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Abstract

Assuming that the π+π− photoproduction at forward angles and high energies is dominated by one pion
exchange we calculate the π+π− mass distributions for low partial waves. Predictions of the model agree
well with the experimental data which indicate that the S and D waves are dominated by the f0(980) and
f2(1270), resonances respectively.
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Photoproduction is an important reaction in hadron
spectroscopy. To determine resonance production mech-
anisms one performs partial wave analysis of the dif-
ferential cross section in various final state channels.
This is now possible thanks to availability of high-
quality data from JLab, ELSA, MAMI, and SPring-
8. Specifically, from analysis of forward photoproduc-
tion of pseudoscalar mesons one can investigate the
spectrum of light meson resonances, including those
with exotic quantum numbers [1], which are impor-
tant for development of our understanding of color
confinement. In the previous studies we have shown
that S and D resonances are copiously produced in
di-pion photoproduction [2, 3]. In those studies we as-
sumed that the di-pion photoproduction is dominated
by the t-channel ρ and ω exchanges at the nucleon
vertex. In the present work we focus instead on the
general properties of the production process. Specif-
ically we examine two principal modes. The long-
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range mode related to the one pion exchange and the
short-range one, which effectively takes into account
all heavier meson exchanges and/or quark/gluon pro-
cesses. As a function of the di-pion mass, the latter
has singularities far away from the physical region
and can be parametrized it terms of a suitably cho-
sen smooth functions. These two modes naturally
arise when one considers restrictions imposed by uni-
tarity on final state interactions in a general produc-
tion process [4]. Instead of assuming a particular
exchange mechanism, we generalize the conventional
formulation of the Deck model [5, 6] by applying the
phenomenological set of pion-nucleon amplitudes ob-
tained by the SAID group [7] and to describe the
final state interactions in the ππ channel we use a
set of partial wave amplitudes from a recent analy-
sis in [9]. The use of phenomenological πN and ππ
amplitudes enables us to make a prediction for the
absolute normalization of the photoproduction cross
section, which as we show in this paper, agrees well
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with the available data on the π+π− photoproduc-
tion in the S, D, and F waves. We do not deal with
the P wave here due to its diffractive character. A
model for the P−wave photoproduction of KK̄ can
be found in [8], which also applies to the π+π− case.

Model description. For the π+π− photoproduc-
tion on the proton γ (q, λ) + p(p1, λ1) → p(p2, λ2) +
π+ (k1)+π− (k2), where λ’s denote particle helicities,
the invariant amplitude is related to the S matrix by

Sfi = δfi + i(2π)4 δ4(p2 + k1 + k2 − p1 − q) Tfi . (1)

Accordingly, the invariant double-differential cross sec-
tion expressed as a sum over ππ partial waves is given
by

d2σ

d|t| d√sππ
=

1

64(2π)4
|k|

(s−m2)2

∑
lm

∑
λ2λλ1

|T lm|2 ,

(2)
where |k| =

√
sππ/4−m2

π is the magnitude of pion
momenta in the ππ rest frame. The partial wave pro-
jection is defined in the ππ center of mass frame cf.
Fig. 1. In this frame the direction of the recoil proton
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Figure 1: Diagrams for the pion photoproduction (Deck mech-
anism), where pions are subject to final state interactions.

defines the negative z axis and y axis is perpendicular
the di-pion production plane. The orientation of the
π+ momentum is given by the polar and azimuthal
angles, θ and φ as shown in Fig. 2, with the photon
momentum given by q = |q|(− sin θq, 0, cos θq) where
|q| = (sππ− t)/2

√
sππ and cos θq is an algebraic func-

tion of the Mandelstam invariants. In terms of the
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Figure 2: Coordinate system in the ππ c.m. reference frame.

scattering amplitude T the partial wave amplitudes
are given by

T lm =

∫
dΩ Y ∗

lm(Ω) T (p2λ2 k1k2, qλ p1λ1) (3)

where dΩ = d cosθ dφ. The partial wave amplitudes
depend on the total invariant energy s = (q + p1)

2,
momentum transfer t = (p2 − p1)2, and ππ invariant
mass

√
sππ. A similar expression holds for the Deck

amplitude Mlm (see below).
For each spin, l and isospin, I = 0, 1, 2 the fi-

nal state interactions are described by the ππ partial
wave amplitudes, tIl that are given by the phase shifts
δIl and inelasticity parameters ηIl ,

tIl =
1

2iρ

(
ηIl e2iδ

I
l − 1

)
, (4)

where ρ = 2|k|/√sππ. The partial wave amplitudes
tIl (sππ) are taken from the recent study of [9], where
crossing symmetry and once subtracted dispersion re-
lations were imposed to further constrain the ampli-
tudes that were studied previously in [10, 11, 12].
In the limit of a large production range, the partial
waves are related to the FSI amplitudes by a sim-
ple algebraic relation [4], which for the even waves,
assuming isospin symmetry reads,

