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Abstract

We discuss the structure of the parton quasi-distributions (quasi-PDFs) Q(y, P3) outside the “canonical” −1 ≤ y ≤ 1 sup-
port region of the usual parton distribution functions (PDFs). Writing the yn moments of Q(y, P3) in terms of the combined
xn−2lk2l

⊥ -moments of the transverse momentum distribution (TMD) F (x, k2
⊥), we establish a connection between the large-|y| be-

havior of Q(y, P3) and large-k2
⊥ behavior of F (x, k2

⊥). In particular, we show that the 1/k2
⊥ hard tail of TMDs in QCD results in

a slowly decreasing ∼ 1/|y| behavior of quasi-PDFs for large |y| that produces infinite yn moments of Q(y, P3). We also relate the
∼ 1/|y| terms with the ln z2

3-singulariies of the Ioffe-time pseudo-distributions M(ν, z2
3). Converting the operator product expansion

for M(ν, z2
3) into a matching relation between the quasi-PDF Q(y, P3) and the light-cone PDF f (x, µ2), we demonstrate that there is

no contradiction between the infinite values of the yn moments of Q(y, P3) and finite values of the xn moments of f (x, µ2).

1. Introduction

In the original Feynman approach [1], the parton distribution
functions (PDFs) f (x) were introduced as the infinite momen-
tum P3 → ∞ limit of distributions in the longitudinal k3 = xP3
momentum of partons. These functions basically coincide with
the quasi-PDFs Q(x, P3) introduced more recently by X. Ji [2].

In the parton model, f (x) were treated as k⊥-integrals of more
detailed f (x, k⊥) distributions that involve also the transverse
momentum k⊥. From the start, it was understood by Feynman
that the Q(x, P3 → ∞) → f (x) limit exists only if f (x, k⊥)
rapidly decreases with k⊥, so that the integral over k⊥ does not
diverge. This happens, in particular, in the theories/models
with transverse momentum cut-off k⊥ . Λ, e.g., in super-
renormalizable models, but not in QED and other renormaliz-
able field theories.

One may ask two natural questions. First, why Q(x, P3) for
a finite P3 differs from f (x)? Second, how does Q(x, P3) con-
vert into f (x) when P3 → ∞? A qualitative answer is that
the parton’s longitudinal momentum k3 = yP3 comes from
two sources: from the motion of the hadron as a whole (xP3)
and from a Fermi motion of quarks inside the hadron, so that
(y−x)P3 ∼ 1/Rhadr. As P3 → ∞, the role of the y−x ∼ 1/PRhadr
fraction decreases and Q(x, P3)→ f (x).

In this picture, the (y− x)P3 part has the same physical origin
as the parton’s transverse momentum. Hence, one should be
able to relate quasi-PDFs to the transverse momentum distribu-
tions (TMDs) and quantify the difference between Q(x, P3) and
f (x) in terms of TMDs f (x, k⊥).

An important point is that the components of k⊥ may take
any values from −∞ to ∞, even when the distribution in k⊥ is
mostly restricted to a limited range, like in a Gaussian e−k2

⊥/Λ
2
.

Similarly, the (y − x)P3 part of the k3-distribution may take any
values. As a result, Q(y, P3) formally has the −∞ < y < ∞

support region, though possibly with a rapid decrease (say, like
e−y2P2

3/Λ
2
) for large y.

In other words, for a finite P3, there is no requirement that the
fraction y is smaller than 1 or positive. Even in a fast-moving
hadron, there is some probability that a parton moves in the op-
posite direction, and hence, that some other parton has the mo-
mentum k3 larger than P3. Still, with increasing P3, the chances
for fractions outside the [0, 1] segment decrease rapidly, reflect-
ing the large-k⊥ dependence of the relevant TMD f (x, k⊥).

When Q(y, P3) ∼ e−y2P2
3/Λ

2
, one may consider yn moments

of quasi-PDFs Q(y, P3) calculated over the whole −∞ < y < ∞
axis and study their relation to the xn moments of the light-cone
PDFs f (x).

Still, starting with the first papers [2, 3] on quasi-PDFs, it
was known that the simplest perturbative calculations produce
∼ 1/|y| behavior for quasi-PDFs at large |y|. Such a behavior
reflects a slow ∼ 1/k2

⊥ decrease of the perturbative hard tail of
TMDs in renormalizable theories. Clearly, if Q(y, P3) ∼ 1/|y|,
then even the zeroth moment of Q(y, P3) diverges, so that it ap-
parently makes no sense to consider yn moments of Q(y, P3).
Since the standard procedure of extracting PDFs from the lat-
tice quasi-PDFs [4, 5] does not involve a calculation of the yn

moments, the divergence of these moments did not attract much
attention.

However, recently it was argued by G.C. Rossi and M. Testa
[6, 7] that the divergence of the yn moments of Q(y, P3) poses a
serious problem for extraction of PDFs from lattice QCD sim-
ulations. The basic claim is that the infinite values of 〈yn〉Q

quasi-PDF moments are in conflict with the finite values of the
〈xn〉 f moments of the usual PDFs.

