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We use Regge phenomenology to study the structure of the poles of the N∗ and ∆∗ spectrum.
We employ the available pole extractions from partial wave analysis of meson scattering and pho-
toproduction data. We assess the importance of the imaginary part of the poles (widths) to obtain
a consistent determination of the parameters of the Regge trajectory. We compare the several pole
extractions and we show how Regge phenomenology can be used to gain insight in the internal
structure of baryons. We find that the majority of the states in the parent Regge trajectories are
compatible with a mostly compact three-quark state picture.

I. INTRODUCTION

The baryon spectrum is one of the main tools for in-
vestigation of the nonperturbative QCD phenomena. In
particular, the low-lying non-strange sector containing
the N∗ and ∆∗ resonances, which is accessible in pion-
nucleon scattering and photoproduction experiments, is
a primary source of insights into the quark model. The
goal of baryon spectroscopy is to understand the origin
and structure of resonances, e.g. to establish if a given
resonance can be classified as compact three quark (3q)
state, as predicted by the quark model or that it has other
hadronic components. This is often done through partial
wave analyses, with resonances appearing in individual
partial waves that are independently parametrized to fit
the data. Such analyses miss global constraints imposed
by the Regge theory that connect partial waves through
analyticity in the angular momentum plane [1–3]. Ac-
cording to Regge theory, resonances appear as poles in
the angular momentum plane. The pole location, which
changes as a function of the resonance mass and defines
the so-called Regge trajectory, can be used to study the
microscopic mechanisms responsible for resonance forma-
tion [4–7].

The most noticeable feature of the hadron spectrum
is that its Regge trajectories are approximately linear
as shown by Chew and Frautschi [8]. The patterns im-
plied by the Chew-Frautschi plot can be used to guide
partial wave analyses. For example, gaps in the trajecto-
ries hint to missing states. The approximate linearity of
Regge trajectories is one the strongest phenomenological
indications of confinement [9] and therefore states be-
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longing to linear trajectories are expected to be closely
connected to quark model predictions [10, 11]. Reso-
nance decays, modify trajectories and introduce imagi-
nary parts. These are constrained by unitarity, analyt-
icity and are related to resonance widths [12]. Conse-
quently, Regge trajectories are a mapping of the com-
plex energy plane, the s-plane, onto the complex angu-
lar momentum, the J plane. The linear curves that are
shown on the Chew-Frautschi plots are the projections of
the actual Regge trajectories onto the (<[s],<[J ]) plane,
and as such do not contain information about the imag-
inary part of the pole, i.e. the resonance width. In
the past, resonance poles were often not computed and,
with a few exceptions [13, 14], fits to the Chew-Frautschi
plots gave the only information about the Regge trajec-
tory. Constituent quark model predictions for hadron
masses adhere nicely to the approximately linear behav-
ior both in the baryon [15–22] and the meson [22–25]
sectors. Flux tube models of baryons also provide linear
trajectories [26–28].

In this article, following the analysis of the strange
baryon sector [6] we use Regge phenomenology to study
the N∗ and ∆∗ spectra. Resonance pole masses and
widths are nowadays more prominently featured in the
Particle Data Group (PDG) tables [29]. This is because,
in the last years, amplitude analyses have become more
sophisticated enabling for extraction of resonance poles
from the experimental data. We fit complex Regge tra-
jectories to the spectra obtained by several partial wave
analyses [30–36] of meson scattering and photoproduc-
tion data. The objectives of this article are: (i) to pro-
vide a comprehensive comparison of the different N∗ and
∆∗ pole extractions based on Regge phenomenology; (ii)
to assess the impact of neglecting the imaginary part of
the poles in the computation of the Regge trajectory, in
particular in the extraction of the slope parameter that
can be compared to the one used in fits to the high energy
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proton-antiproton data [37]; and (iii) to guide future N∗

and ∆∗ pole extractions [38–40]. The paper is organized
as follows. In Sec. II we review the N∗ and ∆∗ spectra
available in the literature that will be used in our analy-
sis. In Sec. III we describe the phenomenological models
used to fit the spectrum and in Sec. IV we explain the
fitting procedure, present the results and discuss the sta-
tistical analysis. Conclusions are given in Sec. V.

II. N∗ AND ∆∗ POLE EXTRACTIONS

For a given spin and parity, resonance pole positions
sp are extracted from partial wave amplitudes analyti-
cally continued off the real energy axis to the unphysical
Riemann sheet. On the real axis the partial wave am-
plitudes are fitted to the data on meson-nucleon scatter-
ing and meson photoproduction. This procedure carries
uncertainties associated to the experimental data (sys-
tematic and statistical), the partial wave analysis model
itself, and the analytic continuation to the complex en-
ergy plane. The differences among models in the pole
extractions reflect on some of these uncertainties and
model dependencies. In Tables I-IV we list the poles
that, in principle, conform the leading (parent), i.e. the
trajectory composed by the lowest mass states for each
spin-parity assignment, N∗ and ∆∗ Regge trajectories,
classified according to isospin I, naturality η (η = +1 if
P = (−1)Jp−1/2 and η = −1 if P = −(−1)Jp−1/2 where
P is the parity and Jp is the spin of the resonance), and
signature τ (η = τP ). The quantum numbers identify a
given Iη(τ) trajectory, e.g. the trajectory which contains

N(939) (the nucleon) corresponds to Iη(τ) = 1
2

+

(+)
. Phe-

nomenologically, it is observed that the leading Regge
trajectories that differ only by signature are (almost) de-
generate, i.e. odd (τ = −) and even (τ = +) signa-
tures have the same trajectory. For subleading trajecto-
ries there is often not enough information to disentangle
both signatures. We use seven sets of resonance poles
extracted from the following analyses:

(i) CMB: Pole parameters from the Carnegie-Mellon-
Berkeley πN partial wave analysis of [30, 31] as
quoted by the PDG [29];

(ii) JüBo: Pole parameters from [32] using the Jülich-
Bonn 2017 coupled-channel model. The resonance
spectrum is obtained from a combined analysis of η,
π and KΛ photoproduction off the proton together
with the reactions πN → πN , ηN , KΛ and KΣ;

(iii) BnGa: Pole parameters given in [33, 34] from the
Bonn-Gatchina multichannel partial wave analysis
of πN elastic scattering data and pion and photo-
induced inelastic reactions;

(iv) SAID(SE): Pole parameters obtained in [35] from
a fit to the single-energy SAID-GW WI08 par-

tial waves of πN elastic scattering [41] using the
Laurent+Pietarinen (LP) approach;

(v) SAID(ED): Poles extracted in [35] from the
energy-dependent SAID-GW WI08 partial waves
of πN elastic scattering [41] also using the LP ap-
proach;

(vi) KH80: Pole extracted in [36] from the Karlsruhe-
Helsinki KH80 [42] partial wave analysis of πN elas-
tic scattering employing the LP approach; and

(vii) KA84: Pole extracted in [36] from the Karlsruhe
KA84 [43, 44] partial wave analysis of πN elastic
scattering employing the LP approach.

