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Further progress in hadron spectroscopy necessitates the phenomenological description of three
particle reactions. We consider the isobar approximation, where the connected part of the 3 — 3
amplitude is first expressed as a sum over initial and final pairs, and then expanded into a truncated
partial wave series. The resulting unitarity equation is automatically fulfilled by the B-matrix
solution, i.e. an integral equation for the partial wave amplitude that generalizes the 2 — 2 K-
matrix construction. We study the one particle exchange and how its analytic structure impacts
rescattering solutions such as the triangle diagram. The analytic structure is compared to other
parameterizations discussed in the literature. We briefly discuss the analogies with recent formalisms

for extracting 3 — 3 scattering amplitudes in lattice QCD.

PACS numbers: 11.55.Bq, 11.80.Et, 11.80.Jy

I. INTRODUCTION

Modern high-energy experiments are accumulating
high quality data on three-hadron final states, that are
expected to be the main decay channels of several poorly
known or missing resonances. These include, for exam-
ple, the enigmatic a1, ws, and the exotic m; resonances
that can be studied in peripheral production at COM-
PASS, GlueX, and CLAS12 [1-7]. In addition to conven-
tional hadrons, many of the exotic XY Z and pentaquark
states observed in the heavy quarkonium sector [8-10],
are also found in three particle final states.

Many of these newly observed or anticipated states lie
close to thresholds of their decay products. For exam-
ple, the mass difference between the X (3872) [11] and
the D°D%7® threshold is only 6 MeV. The proximity of
the three particle threshold together with the possibil-
ity of long-range interactions mediated by a single pion
exchange can significantly influence the X(3872) line-
shape [12] and one needs to carefully analyze the role
of pion exchange and whether is able to bind D*° and
D° [13-16]. In the light meson sector, the recently ob-
served a;(1420) [2] is yet another candidate for a state
not expected in the quark model that can be influenced
by meson exchange interactions and thresholds [17, 18].

On the theory side, lattice QCD has made substantial
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progress in extracting the resonance spectrum from sim-
ulations of 2 — 2 reactions [19-27], and recently, the for-
malism for 3 — 3 scattering has been developed [28-38].
Analysis and interpretation of both experimental data
and lattice simulations require input in the form of reac-
tion amplitudes that can be analytically continued into
the complex energy plane. For example, in partial waves,
resonances appear as pole singularities, while particle ex-
changes lead to logarithmic branch points. Fortunately,
reaction amplitudes are constrained by unitarity, which
can be used to determine the discontinuities of partial
waves in the near threshold region.

The problem of constraining 3 — 3 reactions from
the S-matrix principles of unitarity and analyticity has
been studied previously in Refs. [39-44]. In this paper we
extend these earlier works and clarify some of the results.
Moreover, we present the 3 — 3 reaction amplitudes in a
way that can be directly translated to the finite volume.

Our description relies on the isobar approximation,
where the amplitude is constructed as a sum of trun-
cated partial wave expansions. This provides a good de-
scription of three-particle final states in the resonance
region, where analyses of Dalitz plots indicate that they
are dominated by intermediate two-body resonances. For
example, the decay of the a1(1260) resonance into three
pions occurs primarily via a decay to the pm intermediate
state with the subsequent decay of p to two pions [3, 4].
The isobar approximation can be regarded as an effective
way to incorporate the relevant singularities in all Man-
delstam variables, and will be discussed in detail later.
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The rest of the paper is organized as follows. In Sec. 11
we define the 3 — 3 amplitude for three spinless parti-
cles and discuss the relevant kinematics. In Sec. IIT we
introduce the isobar approximation and investigate the
consequences of unitarity. We explain the difference be-
tween isobar and the partial wave amplitudes , which are
often confused. In short, we use the isobar representation
to describe the 3 — 3 amplitude, A = ) Ay;, where
the indices k,j label the spectator particle in the final
and initial state, respectively. We refer to the Ay;’s as
isobar-spectator amplitudes, since they can be pictured
as scattering of a quasi-particle, the isobar, and a stable
spectator. The latter are expanded in partial waves of
the three-particle system. Unitarity constrains the 3 — 3
amplitudes on the real energy axis, which results in spe-
cific relations involving the imaginary parts of the partial-
wave-projected isobar-spectator amplitudes. Unitarity
alone does not uniquely specify partial wave amplitudes,
as evident, for example, in the K-matrix parametrization
of 2 — 2 scattering amplitudes [45, 46]. In Sec. IV we dis-
cuss a specific parameterization for the isobar-spectator
amplitudes which satisfies the three-body and two-body
unitarity. It is given as a solution of a set of linear inte-
gral equations that involve, among others, the one parti-
cle exchange (OPE) as a driving term. We call this the
B-matrix parameterization and it satisfies,

A = Brj + BinmnAnjs (1)

where B is the driving term that contains the OPE, 7 is
a known function of the phase space and of the 2 — 2
amplitudes. The product formally represents an inte-
gration over the intermediate isobar mass. In contrast
to Ref. [44], we restrict the domain of the integrals to
physical values of energies. This enables us to use the
experimentally accessible subchannel amplitudes and we
also discuss the consequences of this restriction. We de-
rive Eq. (1) for isobars with arbitrary spin s, and for any
value of the isobar-spectator orbital angular momentum
L.

The B-matrix parameterization can be analytically
continued to the complex energy plane and in Sec. V we
discuss aspects of its analytic properties. Specifically, the
one particle exchange process has some unique features,
as it contains a kinematic singularity due to the exchange
of a real particle, which can be isolated from the full
3 — 3 scattering amplitude. In addition, we also study
the triangle amplitude that emerges from the B-matrix
parameterization, and the relation to the Bethe-Salpeter
solution. We summarize our results in Sec. VI.

II. KINEMATICS, INVARIANTS, &
AMPLITUDES

We consider elastic scattering of three distinguishable,

spinless particle, e.g. DnD, KrK, or 7tn~ 7% The

particles have mass m;, where j = 1,2, or 3 labels the

individual particles. A single particle state, with four-

momentum p; = (wj;,p;), where w; = /m?+ |p;|?

is the energy and p; is the three-momentum, is de-
noted |p;) and has relativistic normalization (p}|p;) =
(2m)% 2w;6®) (p), — pj)dxj. We are interested in the S-
matrix element of the elastic 3 — 3 scattering process.
We can decompose the S-matrix as S = 1 + ¢T. The
T-matrix contains two terms, T = Ty+T,, where the dis-
connected part, Ty, involves interactions of two particles
at the time with the third one being a spectator, while
the connected part, 1., contains interactions of all three
particles. The disconnected part can always be identi-
fied kinematically by the spectator momentum conserv-
ing delta function [47]. The disconnected part is written
as Ty =Y., 1;0T), where 1; is the identity operator in
the single particle space of the spectator, j and T de-
scribes 2 — 2 scattering between the other two particles.
The amplitudes associated with the matrix elements of
scattering operators, T; and T, are defined as F and A,
respectively. Specifically, the connected amplitude A is
given by

(P'|T.|p) = 2m)*W (P — P)A(p’;p),  (2)

where |p) = |pip2ps) and |p’) = |pip53p5) denote
the initial and final states of the three particles, and
P = p1 + pa + p3 and P’ = p} + p + pf are the initial
and final total four-momenta, respectively, as illustrated
in Fig. 1. Time-Reversal symmetry implies that the am-
plitude is symmetric in the initial-final state variables,
A(p’;p) = A(p;p’). The chosen normalization implies
that the amplitude A(p’; p) has mass dimension —2. The
disconnected amplitudes F; are defined by

(p'| Talp) = (2m)'6' (P’ — P)

3
X 2(271)3 2wj5(3) (p; - p;)F; (P p),

j=1

where the delta function enforces that the spectator j
does not interact. We remark that the F; is the gen-
uine 2 — 2 scattering amplitude, as required by the
LSZ construction [47]. We also define P; = P — p; and
P = P’ —pj; as the initial and final total four-momenta
of the interacting pair recoiling against spectator j, cf.
Fig. 2. In this paper we adopt the so-called spectator
notation or odd-one-out notation [48], where the 2 — 2
amplitudes associated with the spectator j are labeled
by the spectator index. The spectator notation requires
additional information specifying the first particle in the
two-particle system. There are two conventions which
are useful for our discussions: the two-pair convention,
and the cyclic convention. The two-pair convention is
more practical when interaction in one of the three pairs
is negligible. An example of such a system is 7tn 7™,
where the 777" system interacts weakly. In this case
it is convenient to choose the noninteracting system as,
say, particles (13) and designate particle 2 as the second
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Figure 1. Diagrammatic representation of the disconnected
2 — 2 amplitude of Eq. (3) (black disk with four external
legs) and connected 3 — 3 amplitude of Eq. (2) (black disk
with six external legs).

\Pj:(E—wj»P—Pj)

P =(EP)
p;j = (wj, Pj)

Figure 2. Momenta labels for three particles. The left side
denotes the final state particles, while the right is the initial
state.

particle for both the interacting sub-systems. Therefore,
the spectator index 7 = 1 and j = 3 uniquely identi-
fies the two orderings in the pairs to be (32) and (12),
respectively. If the interactions in all three subchannels
are important, one can define the ordering through cycli-
cal permutation, i.e. the spectator label 5 = 1,2,3 cor-
responds to ordering of the two particles subsystems as
(23), (31), and (12), respectively. For simplicity, in the
following we assume only two relevant subchannels, and
use the former convention. Generalization to the lat-
ter case is straightforward. The type of applications we
have in mind are systems like MM elastic scattering,
where M is an open-flavor meson, such as K, D, and
B. The interacting pairs will be assumed in the M7 and
M channels only, and pion being designated as particle
j=2.

The 3 — 3 amplitude depends on eight independent
kinematic variables. The choice of variables largely de-
pends on the kinematical range of interest, e.g. the low
vs high total energy region. Here we are interested in the
low-energy region and use the following redundant set of
Mandelstam variables,

s=(p1+p2+ps)’ =@ +ph+05)%  (4a)
= (pj —1)° = (P — F)?, (4b)
uje = (P —pi)? = (P —pj) — pi)%, (4c)
g5 = sz = (P —p;)%, (4d)
o = B = (P — )% (4e)

where s, 0, and o}, are the invariant mass squares of the
total three particle system, the initial pair, and the final
pair, respectively. The transferred momenta, ¢;;, and u;y,

are between the initial and final spectators and the initial
pair and final spectator, respectively. The Mandelstam
invariants are related by energy-momentum conservation,

s+ tjk + ujp = 0j + 0}, +m7 +mj, (ha)

3 3
Zaj:s+2m?, (5b)
j=1 j=1

3 3
ZO’;CZS—FZT)’I%. (5¢)
k=1 k=1

In the physical region of the 3 — 3 reaction, s can take
any value above the three particle threshold, s > s, =
(mq +ma +ms3)?, while the subchannel invariant masses

o; and o, are bounded by a ) < o; < (Vs —
and al(cth) < o}, < (Vs — my)?, where o™ are the sub-

J
energy thresholds, e.g. O‘§th) = (mg + m3)?. We will
need the relations between the invariants and energies
and scattering angles, in three reference frames. The
frames of interest will be the overall center-of-momentum
frame (CMF) and the isobar rest frame (IRF). There are
two IRFs corresponding to the initial and final states:
the initial IRF;, labeled by the spectator j, and the final

IRF},, labeled with spectator k and a prime.

m;)?