T lmπ+π−(λ2 λλ1) =[
1 + iρ

(
2

3
t0l +

1

3
t2l

)]
Mlm

π+π−(λ2 λλ1) , (5)

and for the odd ones

T lmπ+π−(λ2 λλ1) =
[
1 + iρ t1l

]
Mlm

π+π−(λ2 λλ1). (6)

Here the long-range production,Mlm is taken as the
partial wave projection of one pion exchange aka the
Deck amplitude. The Deck amplitude was originally
constructed in [5] under the assumption that contri-
bution from the nearest singularity at low-tγπ, which
is the channel dual to sππ, is that of the pion pole.
Moreover, gauge invariance was imposed by modify-
ing the pion pole according to a following prescription
[6],

Mλ2λλ1 = −e
[(

ελ · k2
q · k2

− ελ · (p1 + p2)

q · (p1 + p2)

)
T+
λ1λ2

−
(
ελ · k1
q · k1

− ελ · (p1 + p2)

q · (p1 + p2)

)
T−
λ1λ2

]
(7)
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where e is the electric charge, ελ is the photon helic-
ity polarization vector and T+

λ1λ2
and T−

λ1λ2
are π±N

scattering amplitudes. This is one of many possible
implementations of gauge invariance. Another model,
for example, was studied in [13] where contributions
from the baryon exchanges were also included, which
required a different modification to make the overall
amplitude gauge invariant. In the following we use
Eq. (7), which appears better suited in the kinemat-
ics dominated by meson exchanges. Similarly to T lm
the partial wave projection of the Deck amplitude is
given by,

Mlm
π+π−(λ2λλ1) =

∫
dΩY ∗

lm(Ω)Mλ2λλ1 . (8)

Elastic amplitudes of the π+ and π− scattering off
protons that appear in Eg. (7) can be expressed in
terms of the isospin amplitudes

T+
λ1λ2

= T
3
2
λ1λ2

, T−
λ1λ2

=
1

3
(T

3
2
λ1λ2

+ 2T
1
2
λ1λ2

). (9)

with the latter given in terms of the standard Lorentz
invariant isospin amplitudes [14]

T Iλ1λ2 = u(p2, λ2)
(
AI + γ ·QBI

)
u(p1, λ1) (10)

with Q = 1
2(q ∓ k1 ± k2), for π− and π+ scattering,

respectively. To construct the amplitudes in Eq. (9)
we use the SAID πN partial wave parametrization.
Note that due to kinematics of the process the pion
that undergoes the scattering on the proton target is
not on its mass shell: (q − k1)2 6= m2

π. Consistency
with the assumed one pion exchange nature of the
leading singularity demands, however, that the πN
amplitudes are evaluated on-shell and that the pion
virtuality only appears through the pion propagator
(cf. Fig. 1). Even though the pion exchange is close
to the physical region, because of the finite momen-
tum transfer between the target and recoil nucleon,
t the Deck amplitude gives a rather smooth function
of sππ. In Fig. 3 we compare individual cross sec-
tions computed for each of the four lowest partial
waves (S,P ,D,F ) of the Deck amplitude, with their
incoherent sum in Eq. (2) and with the total, unpro-
jected Deck amplitude (“all waves”). The calculation
is done at photon energy Eγ = 3.3 GeV and momen-
tum transfer squared t = −0.55 GeV2. We observe
that the convergence rate of the partial wave expan-
sion is rather slow, so that the combined four lowest
waves account for roughly 50% of the total contribu-
tion to the sππ intensity distribution. Moreover, the
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Figure 3: Cross sections for low partial waves as compared to
the cross section computed from the complete amplitude. The
results are calculated without the final state interactions.

clear hierarchy of partial waves is visible, with the
odd partial waves being stronger than then even ones.
This can be understood by considering the cos θ and
φ dependence of T+

λ1λ2
and T−

λ1λ2
in Eq. (7). Chang-

ing θ → π − θ and φ → φ + π in the second term of
Eq. (7) and using Eq. (9) we see that the partial wave
expansion in Eq. (8) can be rewritten as

Mlm
π+π− =−e

∫
dΩY ∗

lm(Ω)

(
ελ · k2
q · k2

− ελ · (p1 + p2)

q · (p1 + p2)

)
×
[
T

3
2 − (−1)l

3
(T

3
2 + 2T

1
2 )

]
. (11)

It thus follows that in the case of even partial waves,
l = 0, 2, . . . , the dominant πN isospin 3/2 component
is partially canceled while in odd ones it is enhanced,
which explains qualitatively the hierarchy observed
in Fig. 3.