Other pole extractions are available in the literature.
These include, the speed plot extraction from πN → πN
amplitudes by Höhler [45]; the SAID pole parameters
given in [35] obtained from the SAID-GW WI08 partial
wave analysis of πN elastic scattering [41]; the Kent State
University (KSU) pole extraction in [46] using a mul-
tichannel parametrization of πN scattering amplitudes;
the Pittsburgh-Argonne National Lab (P-ANL) pole ex-
traction in [47]; the Giessen group coupled-channel anal-
ysis of η production and photoproduction data on the
proton [48]; the Argonne National Lab-Osaka (ANL-O)
amplitude analysis of πN → πN , ηN , KΛ, KΣ and
γN → πN , ηN ,KΛ, KΣ data [49]; and the Zagreb anal-
ysis in [50] based on the CMB coupled-channel approach;
Höhler, SAID, KSU, P-ANL, Giessen and ANL-O do not
provide uncertainties in their pole extractions and the Za-
greb group analysis only studies the N∗ spectrum, hence,
we choose not to include them in our work. Also, we do
not include superseded pole extractions within the same
reaction models.

In Fig. 1 we show the Chew-Frautschi plots
(<[sp],<[J ] = Jp) for the N∗ and ∆∗ resonances, and
Fig. 2 displays the (=[sp],<[J ] = Jp) plots introduced
in [6]. These figures provide a qualitative description of
the spectrum. We note the spectrum exhibits the ap-
proximate linear behavior in (<[sp], Jp) and the square
root-like behavior in (=[sp], Jp). This was also observed
in the spectrum of the hyperons [6]. We defer the dis-
cussion of the plots to Sec. IV, where we present the
quantitative analysis of the spectrum.

III. MODELS FOR THE PARENT REGGE
TRAJECTORIES

In what follows the working hypothesis is that the
square-root-like behavior displayed in Fig. 2 is the leading
singularity of the trajectories as implied by unitarity [51].
This stems from the fact that the leading two-body decay
channels,i.e. those that account for most of the cross sec-
tion, give the imaginary part proportional to the relative
momentum q ∼

√
s− st, where s is the two-body invari-

ant mass squared and st is the threshold. Contribution
from multi-body final states can effectively be absorbed



3

Table I. Summary of pole positions Mp,Γp in MeV for Iη = 1
2

+
states where Mp = <√sp and Γp = −2=√sp. I stands for

isospin, η for naturality, Jp for spin, and P for parity. Naturality and parity are related by η = τP where τ is the signature.
For baryons, η = +1, natural parity, if P = (−1)Jp−1/2, and η = −1, unnatural parity, if P = −(−1)Jp−1/2.

Name N(939) N(1520) N(1680) N(2190) N(2220)

Status **** **** **** **** ****

Iη(τ) J
P
p

1
2

+

(+)
1/2+ 1

2

+

(−)
3/2− 1

2

+

(+)
5/2+ 1

2

+

(−)
7/2− 1

2

+

(+)
9/2+

CMB 939(1), 0 1510(5), 114(10) 1667(5), 110(10) 2100(50), 400(160) 2160(80), 480(100)

JüBo 939(1), 0 1509(5), 98(3) 1666(4), 81(2) 2084(7), 281(6) 2207(89), 659(140)

BnGa 939(1), 0 1507(3), 111(5) 1676(6), 113(4) 2150(25), 325(25) 2150(35), 440(40)

SAID(SE) 939(1), 0 1512(2), 113(6) 1678(4), 113(3) 2132(24), 550(25) 2173(7), 445(21)

SAID(ED) 939(1), 0 1515(2), 109(4) 1674(3), 114(7) 2060(11), 521(16) 2177(4), 464(9)

KH80 939(1), 0 1506(2), 115(3) 1674(3), 129(4) — 2127(27), 380(29)

KA84 939(1), 0 1506(2), 116(4) 1672(3), 132(5) — 2139(6), 390(7)

Table II. Summary of pole positions Mp,Γp in MeV for Iη = 1
2

−
states. Notation as in Table I.

Name N(1720) N(1675) N(1990) N(2250)

Status **** **** ** ****

Iη(τ) J
P
p

1
2

−
(−)

3/2+ 1
2

−
(+)

5/2− 1
2

−
(−)

7/2+ 1
2

−
(+)

9/2−

CMB 1680(30), 120(40) 1660(10), 140(10) 1900(30), 260(60) 2150(50), 360(100)

JüBo 1689(4), 191(3) 1647(8), 135(9) 2152(12), 225(20) 1910(53), 243(73)

BnGa 1670(25), 430(100) 1655(4), 147(5) 1970(20), 250(20) 2195(45), 470(50)

SAID(SE) 1668(24), 303(58) 1661(1), 147(2.4) 2157(62), 261(104) 2283(10), 304(31)

SAID(ED) 1659(11), 303(19) 1657(3), 139(5) — 2224(5), 417(10)

KH80 1677(5), 184(9) 1654(2), 125(4) 2079(13), 509(23) 2157(17), 412(51)

KA84 1685(5), 178(9) 1656(1), 123(3) 2065(14), 526(9) 2187(7), 396(25)

into model parameters. Near a Regge pole, partial wave
amplitudes are proportional to

t`(s) ∝
1

`− α(s)
, (1)

where α(s) is the Regge trajectory and ` is the total angu-
lar momentum of the partial wave. This can be compared
to the Breit-Wigner amplitude close to the sp pole under
the approximation of elastic two-body scattering,1

t`(s) ∝
g2

M2 − s− i g2ρ(s, st)
, (2)

where M is real, sometimes referred to as the Breit-
Wigner mass. Resonance decay is determined by g2,
which can be used to define coupling to open channels
and ρ(s, st) which is the phase space factor. With the
determination of ρ(s, st) that is analytical across the real
axis for s > st one finds poles of t`(s) located on the lower

1 We note that both Eqs. (1) and (2) are written in the second
Riemann sheet of the complex s plane, where the resonant poles
in the amplitude appear.

half s-plane that are analytically connected to the phys-
ical region at s + iε. How deep a pole is in the complex
plane depends on two factors, the dynamics of QCD and
the phase space. The phase space dependence ρ(s, st) is
explicitly built in through unitarity and QCD dynamics
are hidden in the parameters, M and g. At the pole sp,
Eqs. (1) and (2) have to be equal, hence

`− α(sp) =
M2

g2
− sp
g2
− iρ(sp, st) = 0 . (3)

This equation is used to relate the imaginary part of the
Regge trajectory to resonance decay parameters. With-
out loss of generality, we can parametrize the Regge tra-
jectory as [6, 52, 53]

α(s) = α0 + α′s+ i γ φ(s, st) , (4)

where α0, α′ and γ are real constants, and φ(s, st) con-
tains information about resonance decay. The slope α′

is often related to the tension of the confining string in
flux tube models [26–28] and to the range of the strong
interaction in Veneziano models [54]. The square-root-
like behavior in Fig. 2 hints that ρ(s, st) is the dominant
component of φ(s, st). Hence, as a first approximation,
we can model γφ(s, st) = ρ(s, st), and fit the trajectory
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Table III. Summary of pole positions Mp,Γp in MeV for Iη = 3
2

+
states. Notation as in Table I.

