts. First the raw output, typically

voltage, needed to be scaled into a meaningful quantity, like energy. Second, the efficiency

was calculated to determine the performance of the detector throughout the run period.

Finally, an event selection was defined in terms of the scaled detector output to remove

unwanted events from data. A more detailed discussion of the gas Čerenkov and lead glass

calorimeter calibration and efficiency studies can be found in Ref. [7].

6.3.1 Gas Čerenkov

The gas Čerenkov consisted of 10 photomultiplier tubes (PMT’s) that detected the conical

wave of Čerenkov radiation due to particles passing through the chamber. Each PMT was

connected to an analog-to-digital converter (ADC) that digitized the signal and stored it

in the run files. Each signal contained a sharp peak, called the ‘single photoelectron’ peak,

and a broad spectrum from multiple photoelectron scattering as seen in Figure 6-1. ‘Good’

electron events will only create multiple photoelectrons so the single photoelectron peak

was considered ‘background’ created by secondary scattering in the Čerenkov. The goal of

the Čerenkov analysis was to remove this peak from data. First the single photoelectron

peak signal from each of the ten ADC’s must be aligned to the same relative channel. This

was done simply by fitting a gaussian-landau convolution to the peak and finding the mean

value for all ten channels. An overall scale factor could be introduced to scale each peak to
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Figure 6-1: The raw ADC signal from one of ten PMTs in the gas Čerenkov. The single
photoelectron peak can be seen to the left.

the same channel. Once all ten channels matched relative to each other, the signals could

be added together to create a total ‘Čerenkov sum’ signal and an event selection region

could be defined.

The event selection was done by choosing an ADC channel that maximized the multiple

photoelectron spectrum while removing the single photoelectron peak. For the gp2 analysis

the ADC channel that defined this cut was run dependent, but typically around channel

200.

6.3.2 Lead Glass Calorimeters

The lead glass calorimeter calibration is significantly more involved than that of the Gas

Čerenkov. Each HRS in Hall A has two calorimeters, but each pair works in different ways.

The right HRS calorimeters are considered ‘total energy absorbers’ because as the particle

passes through the dense detector medium all of its energy is converted into light and picked
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up by the PMTs. The left HRS is not a total energy absorber, so only some fraction of the

particles energy is detected. The calibration of these two detector pairs will be discussed

individually.

To calibrate the total energy absorption calorimeter the raw signal from each ADC had to

be converted into an absolute value of energy deposited by the particle. As the particle

traversed the lead glass detector it continuously deposited energy across all blocks that

it passed through. By choosing a well defined momentum region, the sum of the ADC

signal across all blocks could be subtracted from the particle momentum and a calibration

constant could be found,

χ2 =

n∑
i

∑
j

Cj ·
(
Aij − Pj

)
+
∑
k

Ck ·
(
Aik − Pk

)
− P ikin

2

(6.5)

where Aj,k are the ADC signal from each block, Pj,k are a constant offset present in the

ADC, called the ‘pedestal values’, Cj,k are the calibration constants of interest and Pkin

is the known momentum of the detected particle. By minimizing Equation 6.5 for each

setting, a set of calibration constants could be found to convert the ADC signal into energy.

Since the right HRS calorimeters were total energy absorbers, the calibration of the detector

could be checked by taking the ratio E/p where E is the detected energy of each particle

and p is the HRS momentum. Since it is expected that all energy be deposited into the

calorimeter, this ratio should be unity for all settings.

The left HRS calorimeters were not total energy absorbers so a different method was required

for calibration. The total energy deposited in the two calorimeter planes is defined by a

thickness dependent integral over a gamma distribution

ρE1 + µE2 =

∫ (
E0β (βt)α−1 e

−βt

Γ(α)

)
(6.6)
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α− 1

β
= ln

(
E0

Ec

)
− 1 (6.7)

where E1,2 is the energy deposited in each calorimeter plane, ρ,µ, and β are calibration

parameters, E0 is the particle energy and t is the radiation thickness that the particle sees

in the calorimeter. The calibration of the left HRS could also be checked by taking the ratio

E/p. Unlike the right HRS, the ratio is dependent on the momentum setting, but always

less than one. This is because the energy absorbed by the calorimeter was always less than

the total energy of the particle.

With both the left and the right HRS calorimeters calibrated, a cut region could be defined

for good event selection. Since the calorimeters were designed so that electrons would

deposit all of their energy into them, event selection was chosen so that the E/p ratio was

above a certain value. The exact value of the ratio was defined so that the electron detection

efficiency did not fall below 99%, as defined in the next section. The ratio was momentum

dependent so a separate cut was used for each setting. The location of these cuts for the

right HRS calorimeter is shown in Figure 6-2. Some low energy events would fully absorb

in the first calorimeter plane and so would not create any signal in the second. For this

reason a second cut was created which simply used the E/p ratio from the first plane. If a

sufficient amount of energy was deposited on the first plane it was considered a good event,

regardless of the signal from the second plane.

6.3.3 Detector Efficiencies

With the gas Čerenkov and lead glass calorimeters calibrated, and good event selection cuts

defined, the detector efficiencies could be studied. The detector efficiency is defined as the

ratio of events detected to the total number of good events after the event selection cuts

are made. Some events that should be considered ‘good’ events failed to fire in one of the

detectors so this ratio was less than, but ideally very close to, one.
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Figure 6-2: The E/p ratio selection value for all momentum settings on the right HRS.
Events whose E/p value lie above the cut ratio are considered good events. Reproduced
from [7].

To determine a detectors efficiency a total number of ‘good’ events first had to be calculated.

The total number of events was defined as events that produced a signal in both the gas

Čerenkov and the calorimeter detectors after satisfying the event selection cuts. Then by

taking the ratio of events seen in only the gas Čerenkov or the calorimeter to the total

number of events seen in both detectors, the number of undetected events is formed.

efficiency =
(# of events seen in calorimeter) OR (# of events seen in Čerenkov)

(# of events seen in calorimeter) AND (# of events seen in Čerenkov)
(6.8)

where ‘OR’ and ‘AND’ designate standard logic statements between the Čerenkov and

calorimeter signals seen for a single event. The efficiency of both the Čerenkov and the

calorimeters for all settings is shown in Figure 6-3.
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With the event selection cuts defined it became useful to quantify the background con-

Figure 6-3: Final detector efficiencies for the lead glass calorimater (left) and gas Čerenkov
(right) at all energy settings during gp2 . Reproduced from [7].

tamination in the data. By graphing the E/p distribution in the calorimeter both before

and after the application of event selection cuts, the process of background removal became

apparent. Since the total absorption calorimeter was designed to fully absorb electron ener-

gies, the peak located at unity in E/p is considered the electron signal, while any structure

at a lower fraction is background from other particles, such as pions. The background con-

tamination to the data was then calculated as one minus the ratio of all events after event

selection cuts to all events without any cuts applied. The background contamination was

found to be < 0.5% for all settings.

6.3.4 Vertical Drift Chambers

The purpose of the vertical drift chambers (VDC) was to provide accurate particle position

and tracking information. A more detailed description of the VDC analysis is found in

Ref. [8]. A particle passing through the sensing wire plane of the VDC causes a cascade

of secondary electrons as it ionizes the surrounding gas. The electron avalanche hits the

sensing wire and creates a timing signal in the ‘time to digital converter’ (TDC). Using

the TDC and avalanche drift velocity the distance the avalanche travelled to the sensing
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wire was calculated. Then by fitting a linear function to the drift distance for each wire, a

‘particle cross-over’ point was calculated, giving the exact location in the wire mesh plane

where the detected particle passed through. With two wire mesh planes, two cross-over

points could be calculated, giving a trajectory for each particle. The exact position of each

wire in the mesh plane was known to within 100µm so an absolute calibration of the VDC

was unnecessary.

Although an absolute calibration wasn’t needed, an efficiency study for the VDC was still

Figure 6-4: Final VDC detector efficiencies for all settings after deconstruction of multi-
track events. Reproduced from [8].

done to correct for ‘multi-track’ signal firing. In order to linearly fit the cross-over point

of a particle the sensing wire signal needed to be recorded over a short, fixed time scale

determined by the trigger supervisor. When the first sensing wire fired from an avalanche,

the TDC would begin recording all subsequent sensing wire signals as a single particle

trajectory, and it would stop recording after the trigger supervisor determined the event
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had passed. During high rate settings, multiple events would pass through the mesh at the

same time, causing several sensing wires to fire. Since the trigger supervisor only separated

events on a timing trigger, this caused multiple particles to be recorded as a single event.

This was called the VDC multi-track signal, and these events needed to be examined more

closely to determine if a single track event could be extracted. Unusable multi-track events

contributed to a loss in the efficiency of the VDC.

A simple approach to looking at the VDC efficiency is simply calculating the number of

single track events over the total number of detected events

efficiency =
Nsingle

Ntotal
(6.9)

where Ntotal is the total number of detected events that satisfy the event selection cuts,

and Nsingle are the total number of single track events detected in the VDC. For the high

rate running of gp2 this efficiency can drop as low as 70%. For this reason it became very

important to examine the multi-track events more closely.

Multi-track events could be used in conjunction with energy deposited on the calorimeter

to attempt to distinguish single events. Using a two-track event as an example, there are

3 possible scenarios. First, the energy deposited onto the calorimeter from both tracks is

much less than the momentum. This implies both events are background and both events

should be removed using the event selection cuts defined in previous sections. Second, only

one particle from the two-track event fully deposits its energy onto the total absorption

calorimeter. In this case it was expected that one single track event was present, and could

be counted as such, while the other event was removed due to not satisfying the event

selection cut. The final case is when both tracks deposit all energy into the calorimeter.

In this case the position of the deposited energy on the calorimeter blocks needed to be

considered before it could be determined if a single-track event was salvageable.
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After careful consideration of multi-track events, the VDC efficiency was increased to > 98%

for all settings. The exact efficiency for each setting is shown in Figure 6-4.

6.3.5 Trigger Efficiencies

The final HRS detector to consider for calibrations and efficiencies is the scintillator plane.

A more detailed discussion of the trigger efficiency analysis is found in Ref. [9]. The purpose

of the scintillator, as described in Section 4.4.3, was to act as a trigger system for recording

events where the trigger ‘T1,3’ served as the main trigger for the right(left) HRS, notifying

the trigger supervisor to begin recording the event information. The efficiency trigger,

defined as an event that did not satisfy the main trigger, but was seen in the gas Čerenkov,

was used as a way of determining when the main trigger failed to identify an event. The

trigger efficiency was then defined as the ratio of the total number of events satisfying the

main trigger to the sum of the main trigger events and efficiency trigger events. The final

trigger efficiencies were found to be > 98% at all settings, the exact value for each run is

shown in Figure 6-5. It was important to consider the livetime of the trigger supervisor as

Figure 6-5: Final trigger efficiencies per run for the left arm (left) and right arm (right).
Reproduced from [9].

a correction factor to be applied to the yields later on. The livetime factor was calculated
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as the ratio of the accepted triggers scaled by the run prescale factor over the total triggers

LT =
psTacc

Ttot . (6.10)

The livetime depended largely on the event rate but was typically no less than 70%. The

trigger supervisor livetime results are shown in Figure 6-6.
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Figure 6-6: Trigger supervisor livetime for each left HRS run during the experiment.

6.4 Beamline Calibrations

The Hall A beam line contained several diagnostic tools for determining beam information

before scattering. The two quantities needed for asymmetry and cross section analysis were

the beam position at the target, for use in reconstructing the scattering angle, and the beam

current at the target, for calculating the accumulated charge on the target.

6.4.1 Beam Current Monitor

A more detailed discussion of the beam current monitor analysis is discussed in Ref. [43].