Numerical results. In general, in the kinematics
discussed here, a minimal model for π+π− photopro-
duction should contain two parts. One corresponds
to production of pion pairs from a spatially extended
region and is given by Eqs. (5),(6). We refer to this
component as “Deck+FSI”. The other, corresponds
to production from a spatially compact source. For
each partial wave the latter can be parametrized by
a ”short-range” contribution given by,

(A+B sππ) eiδ
I
l sinδIl (12)

The term in the parentheses effectively parametrizes
the smooth sππ dependence, which in the physical re-
gion arises from exchanges of heavier mesons and/or
quarks. This term is modified in the standard way
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by final state interactions in the ππ channel, where,
given the limited data range, we ignore inelastic ef-
fects. The free parameters A and B were fitted to
data. We compare predictions of the model with mass
distributions for low partial waves determined by the
CLAS collaboration [15], which, to our knowledge,
are the only available data on the di-pion partial-wave
mass distributions.
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Figure 4: S−wave double differential cross section at Eγ=3.3
GeV and −t=0.55 GeV2. Dash-dotted line - pure Deck model;
dashed line - Deck model with final state ππ interactions; solid
line - Deck model with FSI and the short range term; dotted
line - contribution of the contact term; red points - CLAS data
(color online).

In Fig. 4 we compare model predictions with the
experimental S−wave mass distribution. It is clear
that already at the level of mass distribution the
Deck amplitude alone gives the right magnitude and
reproduces the mass dependence of background, i.e
outside the region of the f0(980) resonance. When
the final state ππ interactions are taken into account
(“Deck+FSI”), the resonant shape around 1 GeV, is
well reproduced. Destructive interference between di-
rect di-pion production and final state interaction cf.
Eq. (5) results in the mass distribution dipping below
the data in the whole energy region (see the discus-
sion below Fig. 5 for more details). If, however, we in-
clude the “short range” component with parameters
A=−14.5±0.6 GeV−1 and B=2.7±0.6 GeV−3 the fit
fairly reproduces the mass distribution behavior both
in resonance region and outside. The slightly differ-
ent invariant mass behavior of our predictions above
1 GeV in comparison with the data can be attributed
to the absence of the KK̄ channel in the model. An-
other point we would like to discuss here is a contribu-
tion of the correction term in Deck amplitude, Eq. (7)

required for gauge invariance, typically referred to as
a contact term (even though in our case it is not lo-
cal). In Fig. 4 we show the contribution of the contact
term in Eq. (7) (the dotted line). It is apparent that
in the region around 0.6 GeV this contribution re-
veals a small enhancement in the mass distribution.
This enhancement is also seen in the curve obtained
from the “Deck+FSI” amplitude. One can also say
that the contribution is relatively large in the S wave.
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Figure 5: D−wave double differential cross section at Eγ=3.3
GeV and −t=0.55 GeV2 with M ≤1. Dash-dotted line - pure
Deck model; dashed line - Deck model with final state ππ inter-
actions; solid line - Deck model with FSI and the short range
term; dotted line - contribution of the contact term; red points
- CLAS data (color online).

In Fig. 5 we show our model results compared
to CLAS D−wave mass distribution. It is important
to note that following the experimental analysis we
take into account only the amplitudes where the mag-
netic quantum number M of the ππ system (equiva-
lent to the helicity in the chosen frame of reference)
is smaller than 2. Similarly as in the S wave, the
model agrees well with the experimental data even
for the pure Deck amplitude, Inclusion of the final
state interactions results in developing the minimum
rather than the maximum for the invariant masses
around the f2(1270). This different pattern in the S
and D waves can be understood from behavior of the
isoscalar ππ phase shifts [9]. The production ampli-
tude in Eq. (5) is dominated by the term proportional
to cos δ0l , which comes from the square brackets in
Eq. (5). Then the minimum in the D wave is due to
the ππ phase shift passing π/2 at about 1.25 GeV.
In the S wave the phase first passes π/2 at about
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Figure 6: F−wave double differential cross section at Eγ=3.3
GeV and −t=0.55 GeV2 and M ≤1. Dash-dotted line - pure
Deck model; dashed line - Deck model with final state ππ inter-
actions; dotted line - contribution of the contact term; double-
dash-dotted line - Deck without the contact term; red points -
CLAS data (color online).