Name ∆(1700) ∆(1905) ∆(2200) ∆(2300)

Status **** **** *** **

Iη(τ) J
P
p

3
2

+

(−)
3/2− 3

2

+

(+)
5/2+ 3

2

+

(−)
7/2− 3

2

+

(+)
9/2+

CMB 1675(25), 220(40) 1830(40), 280(60) 2100(50), 340(80) 2370(80), 420(160)

JüBo 1667(28), 305(45) 1733(47), 435(264) 2290(132), 388(204) —

BnGa 1685(10), 300(15) 1800(6), 290(15) — —

SAID(SE) 1646(11), 203(17) 1831(7), 329(17) — —

SAID(ED) 1652(10), 248(28) 1814(5), 273(9) — —

KH80 1643(9), 217(18) 1752(5), 346(8) — —

KA84 1616(5), 280(9) 1790(5), 293(12) — —

Table IV. Summary of pole positions Mp,Γp in MeV for Iη = 3
2

−
states. Notation as in Table I.

Name ∆(1232) ∆(1930) ∆(1950) — ∆(2420)

Status **** *** **** — ****

Iη(τ) J
P
p

3
2

−
(−)

3/2+ 3
2

−
(+)

5/2− 3
2

−
(−)

7/2+ 3
2

−
(+)

9/2− 3
2

−
(−)

11/2+

CMB 1210(1), 100(2) 1890(50), 260(60) 1890(15), 260(40) — 2360(100), 420(100)

JüBo 1215(4), 97(2) 1663(43), 263(76) 1850(37), 259(61) 1783(86), 244(194) —

BnGa 1210.5(1.0), 99(2) — 1888(4), 245(8) — —

SAID(SE) 1211(0), 100(2) 1845(31), 174(40) 1888(3), 234(6) — —

SAID(ED) 1211(2), 98(3) 1969(23), 248(36) 1878(4), 227(6) 1955(24), 911(24) 2320(13), 442(23)

KH80 1211(2), 98(3) 1848(28), 321(24) 1877(3), 223(5) — 2454(15), 462(58)

KA84 1210(2), 100(2) 1844(36), 334(26) 1878(3), 246(7) — 2301(7), 533(17)

in Eq. (4) at the poles s = sp to < [α(sp)] = <[J ] = Jp
and = [α(sp)] = =[J ] = =[Jp] = 0 obtaining α0, α′, γ
and st. The parameter α0 is dimensionless, the slope
α′ has units of GeV−2, st acts as an effective threshold
that has units of GeV2. The systematic uncertainties of
the model associated with the description of the phase
space factor far away from the threshold can be studied
by considering different models for φ(s, st). In particular
we use,

i φ0(s, st) = 0 , (5a)

i φI(s, st) = i
√
s− st , (5b)

i φII(s, st) =β(s, st) + 2iτ(s, st), (5c)

where

iβ(s, st) =
s− st
π

∫ ∞
st

τ(s′, st)

s′ − st
ds′

s′ − s

=
2

π

s− st√
s(st − s)

arctan

√
s

st − s
, (6)

is the analytic continuation of the two-body phase space2

τ(s, st) =
√

1− st/s to the complex s plane. It follows
that in Eq. (4), γ has units of GeV−1 for model I and is di-
mensionless in model II. Model 0 is the customary linear
dependency that ignores the existence of the imaginary
part of the resonance poles. Although essential physics
is ignored in such model, we fit it to < [sp] for complete-
ness and to provide a comparison to previous works. We
note that once the width of the resonance pole is taken
into account it is clear that a Regge trajectory cannot
be linear. Linear Regge trajectories can only happen
for zero-width resonances, e.g. resonances computed as
bound states in a constituent quark model, or the tower
of states in the Veneziano amplitude [55]. Models I and II
do incorporate such physics by adding an imaginary part
to α(s) in a simple way. Model I is a customary approach
to add the imaginary part to α(s) which has been used
to account for unitarity effects in Veneziano-type ampli-
tudes [56–58]. Model II is the most physically motivated
as it is guided by the relation between Eqs. (1) and (2),
β(s, st) is the analytic continuation of the phase space,

2 We assume elastic two-body scattering, and hence, all poles are
considered to be in the second Riemann sheet. That is also the
reason why we fit an effective threshold st instead of using the
actual physical thresholds.
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(a) N∗ resonances.
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(b) ∆∗ resonances.

Figure 1. Chew–Frautschi plots for the leading N∗ and ∆∗

Regge trajectories in Tables I-IV. Solid black (blue) lines
guide the eye through the τ = + (τ = −) trajectories (see
Sec. IV B for details). All the lines share the same slope. In
order to make the plots readable, the poles are slightly dis-
placed from the correct <[J ] = Jp value.

Chew-Mandelstam dispersive approach [51], and φ(s, st)
is the analytic continuation of β(s, st) to the second Rie-
mann sheet, as dictated by unitarity. However, we will
compute the three models for the sake of completeness
and comparison purposes.

Our hypothesis to interpret the nature of the res-
onances in terms of the Regge trajectory is that a
state that is located on a linear trajectory in the
Chew-Frautschi plot and a square-root-like behavior in
(= [sp] , Jp) plot would be mostly a compact 3q state.
Hence, most of the width, i.e. the contribution to
φ(s, st), would be due to the phase space. If it is so, the
poles should adhere nicely to our Regge trajectory mod-
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Figure 2. (=[sp],<[J ] = Jp) plots introduced in [6] for the
leading N∗ and ∆∗ Regge trajectories in Tables I-IV. Lines
are displayed to guide the eye. The different pole sets are
labeled as in Fig. 1. In order to make the plots readable, the
poles are slightly displaced from the correct <[J ] = Jp value
as in Fig. 1. SAID(ED) ∆ 9/2− pole in the unnatural parity
trajectory has a very large =[sp] value and it is not shown in
plot (b).

els. If the resonance pole is not well described by our
models, it is an indication that additional QCD dynam-
ics are important, signaling that the state has significant
physics beyond the compact 3q picture.
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IV. RESULTS

A. Fits and error analysis

To determine the parameters α0, α′, γ and st in
Eq. (4) for a given pole extraction we use the least-
squares method by minimizing the distance squared d2

between the trajectory α(s) evaluated at the complex
pole position sp and the angular momenta J ,

d2 =
∑
poles

{ [<[J ]−<[α(sp)] ]
2

+ [=[J ]−=[α(sp)] ]
2 } .