To distinguish momenta in the CMF we denote them
by a %, i.e. P* = P = 0. In the CMF the scatter-
ing angle, ©F;, is defined as the angle between the initial
and final state spectator momenta, cos ©}; = P} - P},
where p} and pj denote the CMF orientations of the
initial and final spectators, respectively. The kinematic
variables in the other frames, IRF; (P; = 0) and IRF},
(P}, = 0) are obtained from the CMF by a Lorentz boost
in the direction opposite to momentum of the correspond-
ing spectator. The momentum of the first particle in the
pair is denoted by q;, and qj, in IRF; and IRF}, re-
spectively. Orientation of these momenta are given by
solid angles, q; = (7;,x;) and @), = (7;,X},), respec-
tively. Here, v; and ~;, are the azimuthal angles between
the decay plane of the isobar and the isobar-spectator
scattering plane and x; and xj} are helicity angles, cf.
Fig. 3 for the specific scheme (23)1 — (12)3. The rela-
tions between all relevant kinematical variables and the
Mandelstam invariants are given in Appendix A. In the
following, we will use the set (q},, o, S, tjk,0;,d;) to de-
scribe the isobar-spectator amplitude.

A. TUnitarity Relations

We consider elastic unitarity in the physical region of
the 3 — 3 reaction below inelastic thresholds. It yields
two relations [49], one for the disconnected 2 — 2 ampli-
tude F; and one for the connected 3 — 3 amplitude A.
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Figure 3. Connection between the three reference frames for the (32)1 — (12)3 system. The total reaction plane in the CMF is
shown in gray, and the initial and final IRFs are shown in blue and green, respectively. The Lorentz boosts 3; and 35 indicate

the transformations between the three frames.

T S 6

Figure 4. Diagrammatic representation for the 2 — 2 dis-
connected amplitude unitarity relation in Eq. (6). The red
vertical dashed line indicates the intermediate particles are
put on-shell.

For F; one finds

Im F;(p'; p) = pa(o;) / dq! F: (0" p')F;(p";p)  (6)
|

where

_ 1 2[qy
6472 | /7,

is the phase space for the two particle system, and q is
the intermediate state relative momentum. The IRFs
are defined with their z-axes defined along the oppo-
site direction of the spectator and their xz-axes defined
by their azimuthal angles w.r.t. the total CMF plane
spanned by the initial and final spectator momenta, cf.
Fig. 3. Note that from energy-momentum conservation,
la;| = |dj| = |d]|. Figure 4 is a diagrammatic represen-
tations of Eq. (6). Elastic unitarity yields the following
condition for the connected 3 — 3 amplitude,

p2(o;) (7)

Im A(p'; p) = 7

2(2m)5

d3pg 5@ (P//

1 /d3p’1’ d’pf
2w 2wl 2wy

_ P) A*(p//;p/>A(p//;p)

+3 paloh) / 4} F (0" ') AD"; )y =y O} — o)
k

. (8)
+ Z PQ(O’j)/dqg A*(p//§p/)|p;’:pjfj(p”§p)@(Uj — U§th))
J

+ > wo(uin — 134) Fi (0”5 0)|pr=p, Fi ("5 P) oy =p;

gk
i#k

where 5 is the mass of the exchanged particle that is
neither j nor k, e.g. if j = 1, and k = 3, then the
exchanged mass is 13 = mo. Note that the evaluations
p) = P}, in the second and fourth lines enforce that o}, =
o}, and similarly in lines three and four, p/ = p; implies
that o’/ = 0;. Figure 5 is a diagrammatic representation
of Eq. (8) and its derivation is given in Appendix B.

The implications of unitarity for the F; are summa-
rized below. The unitarity relation for the connected, A
amplitude is more complicated. The first term in Eq. (8)
is analogous to the 2 — 2 case, in the sense that it is
given by the product of the same connected amplitude
A. The next two terms originate from the contribution
to STS given by the product of T, and Ty, and repre-
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Figure 5. Diagrammatic representation for the 3 — 3 connected amplitude unitarity relation in Eq. (8).
dashed line indicates the intermediate particles are put on-shell.

sents the situation when only two of the three particles
rescatter. The last term is the contribution to the imag-
inary part of the connected amplitude from the product
of two disconnect amplitudes and reflects the real one-
particle-exchange process. Since the unitarity relation
deals with physical, on-shell amplitudes, this last contri-
bution is non-vanishing only when the exchanged parti-
cle is on-shell, where it is singular and proportional to
6w — M?k)'

The implications of unitarity for the analytic proper-
ties of the 2 — 2 amplitude are well known [46]. In the
physical region the partial wave expansion

Fi(@'sp) = > N2 fo,(0) P, (@) - @), (9)

55=0

converges and reduces the integral relation given by
Eq. (6) to a countable set of algebraic ones. Here s; is the
angular momentum of the two-particle system j defined
in the IRF;-frame, ./\/'37 = (2s; + 1)/4r is a normaliza-
tion constant, f5, (o;) is the partial wave amplitude, and
Ps,; () -q;) is the Legendre polynomial describing the ro-
tation dependence in terms of the cosine of the 2 — 2
scattering angle. The unitarity relation is diagonalized
to the partial wave unitarity relation,

Im f,,(05) = pa(0j)| fs;(0;)PO(0; — o™).  (10)
This equation is automatically satisfied by

folog) = K Hoy) — l/oo a5 220 (11)

T Jo G — 0
i

where the K-matrix is a real function along the unitarity
cut.

The 3 — 3 amplitude in the physical region can be
expanded in partial waves in any of the (12), (13), (23)
subsystems. We refer to a subchannel of choice, e.g. (12)

The red vertical

as the direct channel and to the others as the cross chan-
nels. Since each term in the partial wave expansion is
analytic in the angular variables, and therefore in the
(13) and (23) invariant masses, singularities in the latter
variables can happen only when the series diverges. In
contrast to the 2 — 2 case, the unitarity equations for
each partial wave would not decouple, and would con-
tain an infinite number of terms. Since in practice one
must truncate the series, the amplitude would be regular
in the (13) and (23) invariant masses, and the informa-
tion about the cross channels dynamics would be lost.
Instead, we will represent 3 — 3 amplitude in an isobar
approximation, where only a finite number of terms in
the direct and cross channels are included.

III. THE ISOBAR REPRESENTATION

To be concrete, the partial wave expansion of the con-
nected 3 — 3 amplitude reads

A(p/’p) = Z Z Z Mi’ks;;fjsj (0;6787Uj)

J é;ﬂ,s;c Zj,Sj

; ) (12)
7z (B a2/ (PrLa),
M

where we project the amplitude onto the chosen j and
k initial and final channels. Here s; (s},) is the angular
momentum of the initial (final) pair, £; (¢},) is the angular
momentum between the pair and the spectator, J and M
are the total angular momentum of the three particles
and its projection, and M‘Z;CS;C;ZJ_SJ_ is the partial wave
amplitude. The angles f’; and A;: are the orientations of
the initial and final pair, which are reAlated to the CMF
scattering angle via cos©y; = Py - P;. The functions
Z{SM contain the rotational dependence of the amplitude



A, which are defined as

Z/M(P.G) = NoN, Z (JA0sX) DA (P)DSY) (@).
A=—s
(13)
The Z-functions contain all the angular dependence, and
they fulfill the orthonormality condition

07700000 Ossr -
(14)

/dP/qu"M*A, QZ/MP,q) =

More details are in Appendix C.

We next discuss the relation between partial wave
expansion, isobar representation, and finally the isobar
approximation. The partial wave expansion given by
Eq. (12) is in principle an exact representation of the am-
plitude in the physical region of 3 — 3 scattering. How-
ever, unlike the analogous expansion in 2 — 2 scattering,
the partial wave expansion cannot be used in practice in
the 3 — 3 case.

In practice, one needs to restrict the series to a finite
number of partial waves. In the physical region of 2 — 2
scattering, the low-energy behavior of the partial waves
is determined by barrier factors due to the finite range
of interactions. This suppresses the strength of higher
partial waves at threshold, provided the latter are reg-
ular in the cross channel Mandelstam variables. Cross
channel exchanges generate singularities that spoil the
convergence of the partial wave series. However, in the
2 — 2 kinematics, these singularities do not overlap with
the direct channel physical region. Therefore, the partial
wave series can be safely truncated in a finite domain of
CMF energies above the two particle threshold.

This is not the case, for example, when one of the par-
ticles can decay to the other three, and similarly it is
never the case for 3 — 3 scattering. If we consider in-
distinguishable particles, explicit Bose symmetry is lost
for the ./\/l‘éc st partial waves, since the partial wave
expansion in the initial and final states singles out spe-
cific two-body channels. The symmetry is only recovered
upon resummation. The isobar representation, in princi-
ple, takes care of this problem. One writes the connected
3 — 3 amplitude as a redundant sum of expansions in all
the initial and final pairs to make the symmetry explicit.
Bose symmetry is thus preserved upon truncation.

As discussed above, one can manage only a finite num-
ber of terms in the sums over the subchannel spins.
Therefore one reduces the isobar representation

p) = A(pip), (15)
ik

to the isobar approximation, by representing the con-
nected 3 — 3 amplitude as a sum over a finite number

Figure 6. Diagrammatic representation of the isobar approxi-
mation amplitude in Eq. (15). The double lines with the black
disk represents the isobar amplitude f;;(o;), while the gray
disk represents the isobar-spectator amplitude Ay;(p’; p)-

of isobar-spectator amplitudes,

max max

=22 D At 0k 5,07)

J st Ly,sg (16)
XZZJ{M* /* /\/)Z (P]7q_7)

Akjp p

as shown in Fig. 6. The truncation is reflected by
“max” in the sums. We projected the isobar-spectator
amplitudes onto the total angular momentum J of the
three particle system. In the following, we refer to

; ) .
A% slits, (0},,8,05) as the partial wave isobar spectator

(PWIS) amplitudes. We emphasize that, while trunca-
tion in s}, and s; cannot be avoided in practice, unitarity
is diagonal in the total angular momentum. Amplitudes
for each J are thus independent and can in principle be
resummed.

