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We extend our proof of the multiplicative renormalizability of quasi-quark PDFs in Ref. [1] to
quasi-gluon PDFs, and demonstrated that quasi-gluon PDFs can be multiplicatively renormalized to
all orders in perturbation theory, without mixing with other operators. We find that using a gauge-
invariant UV regulator is essential for achieving this proof. With the multiplicative renormalizability
of both quasi-quark and quasi-gluon PDFs, and QCD collinear factorization of quasi-PDFs into
PDFs, we have now a solid theoretical foundation for extracting PDFs from lattice QCD calculated
quasi-PDFs.

I. INTRODUCTION

The parton distribution functions (PDFs) encode im-
portant nonperturbative information of strong interac-
tions. Based on QCD factorization [2], PDFs have been
successfully extracted from high-energy-collision data
with good precisions [3]. However, from both theoret-
ical and practical points of view, extracting PDFs from
first principle lattice QCD calculations must be done for
testing non-perturbative sector of QCD, as well as needed
for study partonic structure of hadrons that could be dif-
ficult to do scattering experiments with.

Calculating PDFs directly from Euclidean-space lat-
tice QCD, if not impossible, is very difficult due to the
time-dependence of the operators defining them [3]. Re-
cently, two of us proposed a general approach to calculate
PDFs in lattice QCD indirectly [4, 5], by extracting PDFs
from lattice QCD calculations of good “lattice cross sec-
tions” (LCSs), which are defined as hadronic matrix ele-
ments satisfying 1) calculable in Euclidean-space lattice
QCD, 2) renormalizable for ultraviolet (UV) divergences
to ensure a reliable continue limit, and 3) factorizable to
PDFs with infrared-safe matching coefficients. It is the
factorization that relates lattice QCD calculable LCSs to
the desired PDFs. We can then extract PDFs by a global
analysis for lattice QCD data of LCSs, similar to the ex-
traction of PDFs from experimental data of factorizable
and measurable cross sections. All other proposals [6–8]
could be special realizations of this general approach.

To extract the rich, precise and flavor separated infor-
mation on PDFs, it is necessary to find as many good
LCSs as possible, since different flavor PDFs are likely
to be mixed to contribute to almost all lattice QCD cal-
culated LCSs through QCD collinear factorization. For
constructing good LCSs to extract PDFs, we have consid-
ered two types of operators in terms of correlation of (1)
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two gauge-dependent operators with proper gauge links
[6] and (2) two gauge-invariant currents [4]. We refer
the first type as quasi-parton operators in the follow-
ing. Factorization properties of both types of operators
have been studied in [4], in which we found that multi-
plicative renormalizability of these operators is a neces-
sary condition for the collinear factorization to be valid.
Renormalization of the second type of operators is al-
most trivial, for which one only needs to renormalize the
gauge-invariant local currents, which is well-known to be
multiplicative. On the other hand, the renormalization
of the first type of operators is nontrivial due to the non-
locality of corresponding operators.

A lot of efforts have been devoted to understand the
UV structure of quasi-quark operators [9–16]. The all-
order multiplicative renormalizability of quasi-quark op-
erators has been proved using two different methods: one
relies on the auxiliary field technique [17, 18], and the
other is based on diagrammatic expansion [1]. These
proofs provide a firm theoretical basis for extracting
PDFs from lattice QCD calculated quasi-quark PDFs
[19–35].

The UV structure of quasi-gluon operators could be
much more complicated, as we will explain. We define
general bare quasi-gluon operators as

Oµνρσbg (ξ) = Fµν(ξ) Φ(a)({ξ, 0})F ρσ(0) , (1)

where Φ(a)(ξ, 0) = Pe−igs
∫ 1
0
ξ·A(a)(rξ) dr is a path ordered

gauge link in adjoint representation. To be definite, we
assume ξµ along z-direction and introduce a unit vector
nµ = (0, 0, 0, 1), defining v · n ≡ vz for any vector vµ.
Due to the dimensional derivative operator in Fµν , su-
perficial power counting tells us that the vertex between
gluon field strength and gauge link can be linearly UV
divergent. By using a cutoff regularization, one-loop cal-
culation in Refs. [36, 37] indeed shows uncanceled linear
divergences for the vertex, which would make the multi-
plicative renormalization of quasi-gluon operators almost
impossible. For the comparison, the corresponding ver-
tex between quark and gauge link can be at most loga-
rithmic UV divergent.
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In principle, the general quasi-gluon operator in Eq. (1)
could have 36 independent operators after taking into
account the antisymmetry of gluon field strength, and
all of them could be mixed under renormalization since
they all have the same mass dimension. In practice, one
usually constructs some linear combinations of Eq. (1)
by contracting it with some “tensors”. In Refs. [6] and
[37] and the first lattice simulation [38], a reduced num-
ber of quasi-gluon operators were obtained by contract-
ing Oµνρσbg by nµnρgνig

i
σ, nµnρgνσ and gµ0gρ0gνσ, respec-

tively. It is not clear how to renormalize these reduced
quasi-gluon operators due to potential complications and
uncertainties in mixing of these operators.