Irrespectively of these claims, we find that the structure
of quasi-PDFs Q(y, P3) outside the central |y| ≤ 1 region is
an interesting problem on its own, and we analyze it in the
present paper. Our study is based on the concept [8] of the
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Ioffe-time pseudo-distributions (pseudo-ITDs)M(ν,−z2). They
are basically the matrix elements M(z, p) of bilocal operators
∼ φ(0)φ(z) treated as functions of the Lorentz invariants, the
Ioffe time ν = −(zp) [9, 10] and the invariant interval z2. Our
convention is to add “pseudo” to the name of distributions de-
fined for nonzero z2, and skip it for their light-cone analogs.

While M(ν,−z2) does not involve momentum fraction vari-
ables like y and x, quasi-PDFs Q(y, P) and pseudo-PDFs
P(x, z2

3) may be obtained [8] from M(ν,−z2) as Fourier trans-
forms. The advantage of this approach is a direct use of the
coordinate representation that greatly simplifies further consid-
erations of pseudo-PDFs, TMDs and quasi-PDFs.

Furthermore, as we will show, the fact that the quasi-PDFs
Q(y, P) do not vanish outside the |y| ≤ 1 region, is directly con-
nected with the presence of a non-trivial z2

3- dependence in the
relevant pseudo-PDFs P(x, z2

3).

The paper is organized as follows. In Section 2, we start
with reminding the definition of the pseudo-ITDs and their re-
lation to pseudo-PDFs, quasi-PDFs and TMDs. We write a for-
mal 1/P2l series expansion for the 〈yn〉Q moments of the quasi-
PDFs in terms of the combined 〈xn−2lk2l

⊥ 〉F moments of TMDs
F (x, k2

⊥). In the case of “very soft” TMDs, i.e., those vanishing
faster than any inverse power of k2

⊥ for large k⊥, this expansion
allows to study 〈yn〉Q moments (which are finite in this case)
and their relation to 〈xn〉 f moments of the usual PDFs.

In Section 3, we study the consequences of having a hard
∼ 1/k2

⊥ tail of TMDs, present in renormalizable theories, in-
cluding QCD. In this case, the combined 〈xn−2lk2l

⊥ 〉F moments
diverge. For l = 0, one has a logarithmic divergence corre-
sponding to the usual perturbative evolution. For l ≥ 1, one
faces power divergences equivalent to those discussed in Refs.
[6, 7]. We show that they reflect the slowly ∼ 1/|y| decreasing
perturbative contributions to Q(y, P3). We also show that the
|y| > 1 parts of Q(y, P3) are generated by the z2

3-dependence
of the pseudo-PDFs P(x, z2

3), and study possible forms of the
z2

3-dependence.

In Section 4, we discuss the extraction of the light-cone PDFs
from pseudo-ITDs and quasi-PDFs. According to the operator
product expansion (OPE), the reduced pseudo-ITD M(ν, z2

3) is
given by the MS-ITD I(ν, µ2) plus O(αs) perturbative contribu-
tion that contains the ∼ ln z2

3 term responsible for the slowly
varying ∼ 1/|y| terms in the |y| > 1 part of the quasi-PDF
Q(y, P3). The latter, hence, is given by the MS-PDF f (x, µ2)
plus O(αs) perturbative contribution that contains the slowly
varying ∼ 1/|y| terms in the |y| > 1 part.

Vice versa, f (x, µ2), is given by the difference between the
lattice quasi-PDF QL(y, P3) and that O(αs) perturbatively cal-
culable contribution. This means that the implementation of the
matching condition includes some kind of subtraction, though
not of the kind discussed by Rossi and Testa in Refs. [6, 7]. The
final point is that, for large P3, the quasi-PDF QL(y, P3) must be
purely perturbative in the |y| > 1 region. Hence, the above dif-
ference vanishes outside the |y| ≤ 1 segment, and the moments
of the light-cone PDF f (x, µ2) extracted in this way are finite.

Section 5 contains summary and conclusions.

2. Parton distributions

2.1. Ioffe-time distributions and pseudo-PDFs
Defining a parton distribution either in a continuum theory or

on the lattice, one starts with a matrix element 〈p|φ(0)φ(z)|p〉 ≡
M(z, p) of a product of two parton fields. We use here simplified
scalar notations, since the details of parton spin structure are not
central to the concept of parton distributions, and may be added,
if needed, at later stages.

By Lorentz invariance, M(z, p) is a function of two scalars,
the Ioffe time [9, 10] (pz) ≡ −ν and the interval z2

M(z, p) =M(−(pz),−z2) . (2.1)

As shown in Refs. [11, 12], for any contributing Feynman
diagram, the Fourier transform ofM(ν,−z2) with respect to the
Ioffe time ν has the −1 ≤ x ≤ 1 support, familiar from the
studies of the usual parton densities,

M(ν,−z2) =

∫ 1

−1
dx eixν P(x,−z2) . (2.2)

When z is on the light cone, z2 = 0, we deal with the ordinary
(or light-cone) parton distributions

M(ν, 0) =

∫ 1

−1
dx f (x) eixν . (2.3)

Thus, P(x, 0) = f (x), and the function P(x,−z2) generalizes
the concept of PDFs onto the case of non-lightlike intervals z.
Following Ref. [8], we will refer to it as pseudo-PDF or parton
pseudo-distribution function.