We also stress that the PWIS amplitudes A‘g;c shilys;

are not the genuine 3 — 3 partial wave amplitudes
My . 0,5, 0 Eq. (12):

kSk)

.M—Z/s

k7K

AZ’ s

oy (U;cvsvaj) 1shils) (0%, 8,05)

, (17)
+ X1, .3),

where and X é]ﬁc slityss contains all the cross channel terms
which recouple to the direct channel amplitude,

Xiitin; = 22 20 D1 Alstan, (04:8,00)

a#]7£b7sb£a7‘5(l
/dP’*/d”Z (B )z (B a)

/ qP? / dai; 20N (B, 6;) 20 (B2, G-
(18)

The kinematic relations given in Appendix A can be used
to write the cross channel variables in terms of the direct
channel variables.

Often in the literature, Bose symmetry is considered
as a motivation for Eq. (15). However, this is com-
pletely independent: the representation can be applied
to the distinguishable particle case (in this case the vari-
ous Ay;(p’; p) contain different physics and have different



functional forms), and Bose symmetry can be imposed
to the expansion in Eq. (12) without requiring an ex-
plicit sum over channels. For example we consider the
7t 7% — 7770 process in the isoscalar vector chan-
nel, where the w is observed. Thinking in isospin basis,
where the three pions are indistinguishable, and in the
charge basis, where they are distinguishable, leads to the
same form of the amplitude, showing that Bose symme-
try plays no role in defining the representation.

Isobars parameterize the 2 — 2 dynamics in a given
subchannel and angular momentum state. Contrary to
the 2 — 2 partial waves, they have only right hand sin-
gularities constrained by unitarity. In the N/D formal-
ism, the isobars can be identified with the denomina-
tor function, where the left hand cuts are removed via
a dispersive integral [50]. In the following, we will ig-
nore all left hand singularities of the 2 — 2 amplitudes,
and identify their partial waves with the isobars. Al-
though we do not need to assume any resonant content
for the isobars (e.g. we could use an isobar to describe
the 7T7" dynamics), it is a popular picture to think
of them as a quasi-particle, and to identify the invari-
ant mass and angular momentum of the pair with the
isobar mass and spin. Isobars are customarily labeled
with the name of the dominant resonance, if any. Isobars
can be parameterized as in Eq. (11). For example, the
a1(1260) decays into three pions dominantly in the pm
and o7 channels [51]. If one chooses to perform a trun-
cated partial wave expansion of the 3 — 3 amplitude
in only the pm — a1(1260) — prm channel, rescattering
effects between the pm — om isobars are ignored. The
isobar approximation corrects this by including ampli-
tudes for o — a1(1260) — pm, pr — a1(1260) — o,
and om — a1(1260) — o7.

The approximation is expected to be valid at low values
of energy, where a finite number of singularities dominate
the amplitude. Moving to higher energies, the left hand
cuts controlling the crossed 2 — 4 processes will become
relevant, and the behavior of the amplitude will be con-
trolled by analyticity in angular momentum, rather than
direct-channel unitarity.

Since the isobar approximation includes the cross chan-
nel effects in the summation, the isobar-spectator ampli-
tudes contain only normal threshold singularities deter-
mined by unitarity. Therefore, the analytic structure of
each isobar-spectator amplitude in the energy variables,
s, 0;, and o}, are determined by unitarity.

The problem of convergence in J is more severe. The
3 — 3 amplitude contains an OPE process (see the last
diagram in Fig. 5), which can go on-shell in the direct
channel, and results in an interaction of infinite range.
In this case the cross channel singularities overlap with
the physical region and project onto an infinite number
of partial waves. The analytic properties of the projected
amplitude are highly nontrivial. We discuss them in de-
tail detail in Section V. However, since the main goal in
this and similar studies of three particle scattering is to
identify the spectrum, ultimately one needs to deal with
amplitudes of well defined total angular momentum J.
In other words, these amplitudes diagonalize unitarity,
which is the basis for analytic continuation and identi-
fication of complex singularities as resonance poles. For
this reason, in the following we will not address the prob-
lem of convergence in J.

Unitarity Relations

It is advantageous to introduce an amputated PWIS
amplitude A‘lf;s;_ 05550 in which the isobar amplitudes are
factorized,

J
Af/,s

s
e 5kilisi

— o (O o, (hs5.05) oy (07). (19)
The amputation reduces the number of terms in the
isobar-spectator unitarity relation by making use of sub-
channel unitarity in Eq. (10). However, the amputated
PWIS amplitudes still have a non-trivial dependence on
the subchannel energies due to rescattering effects. As
shown in detail in Appendix C, combining Egs. (8), (10),
(13), (14), (16), and (19) results in the amputated PWIS
unitarity relation
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) is a purely kinematical recoupling coefficient between different intermediate state isobars,

Cl;]ksk;ljs]' (O’k, S,G’j) = QWNS_jNSkNKijNJQ Z <J)\k|€k03k)\k> <J)\]\€j0$j)\J>

Ak Ak (21)

X dgi’“o) (cos xk) dg\“i))\j (cosO;) dg\%) (cos x;)-

The recoupling coefficients relate two different orientations of three particles in the same frame [43, 48, 52]. Appendix

C contains details on the derivation of the recoupling coefficients from the rotational matrices in Eq. (1

3). The helicity

angles and the CMF angle between particles j and k, 0f;, are implicit functions of the invariants (cf. Appendix A).

The second term contains two integrals over the Dalitz
region of the three-particles in the intermediate state,

where the physical reglon is bounded by ot < ol <

(v/s — my,)? and or -) <ol < Uﬁ), where a( ) is a

function of o] and gives the physical boundary cos x! =
+1,e.g. forn=1and r =3,

ny __ 2 2
oy) =mj+m;—

+
o5 207
+ 2 //)\1/2(8 Ul ml))‘l/2(017m§am§)

g1
(22)

Eq. (20) is illustrated in Fig. 7. Appendix C contains
a sketch of the derivation of the amputated PWIS uni-
tarity relations. The first term of Eq. (20) involves the
direct propagation of an isobar in the intermediate state,
whereas the second, third, and fourth term involve the
exchange of a particle between isobars. The rescatter-
ing between isobars modifies the line shape of the isobar
amplitudes [53, 54]. The final term is the contribution
from the OPE process, which gives and additional imag-
inary part to the amplitude in the physical region. At
this stage we have not factored out the threshold factors
from partial waves. This is straightforward to implement,
however we do not do it here as we consider angular mo-
menta in S-wave in further sections.

(0f = s +mi) (o} +m3 —m3)

(

IV. THE B-MATRIX PARAMETERIZATION

Motivated by S-matrix theory, we present a parame-
terization for the PWIS amplitudes that satisfy the real
axis unitarity condition in Eq. (20). In the 2 — 2 case,
the K-matrix, f~' = K~! —ip,, is an example of a pa-
rameterization satisfying unitarity. For the 3 — 3 case,
we present the B-matrix parameterization for the PWIS
amplitudes. The B-matrix parameterization is a linear
integral equation for the amputated PWIS amplitudes
that satisfy the unitarity relations Eq. (20):

yes / J /
'AZ’ shilis; (ak7 S, Uj) = BZ;s;ﬂ;fjsj (Uka S, Gj)
(\/gfnln)2

do—:vl, gécs;c;lf,{s;{ (O—;w 570-;1/,) (23)

m AJ "
X Tn(S, o-n)AE;{s;{;EjsJ' (Um S, Uj)’
where the B-matrix B@’/ o 0.5, Ccontains two terms,
k°k"71°]

BZ/ /

kSkS

sJ
’R'Zgﬂs;c;ljsj +€Z st

k k>

HOEH is;e (24)

The function g‘é{ sl il is the amputated partial wave
kK>

OPE amplitude, ﬁgﬁcs;ﬁj s; is a real function that rep-
resents the short-distance three-body interactions uncon-
strained by unitarity, and 7,, is the product of the isobar-
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Figure 7. Diagrammatic representation for the amputated PWIS unitarity relation in Eq. (20). The black disks in the internal
legs represent the isobars, which are amputated from the external legs, see Eq. (19). The cuts across the OPE in the intermediate

states yield recoupling coefficients.

spectator phase space between and of the isobar ampli-
tude

(8, 00) = p3(8,00) fs, (0n), (25)

with
1 2[p;l
pals,on) = G5

The parameterization is diagrammatically represented in
Fig. 8. The OPE amplitude is defined as

(26)

Eki(PsP) = Fr(P'sP)— Fi(ip), (27)

Wiy — Wik — 1€
where we note that the OPE only contributes to off-
diagonal amplitudes, i.e. j # k. In principle, the
OPE could contain a regular function of the energy in
addition to the pole term, however unitarity only con-
strains the pole, and we assume all other real functions
to be absorbed by R. The amputated partial wave pro-
jected OPE amplitude £ JL sitys, CANL be constructed us-
ing Eqs. (16) and (19). The R represents the freedom
of short-distance physics for the scattering of three par-
ticles, and can be any real function. In an effective field
theory approach, it represents a low order polynomial
of contact interactions. For simplicity, in the following
we assume the latter for R. Appendix D illustrates how
the B-matrix parameterizations satisfies the amputated
PWIS unitarity relations. Aspects of its analytical prop-
erties are examined in Sec. V.

The B-matrix parameterization in Eq. (23) differs from
Mai et al. [44] in the lower limit of the integral: the lat-
ter is derived using Lippman-Schwinger equations with
a relativistic potential model, and includes contributions
from the unphysical subthreshold region, o,, < o’,(fh). Ob-
viously, both parameterization have the same imaginary
part in the physical region, since both satisfy unitarity.

b u ¢
(a)

ST
(b)

Figure 8. (a) Diagrammatic representation of the B-matrix
parameterization in Eq. (23). The gray disk represent the
amputated PWIS, and the gray box the B-matrix. (b) The
B-matrix is composed of a short-range real R amplitude, and
the OPE &, see Eq. (24).

e
P

A (s) =

amplitudes are

For  notational  simplicity, let
j‘é’s;;fﬁsj( so that the
matrices in the isobar sub-energies and angular mo-
menta, which are indicated by the spectator indices.
Equation (23) is then a matrix relation with the inte-
grations over intermediate isobars formally represented
as matrix multiplications. Recalling that we work with
the convention that isobars exists only in the (12) and
(32) channels, we write the B-matrix parameterization
as the set of coupled equations

’
Ok» S,O’j),

Au3(s) = Bis(s) + Bus(s)73(s) Ass(s),
Ass(s) = Bai(s)m1(s) Ars(s),

(28a)
(28Db)

with the other two amplitudes given by a similar set of
equations,

As1(s) = Bsi(s) + Bs(s)71(s) Ara (s),
Ai1(5) = Bia(s)73(s) Az (5).