The output of the BCM is a voltage signal which is converted to frequency in the DAQ.
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The signal is then connected to a scaler system which simply increments for each input, this

scaler information is then stored in the data file. The result is a linear ‘counting’ function

that is proportional to the number of charged particles that pass through the BCM. The

first step to converting this to a total accumulated charge is performing a BCM calibration

to determine the voltage response that the beam has on the monitor.

The BCM is calibrated by invasively moving a block of tungsten into the beam line. The

tungsten is heated and the temperature, along with the BCM outputs, are recorded. The

exact process is as follows:

• Beam Charging. The tungsten is in the beam pipe, all incoming electrons hit the

tungsten, causing it to heat.

• Thermal Equilibration. The tungsten block is moved out of the beam pipe and given

time to thermalize. During thermalization, the temperature is recorded.

• Cooling. The tungsten is placed in contact with a cooling plate and cooled down.

The total charge deposited onto the tungsten block could be calculated from the final

temperature of the block.

Qbeam = K · Ttungsten (6.11)

where K is the heat capacity of the block, 85.55 kJ/K and Ttungsten is the recorded tem-

perature of the tungsten after it thermalized. The second piece of information needed for

calibration is the scaler BCM counts recorded by the DAQ during the block heating process.

The BCM data is a linear function so the charge recorded could be calculated as

QBCM = slope× (∆counts − P×∆clock) (6.12)

where slope is obtained from a linear fit to the data, ∆counts is the difference in value between
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the first and last scaler entry during beam heating, P is a pedestal offset value and ∆clock

is also a scaler value which incremented at set intervals based on a clock function. The

output of the BCM charge and the charge calculated by the heating of the tungsten block

could then be related to find a calibration constant. The BCM calibration uncertainty is a

function of the heat capacity of tungsten, the accuracy of the temperature measurement on

the block, the beam energy during beam heating, and heat loss during thermalization. The

uncertainty in the BCM calibration constants was < 1% for the duration of the experiment.

The calculated calibration constants were then used in conjunction with the scaler output

of the BCM monitors to find the beam charge and current in real time during experimental

data taking. The integrated beam charge per run was also stored in a MySQL database

and used during analysis to find the charge normalized yields.

6.4.2 Beam Position Reconstruction

A more detailed discussion of the beam position monitor (BPM) analysis is discussed in Ref.

[10]. The gp2 experiment required low beam current running to prevent rapid depolarization

on the polarized target. The low current proved to be a huge challenge for the beam

position analysis. The usual BPM monitor and acquisition system had to be replaced with

a new system for sensitivity down to the 50nA current used during the experiment. The

beam position monitors were located between the chicane magnet system and the scattering

chamber on the beam line. Two monitors were used to propagate the beam location forward

to the center of the target. The monitors each contained four antenna at 90◦ to each other

around the beam line, as shown in Figure 6-7. The output signal from each antenna was

sent through an ADC in the DAQ system and stored in the data files. By taking the

asymmetry between opposite antennas a relative beam location could be calculated, to

within a proportionality factor.
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Figure 6-7: Diagram of the BPM monitor designed by the JLab engineering team. Left is
a side view showing the antenna structure while right is looking along the beam line at the
location of the four antenna.

To calibrate the BPMs, two sets of harps were used. The harp is a metal fork with three

wires stretched across it. The fork was connected to a high precision stepper motor that

Figure 6-8: Diagram of the harp used to calibrate the BPM (left) and a sample output of
a harp scan (right). Peaks in the output indicate points where the harp wires crossed the
beam line. The horizontal axis of the harp scan is the stepper motor position (arbitrary
units). Reproduced from [10].

moved it across the beam line during calibrations. When a wire crossed the beam path it

produced a signal which was recorded for analysis. The physical position of the stepper

motor could be used in conjunction with the signal peaks from the harp wires to find the
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real beam position and calibrate the BPM’s for non-invasive, real time measurements.

Results from a typical harp scan calibration run are shown in Figure 6-8. Assigning the

labels P1, P2 and P3 to the first, second and third peak in the output scan data, respectively,

the physical beam position can be calculated as

xbeam = x(wire 1) − P1 (6.13)

ybeam =
1

2

[
(x(wire 2) − x(wire 3))− (P2 − P3)

]
(6.14)

where x(wire 1,2,3) is the physical location of the wire on the harp, obtained from the JLab

survey group. The wire positions are supplied with a 0.1mm uncertainty. With the physical

position of the beam and antenna data from the BPM, the BPM can be calibrated to give

the real position non-invasively during the experiment. The real beam position in the BPM

cavity is given by

xbeam =
(A+ −A+,ped + b+)− gx(A− −A−,ped + b−)

(A+ −A+,ped + b+) + gx(A− −A−,ped + b−)
(6.15)

where A± is the ADC signal from the BPM antenna, A±,ped is a pedestal value offset

associated with the antenna output, gx is a signal gain factor between antenna opposite

each other, and b± is a calibration constant offset determined by the harp scan. The same

equation can be applied to both xbeam and ybeam by using the ADC signal from orthogonal

pairs of antenna to determine the x and y positions of the beam in each BPM. To determine

the real beam position in the lab frame, in which the z-direction is along the beam path,

the y-direction is vertically up and the x-direction is orthogonally pointed left when facing

the beam direction, one additional calculation had to be made

xreal = c0 + c1x+ c2y (6.16)
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yreal = c′0 + c′1x+ c′2y (6.17)

where c0, c1, c2 and c′0, c
′
1, c
′
2 are constants.

With the real beam position in the hall coordinate system at the two BPM’s, the next step

was to propagate those positions to the target center. There were two distinct situations to

consider when propagating the beam position to the target: longitudinal, or no target field,

and transverse target field. For a longitudinal target field the beam transport through the

scattering chamber was unbent, or ‘straight-through’. In this case the propagation of the

beam position to the target done using

xtarget = xbpm A +
ytarget − ybpm A

ybpm B − ybpm A
(xbpm B − xbpm A) (6.18)

where xtarget is the x position of the beam at the target, x(y)bpm A,B is the x(y) position

of the beam at the first (A) or second (B) BPM as given in Equation 6.16 and 6.17, and

ytarget is the y position of the beam at the target.

With a transverse target field present the beam propagation to the target became more

complicated. This was because of the presence of the chicane. The transverse target field

acted to bend the beam out of plane as it passed through the scattering chamber. To

compensate for this, two dipole magnets were added to the beam line, upstream of the BPM

and scattering chamber, to first bend the beam out of plane and then back so it entered

the scattering chamber at an angle. The target field would then bend the beam back into

plane so it exited horizontally again. A more detailed description of the chicane system is

discussed in Section 4.2.5. The propagation of the angled beam through a transverse target

field was difficult to calculate, instead a simulation was used to find the exact position.

In total ten thousand events were thrown at a known target field map with varying initial

positions and angles. A polynomial function was fit to each track and the deviation between
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them was found to be < 0.1%. In total, 24 polynomial fits for the six beam energy settings

with a perpendicular target field were done. These ‘transport functions’ were then used to

find the average beam position at the target for each run.

6.4.3 Raster Calibration

The raster calibration study is discussed in more detail in Ref. [10]. Two rasters were

used during the experiment to spread the beam profile out over a 2cm circular area when

hitting the target. This acted to reduce the heat load on the target and create uniform

depolarization. The exact raster size was used in conjunction with the BPM information

to determine an event by event beam position at the target. This was done by adding the

calculated beam position at the target (Section 6.4.2) with the relative position of the beam

within the raster pattern, as a function of time. The beam position within the raster pattern

was given by a sinusoidal function which controlled the dipole raster magnet current

xraster =
√

(t+ φx) sin(ωxt+ φx) (6.19)

yraster =
√

(t+ φy) sin(ωyt+ φy) (6.20)

where φx,y is a phase locked between x and y by a function generator. The exact size of

the raster pattern at the target was calculated using a ‘carbon hole’ target. The carbon

hole was a small hole located on the target ladder with a known size. When the ladder

was moved so that the hole was in the beam line, it would light up the hole in the raster

pattern as more events scatter off of the aluminum ladder and into the detector housing,

as shown in Figure 6-9. By using the known size of the hole and drawing graphical cuts on

the raster shape to outline the carbon hole and the total raster size, a scale factor could be

used to determine the circular raster size. The size of the carbon hole was measured to be
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Figure 6-9: The raster pattern as seen from the detector housing when the carbon hole is
in the beam line. Graphical cuts on the raster pattern were used with the known hole size
to calibrate the total raster size. Units are arbitrary. Reproduced from [10].

10mm with a 0.2mm uncertainty. The total size of the raster was then used in conjunction

with Equations 6.19 and 6.20 to find the relative beam position of the rastered beam at the

target. This was then added to the central beam position from the BPM calculation to find

the event by event position at the target.

6.5 Optics

A more detailed discussion of the optics and central scattering angle analysis can be found in

Ref. [11,57]. When an event is detected in the HRS detector stack, four spatial coordinates

for the event are recorded by the VDC. One VDC plane is capable of measuring the events x

and y position while the events θ and φ coordinates, which define its trajectory, are measured
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using a coincidence gate between two VDC planes. These four coordinates define the events

spatial vector at the VDC plane, called the ‘focal plane’ for the analysis, (xfp, yfp, θfp, φfp).

The purpose of the optics analysis was to reconstruct these coordinates back through the

HRS quadrupole and dipole magnets and find a spatial vector for each event at the target,

(xtg, ytg, θtg, φtg). This vector could then be used in conjunction with the incident event

vector, calculated in the BPM analysis, to find the scattering angle. Along with the four

spatial coordinates, the events relative momentum, δ, was needed to accurately reconstruct

the target plane coordinates. The events relative momentum was defined as

δ =
P − P0

P0
(6.21)

where P was the measured momentum of the particle and P0 was the central momentum

setting of the HRS.

Four different coordinate systems were used to reconstruct the spatial vector from the focal

plane to the target. The first to consider was the detector coordinate system (DCS). The

DCS was the coordinate system in which the focal plane spatial vector was measured in. It

was defined with the z direction perpendicular to the VDC plane pointed up with the x and

y directions parallel to the VDC wire plane. The next two coordinate systems, named the

‘transport coordinate system’ (TRCS) and the ‘focal plane coordinate system’ (FCS) were

defined by rotations of the DCS to make reconstruction to the final coordinate system more

manageable. The final coordinate system was the ‘target coordinate system’ (TCS). The z

axis of the TCS was defined by the central ray connecting the target center to the center of

the HRS. The x direction was then perpendicular to z and pointed vertically down. Details

of the TCS are shown in Figure 6-10.
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Figure 6-10: The target coordinate system (top and side view). Reproduced from [11].

6.5.1 Central Scattering Angle

Of note in Figure 6-10 is the use of θ0, that is, the angle of a central ray passing through

the HRS. The target angles, θtg and φtg are expressed as values relative to this central angle

so its value is needed to find the absolute scattering angle, which can be expressed as

θ = arccos
cos(θ0)− φtg sin(θ0)√

1 + θ2
tg + φ2

tg

(6.22)

A sieve slit placed over the HRS entrance window was used to determine the value of the

central HRS angle. A sieve slit is effectively an aluminum plate with several holes punched

into it in a uniform, grid-like, pattern. In addition to being used for the angle measurement,

the sieve slit was crucial in general optics calibrations, as will be discussed in the following

sections. A survey measurement of the target center and sieve slit by the JLab survey
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group resulted in a survey angle with an uncertainty of 0.7mr. The results of the survey

measurement are shown in Table 6.1.

Arm Survey value (rad) Uncertainty (rad)

LHRS 0.1007 0.0007

RHRS 0.1009 0.0007

Table 6.1: Survey results of the central scattering angle.