2.2. Quasi-PDFs
The simplest example of a spacelike interval is obtained

when just one component is nonzero, z = {0, 0, 0, z3}. Choosing
p = (E, 0⊥, P), one can define the quasi-PDF [2] as the Fourier
transform of M(z3, P) with respect to z3

Q(y, P) =
P
2π

∫ ∞

−∞

dz3 e−iyPz3 M(z3, P). (2.4)

Combining Eqs. (2.2) and (2.4) gives a relation between the
quasi-PDF Q(y, P) and the pseudo-PDF P(x, z2

3) corresponding
to the z = z3 separation

Q(y, P) =
P
2π

∫ 1

−1
dx

∫ ∞

−∞

dz3 e−i(y−x)Pz3 P(x, z2
3) . (2.5)

One can see that though the pseudo-PDFs have the −1 ≤ x ≤ 1
support, the quasi-PDFs Q(y, P) are defined for all real y.

Another observation is that if the pseudo-PDF does not de-
pend on z2

3, i.e., if P(x, z2
3) = f (x), then the quasi-PDF Q(y, P)

does not depend on P, and Q(y, P) = f (y).
Thus, it is the dependence of P(x, z2) (or, equivalently, of

M(ν, z2)) on z2 that determines the deviation of quasi-PDFs
from PDFs. In particular, it generates the parts of Q(y, P) out-
side the PDF support region |y| ≤ 1.

In QCD and other renormalizable theories, the presence of
the z2

3-dependence is unavoidable, becauseM(ν, z2) has ∼ ln z2

contributions for small z2. Furthermore, these terms are singu-
lar in the z2 → 0 limit which complicates the definition of the
light-cone PDFs.
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2.3. Transverse Momentum Dependent PDFs
A very convenient way to parametrize the z2-dependence for

a space-like z is provided by a description in terms of the trans-
verse momentum dependent PDFs. Using again p = (E, 0⊥, P)
and choosing z that has only z− and z⊥ = {z1, z2} components,
while z+ = 0, we have ν = −p+z−, z2 = −z2

⊥, and the TMD is
defined by

P(x, z2
⊥) =

∫
d2k⊥ e−i(k⊥·z⊥)F (x, k2

⊥) . (2.6)

Due to the rotational invariance, this TMD depends on k2
⊥ only.

Integrating over the angle between k⊥ and z⊥ gives

P(x, z2
⊥) = 2π

∫ ∞

0
dk⊥ k⊥J0 (k⊥z⊥) F (x, k2

⊥) , (2.7)

where J0 is the Bessel function. Now recall that P(x,−z2) is
a function defined in a covariant way by Eq. (2.2). This im-
plies that this TMD representation may be written for a general
spacelike z. One should just change z⊥ →

√
−z2 and k⊥ → k

in Eq. (2.7). In particular, one may take z = {0, 0, 0, z3}, i.e.,
choose z in the purely longitudinal direction, and write

P(x, z2
3) = 2π

∫ ∞

0
dk k J0 (kz3) F (x, k2) . (2.8)

While F (x, k2) is a function that coincides with the TMD, one
does not need to specify a “transverse” plane and treat k as the
magnitude of a 2-dimensional momentum in that plane.

2.4. Support mismatch
Using the TMD parametrization (2.8) in the quasi/pseudo-

PDF relation (2.5), and expanding J0 (kz3) into the Taylor se-
ries, we get a formal 1/P2l expansion for the quasi-PDF Q(y, P)

Q(y, P) =

∞∑
l=0

∫
d2k⊥

k2l
⊥

4lP2l(l!)2

∂2l

∂y2lF (y, k2
⊥) . (2.9)

To shorten formulas, we have switched here back k → k⊥ in the
notation for the integration variable of the TMD representation
(2.8), and also wrote the resulting 2πk⊥dk⊥ as d2k⊥. We can do
this because the TMD F (x, k2

⊥) does not depend on angles. As a
matter of caution, we repeat again that k or k⊥ should be under-
stood simply as scalar variables of the TMD parametrization.
There is no need to specify in which plane k⊥ is.

According to Eq. (2.5), the quasi-PDF Q(y, P) has the
−∞ < y < ∞ support region. However, the quasi-PDF Q(y, P)
in Eq. (2.9) is given by a sum of terms involving the TMD
F (y, k2

⊥) that has the −1 ≤ y ≤ 1 support. The explanation of
the apparent discrepancy is that the innocently-looking deriva-
tives of F (y, k2

⊥) in the expansion (2.9) may generate an infinite
tower of singular functions like δ(y), δ(y ± 1) and their deriva-
tives. To this end, we recollect that, even when a function f (y)
has a nontrivial support Ω (say, −1 ≤ y ≤ 1), one may formally
represent it by a series

f (y) =

∞∑
N=0

(−1)N

N!
MN δ

(N)(y) (2.10)

over the functions δ(N)(y) with an apparent support at one point
y = 0 only. Here, MN are the moments of f (y),

MN =

∫
Ω

dy yN f (y) . (2.11)

Hence, the support mismatch may be explained by the
fact that the delta-function and its derivatives are integration
prescriptions (mathematical distributions) rather than ordinary
functions. But this also means that while the difference between
Q(y, P) and f (y) is formally given by a series in powers of 1/P2,
its coefficients are not the ordinary functions of y.