(29a)
(29Db)



The Egs. (28) can be combined into one integral equation
for A3,

Aig(s) = Bus(s) + K (s)mi(s) Ais(s),  (30)

where the kernel K17 is
Ki1(s) = Bua(s)7s(s)Bai (s). (31)

Similarly, Eqgs. (29) give
Az1(s) = Bai(s) + Kaa(s)7s(s) Az (s),  (32)

where the kernel K33 is given by exchanging the 1 < 3
indices in Eq. (31). Egs. (30) and (32) can be formally
inverted to yield the solutions,

As(s) = [1 = K11(s)m1(s)] " Bus(s), (33a)
Ass(s) = [1 — Kaz(s)73(s)] " Kss(s), (33b)
As1(s) = [1 — Ks3(s)73(s)] " Bs1(s), (33¢)
Ap1(s) = [1 = K11(s)71(s)] " Kaa(s), (33d)

Several terms can be identified in the kernels, Ky;(s) =
Gij(5) + Hij(s) + T (s) + T2 (s), where G is a bubble

J J
diagram, H is a box diagram, and the 7T’s are triangle
diagrams, generated by integrals over OPE and contact

terms in Eq. (24). Explicitly,

Gri(5) = D Rin(8)7n(s)Rnj(s),  (34a)
T (s) = iékn<s>7n<s>7€nj<s>, (34b)
T (s) = Z Rien(8)7(8)E0j (5), (34c)

n (34d)

Hij(s) = Z Ein (S)TH(S)gnj (s).

These diagrams occur in the denominators of the ampli-
tudes in Eqgs. (33), cf. Fig. 9. They differ to the Feynman
diagrams obtained in a perturbative QFT since the inte-
grations are only over the physical region, changing the
analytic structure below threshold (see Sec. V).

The solutions can be interpreted as an infinite series of
exchange and bubble diagrams. For example, expanding
the solution for Ais,

Ays(s) = Bis(s) + Ky1(s)71(s)Bys(s)
+ K11(8)m1(8) K11 (8)71(8)Bas(s) + - - .

The first term is the OPE and contact interaction, the
second term is a ladder diagram with three exchanges,
and various combinations of bubbles and OPE, and so
on. The unitarization of bubble diagrams has been con-
sidered in quasi-two-body models [55-58]. In these mod-
els it is easy to show how additional cuts appear in the
unphysical sheets due to the isobar decay.

(35)

10

Three-body resonances manifest as poles in the com-
plex s-plane of the scattering amplitude. Rearranging the
constituents of the kernel relates the two denominators

Bis(s)ms(s) [1 — Kss(s)7s(s)] "

e (36)

= []]. — ICU(S)Tl(S)] 813(5)73(3).
Thus, we can write the full 3 — 3 amplitude in terms
of a single Fredholm determinant. The determinants are
independent of the external isobar energies, and the inter-
mediate integrations will modify the phase space factors
to incorporate rescattering effects. Resonance poles can
be determined by solving

det [IL — ]Cll(S)Tl (5)} =0. (37)

The B-matrix solutions are real-boundary values of an-
alytic functions in the complex s-plane. The physical
amplitudes are defined by s — s+ i€, 0; — 05 + i,
and o}, — o0}, + ie. Aspects of its analytic properties are
discussed in the following section.

Relation to the finite volume formalism

In finite volume studies for lattice QCD, substantial
progress has been made to understand the connection
between discrete energy levels and properties of hadron
scattering amplitudes [28-38]. In the case of 2 — 2 scat-
tering the two-particle finite volume spectrum constrains
the values of the infinite volume partial wave amplitudes
via the Liischer quantization condition [59]. The multi-
variable nature of 3 — 3 scattering amplitudes makes
the derivation of the finite volume quantization condition
much more complicated and different groups have ap-
proached the problem from a different angle. For exam-
ple, in Refs. [28-32] the authors introduce amplitudes la-
beled by subchannel spins and the spectator 3-momenta.
Furthermore, ladder diagrams generated by OPE are con-
sidered independently from other interactions. This im-
plies that partial wave projection to total spin, which
is necessary if one is interested in extracting properties
of three-body resonances, would be performed after re-
summation of the OPE ladder. On the other hand, in
Refs. [33, 34], the quantization conditions are derived
starting from a set of amplitudes projected onto the to-
tal and subchannel spins from the start, i.e. before OPE
resummation, in a spirit close to our work. In Refs. [35—
37] the quantization conditions are derived in a nonrela-
tivistic EFT framework, and the direct comparison with
our S-matrix approach is more complicated. It is more
interesting to discuss the differences with Refs. [28-31].
Since we do not aim to address the subtleties of the fi-
nite volume here, we compare with the infinite volume
equations derived in there on the basis of the finite vol-
ume formalism. For simplicity we ignore coupling to the
2-body channel. In Refs. [28-31], the 3 — 3 connected

amplitude is denoted by Myz(k, k') (see Eq. (112) in
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Figure 9. The denominator of the B-matrix parameterization contains four primitive diagrams associated with the rescattering
of the B-matrix: (a) bubble diagram, (b) and (c) triangle diagrams, and (d) box diagram.

Ref. [31]). It contains the resummed OPE ladder and
the amputated amplitude 7},3(12, K ) that is generated by
the kernel de733(lg, K ), which is analogous to our driv-
ing term ﬁ'i}cs;%js]‘ (0}.,5,0;). Both the OPE ladder and

the amplitude 7}5(/3, K ) are solutions of linear integral
equations (see Egs. (87) and (106) in Ref. [31]), which
are analogous to our Eq. (23). Although these analogies
should be verified with care, the main difference appears
in the treatment of the OPE dynamics. In Ref. [31] the
OPE is resummed before projection onto the total spin
and in our case the projection is done first. It is likely
that these approaches will ultimately prove to be equiv-
alent, since in practical applications only a finite number
of partial waves in total spin or spectator momentum
components can be kept. However, we leave this as an
open question.

V. ASPECTS OF ANALYTIC PROPERTIES

In this section, we examine the singularities of the
OPE amplitude and the triangle diagram from the B-
matrix parameterization. We numerically evaluate an
amplitude where all external particles have unit mass
(mq = mg = mg = 1) and coupling. In these studies, the
units are arbitrary. For simplicity, we consider S-waves
only, i.e. J('s)k(¢s); = 0(00),(00);. Generalizing to
nonzero angular momenta does not change the analytic
properties.

A. One Particle Exchange

As seen in Egs. (34), the building block for the B-
matrix kernels is the OPE amplitude. Projecting Eq. (27)
using Eq. (16) gives the S-wave OPE amplitude,

~ 1 Zk‘—l
B otsno) = g o () 9
g J

where z1; is given as

2oy )~ (st~ b o))
& A2(s, 05, m5)AV2(s, 0, m7) ’
(39)

where \(a,b,c) = a® + b? + ¢ — 2(ab + bc + ca) is the
Kallén triangle function. Eq. (39). We investigate the

OPE as a function of s for fixed real o; and o). The
imaginary part of the OPE is

~ ™
J

which is given by the unitarity relations in Eq. (20). The

OPE has four branch points in s, one at zero, one at
infinity, and two which we label s,(j),
*_ 1 2
Skj 2:“’?1@ (mk

+u§k(mﬁ —|—m§ +0j+0},) (41)

- Uj)(m? - 01;) - M?k

£ N 0 N2 )|

which depend on the isobar invariant masses. The mo-
menta in the denominator do not contribute additional
branch points, because the logarithm vanishes and cancel
the singularity, as expected from the S—wave threshold
behavior. The s%) branch points are in general complex.
There are then two branch cuts: one where s € (—o0, 0],
called the virtual particle exchange (VPE) cut, and one
connecting s,g;) to s,(:;), called the real particle exchange
(RPE) cut. The VPE cut is associated with the exchange
of a virtual particle, generating long-range forces. His-
torically, the RPE cut is associated with the exchange
of a real particle between isobars, i.e. when it is kine-
matically allowed for an isobar to decay. This corre-
sponds to when the RPE branch points lie on the real
axis above the isobar-spectator threshold. If the isobar
invariant masses are below the decay threshold, then the
RPE branch points move in the complex plane below the
isobar-spectator threshold. For convenience, however, we
will always call this the RPE cut, and emphasize that a
real particle exchange occurs only if it is kinematically ac-
cessible. Note that although the value of the isobar mass
dictates the physics of the OPE, the OPE is blind to the
decay products of the isobar and the physical threshold
in s is max{(\/a; +m;)?, (\/o} + mi)?}.

We can understand the analytic structure of the OPE
by writing a dispersive representation in s. Eq. (40) is
nonzero in two regions, leading to the relation

~ 1 1
%@@m=/@'

ry, 8 —s—ied|py|p]l

+/ b1 1
rp 8 —s—iedpy(lp;l’

(42)




where I'y, is the contour over the VPE cut and I'g is
the contour over the RPE cut. The integrand has four
branch points associated with the thresholds and pseudo-
thresholds of the initial and final momenta. We choose to
orient the branch cuts such that the lowest branch point
(min{(/o}, — mx)?, (/o7 — m;)?}) has a cut running to
—00, the highest branch point (max{(y/o},+myx)?, (\/7;+
m;)?}) has a cut running to 400, and the other two
branch points have a branch cut joining them. The con-
tour I'y is always taken above the real axis, whereas the
contour I'p depends on the external masses. The phys-
ical amplitude is defined as the boundary value when
s — s + i€, below the RPE cut.

For fixed o; > a§th), the RPE cut can be categorized
by different regions in o},. In Fig. 10, we illustrate how
the analytic structure of the integrand and the integra-
tion contours change in these regions. Assuming a small
imaginary part M?k — ,u?k — 1€, the RPE branch points

have a finite imaginary part for o}, < U,(Cth)
signs. When o}, > Ul(fh)

, with opposite
, the branch points are infinitesi-

mally close to the real axis. In the physical region, sg)
has inflection points at two locations of o}

(a) mj(oj + N?k —mg)

o, = m? + u?k + N , (43a)
O'I(Cb) = —27;% [Zmz(aj — mJQ) —mj (43b)
— (o5 — ,u?k)Q + (mi + H?k —0j)
X \/4m?mi + AMoj, 1 mi) |
which follow from ds}c;) /doj, = 0 corresponding to

Im s,g;) = 0. Both o,(ca) and U,(cb) correspond to when Si;)

crosses the real s-axis. The s](;;)

in the upper-half plane.