6.5.2 Transport Matrix

With a central angle and the coordinate systems defined, the spatial vector at the focal

plane could be translated into the TCS. To do this an ‘optics transport matrix’ was found

to reconstruct the focal plane vector back to the target plane. The optics matrix was used

as a general function to reconstruct any event to the target plane, it could be expressed in

first order approximation as:



δ

θ

y

φ


tg

=



〈δ|x〉 〈δ|θ〉 0 0

〈θ|x〉 〈θ|θ〉 0 0

0 0 〈y|y〉 〈y|φ〉

0 0 〈φ|y〉 〈φ|φ〉





x

θ

y

φ


fp

(6.23)

For the real analysis the optics matrix was calculated out to third order. The goal of the

optics analysis was to optimize the above matrix for two distinct settings, with and without

a target field.

The first case, no target field, is the simplest case to consider because there will be no out of

plane bending due to a transverse magnetic field. To find the optics matrix a calibration run

was done in which a sieve slit was placed over the acceptance window of the HRS. A diagram
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of the sieve slit is shown in Figure 6-11. During optics calibration runs an unrastered beam

Figure 6-11: Diagram of the sieve slit used during gp2 . Two larger holes were used to
determine the orientation of the plate. Reproduced from [11].

was incident on a carbon foil target. By using the sieve pattern, as seen in the HRS, the

target coordinates of each event could be calculated as

θtg =
xsieve +Dx + ybeam

L− zreact cos(θ0)− xbeam sin(θ0)
(6.24)

φtg =
ysieve +Dy + xbeam cos(θ0) + zreact sin(θ0)

L− zreact cos(θ0)− xbeam sin(θ0)
(6.25)

xtg = xsieve − Lθtg (6.26)

ytg = ysieve − Lφtg (6.27)
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where x(y)sieve was the measured x(y) position of each hole in the sieve pattern, as seen

from the HRS, x(y)beam was the incident beam position, calculated from the BPM analysis,

L was the distance from the sieve slit to the center of the target and Dx,y were horizontal

and vertical offsets of the central ray, provided by survey. Finally, the relative momentum,

δ, was calculated using the well known elastic scattering equation

P =
E

1 + E
M cos(θ)

(6.28)

where E is the beam energy, M is the target mass and θ is the scattering angle, calculated

from Equation 6.22. The relative momentum could then be calculated using Equation 6.21.

With the relative particle momentum and the values of (xtg, ytg, θtg, φtg) the optics transport

matrix with no target field could be calculated and used to reconstruct particle positions

at the target during production.

When a transverse target field was present Equations 6.24-6.27 were no longer viable for

calculating event positions at the target due to the fact that a linear propagation of posi-

tions was no longer valid. The scattered events at the target continued to follow a curved

trajectory as they exited the scattering chamber, so more care was required when propagat-

ing back to the target center. The process involved breaking the reconstruction down into

two parts. The first part was a propagation of the event coordinates from the focal plane

to the sieve slit. Since the sieve slit was located outside of the target field, this propagation

was identical to the case of no target field. To propagate back from the sieve slit to the

target center, a simulation was used. The simulation package utilized the electron equations

of motion in a magnetic field, along with a magnetic field map that was measured prior to

data taking with a precision of < 1.2%. With target coordinates provided by simulation,

the optics transport matrix for a transverse target field could be calculated.

102



6.6 Asymmetry Corrections

Circumstances could arise during data taking in which the asymmetry of the livetime and

charge accumulated during runs was non-zero, that is, more events were recorded in one

helicity ‘spin-state’ than the other. Since the physics asymmetry is normalized by these

quantities, if the normalization factors are helicity dependent it will bias the result. This

required an additional correction so that the asymmetry was calculated according to Equa-

tion 6.3.

6.6.1 Charge Asymmetry

The charge asymmetry was controlled by the accelerator. Any imperfections in the beam

helicity production could produce more electron events in one helicity state, creating an

accumulated asymmetry. An accelerator controlled correction method was to insert a half-

wave plate into the beam line. The half-wave plate flipped the helicity state of the beam

so each (−) state became (+) and vice versa, removing systematic ‘artificial’ polarization

effects. It was still beneficial to look at, and correct for, any possible charge asymmetry

defined as

AQ =
Q+ −Q−
Q+ +Q−

(6.29)

where Q± was the accumulated charge on the target in each ± helicity state. The BCM

measured and recorded charges in each helicity state by matching the BCM signal to the

output of the helicity decoder. This ‘helicity gated’ charge quantity was stored in a MySQL

database to be used as a correction to the asymmetry for each run. The total charge

asymmetry for all runs is shown in Figure 6-12.
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Figure 6-12: The total charge asymmetry per run for all left HRS production runs during gp2 .
The measured asymmetry was typically small (< 500ppm) but still applied to the physics
asymmetry to remove the systematic entirely.

6.6.2 Livetime Asymmetry

The second asymmetry correction was due to the livetime measurement. It would be ex-

pected that the livetime asymmetry is zero because the trigger supervisor ‘hang time’ is

independent of electron helicity state. In fact, the trigger is completely blind to the spin

state of the detected electron. Situations could arise, though, in which the helicity asymme-

try of incoming electrons is non-zero, and the livetime is fluctuating for unrelated reasons,

such as a high event rate or an incorrect prescale factor. This coincident circumstance

would lead to a non-zero livetime asymmetry, and needed to be corrected for. Similar to

the charge asymmetry, the livetime asymmetry was calculated as

ALT =
LT+ − LT−
LT+ + LT−

(6.30)

where LT± is the measured livetime in the ± helicity state. The measured livetime asym-

metry is shown in Figure 6-13. The helicity gated livetime was inserted into a MySQL
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database and applied to the final raw asymmetry as a systematic correction.
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Figure 6-13: The total livetime asymmetry per run for all left HRS production runs during
gp2 . A typical asymmetry of (< 500ppm) was recorded.

6.7 Data Quality Checks

The unpolarized scattering cross section for a material is a function of kinematics, beam

luminosity, detector acceptance and a number of normalization parameters as discussed in

the previous sections. For the gp2 experiment, it was very important to reduce the statistical

uncertainty on the cross section to generate accurate asymmetries. To accomplish this, it

was common to sit at a single kinematic setting and take a large number of runs to collect

enough data for the statistical requirements. In the data analysis stage of the experiment,

these runs would be normalized by their individual detector livetimes, accumulated beam

charges and detector efficiencies. The resulting distribution is called the ‘charge normalized

yield distribution’. This normalized yield was convenient to look at because it is proportional

to the cross section by a fixed scale factor (which is a function of the detector acceptance),

so the asymmetry could be calculated simply by taking the asymmetry of the normalized

yield, since the scale factors cancel. It is not only expected, but required that the integration
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of the charge normalized yield distributions for several runs at one kinematic setting result

in the same value to within statistical errors.

For the gp2 experiment, it was found that some runs at the same kinematic settings did not

have matching normalized yields. An extensive effort was given to attempt to resolve these

yield discrepancies. It is important to discuss what was attempted and the current status

of the data quality before continuing with analysis and physics results.

A typical yield discrepancy is shown in Figure 6-14. When attempting to resolve this
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Figure 6-14: Charge normalized elastic yields for the 2.254GeV setting with a 5T transverse
target field. It is expected that the yields should agree to within statistical uncertainties. A
large normalization discrepancy between runs can be seen at both the nitrogen and helium
elastic peaks (first peak and second peak in Nu, respectively).

issue several things were considered. The beam raster pattern was looked at in detail

to determine if there was any ‘beam scraping’ in which the beam hit the pipeline before

entering the scattering chamber. Several cuts were placed on the raster pattern and the

resulting yields were plotted in an attempt to create a correctly normalized distribution.

A more strict beam current cut was also used to remove low current runs. This was done

because if the current dropped too low the BCM and BPM were no longer reliable so it was
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possible the normalizations being applied to those runs were not correct. These corrections

resolved issues for several settings but the majority of yield discrepancies remain. At the

time of this writing the main concern is in the beam position at the target. Since gp2

ran at very small forward angles a small shift in beam position could drastically change

the resulting scattering angle seen in the detectors. A different scattering angle results

in different kinematics being looked at, which would give different yields. A more detailed

BPM analysis is being done in an attempt to correct runs at different target beam positions.

The total number of ‘usable’ runs without any beam positions corrections applied is shown in

Table 6.2. A run was considered usable if it fit to a continuous yield spectrum when plotted

against all runs in adjacent momentum settings. The 3.350GeV setting is not included

Setting Total Runs Usable Runs % Usable Statistics

1.154GeV 2.5T 340 306 90%

1.710GeV 2.5T 213 193 91%

2.254GeV 2.5T 264 232 88%

2.254GeV 5T Longitudinal 179 169 94%

2.254GeV 5T Transverse 90 86 96%

Table 6.2: Number of currently usable statistics at each energy setting for gp2 . A run was
considered usable if it fit a continuous spectrum with adjacent momentum settings.

in this study because it was found that a continuous yield drift was present in several

momentum settings. Since the method for determining usable runs wasn’t applicable for

continuous drifts, all runs were used in the analysis and a larger systematic uncertainty was

placed on the affected momentum settings. For the remaining energy settings, only runs

that form a continuous yield distribution were considered while a method for correcting the

remaining runs is still underway.
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6.8 Packing Fraction

With a well defined set of normalized yields and cuts, physical information about the NH3

target sample could be extracted. The first required piece of information was the ‘packing

fraction’. The NH3 target material consisted of irradiated ammonia beads, roughly 2mm in

diameter, packed into a cylindrical target cell volume and submersed in liquid helium. The

packing fraction is the ratio of target material to that of the liquid helium it is submersed

in and is required for ammonia target length calculations later on. The packing fraction is

a physical characteristic that depends on the ammonia bead shape and load size. For this

reason, every time the material was switched out, a new packing fraction had to be found.

During the gp2 experiment, 10 different target materials were used, resulting in a different

packing fraction value for each.

Two different methods were used to find the packing fraction for this analysis. The first

to be discussed is called the ‘elastic fit’ method, which involves isolating the elastic peak

for several different target types by fitting several predefined functions to data. The second

method, which is named the ‘ratio’ method, involved taking yield ratios at certain kinematic

ranges. The process and results of each method will be discussed in the following sections.

The ratio method is the method of choice for this analysis for two reasons, the nature of

fitting a functional form with a large number of parameters to the data resulted in large

systematics in the resulting packing fractions, and the fit method also required elastic data

for integration which was not available for the 3.350GeV setting.

6.8.1 Elastic Fit Method

The elastic fit method required elastic data on two different targets, the ‘production’ run

and the ‘dummy’ run, where the production run contains the standard ammonia sample

being measured, while the dummy run is a cell containing only liquid helium and foil end
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caps. The charge normalized counts for each material is given in terms of the material cross

section by

N =

(
AN0

e

)(
ρL

M

)
σ (6.31)

where A,N0 and e are constants, ρ is the material density, L is the length of material in the

target, M is the material molar mass and σ is the material cross section. Equation 6.31 can

be used to express the production and dummy runs in terms of individual material cross

sections

Ndummy =

(
AN0

e

)[
ρHeLtotal
MHe

σHe +
ρAlLAl
MAl

σAl

]
(6.32)

Nproduction =

(
AN0

e

)[
ρNH3Ltg(pf)

MNH3

(σN + 3σH) +
ρHe(Ltg(1− pf) + Lout)

MHe
σHe +

ρAlLAl
MAl

σAl

]
(6.33)

where Ltg is the length of the gp2 target cell, Lout is the length of helium in the nose outside

of the target cell, LAl is the thickness of the aluminum windows and pf is the packing

fraction. By combining Equations 6.32 and 6.33 and isolating pf the packing fraction can

be expressed in terms of measurable yields and simulated elastic ratios as

pf =

(
Ltotal
Ltg

)(
Nproduction

Ndummy
− 1

)[(
ρNMHe

ρHeMN

)
σN
σHe

+

(
ρHMHe

ρHeMH

)
σH
σHe

− 1

]−1

(6.34)

In the above equation everything is known or measurable except the cross section ratios

σN/σHe and σH/σHe. By using an elastic simulation code developed for g2p, these in-

tegrated cross section ratios were determined for each setting. The final step was then

to isolate the elastic peaks for the production and dummy runs and integrate to obtain

Nproduction/Ndummy at each setting.