2.5. Moments of very soft quasi-PDFs

In order to get relations involving usual functions, one may
wish to integrate the equations in which these distributions en-
ter, e.g., to take moments. Indeed, the derivatives disappear if
we calculate the yn moments 〈yn〉Q of the quasi-PDFs

〈yn〉Q ≡

∫ ∞

−∞

dy ynQ(y, P)

=

[n/2]∑
l=0

n!
(n − 2l)!(l!)2

〈xn−2lk2l
⊥ 〉F

4lP2l , (2.12)

where 〈xn−2lk2l
⊥ 〉F are the combined moments of TMDs

〈xn−2lk2l
⊥ 〉F ≡

∫ 1

−1
dx xn−2l

∫
d2k⊥ k2l

⊥ F (x, k2
⊥) . (2.13)

In the case of very soft distributions which vanish faster than
any power of 1/k2

⊥ for large k⊥, all the combined moments
〈xn−2lk2l

⊥ 〉F are finite and Eq. (2.12) tells us that then 〈yn〉Q dif-
fers from 〈xn〉 f by terms having the (〈k2

⊥〉F /P
2)l structure.

Two lowest moments n = 0 and n = 1 do not involve l ≥ 1
terms. For the normalization integral, Eq. (2.12) gives∫ ∞

−∞

dy Q(y, P) =

∫ 1

−1
dx

∫
d2k⊥ F (x, k2

⊥)

=

∫ 1

−1
dx f (x) . (2.14)

Thus, the area under Q(y, P) does not change with P and is
equal to the area under f (x), the phenomenon corresponding to
the quark number conservation.

Similarly, the first y-moment is given by∫ ∞

−∞

dy y Q(y, P) =

∫ 1

−1
dx x f (x) , (2.15)

which corresponds to the momentum conservation.

3. Hard part

3.1. Perturbative evolution

In renormalizable theories (most importantly, in QCD, but
also in models with Yukawa gluons), the TMD F (x, k2

⊥) must
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have a hard part that has the 1/k2
⊥ behavior for large k⊥. For

non-singlet densities in QCD, it is given at one loop by

F hard(x, k2
⊥) =

∆(x)
πk2
⊥

, (3.1)

where ∆(x) is obtained from the PDF f soft(x) (corresponding to
a primordial soft TMD) through

∆(x) =
αs

2π
CF

∫ 1

x

du
u

B(u) f soft(x/u) , (3.2)

and B(u) is the Altarelli-Parisi (AP) evolution kernel [13]

B(u) =

[
1 + u2

1 − u

]
+

. (3.3)

If one calculates the combined moments 〈xn−2lk2l
⊥ 〉F for the

hard term, they diverge, starting from the lowest l = 0 moment
in k2

⊥. In the l = 0 case, the divergence is logarithmic. Let us
see that it just reflects the fact that the quasi-PDF Q(y, P) for
large P in this case has the logarithmic perturbative evolution
with respect to P2. To begin with, we write the hard part in the
coordinate representation

Phard(x, z2
3) = − ln(z2

3m2)∆(x) , (3.4)

where m is some infrared regularization scale. Rewriting the
quasi-PDF definition in terms of the pseudo-ITD as

Q(y, P) =
1

2π

∫ ∞

−∞

dν e−iyνM(ν, ν2/P2) . (3.5)

we find that

Mhard(ν, ν2/P2) = −
αs

2π
CF ln(ν2m2/P2)

×

∫ 1

0
du B(u)

∫ 1

−1
dx e−iuxν f soft(x) . (3.6)

As a result, the hard part of the quasi-PDF Q(y, P) has the evo-
lution ln P2 part

Qev(y, P) = ln(P2/m2) ∆(y) . (3.7)

Comparing with Eq. (3.1), we conclude that, calculating the
evolution part, one should cut-off the k⊥ integral at |k⊥| ∼ P
values, so that it is given by

Qev(y, P) =

∫
|k⊥ |.P

d2k⊥ F hard(y, k2
⊥) ' ln(P2) ∆(y) . (3.8)

3.2. Two lowest moments

As we have seen, for very soft distributions, the n = 0 and
n = 1 moments of quasi-PDF Q(y, P) coincide with these mo-
ments of the PDF f (x). To proceed with the hard part, we use∫ 1

0
dx xn ∆(x) = −

αs

2π
CF γn

∫ 1

0
dζ ζn f soft(ζ) , (3.9)

where γn are related to anomalous dimensions of operators with
n derivatives,

γn = −

∫ 1

0
du un B(u) . (3.10)

Thus, for the zeroth moment of Qev(y, P), the coefficient in front
of ln P2 is proportional to the anomalous dimension γ0 of the
vector current. Since γ0 vanishes, the area under Q(y, P) does
not change with P and is equal to the area under f (x), the phe-
nomenon corresponding to the quark number conservation.

Similarly, the first y-moment of the hard part of Q(y, P)
has the ln P2 part proportional to the anomalous dimension
γ1 = 4/3 that is nonzero. This reflects the fact that the quark-
gluon interactions change the momentum carried by the quarks,
and only the total momentum of quarks plus gluons is con-
served in the evolution process.