We can therefore classify the regions according to when
the RPE branch points are both in the upper-half plane
or when they approach the real axis.

branch point always lies

(a) o}, > 0'](:), see region (a) in Fig. 11. Here s;;) is

below the real axis, and sfj) is above the real axis.
The RPE cut connects these two points by crossing
the real axis below the threshold (/o) 4+ my)?. Real
particle exchange in this case has consequences when
considering the OPE processes embedded in the tri-
angle diagram, which is discussed in the next section.
For k =1 and j = 3, Fig. 10(a) shows the RPE and
VPE contours, I'p and I'y, respectively. Note that
in the logarithmic representation, the RPE cut is cir-
cular, whereas in the dispersive representation, one
can define the cut in any chosen manner as long as
singularities are not crossed.

(b) cr](ga) <o} < ol(cb), see region (b) in Fig. 11. When o7,

. . . b) (-
decreases below the inversion point or,(C ), s; j) wanders

12

above the real axis. The RPE cut directly connects

s,g;) to s,(:jr) without crossing the real axis. This is
the typical case when considering the exchange of
a real particle, illustrated in Fig. 10(b). Note that
when o}, = o, for equal masses m; = my, then the

integrand branch points merge into pole singularities.

(c) aéth) <o < 0,(:), see region (c) in Fig. 11. The
RPE branch points again wrap around the real axis,
cf. Fig. 10(c), with the cut crossing the real axis
below the threshold (,/a; + m;)%.

(d) o5, < a,(cth), see region (d) in Fig. 11. The branch
points 853-:) move deep into the complex plane, as
shown in Fig. 10(d). In this region, the isobar cannot
decay, and therefore it is unphysical for the 3 — 3
elastic scattering. Real particle exchange cannot oc-
cur, leaving only the virtual contributions.

If we evaluate the OPE along the real s-axis in regions
(a) or (c), we find that the real part of the OPE has a
jump due to crossing the RPE cut. In the logarithmic
representation, this crossing occurs when zp; = 0, that
is, when

1
S =5 [m? +m} = 2+ 0, + o)
; (4<m§- o) — o) (44)

1/2
+ (m? +mi — 23 + 05 + U;)2> ]

When choosing a different contour for I'p in the disper-
sive representation, the location of this crossing depends
on where real axis crosses the chosen contour.

These cases are illustrated in Fig. 10 for spectators
k=1 and j = 3. We plot the OPE amplitudes, Eq. (38),
as a function of s for fixed o3 and o} in Fig. 12. Fig-

ure 12(a) shows the OPE computed at o} in region (a).

At this energy, the 51(4;;) is below the real axis, and the

RPE cut wraps around the real axis, passing below the
threshold (/o7 +m1)2. The jump in the real part at sgg)
is due to crossing the RPE cut. Figure 12(b), is evaluated
at o} in region (b), where both branch points are above
the real axis. Here, we illustrate that as o} decreases, the
width of the imaginary part decreases and the peak in-
creases. The narrowing imaginary region physically rep-
resents that less phase space is available for real parti-
cle propagation in the intermediate state. Figure 12(c)
is computed for o} in region (c), right above the two-
particle threshold. There is a jump in the real part at si%)
from crossing the RPE cut. The final case is illustrated
in Fig. 12(d), where the OPE computed in the unphys-
ical region (d). There is an imaginary part due to the
VPE cut only, as it is kinematically inaccessible for the
exchange of a real particle. The jump in the real part at

sgg) comes from crossing the RPE cut. Figures 12(e) and



I'p /
(+) s
(Vo +m)? O

(Vos — m3)2 (Vos + 7713)2

(ol —m)?

13

- +
553) I'r 5<13)

[en

(V75 —ms)? (Vo3 +ma)’

(Vo +m)?

51
a b
( ) 0_,1 > O_gb) ( ) o_ga) < 0_/1 < Ugb)
sy

(ol —m)® (/o] +m)’

[

I'r
(Vo3 + ms)?

(Vos —m3)* (Voi +mi)?

(th)

() s o) <ol

Figure 10. Cut structure of the OPE integrand Eq. (40) in the s’-plane, and the OPE integration paths for the RPE contour
(T in red) and the VPE contour (I'v in blue) for the dispersive integral Eq. (42). The four cases as a function of o] are: (a)

ol > o (b) ' <ot <P (¢) o™ <ot <ol and (d) o) < oi™. Real particle exchange cannot occur in case (d).

In the logarithmic representation Eq. (38), the RPE cut is circular.

1.5+

-0.5+4

1.0+

-1.5+ ol =2

Figure 11. Motion of s%) in the s-plane as a function of o for fixed 03 = 4.41, and unit external masses, m; = ms = ms = 1.

(+) (

Shown in red is sj3° and in blue slg). The points indicate various o] values. Note that the physical region begins at o} = 4.

(

The inset shows the infinitesimal region where slg) curve crosses the real axis at the points a§“> =4.1 and U%b) = 5.81. The
labels (a)-(d) indicate the regions described in the text and depicted in Fig. 10.

12(f) shows a 3-dimensional plot of the real and imagi-
nary part of the logarithmic representation of the OPE,
Eq. (38). The circular cut is clearly visible connecting
the RPE branch points. The physical region is taken as
the region approaching the real axis, below the RPE cut.

To summarize, the analytic structure of the OPE is
given by two branch cuts, the VPE and RPE cuts. The
VPE cut is present for —oo < s < 0, and is associated
with the exchange of an off-shell particle. For physical
isobars, the RPE cut is in the physical region. We have

shown different scenarios, identified by the isobar masses,
in which the RPE branch points can approach the phys-
ical region, which impact the structure of the B-matrix
kernels.

B. Triangle Diagrams

To understand resonance poles of 3 — 3 systems,
the analytic structure of the B-matrix parameterization,
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Figure 12. OPE amplitudes Eq. (38) for external masses mi1 = mg = mg = 1 at fixed o3 = 4.41 for the four regions depicted
in Fig. 10: (a) o7 = 3.24 representing the unphysical region, (b) 4.04, where the RPE cut wraps around the real axis, (c)
4.41, where the RPE branch points are above the real axis, and (d) 7.29 where the RPE cut wraps around the real axis. The
insets show the contribution from the VPE cut. For these values, the inflection points are aia) = 4.1 and agb) = 5.81. The
real and imaginary parts of the OPE Eq. (38) at 07 = 7.29 in the complex s-plane are shown in (e) and (f), respectively. The

(0)

discontinuity at s = s15 =

Eq. (33) must be understood in the complex s-plane.
This means understanding the properties of the B-matrix
kernels. Here, we investigate the triangle diagram, and
leave the box diagram for future studies. Let us work
with the triangle 75 = ’7‘1(12 ) introduced in Eq. (34c¢),
where all angular momenta are in S-wave. For conve-
nience, let R = 1, thus the amplitudes are independent
of o1, and given by

(Vs—m3)?
/o.(th)
3

where 73(s,0%) = ps(s,04)D3"(4) , and the depen-
dence of T on o1 has been understood. To ensure the
correct analytic properties of the isobar amplitude, we
introduce its dispersive representation

Tga(s) dUgTs(S,Ug)g;i(Ug,S,Ul), (45)

1 = . Imfs(0)
1"
S do — 4339
fa(o3) T /ag“‘) 75 ol — i€’ (46)
giving the form for T

1 [ ~

Te(s) = = /ag”‘) do Im f3(o)
(47)

(s, 08)E5 (05, 5, 01)

" :
0 — 03 — 1€

dag P3

(Vs—m3)*
)
()
3

13.31 occurs when evaluating the OPE across the RPE cut.

We see the of-integral does not depend on f5() , so
for simplicity we take the narrow width limit Im f3(5) =
76(c — M?) , where M is the mass of the isobar. The
narrow width limit shifts the unitarity cut in the triangle
diagram to begin at the threshold s = (M + mg3)%. How-
ever, for a general isobar shape, Eq. (47) can be used to
sum over its distribution, recovering the correct unitar-
ity branch cut starting at s;;,. Therefore, the triangle
diagram has the form

(vs—m3)?
/U(tm
3

Figure 13 shows the triangle diagram in consideration.
The B-matrix triangle contains singularities on the phys-
ical sheet. These are due to the s-singularities in p3 and
Sigg, and to endpoint singularities when the integration
limits hit the o4-singularities of the integrand. The up-
per integration limit gives a branch cut for s < 0. Since
pa(s, %) o {[% — (/5 + ma)2[o} — (v/5 — ma)?]}1/2/s,

there is a pole at s = 0. When the integration variable

do” p3(8, Uél)g?i (Jg7 5701)
8 M? —oll —ie

Ts(s) . (48)

hits the lower limit o = aéth), there are two branch point
(th

) + m3)2 = (m1 +mo £ m3)2.
In the narrow width limit, the unitarity cut opens when
the upper limit of the integral hits the pole in the isobar

singularities at s = (1/ o3



propagator, for s = (M + mg3)2. On the real s-axis, the
OPE has a discontinuity in the real part when z3; = 0,
ie. at of = aéth). This discontinuity from crossing the
RPE cut is present in 7p. Two more singularities oc-
cur when o hits the two inflection points aga) and Uéb),
which are defined in Eqgs. (43). The OPE pinches the
real axis at off = Jéa), and generates a singularity in 73
at the initial state threshold s = (\/o1 4+ m1)?. This can
be understood by realizing that the OPE branch points,
Eq. (41), can alternatively be written in terms of o as
a function of s for fixed o;. The branch points are then

Ug(i), where

(£
‘73( ) = 20, o1(s +mi +m3 + p3;)

+(m — s)(m3 — p5,) — of (49)

£ A2 (5,00, mH)AY2 (01, 13, m3) |

and O'g(i) lies infinitesimally below the real axis in the
physical region. Figure 14 shows the motion of ag(i)
in the complex o¥-plane as a function of s for fixed oy.
At the three particle threshold, s = (m1 + mso + m3)?,
the branch points have finite imaginary part and are on

opposite sides in the o%-plane. As s approaches the ini-
tial state threshold s = (/a1 + m1)?, the Ug(i)
points pinch the real axis at o} = a§“>. Since the Tp

branch

integration is on the real axis starting from Uéth), the
integration path is pinched, causing a singularity in Tp
at s = (/o1 +m1). At 0§ = oéb), the branch point mi-
grates back below the real axis at a value greater than the

threshold Uéth) close to the real axis. When M? > O’éb),
this effect generates the triangle singularity [49, 60, 61].
The triangle singularity has been studied as a possible
mechanism to explain anomalous structures observed in
heavy flavor experiments [18, 62-64]. The peak of the

triangle singularity coincides with the sgI) branch point,
fe. sy =85
€. Str = S31°-

Figure 13. The triangle diagram 7p contribution to the kernel
IC11. We take the isobar to have a narrow width with mass
M. For numerical evaluations, mi; = ms = us1 = 1.