(7)
with <[J ] = Jp and =[J ] = =[Jp] = 0 for the resonance
poles. The value of st should be compatible with its in-
terpretation as an effective threshold in the resonance
region. This is used as the criterion to select the physi-
cally meaningful minimum if several local minima appear
in the fits. We estimate the errors in the parameters
through the bootstrap technique [59–61]. In doing so,
we perform 104 fits to pseudodata generated according
to the pole uncertainties. The expected value of each pa-
rameter is computed as the mean of the 104 samples and
the uncertainty is given by the standard deviation. This
method is described in detail in [6, 62] and allows to prop-
agate the uncertainties from the poles to the parameters
accounting for all the correlations. The systematic errors
associated to model dependencies in the amplitude anal-
yses are not considered in the pole extractions, hence,
we take the differences among models as an indication
of such uncertainties. The fit results are provided and
discussed in Sec. IV B. As an additional test of our re-
sults we perform consistency checks as described in [6].
Specifically, once we have the fit parameters we can use
them to compute the value of the Regge trajectory at the
pole positions, hence, for a resonance with pole position
sp and spin Jp we should recover < [α(sp)] = <[J ] = Jp
and = [α(sp)] = =[J ] = =[Jp] = 0. The uncertainties
in the poles and the parameters are propagated to the
calculation of α(s). The latter condition is particularly
stringent. Consistency checks for trajectories with only
two poles do not provide any information because they
are overfitted, (four experimental points, two masses and
two widths, fitted with four parameters). Hence we only
compute the consistency checks for trajectories with more
than two poles.

B. Regge trajectories

1. 1
2

+
Regge trajectory

In Regge analyses of the hadron spectrum it is cus-

tomary to consider as the Iη = 1
2

+
parent trajectory the

one containing the states in Table I and higher spins if
available. This trajectory contains two nearly degenerate
Regge trajectories corresponding to odd and even signa-
tures. The degeneracy appears when the exchange forces

Table V. Parameter α0 obtained for 1
2

+
trajectories and mod-

els 0, I and II.

Iη(τ) Pole set α
(0)
0 α

(I)
0 α

(II)
0

1
2

+

(+)
CMB −0.4(1) 0.3(2) 0.3(3)

JüBo −0.3(1) 0.6(1) 0.9(3)

BnGa −0.46(5) 0.20(7) 0.1(2)

SAID(SE) −0.42(1) 0.25(3) 0.22(6)

SAID(ED) −0.41(1) 0.29(2) 0.30(3)

KH80 −0.50(4) −0.1(2) −0.2(1)

KA84 −0.48(1) 0.05(3) −0.09(3)
1
2

+

(−)
CMB −0.6(1) −0.8(3) −3.5(7)

JüBo −0.71(3) −0.79(4) −1.53(6)

BnGa −0.44(7) −0.53(7) −1.5(5)

SAID(SE) −0.53(7) −0.9(1) −4.6(3)

SAID(ED) −0.86(4) −1.25(6) −5.54(3)

Table VI. Parameter α′ obtained for 1
2

+
trajectories.

Iη(τ) Pole set α′(0) α′(I) α′(II)

1
2

+

(+)
CMB 1.06(7) 0.85(6) 0.9(1)

JüBo 1.00(8) 0.72(6) 0.8(1)

BnGa 1.07(3) 0.87(3) 1.04(6)

SAID(SE) 1.04(1) 0.85(1) 0.99(1)

SAID(ED) 1.036(4) 0.84(1) 0.97(1)

KH80 1.10(2) 0.98(6) 1.14(5)

KA84 1.08(1) 0.93(1) 1.10(1)
1
2

+

(−)
CMB 0.94(7) 0.95(9) 1.6(2)

JüBo 0.97(1) 0.98(1) 1.23(2)

BnGa 0.85(3) 0.86(3) 1.15(6)

SAID(SE) 0.89(3) 0.92(3) 2.0(1)

SAID(ED) 1.03(2) 1.06(2) 2.27(2)

Table VII. Parameters γ and st obtained for 1
2

+
trajectories.

Iη(τ) Pole set γ(I) γ(II) s
(I)
t s

(II)
t

1
2

+

(+)
CMB 0.49(7) 0.66(7) 2.4(2) 1.04(9)

JüBo 0.62(8) 0.67(5) 2.65(5) 1.3(1)

BnGa 0.46(3) 0.65(4) 2.4(1) 0.96(3)

SAID(SE) 0.46(2) 0.64(2) 2.44(3) 0.98(1)

SAID(ED) 0.48(1) 0.65(1) 2.46(3) 1.00(1)

KH80 0.39(3) 0.65(3) 1.8(4) 0.91(1)

KA84 0.41(1) 0.64(1) 2.06(7) 0.92(1)
1
2

+

(−)
CMB 0.5(2) 1.9(5) 2.3(4) 2.9(6)

JüBo 0.39(1) 0.95(3) 2.17(2) 2.34(1)

BnGa 0.38(3) 1.0(1) 2.17(3) 2.42(4)

SAID(SE) 0.72(5) 3.0(2) 2.39(2) 2.79(2)

SAID(ED) 0.82(3) 3.15(5) 2.40(1) 2.78(3)
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are weak and, then, both trajectories overlap [1]. This
was the case for both Λ and Σ trajectories in [6] but it is

not the case for the 1
2

+
states as it is apparent in Fig. 1(a),

where the degeneracy is broken and signature τ = + (the
nucleon trajectory with N(939), N(1680), and N(2220)
states) and τ = − (N(1520) and N(2190) states) tra-
jectories have different parameters. In particular, from
Fig. 1(a) it is apparent that α0 has to be different for
each signature. Hence, we treat both trajectories sepa-
rately. We expect both fits to share approximately the
same slope parameter α′ [1] and a different α0 that en-
codes information on the breaking of the degeneracy, i.e.
on the exchange forces.

The inspection of the natural parity poles in Figs. 1(a)
and 2(a) highlights the agreements and disagreements
among the pole extractions. All the extractions reason-
ably agree for <[sp] for all the states poles but either dis-
agree or have very large uncertainties for N(2190) and
N(2220) widths. We note how BnGa and SAID(SE) ex-
tractions of N(2190) separate from the expected straight
line depicted in Fig. 1(a). This is interesting because

Iη(τ) = 1
2

+

(+)
and 1

2

+

(−)
trajectories are expected to have the

same slope α′ [1], and the position of N(2190) for both
extractions is at odds with this expectation. Considering
both Figs. 1(a) and 2(a), only JüBo and CMB provide a
N(2190) extraction that conforms to the expected posi-
tion of the pole within uncertainties, although the CMB
error is very large. For N(2220) all the analyses coincide
on < [sp] but differ wildly regarding the width.3

Figure 3 shows the consistency checks for 1
2

+

(−)

for CMB, JüBo, BnGa and SAID(ED) which provide
a sharper comparison. The consistency checks for
SAID(SE), KH80 and KA84 are redundant and we do

not show them. The 1
2

+

(−)
consistency checks are not

shown because they are overfitted and do not provide

any information. The 1
2

+

(+)
does provide insight, show-

ing how the poles deviate from the proposed model. If
we ignore model 0, which misses the resonant physics,
the nondispersive model (I) provides, on average, a bet-
ter consistency check than the dispersive one (II) for
all the extractions. However, this better description of
N(1680)JPp = 5/2+ and N(2220) 9/2+ states is achieved

by spoiling the agreement with the nucleon N(939)1/2+.
These are clear indications that there is tension be-
tween the states and our trajectory parametrization. The
N(2220) has large uncertainties for all the extractions
and its weight on the determination of the Regge trajec-
tory is smaller than the nucleon and the N(1680) states,
which have small errors. Besides, all the extractions agree
fairly well regarding the pole position of the N(1680).

3 We remind the reader that the deeper in the complex plane the
pole is, the larger the systematic uncertainties associated to the
models and to the analytic continuation into the unphysical Rie-
mann sheets.