To isolate the elastic peaks in data an involved hand written fitting routine was used. The

steps of the routine went as follows:
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• Fit a Gaussian to the approximate location of the Nitrogen elastic and Helium elastic

peaks and store the Gaussian mean values, strengths and standard deviations.

• Fit a Gaussian-Landau convolution fit to the Helium elastic peak using the stored

Gaussian fit parameters as starting parameters.

• Fit a Gaussian to the approximate location of the quasi-elastic distribution and store

the relative strength.

• Fit a convolution of three Gaussian peaks to the quasi-elastic using scaled values of

the Gaussian strength parameter as starting parameters for each fit. It is important

to note that only the rising edge of the quasi-elastic region was fit so no radiative

effects needed to be considered.

• Using parameters from all of the previous individual fits as starting parameters, fit a

final custom function (Gaussian plus Gaussian-Landau convolution plus 3-Gaussians)

fit to the entire spectrum.

The resulting fit has the ability to be separated into individual channels (elastic and quasi-

elastic) as shown in Figure 6-15. The elastic fit could then be integrated to find Nproduction.

A similar fit procedure was done to the dummy run to find Ndummy. The final fit function

was large, consisting of 16 free parameters for the production run and 7 free parameters

for the dummy run. This, combined with the fact that the fit ranges were small due to the

resolution of the HRS, meant that the final integrated values were extremely sensitive to

initial parameters and chosen fit ranges at each step. As an attempt to reduce this sensi-

tivity, all production runs at each setting were weighted together to reduce the statistical

uncertainty of the normalized yields. This forced the fitting routine, which used a basic χ2

reduction method, to trend with the data more closely at each channel.
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Figure 6-15: Result of complex fitting routine to elastic production data. The integration
is done on data so only the falling edge of the elastic channel is fit.

6.8.2 Fit Method Uncertainties

The statistical uncertainty in the fit method came from the yield ratio, Nproduction/Ndummy,

as shown in Equation 6.34. Each yield was assigned a statistical uncertainty of
√
N and

propagated through in the standard way. The final statistical uncertainties were dominated

by dummy run events but ended up being negligible compared to the systematics of this

method. Final statistical uncertainties are shown in Table 6.3.

Looking back at Equation 6.34, several sources of systematic uncertainty must be considered

for this method. The uncertainty in the target length, Ltg, was provided by survey to be

0.3%. While a detailed study of the unpolarized cross sections [12] found the uncertainty

in the ratios, σN/σHe and σH/σHe, to be ∼ 10%. The systematic uncertainty in the fitting

routine used to isolate the measured elastic yields was calculated by varying the fit ranges

and starting parameters based on the spread of the individual yields going in to the weighted

average. At lower Q2 settings the various fit channels became less resolvable so the ability

to fit each channel became more and more difficult, increasing the systematic uncertainty
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in the total fit. An example of the sensitivity of the fit method to these fit ranges is shown

in Figure 6-16. The final packing fraction values for each material, as well as the statistical

Figure 6-16: Fitting result for a quasi-elastic fit range of 25-50 MeV (left) and 30-50 MeV
(right). The effect of altering the fit range by 5 MeV can be seen where the quasi-elastic
fit is extrapolated to low ν. The final packing fraction in these two test instances varied by
∼ 20%.

and systematic uncertainties, are quoted in Table 6.3.

This method could not be used for the 1.154GeV setting or the 3.350GeV setting. At

Material # Setting Packing Fraction PF Uncertainty (%)

7 1.7GeV 2.5T 0.564 ± 0.007stat ± 0.085sys 16.25%

8 1.7GeV 2.5T 0.524 ± 0.007stat ± 0.072sys 15.15%

7 2.2GeV 2.5T 0.719 ± 0.011stat ± 0.049sys 8.35%

8 2.2GeV 2.5T 0.377 ± 0.004stat ± 0.041sys
1 11.95%

17 2.2GeV 5T Longitudinal 0.713 ± 0.009stat ± 0.056sys 9.05%

18 2.2GeV 5T Longitudinal 0.625 ± 0.009stat ± 0.046sys 8.75%

19 2.2GeV 5T Transverse 0.623 ± 0.008stat ± 0.040sys 7.65%

20 2.2GeV 5T Transverse 0.630 ± 0.007stat ± 0.041sys 7.55%

Table 6.3: Packing fraction results per material for the fit method. It is important to
note that these values were not used in the analysis going forward and are only shown for
posterity. The ratio method (Section 6.8.3) was used in the final analysis.

1.154GeV the elastic and quasi-elastic peaks were not resolvable so no estimate could be

made for the amount of quasi-elastic contamination in the integral. For the 3.350GeV

1The elastic N and He peaks are unresolvable at this setting, resulting in a poor fitting routine and final
packing fraction estimate. The uncertainty reflects the problem at this setting.
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setting, as mentioned earlier, no elastic data was taken. Due to the lack of a resolvable

elastic peak, and the sensitivity of the final packing fraction to the chosen fit ranges, it

was found that this method was unreliable and a different method needed to be used. The

packing fraction values in Table 6.3 were not used in the analysis of this work and are only

shown as the result of an exersice in different attempts to extract the packing fraction for

gp2 .

6.8.3 Ratio Method

The second method for determining the packing fraction involved taking the ratio between

several different run types at large ν. Two additional runs can be defined in the same way

that the dummy and production runs are defined in Equations 6.32 and 6.33. They are the

‘empty’ run and the ‘carbon’ run

Nempty =

(
AN0

e

)[
ρHeLtotal
MHe

σHe

]
(6.35)

Ncarbon =

(
AN0

e

)[
ρCLC
MC

σC +
ρHe(Ltotal − LC)

MHe
σHe

]
(6.36)

where LC is the length of the carbon disk used during the carbon run. The packing fraction

in the production ran can be isolated and written in terms of the three parameterized

dilution runs (empy, dummy and carbon runs) as

pf =
Nproduction − (α′ − 1)Nempty −Ndummy(

MCρNH3
Ltg

MNH3
ρCLC

)(
Ncarbon − Ltotal−LC

Ltotal
Nempty

)(
α′′ + 3σHσC

)
− α′ LtgLtotal

Nempty

(6.37)

where α′ is defined as the radiative scaling factor for helium, which accounts for the different

radiative lengths of helium between the empty and production run, while α′′ is a similar

scaling factor for carbon but also includes a nucleon scaling factor to scale C12 to N14. The

uncertainty in radiative scaling is small so the uncertainty in this method is dominated by
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α′′.

To estimate the C12 to N14 scaling factor, an unradiated cross section model was generated

HRS Momentum (GeV)
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 (
d
e
g
)

0
θ
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13

 / ndf 2χ  0.7305 / 10
p0         10.8±  19.2 
p1         22.6±8.926 − 
p2        15.29± 1.073 
p3        3.353± 0.2643 

 / ndf 2χ  0.7305 / 10
p0         10.8±  19.2 
p1         22.6±8.926 − 
p2        15.29± 1.073 
p3        3.353± 0.2643 

Figure 6-17: Exponential fit to the central angle at each momentum setting for the 2.2GeV
5T Transverse energy setting. Fit results are shown in the legend.

for both materials. Since a fit to the packing fraction over a wide kinematic range was used,

the cross section model had to match the scattering angle of the data. To accomplish this,

the scattering angle at each momentum setting was fit with a Gaussian function. The

mean angle was plotted against momentum and fit with an exponential to find a functional

form for the angle, as shown in Figure 6-17. Using the parameters of the fit, the model

is calculated using the scattering angle at each bin. A ratio between the two resulting

models could then be used at all momentum settings. With all parameters in Equation 6.37

known, the packing fraction was generated across the entire momentum range for each

energy setting and material. A 50MeV bin size was chosen so that the structure of the ratio

could still be seen while reducing the statistical uncertainty of the result. A region past the

delta for each target material was fit linearly and the weighted average was taken as the

packing fraction. Final packing fraction values and their associated uncertainties for this
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Figure 6-18: Unradiated cross section model for C12 and N14 using P.Bosted simulation
script. The ratio between these models gave α′′.

method are shown in Table 6.4.

6.8.4 Ratio Method Uncertainties

Each yield of Equation 6.37 carried with it an associated statistical uncertainty of
√
N which

was propagated through to the packing fraction in the standard way. Due to the necessity

to take the difference between yields the statistical uncertainty tended to be larger than

what was seen in the fit method, but was still negligible compared to the systematics.

The systematic uncertainty was dominated by the model ratio, σC/σN . The model depen-

dence of the ratio method becomes immediately apparent in both the absolute value and

systematic uncertainty of the packing fraction results. As Q2 decreases our confidence in the

model ratio also decreases due to the required extrapolation in the Bosted model. This ex-

trapolation inherently increased our resulting uncertainty, and potentially manifested itself

as a systematic shift to larger packing fraction values than are historically seen (upwards

of a 10% shift from global packing fraction averages for this type of experiment). The final
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packing fraction values and associated uncertainties are shown in Table 6.4. The fits used

to find the final packing fraction values are shown in Appendix B.

Material # Setting Packing Fraction PF Uncertainty (%)

11 1.1GeV 2.5T 0.611 ± 0.006stat ± 0.054sys 9.8%

12 1.1GeV 2.5T 0.608 ± 0.012stat ± 0.054sys 10.9%

7 1.7GeV 2.5T 0.821 ± 0.013stat ± 0.058sys 8.6%

8 1.7GeV 2.5T 0.838 ± 0.015stat ± 0.058sys 8.7%

7 2.2GeV 2.5T 0.786 ± 0.012stat ± 0.057sys 8.8%

8 2.2GeV 2.5T 0.812 ± 0.017stat ± 0.057sys 9.1%

17 2.2GeV 5T Longitudinal 0.597 ± 0.008stat ± 0.055sys 10.6%

18 2.2GeV 5T Longitudinal 0.632 ± 0.007stat ± 0.055sys 9.8%

19 2.2GeV 5T Transverse 0.663 ± 0.012stat ± 0.057sys 10.4%

20 2.2GeV 5T Transverse 0.680 ± 0.012stat ± 0.058sys 10.1%

19 3.3GeV 5T Transverse 0.722 ± 0.022stat ± 0.059sys 11.2%

20 3.3GeV 5T Transverse 0.609 ± 0.020stat ± 0.056sys 9.5%

Table 6.4: Packing fraction results per material for the ratio method. These are the final
packing fraction values used in the remaining analysis work.

6.8.5 Packing Fraction Final Notes

Although in some instances the total uncertainty from the ratio method is comparable,

or even larger than, that of the fit method, the removal of a 17 parameter fit instilled

much more confidence in these results. It is very likely that the systematic uncertainty is

underestimated in the fit method result as I was unable to accurately gauge the sensitivity

of the final packing fraction to a chosen fit range. In the end the fit range is somewhat

arbitrarily chosen ‘by eye’.

The take away from this study is that the values in Table 6.3 are shown as a document

of my efforts to attempt various methods for packing fraction extraction. Moving forward

in the analysis the results from the ratio method, Table 6.4, are used. The dominating

uncertainty in this method is the σC/σN ratio. Lack of data to constrain the Bosted model

at lower Q2 points caused the uncertainty in this ratio to become quite large. Further work

in constraining the Bosted model to existing data would greatly help in reducing the final

116



systematic uncertainty of this result.

6.9 Dilution Analysis

Experimentally, it is impossible to scatter off of a pure polarized proton target, instead a

solid 14NH3 target submersed in a bath of liquid helium was used. The electron scattering

off of the unpolarized 14N, LHe and foil end caps of the target acted to dilute the measured

e-p scattering asymmetry. This required an additional correction called the ‘dilution factor’

to determine the real physics asymmetry.