Aside for the unitarity branch cut starting at s =
(M + m3)? and the triangle singularity, these additional
singularities in the physical s-plane are not allowed by
analyticity. The extra singularities are moved to the sec-
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&) in the o-plane as a function

Figure 14. Motion of the o

of s for fixed o;. Shown in red is Ué/<+> and in blue o
The points indicate various s values starting from the three
particle threshold, s = (m1 + ma2 + mg,)2 = 9. The inset
shows that the branch points pinch the real o] axis at s =
(Vo1+ m1)? = 16, which is responsible for a pinch singularity
in 75.

1m(—)
3 .

ond sheet when we consider the integration over the iso-
bar shape, cf. Eq. (47), leaving only the unitarity cut
starting at s = (m + ma + mg3)? and the triangle singu-
larity.

We compare the structure of Eq. (48) with that of a
Feynman diagram triangle in a QFT (see Appendix E for
a review of the Feynman triangle), which can be written

as
’ 2\ ¢S 2 o
7}‘(5) — \/F dS/pB(s 7M )513(M 78 )Ul)’ (50)

s’ — s —ie

where I'7 is the path from the threshold (M + ms3)? to
oo, and the S-wave amplitudes are normalized accord-
ing to Eq. (16). Figure 15 shows the real and imaginary
parts, respectively, of the two triangle diagrams Tz and
Ts, below the region of the triangle singularity. Notice
that the Feynman triangle has only a normal threshold
singularity at s = (M +m3)?, and is smooth everywhere
else. The imaginary parts of both triangles are identi-
cal above threshold, as required by unitarity. The B-
matrix triangle has noticeable kinks in both the real and
imaginary parts below threshold, corresponding to the
singularities discussed above. The black dashed lines in-
dicate the location of the singularities. Starting from
low energy, the first additional singularity is the s = 0
singularity from the phase space. The next two singular-

ities occur at s = (\/Uz(;h) —mg3)? and ( O'éth) + m3)?,
which are from the phase space evaluated at the lower
integration limit. The real part contains a singularity
from evaluating the OPE across the RPE cut. Note that
the imaginary part does not contain this jump, consis-
tent with the OPE description in the previous section.



The next singularity occurs at the initial state threshold
s = (y/o1 +m1)?, which is due to the pinching of the ¢4
contours by the OPE branch points. Finally the normal
threshold at s = (M + m3)?. Figure 16 shows 75 and
the OPE in the region where the triangle singularity de-
velops. The line shape shows the production threshold
at (M +mg3)?, and the peak at s = si,. The OPE branch

point sgz) clearly coincides with the triangle peak.
Figure 17 shows the 7z and Tr as a function of s at
fixed o1 and varying M? in the region below and above
M? = O‘éb). Figure 17(a) shows the real parts, and
Fig. 17(b) shows the imaginary parts. At M? = aéb),

the triangle singularity develops, corresponding to when

5= sgf) = 54 . One can see a second threshold in the line

shape above threshold (M +mg3)?. Figure 17(c) shows the
RPE cut of the OPE in the s-plane at the corresponding
values for the triangle amplitude.

We also compare the B-matrix triangle with the anal-
ogous one from Mai et al. [44], that we denote as Ty,

(v/s—m3)? INGS (11
1w P3(s,05)Ex5 (05, 5,01)

TM(S) - ~/—oo dJB M2 — Ué/ — e ’ (51)
where we take their contact term equal to unity, and the
lower integration limit in their model accounts for the
physics in the unphysical region. As of — —oo, the
OPE amplitude goes like 1/0%, while the phase space
grows as o4, thus the integrand goes like 1/0% and the
function is logarithmically divergent. Numerically, we
choose to cut off the integral at some large value, e.g.
—200 to investigate the behavior. For Ty, all lower limit
endpoint singularities in s from the phase space and OPE
are moved toward —oo. The s = 0 pole from the phase
space persist, and the normal threshold singularity at
s = (M +mg)? is present since it is from the upper limit.
The pinch singularity at s = (\/o1 +m1)? is also present,
as well as the pinch singularity at s = (/o1 — m1)?, cf.
Fig. 14. The second pinch singularity occurs when the

integration over o4 hits of = a:(f), where

my (o1 + p3y —m3)
\/O1 ’

is a third inflection point in the unphysical region, oc-
curring at s is at the threshold s = (/o1 — m1)? (when
Im s,(C;) = 0). This pinch singularity is absent in the B-
matrix triangle, as the integral is only over the physical
region. Figure 15 compares the line shapes of all three tri-
angles, Tg, Tr, and Tps. Although Ty, has a logarithmic
divergence, we fix the lower integration limit to —200. We
see how the line shape below threshold smooths out ex-
cept at the remaining singularities, shown with the black
dashed lines. The red dashed line indicates the second
pinch singularity in 7.

The Feynman triangle can be recovered from 73 with
the method discussed by Aitchison and Pasquier [41],
where the isobar approximation for 1 — 3 decays was

U:(SC) = m% + /~L:2’>1 -

(52)

16

studied. Using their inversion technique, it was found
that the Feynman triangle can be written as a dispersive
integral over the isobar invariant mass as in Ref. [44],
plus additional terms. The latter are real in the physical
region, but cure the below threshold singularities shown
in the B-matrix. The additional terms also cancel the
logarithmic divergence, leaving a finite amplitude.

C. Removal of Unphysical Singularities

As shown, the B-matrix parameterization contains ad-
ditional singularities which do not match the expected
analytic behavior of the amplitudes. This happens in
both our formulation and Mai et al. [44]. One possible
venue for improving that is to substitute the B-matrix
kernels, Eq. (34), with the Feynman one. This is in the
same spirit of the Chew-Mandelstam phase space in the
2 — 2 parameterizations, which removes the unphysical
singularities of the phase space. Although the kernels
will now have the proper analytic structure (no physi-
cal sheet singularities except for the unitarity cut), the
resulting amplitude will still contain singularitieswfrom
iterating the kernel. Consider the solution for Asz in
Eq. (33b), where the kernel is replaced by the Feynman
one, K33 — KI5, where

et = [ Bu()ns()Buos) o

h s’ — s —ie

Now expand the solution Eq. (33b) in an infinite series,
Azy = KE5(s) + KL (s)ms(s)Khs(s) + - . (54)

The first term is the kernel, composed of Feynman di-
agrams which have the correct analytic properties. Let
the kernel consist only of the triangle diagram, then the
second term is two Feynman triangles joined with a 7-
function. The equivalent Feynman diagram would have
two exchanges integrated over the four-momenta, which
is not equivalent to what is shown in Eq. (54) due to
the 7-function. This diagram, as well as the higher-
order ones, contain non-analyticities in a similar man-
ner to what was shown for the triangle diagram. The
unintegrated singularities from the phase space are al-
ways present. Therefore the simple kernel substitution
does not produce the correct analytic behavior in the B-
matrix solution. However, it can still be advantageous,
as it corrects some of the unphysical singularities in the
present B-matrix solution.

The remaining singularities should disappear if one was
to solve the proper Bethe-Salpeter equations of the un-
derlying QFT. The B-matrix parameterization is indeed
reminiscent of that for 2 — 2 scattering. We exam-
ine some differences between these formalisms. The B-
matrix parameterization is a covariant integral equation
for the on-shell isobar-spectator amplitudes. It satisfies
unitarity relations and does not have additional imposed
constraints from analyticity. Thus, for complex energies
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Re T
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Figure 15. Real (left) and imaginary (right) parts of the Feynman triangle diagram, Eq. (50) (gray), the B-matrix triangle,
Eq. (48) (blue), and the Mai et al. triangle, Eq. (51) (red). The external masses are set to unity, and the external isobar
masses are o] = 9 and M? = 25. The dashed vertical lines indicate the locations of singularities in the B-matrix as described
in the text: (from left to right) the s = 0 singularity (where the explicit 1/s pole in p3(s,o3) makes Tg and Tas diverge),

s = (,/Uéth) —m3)? = 1 (T is singular and Tas is regular), s = ( Ué‘ﬂh) + m3)? = 9, the crossing of the RPE cut at

s = s:(ﬁ) = 14.64, the initial state threshold s = (/o1 +m1) = 16, and the normal threshold singularity at s = (M + m3)2 = 36.
The red dashed line indicates the pinch singularity at s = (/o1 — m1)2 = 4 that occurs only in 7.

12 : —_ , . .
! Re T X 103 ——
10 I Im 75 X 103 ssssesn |
! Re %;’91
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8 : Im 5 weammess i
o1 = 4.41
1
6 , M2 =25 -
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9 — ]
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Figure 16. The B-matrix triangle Eq. (48) in with the triangle
singularity. Shown in black are the real (solid) and imaginary
(dashed) parts evaluated at o1 = 4.41 and M* = 4.41. Shown
in red are the real (solid) and imaginary (dashed) parts of
the OPE piece of the triangle, Eq. (38), where of = M?>.
The blue dashed lines indicate the threshold (M + m3)? =
13.7641 and the lower RPE branch point at séI) = Sy =
13.8619. The normal threshold accounts for the first peak in
the triangle diagram, while the second peak is caused by the
triangle singularity. Note we scaled the triangle diagram to
account for the phase space normalization of the triangle.

on the physical Riemann sheet, the B-matrix parame-
terization contains the unitarity cut, and has additional
s-singularities from the 7 and OPE.