1/2

5/2

9/2

CMB JuBo BnGa SAID(ED)

 

ℜ [α(sp)]

 

 

 

 CMB JuBo BnGa SAID(ED)

0

0

0

 

ℑ [α(sp)]

 

 

Figure 3. Consistency checks (see Sec. IV A) for Iη(τ) = 1
2

+

(+)

poles from CMB, JüBo, BnGa, and SAID(ED) extractions.
The left plot shows < [α(sp)] (see Table I and Sec. IV B 1 for
their definition), computed at the poles of the resonances (sp)
for models 0 (black), I (red) and II (blue). The result should
be equal to the corresponding angular momentum <[J ] = Jp
(vertical axis) for a given resonance. The right plots depict
the same calculation for = [α(sp)], which should be equal to
=[J ] = =[Jp] = 0. In this latter case we do not show model 0
because = [α(sp)] = 0 by definition. The yellow (green) bands
represent up to 0.1 (from 0.1 to 0.3) deviation from the label
in the vertical axis. The white band represents from 0.3 to
0.5 deviation.

Hence, there is a strong indication that the approxima-
tion of γφ(s, st) = ρ(s, st) is not valid for the N(1680),
signaling a sizeable contribution from physics beyond the
compact 3q picture. We note that constitutent quark
models have problems reproducing the mass of this state
and they usually overestimate it [17, 19, 20].

These differences are more apparent if we compare the
fits to the pole sets with the three models. We provide
the fit parameters in Tables V–VII. First, the value of st
represents an effective threshold for the phase space and
its fitted value should be consistent with such interpreta-
tion, i.e. st ∼ (mπ +mN )2 ' 1.17 GeV2. This is used as
a criterion to select the physically meaningful minimum
if several local minima appear in the fits, and to partly

assess the quality of the Regge parameters. For the 1
2

+

(+)

trajectory, all st in Table VII are reasonable for model
II (between 0.92 and 1.3 GeV2) while they are larger
for model I (between 1.8 and 2.65 GeV2). This asserts
the better physical motivation of model II compared to
model I. Therefore, we consider the parameters provided

by model II as more reliable. For 1
2

+

(−)
we only have two

states to estimate the trajectory parameters, however it

is enough to test, together with the information on 1
2

+

(+)
,

how well the states conform to the γφ(s, st) = ρ(s, st)
hypothesis. Both models provide a large value for st
ranging from 2.17 to 2.9, hence the slope extraction is
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Table VIII. ∆α0 ≡ α0(τ = +)−α0(τ = +) for the 1
2

+
trajec-

tories and the three models. Uncertainties obtained adding
errors in quadrature.

Pole set Model 0 Model I Model II

CMB 0.2(1) 1.1(4) 3.8(8)

JüBo 0.4(1) 1.4(1) 2.4(3)

BnGa −0.02(9) 0.7(1) 1.6(5)

SAID(SE) 0.11(7) 1.2(1) 4.8(3)

SAID(ED) 0.45(4) 1.54(6) 5.84(7)

not as reliable as for the 1
2

+

(+)
trajectory.

The slope parameter α′ links low-lying resonances and
high-energy scattering physics, e.g. nucleon-antinucleon
annihilation, as it drives the Reggeon exchange ampli-
tude under the single pole exchange approximation [1].
Its value is usually taken from linear fits to the Chew-
Frautschi plot using model 0 or estimated from proton-

antiproton scattering as α′ ' 0.98 GeV−2 [37]. For 1
2

+

(+)

we find that the α′ extraction is very consistent across
the pole extractions. Restricting ourselves to model II,
we can estimate the slope as

α′1
2
+

(+)

= 0.99± 0.12 GeV−2,

where the best value and the uncertainty have been com-
puted averaging through a bootstrap the seven α′ in Ta-
ble VI. These values are not very different from the ones
obtained with model 0, α′(0) ' 1 GeV−2, and neglecting
the widths does not have a large impact in α′. These
results are also in agreement with what is expected from
algebraic [17, 18] (α′ = 1.07± 0.02 GeV−2) and relativis-
tic [20] (α′ ' 1 GeV−2) quark models, despite the fact
that they miss dynamics [63] that are present in the ac-

tual Regge trajectories. The 1
2

±
trajectories should have

the same slope [1], hence once we have a robust deter-

mination from the 1
2

+

(+)
we can use it to benchmark and

assess the parameters extracted from other trajectories.

Regarding the 1
2

+

(−)
slope, all pole extractions agree

for model I and are consistent with 1
2

+

(+)
. However,

we find large differences for model II. The only extrac-
tions that provide a consistent picture throughout the
three models of the trajectory are BnGa and JüBo, i.e.√
st ' 1.45 − 1.55 GeV is closer to the expected value

of
√
st ∼ mπ + mp ' 1.08 GeV than the other pole sets

and α′ ∼ 1 GeV−2 close to the extracted value from 1
2

+

(+)

trajectory. Although JüBo has model II slope slightly
larger than expected. The N(1520) state is very well es-
tablished and all the pole extractions agree. Hence, a
better knowledge of this trajectory and an assessment on
the nature of its states based on Regge phenomenology
requires a better determination of the N(2190) state and
the N 11/2− state.

As expected, α0 is different for the two signatures (Ta-

ble V). Considering 1
2

+

(+)
, the values of α0 are very similar

for models I and II across the different pole sets and dif-
ferent from model 0. Here we appreciate the impact in
the trajectory parameter extraction due to the inclusion
of the resonant nature of the states. However, the values

of α0 for 1
2

+

(−)
change a lot from model to model and from

pole extraction to pole extraction. This is mostly due to
the discrepancies among models in the extraction of the
width ofN(2190). In Table VIII we provide the difference
∆α0 = α0 (τ = +)− α0 (τ = −), for each model and pole
extraction as a way to quantify the degeneracy breaking.
The fact that each amplitude analysis provides a different
value for ∆α0 shows that the strength of the exchange
forces are different among them. These forces are related
to the left-hand cut of the amplitudes and are not well
known. Hence, the range of values for ∆α0 quantifies the
magnitude of the uncertainties associated to this particu-
lar model dependency. Inspecting Table VIII it is notice-
able that ∆α0 for BnGa and model 0 is negative. This
is related to the difference in the extraction of the slope
parameter α′ (1.07(3) and 0.85(3) in Table VI). However,
if we introduce the widths in the analysis, ∆α0 becomes
positive (as expected from Fig. 1(a)) and the slopes be-
come compatible within errors (0.87(3) and 0.86(3) for
model I and 1.04(6) and 1.15(6) for model II). This again
shows the importance of including the width in the anal-
ysis, and, moreover, how its inclusion leads to a better
and more consistent estimation of both α0 and the slope
parameter α′. Our best estimation of α0, using the same
technique as for α′ and model II, is

α0, 12
+

(+)
= 0.21± 0.38 .

The two remaining parameters are

γ 1
2
+

(+)
= 0.651± 0.040; st, 12

+

(+)
= 1.02± 0.13 GeV2,

with the effective threshold close to the expected value
of (mπ +mp)

2 ' 1.17 GeV2.