3.3. Higher moments and large-|y| behavior

The y2-moment is given by

〈y2〉Q = 〈x2〉F +
〈k2
⊥〉F

2P2 , (3.11)

where

〈k2
⊥〉F =

∫ 1

−1
dx

∫
d2k⊥ k2

⊥ F (x, k2
⊥) . (3.12)

When F (x, k2
⊥) vanishes faster than 1/k4

⊥ for large k⊥, the
k⊥-integral converges. Then the difference between 〈y2〉Q and
〈x2〉F decreases as 〈k2

⊥〉F /2P2 for large P.
However, for a hard ∼ 1/k2

⊥ TMD, the 〈k2
⊥〉F integral di-

verges quadratically. If, by analogy with Eq. (3.8), we would
set the upper limit of k⊥ integration to be proportional to P, the
k2
⊥-weighted integral (3.12) would be proportional to P2.

Because of the compensation of the initial 1/P2 suppression
factor by the P2 factor resulting from the quadratic divergence
of the k⊥-integral, the contribution of the 〈k2

⊥〉F /2P2 term does
not disappear in the P → ∞ limit. One may also argue that, on
the lattice, the upper limit on the k⊥ integral may be set by the
lattice spacing. Then, a cut-off for the k⊥ integral at the ∼ 1/a
value would result in a ∼ 1/a2P2 contribution.

These worries have been formulated in recent papers by G.C.
Rossi and M. Testa [6, 7], who warned that one might need to
perform a nonperturbative subtraction of such terms in lattice
calculations. The questions raised in Ref. [6] have been sub-
sequently addressed by X. Ji et al. in Ref. [14], who stated
that the extraction of PDFs does not involve taking moments
of quasi-PDFs. It was also argued that the moments of quasi-
PDFs do not exist because Q(y, P) decreases as 1/|y| for large y.
While we agree with these statements in general, we think that
the problem deserves a more detailed investigation.

3.4. Sources of z2 dependence

As we discussed already, the |y| > 1 parts of quasi-PDFs
Q(y, P) are generated by the z2

3-dependence of the ITDM(ν, z2
3).

In particular, for large z2
3, M(ν, z2

3) has a fast decrease with
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z3. This reflects a finite size of the system. Such a behavior
should appear in any reasonable theory/model used to describe
hadrons.

The second type of the z2
3-dependence appears in renormal-

izable theories. As already mentioned, then P(x,−z2) and
M(ν,−z2) contain, for small −z2, the terms ∼ ln(−z2) corre-
sponding to the ∼ 1/k2

⊥ hard tail of F (x, k2
⊥). The tail is gen-

erated by hard gluon exchanges and is proportional to a small
parameter αs/π ∼ 0.1.

Finally, in QCD (and other gauge theories), there is the third
source of the z2-dependence related to some special contribu-
tions originating from the gauge link. These contributions van-
ish on the light cone z2 = 0, but do not vanish for spacelike
z2. Moreover, they contain link-specific UV divergencies, sim-
ilar to those one encounters in the heavy-quark effective theory
(HQET). Let us discuss these types of z2-dependence.

3.4.1. Long-distance z2-dependence
To begin with, P(x, z2

3) describes a finite-size system (more-
over, a system of confined quarks). Hence, it should rapidly
decrease for large z3, say, like a Gaussian ∼ e−z2

3/R
2

or an ex-
ponential ∼ e−z3/R (one may choose here one’s own favorite
model), where R characterizes the size of the system. A fi-
nite size of the system imposes no requirements on the behavior
of P(x, z2

3) for small z2
3. Such a behavior is determined by the

short-distance dynamics. In a model involving just soft inter-
actions, one would expect that P(x, z2

3) is finite in the z3 → 0
limit, like in the Gaussian and exponential cases. Then one may
simply take z3 = 0 in P(x, z2

3) to get f (x).

3.4.2. Evolution-related z2
3-dependence

Since the small-z2 limit in QCD is perturbative, one would
expect that the only singularities of P(x,−z2) for z2 = 0 are
those generated by perturbative corrections. As already men-
tioned, at one loop one gets ∼ αs ln(−z2) terms. Hence, it makes
sense to treat P(x,−z2) as a sum of a “primordial” soft part
Psoft(x,−z2) that has a finite z2 → 0 limit, and a logarithmi-
cally singular hard part reflecting the evolution, and generated
by hard gluon corrections to the original purely soft function.
The same applies toM(ν,−z2).

A singularity at z2 = 0 means that the lightcone object
M(ν,−z2 = 0) is a divergent quantity. In perturbative calcula-
tions, the ln(−z2) singularities convert into ultraviolet logarith-
mic divergences. These UV divergences are then additional to
the usual UV divergences related to the propagator and vertex
renormalization.

Still, as far as z2 is kept finite, one does not have these ad-
ditional UV divergences, and does not need to introduce a reg-
ularization for the ψ̄(0) . . . ψ(z) operator. One should deal with
the usual UV divergences and their renormalization only. Such
a renormalization (characterized by some parameter λ) would
produce just a trivial Zψ(λ/m) renormalization factor for the ψ-
fields (m being an infrared cut-off, say, a mass of the ψ field).
This factor is the same whether z is on the light cone or not.