In this paper, we study the UV divergences of quasi-
gluon operators to all order in perturbation theory. We
first perform an explicit one-loop calculation of quasi-
gluon PDFs of an asymptotic gluon of momentum p, de-
fined as 〈g(p)|Oµνρσbg (ξ)|g(p)〉. We use dimensional reg-

ularization (DR) to regularize both logarithmic and lin-
ear UV divergences, which respectively appear as poles
around d = 4 and d = 4 − 1/n at n-loop order. We find
that linear UV divergences of the one-loop correction to
gluon-gauge-link vertex are canceled under DR, which
makes the multiplicative renormalizability of quasi-gluon
operators a possibility. We then explore all possible
UV divergent topologies of higher order diagrams. Us-
ing gauge invariance, we find that all linear UV diver-
gences from the gluon-gauge-link vertex are canceled to
all-orders in perturbation theory, leaving only linear UV
divergences from the gauge link which can be easily ex-
ponentiated to all-order as an overall phase factor and
then multiplicatively renormalized, just like the case of
quasi-quark PDFs [1, 39, 40]. In addition, we find that
all of the 36 independent quasi-gluon operators can be
multipliticatively renormalized without mixing with any
other operators. Combining with our proof for quasi-
quark PDFs in Ref. [1], our work presented in this paper
for quasi-gluon PDFs completes the proof of the multip-
liticative renormalization of quasi-parton operators.

II. UV DIVERGENCES AT ONE LOOP

We present the relevant one-loop Feynman diagrams
for quasi-gluon PDFs of an asymptotic gluon of momen-
tum p in Fig. 1, where the bubble in the diagram (e)
includes all one-loop self-energy diagrams of the active
gluon. For the complete one-loop contribution, addi-
tional Feynman diagrams are needed. Some of them are
mirror of diagrams (b), (c), (d), (e) and (g), while the
rest can be obtained by replacing external momentum p
to −p in all these Feynman amplitudes. For the follow-
ing one-loop calculation, we take the linearly combined
quasi-gluon operator in Ref. [6] as an example, but our
conclusion is true for any of the 36 independent opera-
tors.

We choose Feynman gauge, and assume ξz to be posi-

FIG. 1. Some typical Feynman diagrams for quasi-gluon
PDFs of an asymptotic gluon of momentum p at one-loop
order.

tive for definiteness. The diagram (a) in Fig. 1 gives

M1a =
g2
sµ

4−d
r CA
i

e−ipzξz
∫ ξz

0

dr1

∫ ξz

r1

dr2
ddl

(2π)d
eilz(r2−r1)

l2

UV
====

αsCA
π

e−ipzξz
(
−πµrξz

3− d
+

1

4− d

)
, (2)

where µr is renormalization scale to compensate the mass
dimension in DR. This diagram contributes to both linear
and logarithmic UV divergences, as expected.

To understand where in this one-loop phase space the
UV divergences in Eq. (2) come from, it is instructive to
distinguish lz - the z-component of the loop momentum l
from l̄µ - the other components of l, as lµ = l̄µ−lznµ with
l2 = l̄2 − l2z [1]. If l̄2 is constrained in a finite region in
Eq. (2), integrating lz, r1 and r2 cannot generate any UV
divergence. Furthermore, there is no UV divergence if we
do not include the region where |r2 − r1| is very small,
which can be demonstrated by introducing the following
decomposition,

1

(l + q)2
=

1

(l̄ + q̄)2
+

(lz + qz)
2

(l + q)2(l̄ + q̄)2
, (3)

where q can be any unintegrated momentum. By apply-
ing this decomposition to 1

l2 in Eq. (2), the first term is
free of lz, and thus the integration of lz gives δ(r2 − r1),
while the second term is UV finite under the integration
of l̄. That is, the UV divergence in Eq. (2) can only
come from the region of phase space where l̄ are in UV
region while |r2 − r1| is very small. Therefore, we con-
clude that, with DR, all UV divergences of diagram (a)
in Fig. 1 come from a region localized in spacetime.