2. 1
2

−
Regge trajectory

In Table II we provide the lowest-lying states for each

spin Jp compatible with the 1
2

−
Regge trajectory except

for the N(1535) (JPp = 1/2−) which belongs to a daugh-

ter trajectory. As for 1
2

+
trajectory, we have two nearly

degenerate trajectories with opposite signatures. How-
ever, the (= [sp] , Jp) plot in Fig. 2(a) provides conflict-
ing information about the N(1720) 3/2+ state. The large
widths obtained by BnGa, SAID(SE) and SAID(ED),
Γp ∼ 300 − 430 MeV, would place this state in the
daughter trajectory. However, CMB is compatible with
N(1720) (Γp = 120 MeV) belonging to the parent tra-
jectory, and JüBo, KH80, and KA84 (Γp ∼ 185 MeV)
are in between both possibilities. If we look into the
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Table IX. Parameter α0 obtained for 1
2

−
trajectories.

Iη(τ) Pole set α
(0)
0 α

(I)
0 α

(II)
0

1
2

−
(+)

CMB −0.4(3) −0.7(3) −3(2)

JüBo −4(1) −4(1) −7(3)

BnGa −0.1(2) −0.5(2) −6(1)

SAID(SE) 0.25(3) 0.16(4) −0.5(2)

SAID(ED) 0.01(3) −0.21(3) −2.3(1)

KH80 −0.4(1) −0.6(1) −4(1)

KA84 −0.19(3) −0.41(5) −3.0(5)
1
2

−
(−)

CMB −6(1) −6(2) −9(2)

JüBo −1.7(1) −1.8(1) −2.1(1)

BnGa −3.6(5) −3.0(6) −3.0(6)

SAID(SE) −1.5(4) −1.5(4) −0.38(3)

KH80 −2.2(1) −2.9(2) −10.2(4)

KA84 −2.5(1) −3.2(2) −11.2(4)

Table X. Parameter α′ obtained for 1
2

−
trajectories.

Iη(τ) Pole set α′(0) α′(I) α′(II)

1
2

−
(+)

CMB 1.1(1) 1.1(1) 1.8(5)

JüBo 2.3(5) 2.3(5) 3(1)

BnGa 0.97(7) 0.99(7) 2.1(2)

SAID(SE) 0.81(1) 0.82(1) 1.03(4)

SAID(ED) 0.91(1) 0.93(1) 1.46(2)

KH80 1.04(3) 1.07(4) 1.8(2)

KA84 0.98(1) 0.99(1) 1.6(1)
1
2

−
(−)

CMB 2.6(4) 2.6(4) 3.4(5)

JüBo 1.13(3) 1.13(3) 1.28(4)

BnGa 1.8(2) 1.6(2) 1.9(2)

SAID(SE) 1.1(1) 1.1(1) 1.18(1)

KH80 1.32(4) 1.37(4) 3.2(1)

KA84 1.40(5) 1.50(5) 3.5(1)

other pole extractions that we do not consider in our
analysis, we see that SAID obtains 334 MeV [35], simi-
lar to BnGa, SAID(SE) and SAID(ED). Other pole sets
are closer to the JüBo, KH80 and KA84 extractions, e.g.
Höhler 187 MeV [45], KSU 175 MeV [46], and Zagreb
233 MeV [50]; while others obtain smaller widths com-
patible with the CMB result e.g. P-ANL 94 MeV [47],
Giessen 118 MeV [48], and ANL-O 70 MeV [49]. We
note that the discrepancies among pole extractions, to-
gether with constituent quark models predicting several
3/2+ states in the N(1720) energy range [16, 17, 19, 20]
make possible that what the different amplitude analysis
are reporting is not just one resonant state but an effec-
tive pole that accounts for a more complicated picture.
Moreover, the recent ANL-O pole extraction finds two
states with masses 1703 and 1763 MeV and widths 70
and 159 MeV respectively [49]. Further research on this

Table XI. Parameters γ and st obtained for 1
2

−
trajectories.

Iη(τ) Pole set γ(I) γ(II) s
(I)
t s

(II)
t

1
2

−
(+)

CMB 0.6(2) 3(1) 2.6(2) 3.0(3)

JüBo 1.0(4) 2(1) 2.2(5) 2.5(4)

BnGa 0.70(9) 3.2(4) 2.73(4) 3.4(1)

SAID(SE) 0.34(3) 0.9(1) 2.44(7) 2.7(1)

SAID(ED) 0.56(1) 1.84(5) 2.69(2) 3.07(2)

KH80 0.67(8) 1.14(5) 2.72(4) 3.1(1)

KA84 0.59(3) 1.8(2) 2.71(2) 3.0(1)
1
2

−
(−)

CMB 1.4(5) 3(1) 2.6(4) 2.7(3)

JüBo 0.31(4) 0.8(1) 1.3(4) 2.3(1)

BnGa 0.6(1) 1.3(1) 1.02(4) 1.1(1)

SAID(SE) 0.3(1) 0.63(2) 0.8(1) 1.52(1)

KH80 1.2(1) 5.0(2) 2.84(3) 3.31(3)

KA84 1.3(1) 5.5(2) 2.92(2) 3.31(2)

energy range is necessary to establish mass and width
of the state(s) with precision before discussing its (their)
nature. In what follows, we include N(1720) in our cal-

culations as a member of the parent 1
2

−
(−)

trajectory.

Contrary to 1
2

+
resonances, 1

2

−
states that belong to

the leading Regge trajectory are not that well known,
what predates any conclusion on the internal structure
of the states that we can derive from fits. At this stage,
Regge phenomenology can be used more effectively as a
guide to improve amplitude analyses and pole extraction
than to elucidate the nature of the resonances.

Figures 1 and 2 make apparent how different are the
poles from one extraction to another. There is consensus
only on the N(1675) 5/2− state. This is a direct chal-
lenge to the four-star status of N(1720) and N(2250)

resonances in the PDG [29]. We fit two trajectories 1
2

−
(+)

(N(1675) and N(2250) states) and 1
2

−
(−)

(N(1720) and

N(1990) states). The obtained fit parameters are pro-

vided in Tables IX–XI. For the 1
2

−
(+)

, none of the pole

extractions provides a good result for st. Besides, Mac-

Dowell symmetry [1, 64] imposes that the slopes for 1
2

+

(+)

and 1
2

−
(−)

( 1
2

+

(−)
and 1

2

−
(+)

) should be equal. Hence, we

should obtain α′ ∼ 1 GeV−2 to agree with the results
in Sec. IV B 1, a condition only SAID(SE) fulfills for the
three models, despite the fact that its st = 2.7 GeV2 is
larger than expected. Regarding negative signature, only
BnGa and SAID(ED) are close to st ∼ 1.2 GeV2. If we
also consider the expected slope, the only pole extrac-
tion that provides reasonable parameters is SAID(ED).
Finally, JüBo provides a higher st = 2.3 and a slightly
large but reasonable slope. We do not provide plots with
the consistency check as both trajectories are overfitted.

In summary, none of the pole sets provides a convincing

picture of the 1
2

−
trajectory and there is a reasonable pos-
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Table XII. Parameter α0 obtained for 3
2

+
trajectory.