0.85 GeV as seen in Fig. 4 for “Deck+FSI”. When
the phase shift reaches π at

√
sππ ∼ 0.95 GeV it pro-

duces a maximum. The model agrees much better
with the D-wave data if we include the “short range”
component with parameters A=−24±11 GeV−1 and
B=10±7 GeV−3. It is obvious from Eq. (12) that
the D wave resonates at

√
sππ ∼ 1.25 GeV. The con-

tribution of the contact term is not so important in
the D wave as in the S wave but it also reveals a
tiny bump below 0.6 GeV that is apparent in the full
result (the solid line).

In Fig. 6 we compare the model prediction with
the F−wave mass distribution measured by CLAS. A
discrepancy is observed throughout the entire mass
region. Moreover, the effect of the final state interac-
tions in the F wave is negligible, which results from
very small values of ππ partial waves. On the other
hand the effect of the contact term is relatively large
here and it explains the bump around 0.6 GeV. It is
apparent that a form of the contact term is responsi-
ble for the excess in the mass distribution below 0.8
GeV, as indicated by the double-dash-dotted line. As
the contribution of the contact term is flat it cannot
contribute to the rising distribution at high masses.

Conclusions and outlook. With the model dis-
cussed in this paper we have calculated mass distri-
butions for various partial waves in photoproduction
of the π+π− pairs on the proton. In our approach
we combine the Deck model, which accounts for the
extended source mode of the photoproduction, with

the SAID parametrization of πN scattering ampli-
tudes. This part of the model is essentially parameter
free. Thus, we have probed the dominant exchange
mechanism of the reaction at forward angles that is
given by the one pion exchange in the tγπ channel.
We also took into account the compact source mode
of the reaction, which based on the general grounds
can be parametrized by a smooth function. In this
respect we have used a first order polynomial in sππ.
When we include the final state ππ interactions in the
model, we obtain the ππ mass distributions which for
even partial waves are in good agreement with CLAS
measurements made at Eγ=3.3 GeV. Predictions of
the model agree well with the experimental fact that
the S and D waves are dominated by isoscalar reso-
nances f0(980) and f2(1270), respectively. Moreover,
we observe that the compact source component of the
D wave resonant amplitude is larger than this same
component for the S wave (compare eg. the values
of the corresponding A and B parameters). This is
in line with the expectation that while the f2(1270)
is a typical qq̄ resonance, the f0(980) is rather more
loosely bound system of four quarks. We refrain from
the description of the P wave π+π− photoproduction,
which is known to be dominated by diffractive ρ me-
son photoproduction whose inclusion was beyond our
exploratory study. In the F wave we observed the
discrepancy between CLAS measurements and model
predictions. At small invariant masses we attribute
this discrepancy to a specific form of the contact term
adopted from [6]. We observe a general hierarchy of
the partial waves, namely that the even partial waves
are weaker than the odd ones which can be qualita-
tively inferred from Eq. (11).

A similar analysis using the Deck (Drell) mecha-
nism driven by the kaon exchange for the KK̄ pho-
toproduction was performed in [16]. In their analy-
sis the authors took into account the full KN and
K̄N scattering amplitudes showing that the kaon ex-
change mechanism alone is not sufficient to describe
the data on the K+p and K−p invariant mass spec-
tra. The reaction mechanism was therefore extended
by adding the K∗ exchange with a large coupling to
the Λ(1520) resonance and a better description of
the invariant mass spectra was achieved. Our find-
ings are consistent in that the reaction mechanism
based only on the long range mode is not enough to
get a realistic description of the data. The two-pion
photoproduction on the nucleon was also studied at
small energies (Eγ < 1.5 GeV) in [17] based on an
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effective Lagrangian approach. To achieve a satisfac-
tory description of the data on total cross sections
the authors included many baryon resonances in the
s-channel with the mass below 1.8 GeV. In the t-
channel, exchanges of heavier mesons (σ and ρ) were
included showing that also in this approach far-away
singularities do play important role.

Our formalism allows for systematic refinements
of the model. These include the coupled channel ef-
fects (which we expect to be important especially for
the isoscalar S wave), off-shell effects and inclusion of
other t-channel exchanges. In order to use the model
in the full kinematic region accessible for GlueX and
CLAS12 energies, the SAID πp amplitudes must be
supplemented with amplitudes applicable for πp CM
energies beyond 2 GeV.
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