By decomposing both 1
l2 and 1

(p−l)2 using Eq. (3), we

obtain many terms for diagrams (b) and (c) and found
that these terms are either free of lz in denominator,
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which result in δ(r) or its derivatives, or UV finite under
the integration of l̄. Thus the UV divergences of these
two diagrams are also localized in spacetime,

M1b
UV

====
αsCA
π

e−ipzξz
(
−i
pzξz

πµrξz
3− d

)
, (4)

M1c
UV

====
αsCA
π

e−ipzξz
(

i

pzξz

πµrξz
3− d

+
3

4

1

4− d

)
, (5)

where diagram (b) has only linear UV divergence, while
(c) has both linear and logarithmic UV divergence.

The diagram (d) in Fig. 1 gives

M1d
UV

==== −3αsCA
4π

e−ipzξz

4− d
, (6)

where the logarithmic UV divergence comes from the re-
gion where all components of lµ go to infinity, and thus, is
localized in spacetime. The logarithmic UV divergence
of diagram (e) is from the one-loop self-energy correc-
tion for the gluon, which is well-known and localized in
spacetime, and can be removed by the renormalization
of gluon field.

All other diagrams in Fig. 1 are free of UV divergence,
simply because the loop cannot be localized in spacetime
due to finite ξz. For example, the diagram (f) gives

M1f =
ig2
sµ

4−d
r CA
p2
z

∫
ddl

(2π)d
eilzξz−ipzξz

l2
, (7)

which is UV divergent only if ξz = 0. In summary, we
conclude that the UV divergences of quasi-gluon PDFs
at one-loop can only be emerged from a region localized
in coordinate spacetime.

The linear UV divergence in Eq. (2) from the diagram
(a) is harmless because it can be easily exponentiated
to all-order as an overall phase factor and then multi-
plicatively renormalized, just like the case of quasi-quark
PDFs [1, 39, 40]. However, the presence of linear UV
divergence in Eqs. (4) and (5) from the diagrams (b)
and (c), respectively, could challenge the multiplicative
renormalizability. Fortunately, we find that with DR, the
linear UV divergences from these two diagrams are can-
celed. On the contrary, the linear divergences from the
diagrams (b) and (c) do not cancel if one uses a cutoff reg-
ularization that breaks the gauge symmetry [36, 37]. This
implies that gauge invariance plays an important role to
remove the linear UV divergences that may challenge the
multiplicative renormalizability. In the following, we will
use gauge invariance to show that all linear divergences,
except that from self-energy of gauge links, are canceled
by summing over all contributions, and quasi-gluon PDFs
could be multiplicatively renormalized.

III. UV DIVERGENCES AT HIGH ORDERS

From the one-loop diagrams in Fig. 1, we can gener-
ate all high order loop diagrams by adding gluons (or a

quark-antiquark pair) to them. Because of the isolation
of z-component in the definition of quasi-parton oper-
ators, both 3-dimensional (3-D) and 4-D integration of
loop momentum l̄ and l could lead to UV divergence.
In Ref. [1], we introduced the change of divergence index
∆ω3 and ∆ω4 for the 3-D and 4-D integration of loop mo-
menta of higher order diagrams, respectively, and showed
that it is sufficient, although it is not necessary, that
quasi-parton operators are renormalizable if ∆ω3 ≤ 0
and ∆ω4 ≤ 0 are satisfied for all corresponding higher
order diagrams. Based on the power counting rules de-
rived in Ref. [1], we find that the only case that may in-
crease superficial UV divergence of quasi-gluon operators
at high orders is when we add a gluon with both ends of
it attached to the gauge link, where the 3-D integration
gets ∆ω3 = 1. By applying the decomposition in Eq. (3)
to the added gluon’s momentum, it is straightforward to
show that dimensional regularized UV divergences at any
loop level are localized in spacetime, in the same way as
quasi-quark operators shown in [1]. As a result, we find
that ∆ω3 is effectively irrelevant for studying UV diver-
gences. Because ∆ω4 ≤ 0 for all cases, there are only
finite topologies of high order diagrams in Fig. 2 that
have UV divergences.

FIG. 2. Four topologies of diagrams which could give UV
divergences to the quasi-gluon operators.