Iη(τ) Pole set α
(0)
0 α

(I)
0 α

(II)
0

3
2

+
CMB −1.2(4) −1.3(4) −1.6(6)

JüBo −1.3(2) −1.0(2) −1.0(3)

BnGa −5.7(6) −5.7(6) −6.0(8)

SAID(SE) −2.7(3) −3.2(3) −7(1)

SAID(ED) −3.4(3) −3.5(3) −4.5(6)

KH80 −5.9(6) −7.2(8) −22.7(2)

KA84 −2.9(2) −3.0(2) −3.5(1)
3
2

+

(+)
CMB −0.5(5) −0.5(4) −1.2(6)

3
2

+

(−)
CMB −2.1(4) −2.2(5) −4(1)

Jübo 1.0(7) −1.2(6) −1.8(9)

Table XIII. Parameter α′ obtained for 3
2

+
trajectory.

Iη(τ) Pole set α′(0) α′(I) α′(II)

3
2

+
CMB 1.0(1) 1.0(1) 1.2(2)

JüBo 1.0(1) 1.01(4) 1.0(1)

BnGa 2.5(2) 2.5(2) 2.7(3)

SAID(SE) 1.6(1) 1.6(1) 1.38(8)

SAID(ED) 1.8(1) 1.8(1) 2.2(2)

KH80 2.7(2) 2.9(2) 7.6(1)

KA84 1.7(1) 1.7(1) 2.00(2)
3
2

+

(+)
CMB 0.9(1) 0.9(1) 1.1(2)

3
2

+

(−)
CMB 1.3(1) 1.3(1) 1.9(4)

Jübo 0.9(2) 0.9(2) 1.1(3)

sibility that N(1720) actually belongs to the parent tra-
jectory. This state is a doublet partner of the N(1680),
which we identified in Sec. IV B 1 as a state with physics
beyond the compact 3q picture. This makes N(1720) a
prime candidate to look for additional dynamics, and ex-
plains why it might be displaced from the expected pat-
tern and can be missidentified as a member of a daughter
trajectory. This state also shows how the inclusion of the
width and the patterns in the (=[sp], Jp) allows to better
identify if a state is in the leading trajectory or in a sub-
leading one. Again, a better determination of this state
would allow further investigation on its nature.

3. 3
2

+
Regge trajectory

This is the least known parent trajectory, with two well
established states –∆(1700) and ∆(1905)– and only CMB
and JüBo reporting additional resonances. Hence, not
much information can be obtained from this trajectory.
Comparing all the extractions for ∆(1700) and ∆(1905)
we see in Figs. 1(b) and 2(b) that <[sp] is reasonably es-
tablished for both but the width presents large uncertain-

Table XIV. Parameters γ and st obtained for 3
2

+
trajectory.

Iη(τ) Pole set γ(I) γ(II) s
(I)
t s

(II)
t

3
2

+
CMB 0.5(1) 1.2(3) 2.0(6) 2.3(4)

JüBo 0.5(2) 1.1(3) 2.0(2) 2.5(4)

BnGa 0.9(1) 1.8(3) 0.9(2) 1.4(5)

SAID(SE) 1.0(1) 3.0(5) 2.5(1) 2.8(1)

SAID(ED) 0.7(1) 1.6(3) 1.3(7) 2.1(4)

KH80 2.4(3) 9.4(1) 2.7(1) 2.94(2)

KA84 0.6(1) 1.4(1) 0.8(5) 1.8(2)
3
2

+

(+)
CMB 0.4(1) 1.3(4) 1.7(5) 2.7(4)

3
2

+

(−)
CMB 0.6(2) 2.0(1) 1.9(6) 2.7(3)

Jübo 0.6(3) 1.3(6) 2.5(1) 2.5(3)

ties. If we consider the CMB and JüBo 7/2− state and
CMB 9/2+ in Fig. 1(b) a degeneracy breaking is hinted.

Hence, we first fit the 3
2

+
trajectory without considering

the degeneracy breaking for all the pole extractions and

we also fit 3
2

+

(+)
for JüBo and 3

2

+

(±)
for CMB. We provide

the parameters in Tables XII–XIV. Because we assume

degeneracy in 3
2

+
fits, the α0 parameter provides no in-

formation. Also, the value of st is highly correlated with
α0, so it is not possible to use its value as a way to as-
sess the quality of the extracted parameters. It is clear
that degeneracy is a bad approximation to obtain the
Regge parameters. Hence, we do not provide consistency
checks for this trajectory as they do not provide insight.
We note that CMB and JüBo provide a reasonable slope
α′ ' 1 GeV−2. JüBo (CMB) provides a consistent slope

parameter for 3
2

−
(−)

( 3
2

−
(+)

) once degeneracy breaking is

considered with α′ ' 1 GeV−2. However, CMB provides

a very large slope for 3
2

−
(−)

. The overall picture, makes the

JüBo extraction of 3
2

+
the most consistent one, although

with very large error bars.

4. 3
2

−
Regge trajectory

In this trajectory there are three four-star resonances,
namely ∆(1232), ∆(1950) and ∆(2420), all of them with
even signature. The first two are obtained by all the
pole extractions and agree on both mass and width. The
higher mass state is found by CMB, SAID(ED), KH80,
and KA84 analyses. SAID(ED) and KA84 agree on <[sp],
see Fig. 1(b), while KH80 is at odds with their result.
If we look into =[sp], Fig. 2(b), SAID(ED) and KH80
disagree, while KA84 extraction overlaps both of them
due to its large uncertainty. The CMB extraction of this
pole has large uncertainties too and agrees with the other
three pole sets within errors.

We perform fits to the odd and even signatures. The
fit parameters are reported in Tables XV–XVII. The pa-
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Table XV. Parameter α0 obtained for 3
2

−
trajectories.

Iη(τ) Pole set α
(0)
0 α

(I)
0 α

(II)
0

3
2

−
(+)

JüBo −8(8) −11(10) −9(12)

SAID(ED) 13(9) −75(1) 34.3(8)
3
2

−
(−)

CMB 0.1(2) −0.1(4) −0.4(5)

JüBo −0.02(8) −0.1(1) −1.1(6)

BnGa 0.10(1) 0.05(1) −0.45(4)

SAID(SE) 0.10(1) 0.06(1) −0.39(3)

SAID(ED) −0.03(3) −0.9(3) −0.43(5)

KH80 0.28(3) 0.25(3) 0.13(4)

KA84 −0.07(1) −2.1(3) −0.51(3)

Table XVI. Parameter α′ obtained for 3
2

−
trajectories.