The Bethe-Salpeter equation is a covariant integral
equations that incorporate an infinite number of ex-
changes for any given QFT [47]. Solving it amounts
to summation of exchange diagrams, similarly to the B-
matrix. The resulting amplitudes are analytic functions
in the complex s-plane, as the QFT amplitudes inher-
ently obey analyticity constraints. The physical sheet
thus has only the allowed singularities, such as the uni-
tarity cut and possible bound state poles. Lippmann-
Scwhinger equations are nonrelativistic equations for the
scattering amplitude in a given potential model. The B-
matrix has similarities to the Lippmann-Schwinger equa-
tions in that both involve in a three-dimensional integral
over the momenta [44]. In this work however, we focus
on the physical region, and truncate the isobar mass in-
tegration appropriately. Conversely, the Bethe-Salpeter
equation contains integrations over four-momenta, which
results in integrating over the off-shell behavior of the
amplitude. Introducing dispersive integrations in the B-
matrix amounts to the same procedure, and would re-
move the unphysical singularities.

VI. CONCLUSIONS

In summary, we have discussed the phenomenological
description of 3 — 3 elastic scattering of spinless parti-
cles. The 3 — 3 amplitude was described in the isobar
representation. We constructed the unitarity relations
for the isobar-spectator amplitudes for general partial
wave quantum numbers. For a practical use, the infinite
sums are truncated, leading to the standard isobar ap-
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Figure 17. The Feynman triangle Eq. (50) and the B-matrix triangle Eq. (48) in the vicinity of the triangle singularity for fixed
o1 = 4.41 and varying M? in the range 5.33 < M? < 7.34. T3 is shown with solid lines, 7 is shown with dashed lines. Real
parts are shown in (a) and imaginary parts in (b). The imaginary parts for 7r and 7g coincide in this region. For o1 = 4.41,

the triangle singularity region begins at M? = aéb)

s = siy)

proximation. We parameterize the isobar-spectator par-
tial wave amplitudes with the B-matrix formalism, which
automatically satisfies the unitarity relations. The B-
matrix parameterization can indeed be interpreted as the
3 — 3 equivalent of the K-matrix formalism for 2 — 2
scattering. The B-matrix parameterization explicitly in-
cludes the one pion exchange as a long-range contribu-
tion required by unitarity. The short-range part is not
constrained by unitarity, and it can be incorporated by
a specific (model-dependent) choice of the parameteriza-
tion. This gives to the framework enough freedom to
incorporate QCD resonances. The approach here dif-
fers from Mai et al. [44] in that the 2 — 2 amplitudes
required as input are only needed to be known in the
physical energy regions. The singularities of the OPE
directly impact the analytic structure of the B-matrix
kernels, and are discussed explicitly for the triangle-like
diagram. The singularities in the unphysical region of
our solution differ from the Mai et al. ones, and from the

= 5.81, which manifest as a second threshold in the line shape beginning at
= s¢ = 11.63. The corresponding orientation of the OPE branch points are illustrated in (c).

Feynman diagram triangle. This results in a different
value for the real part of the amplitudes in the physical
region. Further studies are needed to understand how
to remove unexpected singularities from the B-matrix.
We also compare our formalism to the most recent ones
discussed in the literature to extract three-body scatter-
ing amplitudes from lattice QCD. In particular, the main
difference with Refs. [28-32] consists in the order of how
the partial wave expansion and the one particle exchange
ladder summation is performed. It remains to be seen
whether the two operations commute, and whether the
resulting amplitudes coincide.

Future studies will investigate the continuation to the
unphysical energy sheets. This venue will allow us to
constrain the role of one particle exchange in generating
resonant structures, as it is assumed in some molecular
models for the XY Z states.
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Appendix A: Kinematics for 3 — 3 Reactions

In this Appendix, we discuss some of the technical de-
tails of the kinematics for 3 — 3 processes. We first
consider the system in the CMF, P* = P* = 0. The
momenta in terms of invariants are

A/2(s,m?,0;)

x| —
|p]|_ 2\/§ ’

Considering the particles 7 and k as spectators, then the
recoiling two particles has a total momentum P} = —pj
and P}’ = —p¥’, for the initial and final system, respec-
tively. The invariants t;, and wu;;, are related to the CMF
scattering angle between spectators via

)\1/2(3, m% oy,)

pi] = S A (A

tir = (pj — )’ (A2a)

1
= mj +mj; = 5-(s+mj —o;)(s +mi; — o)

1 *
+ ?SAI/Q(S’ O—jvm?))‘l/z(sv(j;c’ m%)zjk’
ujr = (P —p;) = pi)’
1
:Uj—i—mi—?S(S+Uj—m?)(5+mi_0;c)
1

- %Al/Q(s,aj,m?))\l/Q(&a;c,m%)z;k,

(A2b)

where 27, = cos©%,. The cosine of the CMF angle be-
tween particles j and k is

2s(0j +mj — pi5) — (s + 05 —m3) (s +mj — o)

05, =
cos by, N2 (s, 05, m2)AV2(s, o7, m3)

(A3)
where (1 is the mass of the particle that is neither j nor
The remaining variables needed to completely describe

the 3 — 3 process are found by examining the IRFs. The
initial IRF; and final IRF}, are defined when P; = 0 and
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P) = 0, respectively. We use the convention that ini-
tial and final state variables are evaluated in their own
respective IRF. The momentum of the first particle in
the initial pair is denoted as q; in the IRF;. Similarly,
the first particle in the final pair is qj, in the IRF). For
example, for the final spectator 3 in the IRFj, g} is the
final momentum of particle 1, and in the IRF; of specta-
tor 1, 1 is the initial momentum of particle 3. In terms
of invariants, these momenta are

A2 (ah, mi, m3) N2 (o1, m3, m3)

!
Q3| = ——— 7 -, |d1| = .
| S e

(A4)
The spectator momenta in these frames are
A/2(s, ol m2
jpy = A7), (A5)
2\/o}
for the final state and
N/2(s, 00, m?
Ipy| = 2oL ) (A6)

2\/0'1

for the initial state. The helicity angles of the first parti-
cle in the IRFs are given by x, and x}, for the initial and
final states, respectively. The helicity angles are defined
w.r.t. the opposite line-of-flight of the spectator. The
azimuthal angles for the initial and final state are -; and
Y,» respectively. The azimuthal angles are defined as the
angle between the plane of the two particles in the CMF,
and the IRFs, cf. Fig. 3. Note that the azimuthal angles
~; and +y;, are invariant with respect to the Lorentz boost
between the IRFs and CMF, so v; =~ and v, = 7}

The invariant masses of the other two pairs in their
respective frames are related to the helicity angles. For
example, in the IRF%,

oy = (P —p))’

1
= st mi = g s+oh —mg)(og +mi —m3)

1
+ —/)\1/2(8, o, m2)AY2(ah, m2, m2) cos x4,

2074
A7
oy = (P = p})? A7
1
s — (s 4 o — m)(oh 4 md - md)
204
1

1/2 ! 2\\1/2/ 1 2 2 Ny
- 20_/ A (8,0’3,7’77,3))\ (037m17m2)C05X3'
3

Appendix B: Derivation of 3 — 3 Unitarity Relations

In this appendix we derive the general elastic unitarity
relations for the 3 — 3 elastic scattering of distinguish-
able spinless particles [39, 40, 49]. For convenience, in
this section we adopt the notation that the normalization
of a single particle state is (p}|p;) = (27)° 2w;0® (p}, —

P;)dir = d(p, — pj)djk, and the invariant measure is



dp; = d®p;/(27)%2w;. The S-matrix is a unitary op-
erator, STS = 1, which implies that T — TT = iTTT,
where S = 1 4 ¢T. We consider the system in an en-
ergy range above the three particle threshold, but below
the first inelastic threshold, si, < s < Sjnel - Taking
matrix elements of this operator between initial and fi-
nal states |p) and |p’), and inserting the completeness

relation 1 = [ dp!dp!}dpY |p”) (p”|, gives the unitarity
relation
(I T |p) — (p| T |p>

Bl
P (/| T |p”) (p”| T |p) - (B

/dp dplydp

Since T'= T4 + T,, where Ty = Zj ]1[1j] ® T, then the
matrix element is
®'[T|p) = (p'|T¢|p)

+> 0 —py) (/1T |p). (B2)
. |
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The matrix elements (p’| T |p) are equal to (p’|T |p)”
by the property of Hermitian analyticity [49, 65]. Thus
the left hand side of Eq. (B1) gives the imaginary part
of the matrix element,

LHS = 2i Im (p'| T, |p)

+3 60, — py)2i I (p'| TV [p) . (B3)
7

The right hand side of Eq. (B1) is evaluated by substitut-
ing Eq. (B2) and expanding the product into four terms,

RHS — i / dp [<p'| T p") (0| T |p)

+Z§
+Z§
+Z<5

) (p/| T™)

—p) TS p") ("] TV |p)

)T1p") (p”| T. |p)

5(p! —p;) (| T® T p”) (p”| T |p)

The fourth term contains two cases, one where j = k, and one where j # k, so we split the sum into the two distinct

terms

> 0} - p)d] —py) (/| T® T p") (p"| TV |p)

gk

zzg "y
+Z§

J#k

We can write g(p;’ — p})g(p;/ —pj) = g(P;

p;) (| T T p”) (p”| T |p) (85)

—p) (P |T®Tp") (p"| T |p).

— pj)g(p;’ — pj) in the first term in Eq. (B5), thus we can identify the

disconnected unitarity relation as being proportional to the spectator singularity g(p; — D)),

21m (p'| T |p) = / dp!! dpl!, (p'| TG [py (p"| T |p) | (B6)
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and the connected unitarity relation

2Im (p'| T |p) = /dp dpydply {<p’TI ip”) (p"|T. |p)

+Z§ 't [p”) (p”| T |p)
+Z§
+Z(5

J#k

) (p/| T

—p;) (0| T p") (p"| TV |p) (B7)

—p) (p'| T® T |p") (p"| TV |p)

The momenta with j; and js in Eq. (B6) identify the first and second particle in the pair. Substituting Eqgs. (2) and
(3) into Egs. (B6) and (B7), and evaluating the phase space integrals yield the unitarity relations Eqgs. (6) and (8).