The blobs with topologies (a) and (c) in Fig. 2 denote
one-particle-irreducible diagrams, and they both have
linear superficial UV divergences. Because of the po-
tential linear UV divergences, diagrams with one more
gluon attached to the blobs can generate logarithmic UV
divergences. Another possibility to produce logarithmic
divergences is when a gluon is attached to the gauge link
outside of, but very close to, the blobs, as shown in Fig. 2
(b) and (d), with the attachment denoted by a triangle.
The blobs of topologies (b) and (d) include both kinds of
logarithmic divergent diagrams mentioned here.

The topologies (a) and (b) in Fig. 2 are the same as
that for quasi-quark operators, and their divergences can
be renormalized similarly. Linear divergences from the
diagrams of the topology (a) can be removed by an over-
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all factor as the mass renormalization of a test particle
moving along the gauge link [39], and its logarithmic di-
vergences caused by end points of the gauge link can

be removed by multiplying Z
−1/2
wg - the “wave function”

renormalization of the test particle [40]. The diagrams
of the topology (b) has only logarithmic UV divergence,
which can be taken care of by QCD renormalization [40].

The UV divergences from diagrams of topologies (c)
and (d) in Fig. 2 are different from that of quasi-quark
operators, and are studied in next two sections, respec-
tively.

IV. RENORMALIZATION OF
GLUON-GAUGE-LINK VERTEX

For the definiteness of following discussion, we assume
that the gauge link in diagrams of the topology (c) in
Fig. 2 starts at an arbitrary coordinate ξ1z with the oper-
ator Fµν(ξ1z), and ends at another arbitrary coordinate
ξ2z with no additional operators. With the “bare” cou-
pling constant gs, and “bare” field operators for the glu-
ons, the Faddeev-Popov ghost and the antighost given by
the symbols A, c and c̄ respectively, a generalized Ward
identity of the non-Abelian field relevant to this topology
can be derived [41],

〈−i∂yλA
λ
d(y)[Φ({ξ2z, ξ1z})]ab Fµνb (ξ1z)〉

= 〈gsc̄d(y)ce(ξ2z)[teΦ({ξ2z, ξ1z})]ab Fµνb (ξ1z)〉,
(8)

where the t represents SU(3) generators of the adjoint
representation. A pictorial representation of Eq. (8)
is given in Fig. 3, where “1PR” denotes one-particle-
reducible diagrams. The topology of the left-hand side
of Fig. 3 is the same as that of the diagram (c) in Fig. 2,
but is contracted with external gluon momentum and
expressed in coordinate space. The topology of the first
term on the right-hand side of Fig. 3 is nonlocal in space-
time, and thus has no UV divergence. Furthermore, after
the renormalization of QCD Lagrangian and gaugelink-
related topologies (a) and (b) in Fig. 2, UV divergences
of 1PR diagrams will be canceled. That is, the general-
ized Ward identity in Eq. (8) ensures that the topology
(c) in Fig. 2 is free of UV divergence if it is contracted
by external gluon momentum.

FIG. 3. Pictorial representation of the generalized Ward iden-
tity in Eq. (8) with dashed line represents the ghost field.

To understand the renormalization of the UV diver-
gence of the topology (c) in Fig. 2, we represent the di-
agrams of this topology as Γλµν(p, n), which could be

referred as the gluon-gauge-link vertex, where p and λ
are the momentum and Lorentz index of the external
gluon, respectively. Lorentz symmetry combined with
antisymmetry between µ and ν enable us to do the gen-

eral decomposition Γλµν(p, n) =
∑4
i=1 ciΠ

λµν
i with

Πλµν
1 = gµλpν − gνλpµ, Πλµν

2 = (pµnν − pνnµ)nλ,

Πλµν
3 = (pµnν − pνnµ)pλ, Πλµν

4 = gµλnν − gνλnµ.
(9)

Since pλΓλµν = 0 from our discussion above, we obtain
c2 p · n+ c3 p

2 + c4 = 0, and consequently,

Γλµν(p, n) =c1Πλµν
1 + c2(Πλµν

2 − p · nΠλµν
4 )

+ c3(Πλµν
3 − p2Πλµν

4 ).
(10)

Since c1 and c2 have mass dimension 0, locality of UV
divergences ensures that they can be at most logarithmic
divergent, while c3 is UV finite due to its mass dimen-
sion at −1. The only potential linearly UV divergent
coefficient c4 is removed by gauge invariance. We have
therefore demonstrated that the cancellation of linear UV
divergences of diagrams (b) and (c) in Fig. 1 at one-loop
order can be generalized to all orders, which makes the
multiplicative renormalizability of quasi-gluon PDFs a
possibility.