6.9.1 Dilution Formalization

A well measured target asymmetry is needed to calculate electron scattering cross section

differences. The asymmetry is expressed as the difference over the sum of the number of

electrons in the positive (+) and negative (−) helicity states,

Aphys =
N+ −N−
N+ +N−

(6.38)

where N± is the number of detected electrons in the positive/negative helicity states, re-

spectively. Only detected electrons that have scattered off of polarized protons in the target

material are of interest. In reality, some amount of the detected electrons in each helicity

state will have scattered off of unpolarized ‘background’ material. The measured asymmetry

is then diluted as

Ameas =
(N+ + 1

2Nbg)− (N− + 1
2Nbg)

(N+ + 1
2Nbg) + (N− + 1

2Nbg)
=

N+ −N−
N+ +N− +Nbg

(6.39)

where Nbg are detected electrons that have scattered off of unpolarized target material.

Any scattering off of unpolarized background material only appears in the denominator of
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Equation 6.39, acting to dilute the final asymmetry. By introducing a correction factor of

the form

f ≡ N+ +N−
N+ +N− +Nbg

(6.40)

the background contribution is removed, allowing for the calculation of the undiluted physics

asymmetry,

1

f
Ameas =

(
N+ +N− +Nbg

N+ +N−

)(
N+ −N−

N+ +N− +Nbg

)
= Aphys (6.41)

which requires the calculation of the dilution factor as defined in Equation 6.40. This is

done using two separate methods. The first method uses dilution run data taken throughout

the experiment, while the second method uses radiated cross section models. While tuning

the radiated model to match the low Q2 data was not ideal, complete dilution run coverage

for the gp2 kinematics was not always available. The final dilution factor results are a

convolution of both methods.

6.9.2 Material Parameterization

To find the dilution factor an expression for Nbg in terms of experimental conditions is

needed. For the gp2 experiment a solid 14NH3 target material submersed in a liquid helium

bath between two Aluminum foil windows was used. The background charge normalized

counts were then defined by Nbg = NN +NHe +NAl since only electrons scattered from the

spin polarized proton part of 14NH3 contributed to the asymmetry.

As discussed in Section 6.8, charge normalized counts, Nx, can be written in detail as Nx =

AN0ρxLxσx/eMx [58], where N0 is Avagadro’s numbers, A is the experimental acceptance,

ρx is the density of material x, Mx is the atomic weight, Lx is the thickness of the material

and σx is the fully radiated cross section for material x. The charge normalized background
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counts can then be expressed as

Nbg =
AN0

e

(
ρALtg(pf)

MA
σN +

ρHeLtg(1− pf)

MHe
σHe +

ρAlLAl
MAl

σAl

)
(6.42)

where pf is the length fraction of the target cell that is filled with ammonia.

Along with the 14NH3 target, data was taken on various other targets to simulate back-

ground conditions. Ideally a pure nitrogen target would have been used to account for the

14N background but such a target was not readily available. Instead a solid carbon target

was used, and a nitrogen simulation was used to scale the resulting yield. In total three

dilution run targets were used; a pure liquid helium target, referred to as the ‘empty run’,

a liquid helium target with foil windows, referred to as the ‘dummy run’, and the carbon

disk target, referred to as the ‘carbon run’. Similar to the production background each of

these can be parameterized in terms of the contributing materials as follows

Nempty =
AN0

e

ρHeLtg
MHe

σHe (6.43)

Ndummy =
AN0

e

(
ρHeLtg
MHe

σHe +
ρfLf
Mf

σf

)
(6.44)

Ncarbon =
AN0

e

(
ρCLC
MC

σC +
ρHe(Ltg − LC)

MHe
σHe

)
(6.45)

As previously discussed in determining the packing fraction using the ratio method (Sec-

tion 6.8.3). σC can be solved for in Equation 6.45 and all three parameterized dilution yields

can be substituded into Equation 6.42 to find the charge normalized background counts in

terms of measured dilution runs.

Nbg = a
MCρALtgpf

MAρCLC

(
Ncarbon −

(
Ltg − LC
Ltg

)
Nempty

)
+Ndummy − pfNempty (6.46)

119



where a is a scaling factor used to scale σC to σN . All of the quantities in Equation 6.46

are universally or experimentally measured and can be found in Table 6.5 except for the

scaling factor a and the packing fraction, discussed in Section 6.8.

Parameter Value

MC 12.011 u

MA 17.031 u

ρC 2.267 g/cm3

ρA 0.817 g/cm3

Ltg 2.8307 cm

LC 0.1016(0.3175) cm

Table 6.5: Known background parameters, terms in parenthesis were used after run 5103.

6.9.3 Scaling 12C to 14N
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Figure 6-19: C12 to N14 scaling ratio using P.Bosted radiated cross section model.

Before the charge normalized counts can be substituted into Equation 6.42 a relation

between σC and σN must be found. A very crude approximation is to consider each cross

section as if it was made up solely of its constituent nucleons. In this scenario the carbon
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and nitrogen cross sections can be written as

σC = 6σH (6.47)

σN = 7σH (6.48)

σN =
7

6
σC (6.49)

This is a good approximation in the deep inelastic region but breaks down in the resonances.

To find the scaling factor everywhere the constant scaling factor is simply replaced with a

fitting parameter

σN = aσC (6.50)

and a radiated cross section ratio between carbon and nitrogen is generated to find a, which

can then be applied to the carbon yield bin by bin. Such a ratio for one Q2 setting can be

seen in Figure 6-19. The models are tuned to data at larger Q2 settings and any variance

in the accuracy is included in the final systematic uncertainty. The model uncertainty

was found to be roughly 5% at all Q2 settings [12]. It is important to note that, while

theoretically the C12 to N14 ratio should approach 1.167 in the DIS region, the model ratio

actually diverges quite significantly due to the differing radiation lengths and scattering

angles of each material.

6.9.4 Radiation Length and Scattering Angle Corrections

An important correction factor that has been overlooked to this point is the radiative length

and scattering angle dependence of each dilution run. Equation 6.46 is found by substi-

tuting the dilution run cross-sections into the parameterized definition for the production

background. Each of the dilution runs uses different target materials, which results in dif-
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ferent average scattering angles and radiative lengths. Because of this, each type of dilution

run is not directly comparable. Instead a scaling factor to match the radiation length and

scattering angle of each dilution cross section to their corresponding production run condi-

tions must be introduced.

The ratio was found by generating two different cross sections for each background material.

One cross section used the conditions of the dilution run material, while the second cross

section used the conditions of the same material in the production run. Then, by taking

the ratio of the two cross sections, a scaling factor that could be applied to the dilution

yields was found.

The first and simplest condition to consider was the radiative length change. During

Run Material Density( g
cm3 ) Thickness(cm) Rad. Length Rad. Thickness

Empty He4 0.145 3.7045 94.3224 0.00569

Carbon C12 2.267 0.1016 42.6969 0.00539

Carbon He4 0.145 3.6029 94.3224 0.00554

Production N14 0.817 1.5549 40.8721 0.03108

Production He4 0.145 2.146 94.3224 0.0033

Production Al27 2.7 0.0036 24.0112 0.0004

Table 6.6: Material Thicknesses

the carbon dilution run 0.1016cm of carbon was used which has a radiation thickness of

ρL
χ0

= 0.00539 where the density of carbon is 2.267 g
cm3 and χ0 is the material dependent

radiation length. The nitrogen target had a thickness of pf × Ltg ≈1.55cm which gave a

radiation length of 0.03108. So by generating a carbon cross section and radiating using

each of these two radiation lengths the appropriate scaling factor was found and applied to

the dilution yields. Table 6.6 contains the physical lengths, densities and radiation lengths

of each material used in generating these ratios.

The second condition to be considered is the scattering angle dependance of each target

material. To correct for different scattering angles a good understanding of how the scat-
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tering angle changed as a function of E’ for each material was needed. First, the central

scattering angle vs. HRS momentum for each run was plotted and a weighted average of

overlapping bins to find θsc vs. HRS P0 was done for each target type. The data was

then fit with an exponential of the form f(x) = ep0+p1x + p2x + p3, and the four target

dependent fit parameters were saved to a text file. Figure 6-17 shows this fit being applied

to a production run. A similar fit was done to the other dilution runs for scaling. Note

that the difference in average scattering angles between runs is small but the cross section

is highly sensitive to this ratio.

Once the fit parameters for each target type were obtained two cross section models for

each material were generated, one using the fit parameters for the dilution run of interest,

and the second using the parameters of the production run being scaled to. Then, by taking

the ratio of these two models, the scattering angle correction was found and applied to the

dilution run yields.

It is worthwhile to note that the two scaling processes that have been described in this sec-

tion were done simultaneously. Although it is more straightforward to explain each process

separately, in reality the change in scattering angle will have an impact on the radiative

effects, and vise versa. So each model must be generated with both scattering angle and

radiative length dependence. As expected, the He4 correction was typically small (< 1%)

due to the very small correction in radiation length, while the C12 correction was much

larger because of the scattering angle difference between the Carbon and Production run

types.
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6.9.5 Dilution Factor Uncertainty

With all of the necessary components an expression for the dilution factor is found

f = 1− Nbg

Nproduction
(6.51)

Using the definition of Nbg given by Equation 6.46

f = 1−
a(E,E′)

MCρALtgpf
MAρCLC

(
Ncarbon −

(
Ltg−LC
Ltg

)
Nempty

)
+Ndummy − pfNempty

Nproduction
(6.52)

where each charge normalized count now contains the proper scattering angle and radiation

length scaling factor applied to it as addressed in the previous sections. The dilution

factor was then calculated at each Q2 setting bin by bin, and could then be applied to

the measured asymmetry. For analysis purposes the dilution was calculated in 1 MeV bins

across the entire kinematic range for each setting. To reduce the statistical uncertainties of

the final result 50 MeV bins were used and a statistically weighted average of the dilution

in each bin was calculated using

f =

∑
n

(
fn
δ2n

)
∑
n

(
1
δ2n

) (6.53)

where δn is the uncertainty in each dilution factor. Looking at equation (6.52) it is easy

to see that the propagation of the statistical uncertainty is very tedious. Each normalized

count has a statistical uncertainty of
√
N associated with it. Propagation was made easier

by breaking the total background counts up into individual materials in the production run

NHe =

(
1− pf Ltg

Ltotal

)
Nempty (6.54)

NAl = Ndummy −Nempty (6.55)
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NN = a
MCρALtgpf

MAρCLC

(
NC −

(
1− LC

Ltotal

)
Nempty

)
(6.56)

where NHe, NAl and NN were the helium, aluminum and nitrogen background counts during

the production run, respectively. The total background uncertainty was then calculated as

δ2
bg = δ2

NHe
+ δ2

NAl
+ δ2

NN
. (6.57)

There were two primary sources of systematic uncertainty in the dilution factor. The first

was the uncertainty in the model used for radiation length and scattering angle scaling.

The second was in the determination of the scattering angle itself. The scattering angle was

known to 0.1 mRad [57], so a fit to the central value of the scattering angle will have some

variance associated with it. To find the uncertainty due to the scattering angle two fits

were done for each target material at ±1 standard deviation in the central angle. A cross

section was generated using each of these fits and the ratio between them indicated how

sensitive the cross section was to the scattering angle. It was found that the variance was

always less than 5% so a total systematic uncertainty of 5% was included in the scattering

angle calculation.

To find the systematic uncertainty in the generated models a detailed study of model tuning

on preexisting data at different Q2 settings was done [12]. The total scaling factor required

to minimize the χ2 for each data set was used as the systematic uncertainty in the model.