Iη(τ) Pole set α′(0) α′(I) α′(II)

3
2

−
(+)

JüBo 4(3) 4(3) 5(4)

SAID(ED) −3(2) 8.0(2) −4.1(3)
3
2

−
(−)

CMB 0.97(8) 1.0(1) 1.2(2)

JüBo 1.03(5) 1.04(5) 1.4(2)

BnGa 0.95(1) 0.95(1) 1.19(1)

SAID(SE) 0.953(4) 0.958(4) 1.17(1)

SAID(ED) 1.02(1) 1.18(5) 1.23(2)

KH80 0.87(1) 0.87(1) 1.00(2)

KA84 1.04(1) 1.36(5) 1.28(1)

rameters for 3
2

−
(+)

are completely at odds with the Regge

expectation and the obtained st are not physically sen-
sible, i.e. st � (mp + mπ)2. The reasons are obvious
if we inspect Fig. 1(b), the position of the 9/2− pole
obtained by JüBo and SAID(ED) has a very low <[sp]
value given the position of ∆(1930). Also, in the case of
SAID(ED), =[sp] is too large. Hence, the position of this
pole is completely unreliable, both in mass and width,
as the large uncertainties in the JüBo width hint and no

Table XVII. arameters γ and st obtained for 3
2

−
trajectory.

Iη(τ) Pole set γ(I) γ(II) s
(I)
t s

(II)
t

3
2

−
(+)

JüBo 4(4) 4(5) 3(3) 4(5)

SAID(ED) 28.(2) −8(1) 6.6(1) 10(2)
3
2

−
(−)

CMB 0.5(1) 0.9(2) 1.6(3) 1.5(1)

JüBo 0.35(7) 0.9(3) 1.34(9) 1.7(2)

BnGa 0.29(1) 0.67(2) 1.34(1) 1.54(1)

SAID(SE) 0.28(1) 0.63(2) 1.32(1) 1.52(1)

SAID(ED) 0.70(9) 0.98(3) 2.8(3) 1.49(1)

KH80 0.39(3) 0.80(6) 1.39(2) 1.40(1)

KA84 1.2(1) 1.16(2) 3.5(2) 1.48(1)

3/2

7/2

11/2

CMB SAID(ED) KH80 KA84

 

ℜ [α(sp)]

 

 

 

CMB SAID(ED) KH80 KA84

0

0

0

 

ℑ [α(sp)]

 

 

Figure 4. Consistency checks for 3
2

−
(−)

poles from CMB,

SAID(ED), KH80 and KA84 extractions. Notation as in
Fig. 3. See Sec. IV B 4 for trajectory definition.

further conclusions can be derived.
Regarding the 3

2

−
(−)

(the ∆ trajectory), the effective

threshold is at odds with the expected value only for
model I in SAID(ED) and KA84 poles. For the rest of
pole sets and for model II we obtain reasonable values.
The slopes are close to unity as expected and only the α0

value shows a large variation among models and pole sets.
We can compare our Regge parameters to those used in
fits to high energy proton-antiproton annihilation, where
∆ Regge trajectory α∆(s) = −0.37 + 0.98 s (s in GeV2)
is one of the main contributions [37]. We note that the
slope is close to unity and that the α0 parameter agrees

with the one we obtain for 3
2

−
(−)

using model II. Hence,

model II provides the result compatible with the high
energy information and our most reliable determination
of the parameters. Consequently, as we did in Sec. IV B 1,
we can estimate α′ from model II values in Table XVI as

α′3
2
−
(−)

= 1.21± 0.15 GeV2.

We note that this slope is compatible within errors with

the one obtained from the 1
2

+

(+)
trajectory in Sec. IV B 1.

The remaining parameters are

α0, 32
−
(−)

= − 0.45± 0.44;

γ 3
2
−
(−)

= 0.86± 0.22;

st, 32
+

(−)
= 1.52± 0.12 GeV2,

with the effective threshold slightly above the expected
value of (mπ +mp)

2 ' 1.17 GeV2.
Figures 1(b) and 2(b) show a clear linear and square-

root-like pattern for the 3
2

−
(−)

trajectory hinting that

these states are compact 3q structures. However, the con-
sistency check in Fig. 4 provides a sharper image. The
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deviations are clear and only CMB provides an approxi-
mate agreement between theory and data, mostly due to
the large uncertainties. Considering that CMB overlaps
with the pole extractions by other analyses, its deviation
from the trajectory models in Eq. (5) signals the effects
of beyond compact 3q physics, even for the well-studied

∆(1232) state. The 3
2

−
(−)

poles are known well enough to

be sensitive to these beyond compact 3q effects.

V. SUMMARY AND CONCLUSIONS

We have studied the structure of the N∗ and ∆∗ spec-
tra from the perspective of Regge and complex angu-
lar momentum theory following the work done for the
strange baryon sector in [6]. We have considered seven
pole extractions [30–36]. In our analysis we have taken
into account the fact that poles are complex quantities,
and we go beyond the standard studies that focus only
in the Chew-Frautschi plot (<[sp], Jp) and linear trajec-
tory fits to said plot. In doing so, we also study the
(=[sp], Jp) plots introduced in [6]. We find many dis-
crepancies among the pole extractions, in particular for
the widths, but a clear pattern, similar to the one in the
strange sector, appears where the Chew-Frautschi plots
follow the well-known approximate linear behavior, while
the (=[sp], Jp) plots show a square-root-like behavior.

Our working hypothesis has been that the square-root-
like behavior appreciated in Fig. 2 is due to the contribu-
tion of the phase space to the scattering amplitude [51],
which is proportional to the momentum q ∼

√
s− st.

The phase space is the main contribution to how deep in
the complex plane the poles are. However, there are QCD
dynamics in play that also contribute to the pole posi-
tion. If those dynamics are small the poles will adhere
fairly well to such pattern and we expect the resonance
to be mostly a compact 3q state and well described by
the constituent quark model. Major deviations from that
pattern would signal an important component of beyond
compact 3q physics, i.e. additional QCD dynamics. Un-
der this hypothesis, a state that presents a linear trajec-
tory in the Chew-Frautschi plot and a square-root-like be-
havior would be mostly a compact 3q state. Besides the
qualitative analysis of the plots, we performed a quan-
titative one, modeling the Regge trajectories, fitting the
poles and cross checking the consistency of the results.

The results support the qualitative conclusions but also
signal sizeable physics beyond the compact 3q picture
for the N(1680), the N(1720) and some of the members

of the 3
2

−
(−)

trajectory. The last poles are known well

enough that our analysis is sensitive to beyond compact
3q effects.

We find that exchange degeneracy is very clearly bro-
ken in the nonstrange sector, contrary to the strange
sector. This degeneracy breaking shows the importance
of exchange forces in the determination of the low-lying

nonstrange baryon spectrum. We also find that the 1
2

−

and 3
2

+
trajectories are poorly known and Regge phe-

nomenology cannot provide insight on the internal struc-
ture of the baryons. However, Regge phenomenology
serves as a guide for resonance searches. Particularly, as
a way to explore if the fits to the experimental data are
improved by including resonances close to the expected
positions in both Chew-Frautschi and (=[sp], Jp) plots.

The parameters of the 1
2

+

(+)
(nucleon) and 3

2

−
(−)

(∆)

Regge trajectories can be well established from the poles.
We estimate α′ = 0.99 ± 0.12 GeV−2 for the nucleon
trajectory and α′ = 1.21 ± 0.15 GeV−2 for the ∆.
We note that both slopes are compatible within errors.
This range is consistent with α′ obtained from fits to
the Chew-Frautschi plots, with what is predicted by
constituent quark models and with fits to high energy
proton-antiproton annihilation.
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