At the lowest order in αs, we have Γλµν(p, n) ∝ Πλµν
1 .

If we want Γλµν(p, n) not to mix with other operators
under renormalization, we need its UV divergence to be

proportional to Πλµν
1 to all orders. Fortunately, it is al-

ways true. For the case with µ (or ν) along z-direction or
the case with both µ and ν not along z-direction, the co-

efficients of c2 are proportional to Πλµν
1 or equal to zero,

respectively. Therefore, the components of Γλµν(p, n) do
not mix with each others at all, although two different
renormalization constants are needed for the two differ-
ent choices.

In summary, the choice of operators to define quasi-
gluon PDFs is not unique. If we choose either F zν̄ or F µ̄ν̄

for gluon-gauge-link vertex, Γλµν , we can remove the UV
divergences of the vertex by multiplying a corresponding

renormalization factor Z
−1/2
vg1 or Z

−1/2
vg2 , respectively.

V. RENORMALIZATION OF
GLUON-GLUON-GAUGE-LINK VERTEX

Finally, we exam the renormalization of UV divergence
of the topology (d) in Fig. 2, whose diagrams involve
two gluons and a gaugelink, and could be referred as the
gluon-gluon-gauge-link vertex. Similar to the Ward iden-
tity in Eq. (8), we construct the following Ward identity
for the “bare” fields and operators,

〈∂xλAλd(x)∂yρA
ρ
e(y)[Φ({ξ2z, ξ1z})]ab Fµνb (ξ1z)〉

+iδ(d)(x− y)δde〈[Φ({ξ2z, ξ1z})]ab Fµνb (ξ1z)〉 (11)

=gs〈fafg c̄e(y)cf (ξ2z)∂
x
λA

λ
d(x)[Φ({ξ2z, ξ1z})]gb Fµνb (ξ1z)〉.
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FIG. 4. Pictorial interpretation of the generalized Ward iden-
tity in Eq. (11) with dashed line represents the ghost field.

A pictorial interpretation of Eq. (11) is given in Fig. 4.
Similar to Fig. 3, the topology of the left-hand side of
Fig. 4 is the same as that of the diagram (d) in Fig. 2,
except the external gluons of the diagrams are contracted
with their respective momenta and expressed in coordi-
nate space. The right-hand side of the equation in Fig. 4
is UV finite after all previously discussed renormaliza-
tions performed, including QCD Lagrangian, gauge links,
and gluon-gauge-link vertex. That is, we find that the
topology (d) in Fig. 2 is free of UV divergence if both
external gluons are contracted by their respective mo-
menta.

Similar to the discussion of the gluon-gauge-link ver-
tex, the Ward identity helps reduce the superficial UV di-
vergence of the topology (d) in Fig. 2. Since the diagrams
of the topology (d) have only superficial logarithmic di-
vergence, the additional reduction of the superficial UV
divergence from the Ward identity makes the topology
(d) in Fig. 2 UV finite. Therefore, after the renormal-
ization of topology (c), the topology (d) requires no any
additional renormalization. This is similar to the case of
renormalizing gluon vertexes of QCD Lagrangian, where
gauge invariance guarantees that four-gluon vertex will
be free of UV divergence once three-gluon vertex is renor-
malized.

VI. SUMMARY

We demonstrated that the UV divergences of quasi-
gluon operators are actually similar to the UV diver-

gences of quasi-quark operators if all divergences are reg-
ularized in a gauge invariant scheme. We proved that UV
divergences of all 36 pure quasi-gluon operators are lo-
calized in spacetime, and could be multiplicatively renor-
malized without mixing with each others,

Oµνρσg (ξ) = e−Cg|ξz|Z−1
wgZ

−s/2
vg1 Z

−(2−s)/2
vg2 Oµνρσbg (ξ), (12)

where s is the number of z components chosen for Lorentz
indices {µ, ν, ρ, σ}, and Cg, Zwg, Zvg1 and Zvg2 are renor-
malization constants. Like the quasi-quark PDFs, quasi-
gluon PDFs defined by quasi-gluon operators could be
examples of “good lattice cross sections”, as defined in
Refs. [4, 5], which could be calculated in lattice QCD and
factorized into normal PDFs, from which PDFs could be
extracted by QCD global analysis of the data of these
quasi-PDFs generated by the first principle lattice QCD
calculations.
Note added: While our paper is being finalized, a

preprint by Zhang et al. [42] appeared, in which these
authors reached the similar conclusion although the ap-
proach is very different.
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