The model uncertainty ranged from 5% to 10% depending on the target. The systematic

uncertainty was then propagated in the standard way through Equation 6.52. The dilution

results for all channels is shown in Appendix C.
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Chapter 7

Results

Armed with accurately calibrated data and extracted measurable quantities we can begin

constructing physical observables. Recall from Section 6.2 that the polarized cross section

differences are functions of the physics asymmetry and the total unpolarized cross section,

∆σphys‖,⊥ = 2Aphys‖,⊥ σphys0 . (7.1)

The following several sections will present the results for these observables, as well as cal-

culations of the proton spin structure functions and contributions to the moments. At the

time of this writing three of the six kinematic settings of experiment E08-027 have been

analyzed. The following results will only address those settings with accurate calibration

studies completed. Acceptance studies and beam position studies are still underway by the

E08-027 collaboration for the remaining 2.5 Tesla target field data.

7.1 Physics Asymmetries

Charge and livetime asymmetries were discussed in Section 6.6 while the dilution was dis-

cussed in Section 6.9. The beam and target polarizations were discussed in Section 4.2.3

and at length in Chapter 5, respectively. With all of this information compiled, the physics

asymmetries can be calculated using Equations 6.2 and 6.3.
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Since data is broken up into short segments called ‘runs’, a method for statistically com-

bining overlapping kinematic bins needed to be used. The final asymmetry per kinematic

bin is given by

A =

∑
iAi/δA

2
i∑

i 1/δA2
i

(7.2)

δA =

√∑
i

1

1/δA2
i

(7.3)

where Ai is the asymmetry for each overlapping kinematic bin and δAi is the corresponding

statistical uncertainty in A. The statistical uncertainty is approximately equal to 1/
√
N

where N is the total number of events. However, when the raw trigger rate was high enough

that a prescale factor was required, as discussed in Section 4.4.3, the statistical uncertainty

had to be modified to account for prescale dependent fluctuations [59].

If we define the total number of useful events in one kinematic bin as

C =
N · LT · f

ps
(7.4)

where N is the total number of recorded events, LT is the livetime correction, f is the

acceptance and ps is the prescale factor, the origin of the fluctuation can be separated into

two sources:

• Fluctuation of the total number of events, N

σN =
√
N (7.5)

∆σN =
σN
N

=
1√
N

(7.6)

• Fluctuation due to the acceptance LT · f
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The second case can be derived via a binomial distribution which results in a fluctuation

due to the acceptance as

σC =
√
C (1− LT · f). (7.7)

Combining Equations 7.7 and 7.6 gives the total correction to the statistical uncertainty

S =

√
1− LT · f

(
1− 1

ps

)
(7.8)

which directly modifies the uncertainty in the counts of each helicity state, σN± = S±
√
N±,

and results in a final prescale corrected statistical uncertainty of

δA =
2Y+Y−(
Y 2

+ + Y 2
−
)2
√
S2

+

N+
+
S2
−

N−
(7.9)

where Y± are the helicity gated yields in each kinematic bin.

Armed with a method for statistically weighting overlapping kinematic bins, the final physics

asymmetry for each setting could be calculated. The radiated results are shown for the three

kinematic settings analyzed in this work in Figures 7-2, 7-3 and 7-4. Radiative corrections

are applied later at the polarized cross-section level, the details of which will be discussed

in the following sections.

7.1.1 Out-Of-Plane Polarization

As discussed in Section 2.2.2 there is an additional out-of-plane polarization angle that acts

to dilute the measured asymmetry. This polarization angle is formed from the difference

between the electron scattering plane and the polarization plane. Ideally this angle would

be close to 0◦ so the measured polarization is roughly equal to the real scattered polarization

and any additional affects could be ignored. For the E08-027 experiment it was found that

this out-of-plane angle was large enough that the effect could not be neglected.
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The out-of-plane angle for several momentum settings at the 2.254 GeV, 5T Transverse

beam energy setting are shown in Figure 7-1. The mean angle at each momentum setting

was applied at the physics asymmetry level as an additional correction.
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Figure 7-1: The out-of-plane polarization angle for the 2.254 GeV 5T Transverse beam
energy setting at various momentums. The physics asymmetry at each momentum was
scaled by the mean angle to account for out-of-plane diluting of the asymmetry.

7.1.2 Asymmetry Systematics

There are several systematic contributions to the physics asymmetry that must be con-

sidered. The largest sources come from the dilution (Section 6.9) and target polarization

(Section 5.5). Other systematic sources include the beam polarization, pion contamina-

tion and the out-of-plane polarization uncertainties. Table 7.1 contains all of the relative
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systematics that are included in the final physics asymmetries. A detailed study of pion

contamination and asymmetry found that the systematic introduced was negligible [60].

Source δA/A

Dilution 5-7%
PB 1.7%
PT 2-4%

Out-of-plane pol. 0.5-1.5%
Pion contamination -

Table 7.1: Asymmetry Systematics.
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Figure 7-2: The raw (top) and scaled Physics (bottom) asymmetries for the 3.350 GeV
beam energy, 5T transversely polarized target field setting. Uncertainties are statistical
only. A comparison is shown between the physics asymmetry and Hall B and MAID model
predictions.
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Figure 7-3: The raw (top) and scaled Physics (bottom) asymmetries for the 2.254 GeV
beam energy, 5T transversely polarized target field setting. Uncertainties are statistical
only. A comparison is shown between the physics asymmetry and Hall B and MAID model
predictions.

7.2 Unpolarized Cross Sections

Two methods were used in finding the unpolarized cross section for this analysis. The first

method used the experimentally extracted yields and necessary kinematic scaling factors,

σphys0 =

(
psNf

QLTεdet

)(
1

∆Ω∆E′∆Z

)
, (7.10)

as discussed in Section 6.2. Using known yields, and a well defined dilution, the only missing

component for a data extracted cross-section is the acceptance correction, ∆Ω. At the time
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Figure 7-4: The raw (top) and scaled Physics (bottom) asymmetries for the 2.254 GeV
beam energy, 5T longitudinally polarized target field setting. Uncertainties are statistical
only. A comparison is shown between the physics asymmetry and Hall B and MAID model
predictions.

of this analysis, the experimental acceptance was not well understood. A detailed accep-

tance study is currently underway by another collaboration member to resolve this issue.

A temporary solution to this was to define a very small acceptance region which contained

a relatively flat θ and φ distribution, and introduce an additional systematic based on the

precision with which the reconstructed θ and φ values are known.

Figure 7-5 shows the cut region chosen for the 2.254GeV beam energy, 5T transverse target

field setting. The region was chosen by minimizing the relative uncertainty in the accep-

tance while maintaining a flat distribution in θ and φ. All of the acceptance cuts used in
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the experimental cross section extraction are shown in Table 7.2.

Variable Cut Region

x < 8mm
y < 0.8mm
θ < 0.01rad
φ < 0.005rad
dp < 4%

Table 7.2: Acceptance cuts used for Cross Section Analysis.

Figure 7-5: The reconstructed acceptance distribution for the 2.254GeV beam energy, 5T
longitudinal target field setting. The red box indicates the acceptance cut chosen for the
cross section analysis.

With a well defined acceptance region, the data extracted cross section calculation was

straightforward, following Equation 7.10. The results for the three settings of interest in

this analysis are shown in Figures 7-6, 7-7, and 7-8. It is important to note that radia-

tive corrections have not yet been applied, so these are not true Born cross sections. A

comparison is shown against a radiated Bosted/Christy model at the corresponding Q2 and
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radiation lengths of each setting. We find agreement with the model cross section to less

than 25% everywhere.

Due to the addition of a large systematic uncertainty from the acceptance correction
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Figure 7-6: The experimentally extracted cross section for the 3.350 GeV beam energy,
5T transversely polarized target field setting. Inner and outer error bars represent the
statistical and systematic uncertainties, respectively.

(Section 7.2.1) a second approach to absolute cross sections was explored. The proton

unpolarized born cross section is relatively well understood in the kinematic region of this

experiment. Several model cross sections were looked at and compared with existing proton

data to determine if there was better agreement than the level of our acceptance uncertainty.

This study was done on both the Bosted/Christy and the Hall B models, and it was found

that there was agreement with existing data in our kinematic region to better than 15%. An
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Figure 7-7: The experimentally extracted cross section for the 2.254 GeV beam energy,
5T transversely polarized target field setting. Inner and outer error bars represent the
statistical and systematic uncertainties, respectively.

example cross section output for both models is shown in Figure 7-9. Since the uncertainty

of this model is smaller than that of our data extracted cross sections, we decided to use a

model cross section for the unpolarized contribution. Work is ongoing by another collabo-

ration member to find an acceptance function that will further reduce the 15% systematic.

7.2.1 Cross Section Systematics

The systematics for each of the two cross section methods, as discussed in the previous

section, are addressed separately. Contributions to the data extracted cross section come
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Figure 7-8: The experimentally extracted cross section for the 2.254 GeV beam energy,
5T longitudinally polarized target field setting. Inner and outer error bars represent the
statistical and systematic uncertainties, respectively.

from the dilution and acceptance corrections. The acceptance systematic can be broken

down into two sources, the precision at which the central acceptance value is known, as

dictated by the optics reconstruction, and the precision at which the region for which the

cut is defined is known, as dictated by our knowledge of the scattering angle. A detailed

study of the acceptance systematic found an additional relative uncertainty on the order of

20% [61]. The values of these various systematic contributions for the data extracted cross

section are shown in Table 7.3.

Separate systematics must be considered for the proton model cross section. The model

must be generated at the kinematic region as defined by the experiment. This kinematic
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Figure 7-9: Bosted/Christy unpolarized proton cross section model at the kinematic setting
of the E08-027 2.254 GeV beam energy, 5T transverse target setting.

Source δA/A

Dilution 5-7%
Acceptance 22.36%

Packing Fraction 3-7%
Target Length 0.3%

Table 7.3: Data extracted cross section systematics.

region has an associated uncertainty from our knowledge of the scattering angle. This intro-

duces a systematic, called the ‘Mott systematic’ which is not present in the data extracted

cross section. The model must also be radiated to match our experimental radiative lengths,

since corrections to this effect come at a later stage. A detailed radiative effects study was

done [2] and it was concluded that a 3% systematic needed to be added to the model cross
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section. Finally, the model itself has some associated uncertainty, defined by its accuracy

at reproducing existing data. This uncertainty was found by comparing it to the E08-027

data extracted cross section, and taking the average relative difference as the systematic.

A second method for determining the model uncertainty was done by comparison with ex-

isting data from other experiments. Data from SLAC E61 and SLAC ONEN1HAF was

compared with the output of the Bosted/Christy models at kinematic regions comparable

with E08-027. This study found a model systematic on the order of 15%, in agreement with

the previous result.

7.3 Polarized Cross Section Differences

With data extracted physics asymmetries and unpolarized proton cross sections the polar-

ized proton cross section can be calculated in a relatively straightforward manner,

∆σ⊥,‖ = 2A⊥,‖σ◦. (7.11)

This is done separately for each kinematic setting of experiment E08-027. Systematic and

statistical uncertainties are propagated through Equation 7.11 in the standard way. The

polarized proton cross sections are shown in Figures 7-10, 7-11 and 7-12 with statistical

error bars only. At this point the polarized cross sections are still fully radiated and vary in

Q2 over the invariant mass range, W . Before using these results to calculate the structure

functions they must be radiatively corrected and extrapolated to a constant Q2.
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Figure 7-10: The polarized proton cross section for the 3.350 GeV beam energy, 5T Trans-
verse target polarization setting using E08-027 cross section data (top) and the Hall B
model (bottom) as the contribution for the unpolarized part.

7.4 Radiative Corrections

Up to this point we have assumed that all of the detected electrons have undergone the

leading order scattering process ep→ e′p. In reality the electron will undergo several stages

of energy loss before, during and after scattering which need to be taken into account. The

energy loss processes that we consider are:

• External radiation of a bremsstrahlung photon as the electron passes through material

before and after scattering.