Except for this trivial dependence on the UV cut-off λ, the
pseudo-ITDs M(ν,−z2) in a general renormalizable (but non-
gauge) theory, depend on ν and z2 only. The ln z2 terms are

just a particular form of the z2-dependence, and they do not
require any regularization as far as z2 is finite, which is the case
in lattice simulations.

Theoretically, one may take z on the light cone. Then one
should regularize the resulting extra UV divergences in some
way, e.g., by imposing a momentum cut-off or by incorporating
the MS scheme, etc. The resulting lightcone ITD I(ν, µ2)

I(ν, µ2) =

∫ 1

−1
dx eixν f (x, µ2) (3.13)

introduced in Ref. [10] naturally depends on the parameter µ
involved in the regularization of these ultraviolet divergencies
generated by taking ln z2 for z2 = 0.

3.4.3. UV singular terms generated by the gauge link
Furthermore, in QCD, the gauge link factor connecting ψ̄(0)

and ψ(z) generates contributions that are absent on the light
cone, and moreover, are ultraviolet divergent. These diver-
gences may be regularized using, e.g., the Polyakov prescrip-
tion [15] 1/z2 → 1/(z2 − a2) for the gluon propagator in the
coordinate space. Then one finds that, for a fixed UV cut-off a,
these terms vanish in the z2

3 → 0 limit, like |z3|/a for the linear
UV divergence and like ln(1 + z2

3/a
2) for the logarithmic one.

That is why such terms are invisible on the light cone. Hence,
we must make an effort to completely exclude these terms from
M(ν, z2

3). We emphasize that we need to eliminate the terms
invisible in the light-cone limit even if they are UV finite.

As a matter of fact, in QCD they are UV divergent, and
one should add the regularization parameter (a in this case)
to the argument of the regularized pseudo-ITD: M(ν,−z2) →
M(ν,−z2; a). These UV divergences are similar to those known
from the HQET studies, and are multiplicatively renormalizable
[16, 17, 18]). Since the parameter a appears only in the com-
bination z3/a, the UV-sensitive terms form a factor Z(z2

3/a
2).

As discussed above, this factor is an artifact of having a non-
lightlike z, and has nothing to do with the lightcone PDFs.
Thus, constructing the latter, we should exclude Z(z2

3/a
2) from

the pseudo-ITD M(ν, z2
3; a). In other words, one should build

quasi-PDFs from the modified function Z−1(z2
3/a

2)M(ν, z2
3; a).

By construction, Z−1(z2
3/a

2)M(ν, z2
3; a) does not have a → 0

UV divergences. These UV divergences, were considered as
the main problem in many recent papers [17, 16, 18, 19]. How-
ever, if the goal is just to remove the divergences, then one may
use any combination of the Z−1(1/µ2

UVa2)M(ν, z2
3; a) type for

the renormalized ITD. But the result then will have the depen-
dence on the renormalization scale µUV. The renormalized ITD
will also contain the z2

3-dependence of the Z(z2
3/a

2)-factor, that
should be excluded in the construction of the light-cone PDFs.
In the approaches of Refs. [17, 18, 19], this is done at the final
stage, when the matching conditions are applied.

We argue, that it is more beneficial, from the very beginning,
to remove the UV divergences together with the associated z2

3-
dependence. This may be done by multiplyingM(ν, z2

3; a) with
the Z−1(z2

3/a
2) factor. Another possibility, proposed in our pa-

5



per [8], is to use the reduced pseudo-ITD

M(ν, z2
3; a) ≡

M(ν, z2
3; a)

M(0, z2
3; a)

. (3.14)

Then the UV-sensitive factor Z(z2
3/a

2) cancels in the ratio
(3.14), since it is ν-independent. The Zψ(λ/m) factors reflecting
the anomalous dimensions of the ψ fields also cancel in the ratio
(3.14). The resulting function has a finite a → 0 limit, which
will be denoted by M(ν, z2

3). This function does not depend on
any UV cut-off or a UV renormalization scale like µUV.

Thus, for the reduced ITD M(ν, z2
3), there are just two sources

of the z2
3-dependence: the long-distance nonperturbative depen-

dence reflecting the finite size of the system, and the short-
distance perturbative ∼ ln z2

3 dependence related to the usual
perturbative evolution. In this sense, the reduced pseudo-ITD
M(ν, z2

3) in QCD has the z2
3-structure similar to that in non-

gauge renormalizable theories, in which we also have just two
first types of the z2

3-dependence.

4. Matching

4.1. OPE and matching conditions for ITDs
The relations for the moments, like the formula (3.11) for

〈y2〉Q, and the general formula (2.12), that have been used in
our preceding discussion, are based on the Taylor expansion of
P(x, z2

3) over z2
3. Rossi and Testa in Refs. [6, 7] also appeal to a

Taylor expansion in z3. While this may be reasonable in a very
soft case (in which all the derivatives with respect to z2

3 exist),
it is clear that to use the Taylor expansion at z2

3 = 0 for the hard
logarithm ln z2

3 amounts to just asking for trouble.
If one needs to calculate a quasi-PDF corresponding to the

ln z2
3 part of the matrix element, one can do this by simply cal-

culating the Fourier transform of Eq. (2.4) rather than to use a
Taylor expansion.