• Internal radiation of a photon during the scattering process itself.
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Figure 7-11: The polarized proton cross section for the 2.254 GeV beam energy, 5T Trans-
verse target polarization setting using E08-027 cross section data (top) and the Hall B
model (bottom) as the contribution for the unpolarized part.

• Higher order loop corrections to the scattering process.

• Ionizing collisions with materials in the beam path before and after scattering.

The process of taking into account all of the above mentioned energy loss processes and

correcting the measured cross section to extract the born cross section is called radiative

corrections. In this section a general overview of each process will be discussed, for a more

detailed write-up of the radiative corrections see [12].

The external radiation of a bremsstrahlung photon occurs when the electron passes through

material in the beam path before or after scattering. The amount of energy lost is parame-
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Figure 7-12: The polarized proton cross section for the 2.254 GeV beam energy, 5T Lon-
gitudinal target polarization setting using E08-027 cross section data (top) and the Hall B
model (bottom) as the contribution for the unpolarized part.

terized by the materials radiation length which takes into account the physical thicknesses

and densities of the materials that the electron passes through. A list of typical materials

and their corresponding radiation lengths is shown in Tables 7.4 and 7.5.

In addition to the emission of a bremsstrahlung photon, other higher order loop correc-

tions to the scattering process can occur. These loop corrections include vacuum polariza-

tions, vertex corrections and electron self-energy. A list of all the higher order Feynman

diagrams considered is shown in Figure 7-13. The final process that we consider is ioniza-

tion. As the electron travels along the beam path it is possible for it to elastically scatter

off of any materials in Table 7.4. This results in an energy loss on the order of a few MeV.
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material physical thickness (cm) radiation thickness

Beryllium Window 0.3810 1.081E−03
Helium Bag 7.620 1.443E−05

Scat. Chamber 0.0178 2.002E−03
LN2 Shield 0.0038 4.284E−04
4K Shield 0.0013 1.462E−04

Target Nose 0.0127 1.428E−03
LHe in Nose 0.4369 6.716E−04

Target End Cap 0.0018 1.999E−04
LHe Target Cup 0.2914 4.479E−04

Solid NH3 0.3562 7.119E−03

total before 9.1229 1.354E−02

Table 7.4: Production target radiation thicknesses before scattering. Reproduced from [2].

material physical thickness (cm) radiation thickness

Solid NH3 0.3562 7.119E−03
LHe Target Cup 0.2914 4.479E−04
Target End Cap 0.0018 1.999E−04

LHe in Nose 1.969 3.027E−03
Target Nose 0.0127 1.428E−03
4K Shield 0.0013 1.462E−04

LN2 Shield 0.0038 4.284E−04
Scat. Chamber 0.0508 5.712E−03

Helium Bag 170.9 3.236E−04
Kapton Window 0.0254 8.889E−04

total after 173.6124 1.972E−02

Table 7.5: Production target radiation thicknesses after scattering. Reproduced from [2].

The most probable energy loss due to ionization is calculated as

E = E′ −∆ (7.12)

∆ = t · x◦
[
ln
atx◦
E

+ 1− 0.5772

]
(7.13)

a =
2πNα2

m

Z

A
≈ 0.154

Z

A
(7.14)

where t is the material thickness, x◦ is the radiation length of the material, E is the electron

energy, α is the fine structure constant, N is Avagadro’s number, m is the electron mass

and Z and A are the atomic number and weight of the struck atom.
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Figure 7-13: Next to leading order Feynman diagrams for internal radiative corrections.
Processes include vacuum polarization (a), vertex correction (b), electron self energy (c,d)
and Bremsstrahlung radiation (e,f). Reproduced from [12].

With all energy loss processes accounted for a fully radiated cross section model can be

constructed and used to correct the experimentally measured cross section. It is of note

that these corrections are all ‘unpolarized’ as they do not consider polarized radiative effects

in the ep scattering interaction. It was found that the difference between unpolarized and

polarized radiative effects is negligible, so for simplicity only an unpolarized study was done

and the results were applied to the polarized cross section.

The difference between the radiated and born polarized cross section models, as well as the

radiatively corrected results to our polarized cross section, are shown in Figure 7-14. With

radiatively corrected results we can move on to calculating the spin structure functions.
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Figure 7-14: Radiated and born polarized cross section models in the kinematic region
of the 2.254 GeV beam energy, 5T transverse target field setting (top) and the E08-027
radiatively corrected data for the same setting (bottom).

7.5 Spin Structure Functions

The spin structure functions, g1 and g2, can be calculated by taking a linear combination

of Equations 2.30 and 2.31. Each of the two spin structure functions has a parallel and

perpendicular contribution. For the E08-027 experiment data was only taken in either the

perpendicular or parallel configuration for each Q2 setting. To find g1(g2) at a given setting

we used the experimentally measured parallel(perpendicular) polarized cross section and
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g2(g1) from the Hall B model:

g1

(
x,Q2

)
= K1

[
∆σ‖

(
1 +

1

K2
tan

θ

2

)]
+ g2

(
x,Q2

) 2

yK2
tan

θ

2
, (7.15)

g2

(
x,Q2

)
= K1

y

2

[
∆σ⊥

(
K2 + tan

θ

2

)]
− g1

(
x,Q2

) y
2
, (7.16)

K1 =
MQ2

4α

y

(1− y)(2− y)
, (7.17)

K2 =
1 + (1− y) cos θ

(1− y) sin θ
. (7.18)

The systematic contribution to the spin structure functions was adjusted accordingly from

the addition of the Hall B model. The results for the three settings of this analysis are

shown in Figures 7-16, 7-15 and 7-17.

7.5.1 Constant Q2 Extrapolation

The structure function data in Figures 7-16, 7-15 and 7-17 was taken over a wide kinematic

range in invariant mass, W . Over this range the Q2 value of the scattering interaction also

varied. Before we can integrate the structure functions to find the corresponding moments

for theory comparison we need to extrapolate the data to a constant Q2 at each setting.

This was done by selecting the Q2 value of the data at the delta resonance, where the

integration is most important, and generating models to scale data around that area to the

same Q2.

gconst1,2 = gdata1,2 − δextrap. (7.19)

δextrap. = gmodel1,2

(
xdata, Q

2
data

)
− gmodel1,2

(
xconst, Q

2
const

)
(7.20)

The extrapolation had a small effect (< 20%) on the transverse target field settings, due

to a suppression of Q2 variance from the target field. The longitudinal setting shows much
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Figure 7-15: The spin structure function, g2 for the 3.350 GeV beam energy, 5T Transverse
target polarization setting. The Hall B model is used for the longitudinal contribution.
Error bars are statistical only.

larger Q2 variance, with a correction on the order of 50%. The resulting Q2 values for the

three settings in this analysis are shown in Table 7.6.

Setting Extrapolated Q2 [GeV2]

3.350 GeV 5T Transverse 0.130
2.254 GeV 5T Transverse 0.086

2.254 GeV 5T Longitudinal 0.043

Table 7.6: Extrapolated Q2 values.
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Figure 7-16: The spin structure function, g2 for the 2.254 GeV beam energy, 5T Transverse
target polarization setting. The Hall B model is used for the longitudinal contribution.
Error bars are statistical only.

7.6 Moments

With experimental results for g1 and g2 we can begin looking at contributions to various

moments as discussed in Section 3. All of the moments of interest are xbj weighted integrals

of the structure functions. So before finding the moments we must translate the kinematic

region from W , as shown in the previous section, to x, as defined in 2.1 and define a reliable

integration method. The structure function, g2, as a function of xbj is shown in Figure 7-

18. When performing the translation from W to xbj the spacing between data is no longer

constant. This is due to xbj ∝ 1/ν. I used the geometric sum method written in the
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Figure 7-17: The spin structure function, g1 for the 2.254 GeV beam energy, 5T Longitudinal
target polarization setting. The Hall B model is used for the transverse contribution. Error
bars are statistical only.

Simpsons integration routine to find the moments. This routine also has the convenience of

carrying over the statistical uncertainty from the structure functions. To find the systematic

uncertainty of the moments I deviate all values by ±1σ in the systematic uncertainty of

the structure functions and redo the integration. The spread in the resulting moments are

treated as the final systematics.

7.6.1 Burkhardt-Cottingham Sum Rule

The full integration of the BC sum rule, as discussed in Section 3.2.2, is over the full range

of xbj from 0 to 1. To do this using experimental data the integral must be separated into
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Figure 7-18: gp2 vs. xbj for Q2 = 0.086GeV2. Error bars are statistical only.

three regions.

The Elastic Region

At elastic (above xbj ≈ 0.25) the integral of g2 can be calculated using the well understood

electric and magnetic form factors, GE and GM . The Arrington fit [62] is used to find the

form factors at the Q2 setting of our data.

GE =
6∑
i=0

(
αiQ

2i
)−1

(7.21)
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GM =

6∑
i=0

(
βiQ

2i
)−1

(7.22)

where αi, βi are the Arrington fit parameters of the electric and magnetic form factors,

respectively. The integral of g2 is then calculated using [23]

Γ2 =
τ

2
µpGM

(
GE − µpGM

1 + τ

)
(7.23)

where µp is the proton magnetic moment, τ = Q2/4M2
p and Mp is the proton mass.

The Resonance Region

This is the region in which experimental data was taken, sometimes called the measured

region. The approximate kinematic coverage is 0.04 < xbj < 0.24 for experiment E08-027,

as shown in Figure 7-18. The contribution to the BC sum rule in this region is calculated by

simply taking the integral of the data using the Simpsons method discussed in the previous

section.

The Deep Inelastic Region

The deep inelastic region, sometimes called the unmeasured part, is a convolution of model

dependent parts and previously measured data. The kinematic coverage is from 0 < xbj <

xmeasured, where xmeasured is the lowest xbj value measured experimentally. Due to the

model dependence of the low xbj region, and the significance of it’s contribution to the

integral at our Q2 setting, great care was required in filling this region.

Several models were explored at the Q2 setting of our experiment to determine what kind

of sensitivity and uncertainty was introduced. The models included the Hall B model,

MAID, and polarized parton distribution functions (PPDFs) from the AAC and GRSV

collaborations [63]. The behavior of g2 from each model in the low xbj region is shown
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in Figure 7-19. It is interesting to note that the Hall B model in this region is simply a
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Figure 7-19: g2 vs. xbj from various models in the low xbj region. Existing data at larger
Q2 from the SLAC E155x experiment as well as the E08-027 data is also shown. Note the
Hall B model in this region is just a fit to the E155x data and MAID does not extend below
xbj ≈ 0.03.

parameterized fit to the SLAC E155x data, which goes negative at low xbj , while the PPDFs

all remain positive. We note that the contribution from the unmeasured low xbj part needs

to be positive if the sum rule is to be satisfied. The approximate level of unmeasured

contributions to the full integral are shown in Table 7.7.
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xbj Integral % contribution
Source (0 < xbj < xmeas) relative to measured region

Hall B Model -0.003 12%
AAC PPDF 0.013 52%

GRSV PPDF 0.012 48%
Required 0.015 60%

Table 7.7: Unmeasured contribution to the BC Sum integral from various sources. Required
represents the value for the unmeasured region needed if the BC Sum is satisfied at the
(average) E08-027 Q2 setting.

Summation and Result

With an accurate representation of g2 in each region the BC sum can be calculated as

Γ2 =

∫ xmin

0
g2model(x,Q

2) +

∫ xmax

xmin

g2measured(x,Q
2) + Γ2elastic (7.24)

where xmin → xmax is the measured xbj region of the experiment. Due to the sensitivity

of Γ2total to the unmeasured region, as discussed in the previous section, the result is left in

terms of only the resonance and elastic contributions. By demanding the BC sum rule be

satisfied in our measured kinematic regions we are able to make a definitive statement about

the magnitude and sign of the unmeasured contribution, as shown in Table 7.8. Figure 7-20

Q2 Γmeas.2 Γel.2 δtot.stat δtot.sys

0.086 GeV2 0.02170 -0.03624 0.0014 0.0031
0.130 GeV2 0.02765 -0.04322 0.0022 0.0047

Table 7.8: Results for the E08-027 Γ2 integration.

shows the resonance contribution at both Q2 settings of this analysis, as well as the elastic

contribution curve.
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Figure 7-20: The resonance contribution to the BC sum rule for Q2 = 0.086 GeV2 and
Q2 = 0.13 GeV2 with reference to the elastic contribution (blue) and the MAID model
prediction for the resonance contribution (dashed). The RSS integral at Q2 = 1.279 GeV2

and the E155x integral at Q2 = 5 GeV2 are also shown.

7.6.2 δLT Spin Polarizability

The δLT spin polarizability is calculated using

δLT (Q2) =
16αM2

Q6

∫ x0

0
x2
[
g1(x,Q2) + g2(x,Q2)

]
dx, (7.25)

as discussed in Section 3.3. The integral is done using the Simpsons integration method,

similar to the method for calculating the BC sum rule, except that the integrand is weighted

by x2
bj , so contributions from the low xbj region are suppressed.
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The g1 contribution to the integrand required a model prediction at the Q2 values of the

two transverse settings. For this purpose the Hall B model is used, where the g1 prediction

is relatively well understood, and an additional 15% systematic is introduced to account for

variation between the Hall B model and existing g1 data.

The δLT polarizability systematic is calculated by varying the g2 input in the integrand

by ±1σ in the systematic of g2 and recalculating the integral. The spread in the resulting

moment is taken as the final systematic. Figure 7-21 shows the δLT polarizability for the

two Q2 settings of the experiment, along with theoretical predictions for their behavior.

Numerical results are shown in Table 7.9. Reasonable agreement is seen between our mea-

Q2 δLT [10−4 fm4] δstat δsys
0.086 GeV2 0.08143 0.0556 0.0336
0.130 GeV2 0.08686 0.0633 0.0441

Table 7.9: Results for the E08-027 δLT spin polarizability measurement.

sured polarizability and the Hall B and MAID models. At larger Q2 agreement is also

seen with the Pascalutsa calculation, but a 3σ divergence is seen at lower Q2. Analysis

is still underway by the collaboration to analyze the polarizability in the region between

0.025 < Q2 < 0.075 GeV2.

It is worth noting the vast disagreement between the E08-027 measured polarizabilities and

the Meissner calculation. The two theoretical predictions, called the Meissner and Pas-

calutsa calculations in this work, are performed in the framework of relativistic Baryon

χPT , as discussed in Section 3. The main difference between the two calculations is in the

treatment of the ∆(1232) resonance contribution. Data from this work favors the ‘Delta

expansion’ result of the Pascalutsa calculation, with an upwards of 10σ disagreement with

the Meissner curve. Lower Q2 data from the E08-027 experiment will act to further drive

this conclusion.
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Figure 7-21: The δLT spin polarizability of the proton for Q2 = 0.086 GeV2 and Q2 =
0.13 GeV2. The blue and gray curves are the Pascalutsa and Meissner χPT calculations,
respectively. Also shown are the MAID and Hall B model predictions.

7.6.3 Higher Order Moments

Higher moments, in powers of xn, can also be calculated for the previously discussed sum

rules. The first higher order moment of interest is d2(Q2). At large Q2 the d2 matrix element

is related to the color polarizability which describes how the electric and magnetic fields of

the proton respond to its spin. At low Q2 the d2 matrix element provides insight into the

transition region between the perturbative and non-perturbative regions by quantifying the
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higher twist effects. d2 is calculated as

d2(Q2) =

∫ 1

0
x2
[
g2(x,Q2)− gWW

2 (x,Q2)
]
dx

=

∫ 1

0
x2
[
2g1(x,Q2) + 3g2(x,Q2)

]
dx

where g2(x,Q2) is the measured g2 and gWW
2 is the twist-2 contribution of g2, which is fully

calculable from g1 according to the Wandzura-Wilczek relation as discussed in Section 3.2.1.

Due to the x2 weighting of the integrand in d2 the low x region is suppressed. The Hall

B model was used to estimate g1 and a 15% systematic was added in quadrature with the

systematic from the measured g2 region. Numerical results for the integration are shown in

Table 7.10. The results for d2 at both Q2 settings are shown in Figure 7-22.

Q2 d2 δstat δsys
0.086 GeV2 0.00034 6.803e-5 6.641e-5
0.130 GeV2 0.00102 2.676e-4 1.872e-4

Table 7.10: Results for the E08-027 d2 integration.

The higher order moments of the proton spin polarizability are also of interest to look at.

Carrying out the expansion of δLT to an additional term, as discussed in Section 3.3, gives

δ∗LT =
64αM4

Q10

∫ x◦

0
x4
(
g1(x,Q2) + g2(x,Q2)

)
dx. (7.26)

This term has the convenience of an additional x2 weighting in the integral, which further

suppresses any contribution from the low-x region. Numerical results for δ∗LT are shown in

Table 7.11. Figure 7-23 shows the results for this higher order polarizability term. This

Q2 δ∗LT [10−4 fm6] δstat δsys
0.086 GeV2 0.03292 0.0285 0.0111
0.130 GeV2 0.03266 0.0376 0.0151

Table 7.11: Results for the E08-027 δ∗LT measurement.
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Figure 7-22: The d2 sum rule for both Q2 settings analyzed in this work. Contributions from
g1 and the low xbj region are estimated using the Hall B model. Error bars are statistical
only.

represents the first ever measurement of the higher order moment for the δLT polarizability

which may help to drive the necessity for theoretical calculations.

7.7 Conclusions and Future Work

The goal of the E08-027 experiment was to extract the spin structure function, g2, for the

proton in five low Q2 bins. This required both an accurately measured unpolarized cross

section and a proton physics asymmetry at each setting. At the time of this writing the

proton physics asymmetry for two settings has been fully analyzed. To incorporate the
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Figure 7-23: Higher order spin polarizability term, δ∗LT , of the proton for Q2 = 0.086 GeV2

and Q2 = 0.13 GeV2. Also shown are the Hall B and MAID model predictions.

unpolarized cross section into these results we require a fully understood experimental ac-

ceptance and an accurately reproducible scattering angle. Work on both of these fronts

continues by additional members of the collaboration.

The three lowest Q2 settings require additional analysis work which is also underway by the

collaboration. The results of which may help to fill in remaining questions about the behav-

ior of the proton spin polarizability. Remaining work on these settings involves a detailed

study and normalization procedure for yield drift discrepancies, as well as an acceptance

and scattering angle study.

After careful study, it was determined that the Γ2 integral at the E08-027 kinematics can
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not accurately be used to study the validity of the BC sum rule due to the large contribution

from the DIS region. Instead, we demand the sum rule is satisfied which allowed us to make

a definitive statement about the unmeasured contribution. It was found that the Hall B

model is unsatisfactory at reproducing the g2 structure function in the DIS region at low

Q2.

During this analysis we were able to place the first ever data for the proton spin polarizabil-

ity. We found good agreement with the Hall B model everywhere but increasingly larger

disagreement with χPT calculations as Q2 decreased, although the data better reproduces

the Pascalutsa calculation. We anticipate a more definitive statement on the polarizability

with the analysis of the three low Q2 points.
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Appendix A

Thermal Equilibrium Results

A total of 22 satisfactory thermal equilibrium (TE) measurements were done on 10 different

target materials throughout the duration of experiment E08-027. The process of analyzing

these measurements to extract target polarization information is discussed in detail in Sec-

tion 5.5.

The following several pages contain the TE results used in determining the material cal-

ibration constants. Each figure contains two plots, the upper plot is the integrated area

from the NMR curve over the course of the TE measurement while the lower plot is a

monitor of the material temperature during the same time period. A linear fit (blue line)

was done for each TE to determine if the material had sufficiently thermalized. If the slope

was below a certain threshold value, determined by an upper limit on the uncertainty in

the average area, then the range of measurements was deemed ‘found’ and the average area

was calculated and used to find the corresponding calibration constant.

Several TE measurements (ex. 16, 51) were cut short due to time constraints, but the mea-

surement was important in finding a calibration constant for the corresponding material. In

these instances a larger systematic was placed on the resulting average due to the material

temperature not fully thermalized.
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Figure A-1: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 11.
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Figure A-2: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 12.
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Figure A-3: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 13.
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Figure A-4: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 14.
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Figure A-5: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 16.
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Figure A-6: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 19.
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Figure A-7: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 20.
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Figure A-8: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 21.
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Figure A-9: Integrated area (top) and measured temperature (bottom) for thermal equilib-
rium measurement 22.
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Figure A-10: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 23.
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Figure A-11: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 24.
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Figure A-12: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 29.
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Figure A-13: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 34.
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Figure A-14: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 47.
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Figure A-15: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 48.
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Figure A-16: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 51.
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Figure A-17: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 52.
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Figure A-18: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 53.
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Figure A-19: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 54.
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Figure A-20: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 55.
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Figure A-21: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 56.
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Figure A-22: Integrated area (top) and measured temperature (bottom) for thermal equi-
librium measurement 60.
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Appendix B

Packing Fraction Fits

After data quality selection and thermal equilibrium studies it was found that the packing

fraction needed to be determined for 12 different target materials used throughout the

duration of the gp2 experiment. The ratio method (Section 6.8.3) became the method of

choice in determining the final results. Below are the fits used for each material.
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Figure B-1: PF fit result for material 11 (top) and 12 (bottom) at 1.1GeV 2.5T Transverse.
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Figure B-2: PF fit result for material 7 (top) and 8 (bottom) at 1.7GeV 2.5T Transverse.
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Figure B-3: PF fit result for material 7 (top) and 8 (bottom) at 2.2GeV 2.5T Transverse.

171



0.55

0.60

0.65

0.70

0.75

0.80
Pa

ck
in

g
Fr

ac
tio

n
Material 19 PF: 0.663 ± 0.012 (1.75%) stat. ± 0.057 (8.63%) sys.

2.2GeV 5T Transverse packing fraction

300 400 500 600 700 800 900 1000
ν [MeV]

0.55

0.60

0.65

0.70

0.75

0.80

Pa
ck

in
g

Fr
ac

tio
n

Material 20 PF: 0.68 ± 0.012 (1.71%) stat. ± 0.058 (8.5%) sys.

Figure B-4: PF fit result for material 19 (top) and 20 (bottom) at 2.2GeV 5T Transverse.
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Figure B-5: PF fit result for material 17 (top) and 18 (bottom) at 2.2GeV 5T Longitudinal.
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Figure B-6: PF fit result for material 19 (top) and 20 (bottom) at 3.3GeV 5T Transverse.
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Appendix C

Material Dilutions

Below are the dilution results for all channels. The method for calculating the dilution is

described in detail in Section 6.9.
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Figure C-1: Dilution analysis for Eo = 1.1GeV 2.5T Transverse.
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Figure C-2: Dilution analysis for Eo = 1.7GeV 2.5T Transverse.
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Figure C-3: Dilution analysis for Eo = 2.2GeV 2.5T Transverse.
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Figure C-4: Dilution analysis for Eo = 2.2GeV 5T Transverse.
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Figure C-5: Dilution analysis for Eo = 2.2GeV 5T Longitudinal.

176



300 400 500 600 700 800 900
ν [MeV]

0.05

0.10

0.15

0.20

0.25

0.30

D
ilu

tio
n

3.350 GeV 5T Transverse Dilution

Bosted Model
E08-027 data

Figure C-6: Dilution analysis for Eo = 3.3GeV 5T Transverse.
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