When ln(−z2) terms are present, a formal light-cone limit
z2 → 0 is singular. This fact is perceived as an ultraviolet diver-
gence in the Feynman integrals for operators on the light cone.
It is worth repeating once more that these UV divergences are a
consequence of our desire to take z2 = 0. As far as z2 is finite,
these divergences are absent.

For z2 = 0, we need to arrange an UV cut-off for these hand-
made divergences. Using, say, the dimensional regularization
and MS scheme, one would define the light-cone ITD I(ν, µ2).
Its connection to the pseudo-ITD M(ν, z2

3) is given by the op-
erator product expansion (OPE). At one loop in QCD, we have
[14, 19, 20, 21]

M(ν, z2
3) =I(ν, µ2) −

αs

2π
CF

∫ 1

0
duI(uν, µ2)

×

{
B(u)

[
ln

(
z2

3µ
2 e2γE

4

)
+ 1

]
+

[
4

ln(1 − u)
1 − u

− 2(1 − u)
]
+

}
+ O(z2

3) . (4.1)

The OPE tells us that, for small z2
3, the dependence of

M(ν, z2
3) on z2

3 must be given by the ln z2
3 term on the right-hand

side. Hence, to get the light-cone ITD I(ν, µ2) from, say, lattice
calculations of M(ν, z2

3), one should subtract from the lattice
pseudo-ITD M(ν, z2

3) its perturbative ln z2
3 part present in the

r.h.s. of Eq. (4.1). For an appropriately chosen/fitted αs, the
result of such a subtraction should be z2

3-independent.

4.2. Matching conditions for quasi-PDFs

Multiplying Eq. (4.1) by Pe−iyz3P and integrating over z3, we
get a relation between the quasi-PDF Q(y, P) and the light cone
PDF f (x, µ2). It has the following structure

Q(y, P) = f (y, µ2) −
αs

2π
CF

∫ 1

0

dw
w

f (y/w, µ2)

×
{
B(w) ln

(
µ2/P2

)
+ C(w)

}
+
αs

2π
CF

∫ 1

−1
dx f (x, µ2) L(y, x) + O(1/P2) , (4.2)

where the kernel L(y, x; P) is formally given by

L(y, x) =
P
2π

∫ 1

0
du B(u)

×

∫ ∞

−∞

dz3 e−i(y−ux)z3P ln(z2
3 P2) . (4.3)

It involves the Fourier transform of ln z2
3 and it is the only term

that produces contributions in the |y| > 1 region. Eq. (4.2) tells
us that the quasi-PDF Q(y, P) must haveO(αs) perturbative con-
tributions in the |y| > 1 region. In actual lattice calculations it
is desirable (though challenging) to try to check if the lattice
quasi-PDF in the |y| > 1 region is indeed close to the convolu-
tion of the fitted PDF with the L-kernel.

For large P, these perturbative terms will be the only ones re-
maining for |y| > 1. This means that extracting the PDF f (y, µ2)
from the lattice data for Q(y, P), one deals with the combination

Q̃(y, P) ≡ Q(y, P) −
αs

2π
CF

∫ 1

−1
dx f (x, µ2) L(y, x) , (4.4)

that vanishes in the |y| > 1 region for large P (provided that
we trust perturbative QCD!). We may say that the f ⊗ L con-
tribution cancels the perturbative slow-decreasing terms of the
|y| > 1 part of Q(y, P). After that, all the remaining terms in Eq.
(4.2) have the |y| ≤ 1 support.

In other words, the process of getting MS PDFs from quasi-
PDFs involves a subtraction of perturbative |y| > 1 contribu-
tions generated by the ln z2

3 term.

4.3. Hard part of quasi-PDFs in the |y| ≥ 1 region

An evident and important observation from the study of the
hard contribution is that the quasi-PDFs do not simply convert
into the usual PDFs in the large-P limit. This is true only for
soft TMDs and quasi-PDFs generated from them.

When the hard part is included, Q(y, P) contains the terms
that are not present in the lightcone PDFs and which are, more-
over, finite (for a fixed αs) in the P → ∞ limit. Such terms
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appear both in the “canonical” −1 ≤ y ≤ 1 region and, most im-
portantly, outside it. The presence of such terms was known
since the first papers on quasi-PDFs [2, 3].

In the context of pseudo-PDFs, these terms are generated by
the Fourier transform of the ln z2

3 hard term. In the momentum
representation, ln z2

3 corresponds to the 1/k2
⊥ behavior, which

needs some IR regularization. Let us choose the mass-type
modification 1/k2

⊥ → 1/(k2
⊥ + m2). Then ln(z2

3) → −2K0(z3m),
and we have (see Ref. [20])

Qhard(y, P) = CF
αs

2π

∫ 1

−1

dx
|x|

R(y/x,m2/x2P2) f soft(x) , (4.5)

where the kernel R(η,m2/P2) is given by

R(η; m2/P2) =

∫ 1

0
du

B(u)√
(η − u)2 + m2/P2

. (4.6)

As usual, the region x > 0 corresponds to quarks, while x < 0
to antiquarks. It makes sense to separate these regions. Con-
sider the case when f (x) is nonzero for positive x only. For η,
we need then to analyze three regions, η < 0, 0 ≤ η ≤ 1 and
η > 1. In the central 0 ≤ η ≤ 1 region, the P → ∞ limit is sin-
gular, reflecting the presence of the evolution ∼ ln P2/m2 term
(3.7). There are also terms

Rmiddle(η) =
1 + η2

1 − η
log

[
η(1 − η)

]
+

3/2
1 − η

+ 4
log(1 − η)

1 − η
− 1 + 2η (4.7)

that are independent of P in the P→ ∞ limit. For y outside the
0 ≤ y ≤ 1 segment, we can neglect m2/P2 in the P → ∞ limit
and get

Qhard,out(y, P→ ∞) =
αs

2π
CF

∫ 1

0

dx
x

R(y/x; 0) f soft(x) , (4.8)

with the kernel R(η; 0) specified by

R(η; 0) =

∫ 1

0

du
|η − u|

B(u) . (4.9)

At first sight, one would expect a ∼ 1/|η| behavior for large |η|
from Eq. (4.9). However, the 1/|η| term is accompanied by the
integral of B(u) which vanishes because of the plus-prescription
structure of B(u). This is also the reason why γ0 in Eq. (3.10)
vanishes. Hence, in the region η > 1, we can write the kernel as
a series in 1/η starting with n = 1,

R(η > 1; 0) = −

∞∑
n=1

γn

ηn+1 , (4.10)

or, in a closed form,

R(η; 0)|η>1 =
1 + η2

η − 1
ln

(
η − 1
η

)
+

3
2(η − 1)

+ 1 . (4.11)

Similarly, for negative values, we have the expansion

R(η < −1; 0) =

∞∑
n=1

γn

ηn+1 , (4.12)

and a closed-form expression

R(η; 0)|η<0 =
1 + η2

1 − η
ln

(
1 − η
−η

)
+

3
2(1 − η)

− 1 . (4.13)

According to Eq. (3.10), we have γ1 = 4/3. Thus, the asymp-
totic behavior for large |η| is given by

R(η; 0)||η|�1 = −
4
3

sgn(η)
η2 + O(1/η3) . (4.14)

The ∼ sgn(η)/η2 behavior of R(η) translates into the
∼ sgn(y)/y2 behavior of the quasi-PDF Q(y, P) for large values
of |y|. As a result, the y0 moment of Q(y, P) converges for large
|y|, while further moments involve divergences, in agreement
with observations made in Sect. 3.2 . In particular, the y2 mo-
ment involves a linear divergence. If B(u) would not have the
plus-prescription property, the divergence would be quadratic.
This agrees with the estimate made in Sect. 3.3.

Hence, the divergences of the k⊥ integrals discussed in the
Taylor-expansion-based treatment of Ref. [6] correspond to the
presence of the P-independent terms ∼ 1/y2 in the hard part of
the quasi-PDFs Q(y, P) outside of the 0 ≤ y ≤ 1 region.

As we discussed, the ln z2
3 part of the pseudo-ITDs con-

tributes slowly-decreasing (∼ 1/y or ∼ 1/y2) terms into the
|y| > 1 part of quasi-PDFs. It is these terms that lead to the
divergence of the yn moments of the quasi-PDFs Q(y, P).

These terms are not eliminated by just taking the P → ∞

limit. However, these perturbatively generated terms disappear
when one extracts f (y, µ2) using the matching condition (4.2).
As a result, one can calculate the yn moments of the light-cone
PDFs f (y, µ2) using Eq. (4.2) without getting divergences in its
right-hand side.

Since both the soft part of Q(y, P) and the Q̃(y, P) combina-
tion vanish for |y| > 1 in the P→ ∞ limit, Eq. (4.2) resolves the
problem of the support mismatch between f (y, µ2) and Q(y, P).

5. Summary and conclusions

In this paper, we discussed a specific feature of the quasi-
PDFs Q(y, P3) in which they differ from the usual PDFs f (x),
namely, the presence of terms outside the |y| ≤ 1 region.

In a model with a transverse momentum cut-off, such terms
disappear in the P→ ∞ limit. However, in renormalizable the-
ories, including QCD, one has |y| > 1 terms persisting (for a
fixed αs) even in the P → ∞ limit. These terms have a pertur-
bative origin that may be traced to the ln z2

3 singularities of the
generating matrix element 〈p|ψ̄(0) . . . ψ(z3)|p〉.

Since one knows that such terms, absent in the light-cone
PDFs f (x) must be present in the quasi-PDFs Q(y, P3), one
should just subtract them from Q(y, P3) obtained on the lat-
tice. The resulting “reduced” quasi-PDF QR(y, P) for large P
has support in the canonical region |y| ≤ 1 only.
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In actual lattice PDF extractions, a simple practical recipe is
to ignore the |y| > 1 region altogether and operate with Q(y, P)
obtained in the |y| ≤ 1 region only.

A related practical question is if one needs at all to use the
quasi-PDF method for lattice extractions of PDFs? Do we re-
ally need to work with the functions that have support outside
the canonical |y| ≤ 1 region?

According to the OPE (4.1), the reduced pseudo-ITD
M(ν, z2

3), a function directly coming “from the computer” may
be used, without intermediaries, to extract the light cone ITDs
I(ν, µ2), i.e. the Fourier transforms of the lightcone PDFs
f (x, µ2). Such an approach has been already applied in the ex-
ploratory lattice calculation [22] and the construction [21] of
MS ITD I(ν, µ2) based on its results.
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