Appendix C: Derivation of PWIS Unitarity Relations

Using the assumption of the isobar model Eq. (15), we derive a set of unitarity relations for the amputated PWIS
amplitudes. Inserting Eq. (15) into the unitarity relations Eq. (8) leads to a unitarity relation for the Ay; isobar-
spectator amplitude,

! el _
ImAk](pl7p) = W ZL(th) do Z \/7\/7 P//*/d " nk p p )Anj(p/,,p)@(s . Sth)
1 (\/E—mn) |q ||p”*| R
+ mz/agm doy == \/7\[ /dPH*/d ALk (P p)-Anj(pN?P)@(S_Sth)
’I’L?’é’l' "

+ pa(o}) / 4G F2 (0" Aui (0" B) oy —pr O — o)
—~ " C1
T paloy) / 4! A (030 =p, 3 (P P) O — o) (D)
+ p2 (o}, Z /dq Fi(0":0) A (0”5 D) py—p, O(0h — o)
k;ér

~ h
+p2 gj Z /d ! kn p P )|p;/:p_7']:j(l3//;p)@(0j *UJ(-t ))
n#]

+ 76 (ujr, — 15) Fi (P P )lpy=p; Fi (P D) [py=py, (1 = 0j1),

(

where we wrote the three-body phase space factor in the
first two terms,

1 d3 " d3p d3p3
s — P
2(2m)° / 2w” 2wy 2 4 ( )

— 1 /(f mn d " |q ||p//*| dP//*/ ’\//
m(3272)2 [, cm

On /o \[
where f’i{* is the orientation of the isobar associated
with spectator n in the intermediate state, and q/ is
the orientation of the first particle in the intermediate
isobar in its rest frame. The terms in the intermediate

state have been split up into two groups, diagonal and
off-diagonal. The diagonal terms in Eq. (C1) (first, third,
and fourth line) are terms such that the isobar propagates
in the intermediate state without breaking up. The off-
diagonal terms (second, fifth, and sixth line in Eq. (C1))
are ones where the isobar breaks up in the intermediate
state, and combines with the spectator to form a new
isobar. Figure 18 shows the diagonal and off-diagonal
topologies in the intermediate state.

The partial wave expansion Eq. (16) can be derived by
considering the expansion in three steps. The first step
is to perform the expansion of the isobars into definite
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Figure 18. Diagrammatic representation for the isobar-spectator unitarity relation in Eq. (C1).

spin and helicity,

= > D V@) A Yl (@),

EAO NI

(C3)

where \;, A}, are defined along the direction of the isobar
in the CMF. The expansion removes the qj, and q,; de-
pendence in the helicity amplitude As;c Npssihg e Second,
the helicity amplitude can be expanded in partial waves,

k k’ ZNQ

J) * * J S
x ZD‘M’X PP, (P)),

EONRTIPY (O-;Cﬂ S, Uj)

(C4)

where N? = (2J + 1)/4x. Finally, since parity is not a
good quantum number in the helicity basis, we convert
the helicity partial wave amplitudes into LS partial wave
amplitudes,

AE@

o S%ilis

_ J J J
=Y ChynClon Ay, (C5)
,

where CL, = /(204 1)/(2J + 1) (JA[€0sA), and has the
completeness relation

> ClnClign = 80800 bse. (C6)
A

Combining Egs. (C3), (C4), and (C5) yields the partial
wave expansion Eq. (16). We apply the expansion to
Eq. (C1) to obtain the PWIS unitarity relations. The
diagonal terms are most directly evaluated using the or-
thonormality condition, Eq. (14). Since p}, = pj, in the
third term, and p;’ = p; in the fourth term, then the
intermediate isobar orientation is identical to that of the

final and initial state isobar, respectively. The integra-
tions over qj, and g; can be performed by writing Eq. (9)
using the spherical harmonic addition theorem.

The off-diagonal terms are more challenging, as they
involve two different angles in the intermediate state,
thus the rotational functions will not directly integrate
out. We can make use of the group properties of rota-
tions to simplify the intermediate rotational functions to
a recoupling coefficient. The off-diagonal terms on the
right-hand side of Eq. (C1) under the expansion Eq. (16)
will contain terms of the form

Sy ) * J) * J * Sp) /1~
DY) (@) DA (BL)DSA (PHDY (@)

= d{) (cos xn) DS (R)DSI (RS (cos X ),
(C7)

where n # r, and we combined the terms with ~,
and the orientation of the isobar to the set of angles
R = (af,Br,77), where af is the azimuthal angle of
the isobar and (; is the polar angle, w.r.t. some fixed
coordinate system. Note that since we boost along the
direction of the isobar to go between CMF and IRFs,
Yn = V. The angles R* are the Euler angles describing
the orientation of the three particles in their CMF. Since
these two sets of angles describe the same configuration
of three particles, with the only difference being which
particle is the spectator, the angles R and R} must be
related by a rotation.

Each set of angles can be found by rotating from some
initial standard configuration. We define the standard
configuration such that the three particle system lies in
the xz-plane, where the spectator momenta is along the
negative z-axis, cf. Fig. 19. Then, the difference in the
Euler angles is a rotation about the y-axis,

R R* *

n TLT"

(C8)



where 77, is the rotation relating the two standard config-
urations [43, 48]. Here, the rotation is about the y-axis,
rr. = R, (6F,), where 67 is given in Eq. (A3). Thus, the
rotation is a function of the invariant masses of the iso-
bars, 0%, = 0% (on, s,0,). Note that the inverse rotation
is given by r,‘f =71 -1

Therefore, we can relate the two Wigner D-matrices
using the group addition property

J * J * *
Dy, (B2 = YDA (RAIDS) (). (o)
/\n

The integration over the Euler angles in the intermediate
state can be performed, leaving one rotation that recou-
ples the isobars,

/dR* (J)*(R*)D(J) (R:)
* .] * * J * J *
-y / aR: DY (RE)DARDL (1)
A

_ 872 e
2J +1 Andr

(cos@r.).
(C10)

where dR} = daj,dcos ;dvyr.

Since the angle x can be written in terms of the invari-
ant masses of the isobars, it is advantages to write the
phase space in terms of the Dalitz variables,

1 /dS // d3p/2/ d3p 5
(2n)5 | 2wy 2wy 2wl

_ 1 (ve—m n) do” T dO’N dR//*
s (32m2)2 J,om " S
(C11)

where we used

o =22 ) [p}*| dcos .
Jn

The Dalitz region is bounded by

and ol < o) < ot

'(P"~P)

(C12)

to rewrite Eq. (C2).
ot <

o < (Vs —my)?

Figure 19. The standard configurations considering (a) par-
ticle 1 as the spectator and (b) particle 3 as the spectator.
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where o) = (i)( /") is found by the physical boundary

cosx» = =£1, e.g. for n =1 and r = 3, then

03 =mi+m} = 5ol — s+ mi)(o] +mb —m)
1
= 5 A2 (s, 0l mP)AY (o7 m3, m3).
01

(C13)

The last piece needed is the partial wave projection of
the OPE term. To evaluate the partial wave projection,
we write the delta-function as

1

R Cl4
or o] (G14)

S(ujn — p3y) = 6(2k; = 2kj)s

where zp; is defined in Eq. (39). Then, the complete-
ness relation for the delta-function allows us to write
Eq. (C14) as

Z <2J+ 1) (X/]i(zk )dS) (z1;), (C15)

J

3(zkj — 215)

where A and X\ are arbitary, and thus we may choose
them to align with X; and X}, respectively. Then,
d&‘j)% (zj;) is written in terms of the angles P} and Py,

via the group addition property,

d(J)

* J *
)\’)\ ZD]W)\’ P/ )Dg\/IZ\(P ) (016)

Finally, the 2 — 2 amplitudes are written using Eq. (9)

1) fe, (05) Py (@ - @) P, (G - Qi)
=[5, (00) s, (o)) ZDW CARIVACH

(C17)
% Z D(57) *

Dg\s 0) (a;),

where q; is the momentum of the first particle in the final
state in the IRF;, and qj, is the momentum of the first
particle in the initial state in the IRF). Since p} = pj,
and p;»’ = p;, then the azimuthal angles are identical,
7. = ;- The helicity angles of the first particle in the op-
posite frames are defined as x; and Xj, cf. Fig. 20. How-
ever, we can easily identify that xj = and x; = Xk
since the intermediate spectator is ahgned for the OPE
and the IRFs merely differ by the rotation about z.

Combining all of this together yields the PWIS unitar-
ity relations,

—/



J /
ImAZ/ s ;eij (Uk7 870'])
(Vs—my)

327r2 2 Z Z /(th)

n e// S” On

1%

do”! |q Hp

24
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(C18)
+ pQ(Uj) Al’ s3lj55 (0k7 S, Uj)fs j (Uj)
(\[ mr)
th
647T2\/7|p/*| Z ~ /(th dU//Czl / s //(Uk,s g, )f ( )Aen "ilis; ( ,:NI,S,O'J')(")(O';C _J](C ))
k708
s— m,L)
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2|p;lIpy| ’
Figure 20. Relation between the initial and final IRF planes
for the OPE amplitude.
Notice that the first, third, and fourth term involve direct ~ Eq. (C18). Taking the imaginary part of Eq. (19),
channel exchanges in the intermediate state, while the
others involve rescattering between cross channels. Im [ fs (U,C)Ag;c sitys; (ks 8,05) s (o5)]
=1Im fs (Uk) AZ st il (Ukas U')fs-(a')
[ ] Sk J J (Clg)
J

Finally, we introduce the amputated amplitude
“ZZ;CSL;ZJ-SJ-’ defined in Eq. (19). The amputation elimi-
nates the unitarity cut from the 2 — 2 amplitude in the
two particle subsystem in the third and fourth term of

+.fs (Uk)lm [-Aékbk, JaJ(Ukvs U])]f& (U])
+ e (Uk)Ae sitys, (Oh 8,05) Im [fs;(a7)]-

The amputation removes the contribution from the iso-
bar amplitude unitarity cut using Eq. (10), leaving only
rescattering corrections to the isobar shape. We then ar-
rive at the amputated PWIS unitarity relations Eq. (20).
If we consider the isobar-spectator system as a quasi-
2 — 2 system, then the unitarity relations include the



rescattering corrections from the intermediate state.

Appendix D: The B-matrix and Unitarity

In this appendix, we demonstrate that the B-matrix
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and since ﬁkj is real, Im gkj =Im gkj, which is known
from projecting Eq. (27) into partial waves.

The imaginary part of Ajs is found by using Eq. (33b),

parameterization satisfies the unitarity relations Eq. (20), T Ags(s) = Tm [1 — Kz (s)73(s)] ™ Ksa(s) (D4)
specifically for A;3. Recall that the B-matrix parameter- +[1 = K33(8)m5 ()] Tm Kz (s),
ization for A3 is
Ays(s) = Bus(s) + Bus(s)7s(s) Asa(s),  (D1)  where the kernel Kss(s) = Bai (s)71(5)Bus(s) . The imag-
) o inary part of [1 — Ks3(s)73(s)] " is found by the identity
which has an imaginary part Im [A—IA} —ImA A+ A*~1Im A = 0, giving
Imj13( )= Imglg,( )
+Tm By (s)73(s) Ass (s) (D2) I [1 — Kgs(s)75(s)] " = [1 = K33(s)73 ()]
+ B4 (s) Im 73(s) A3 (s) X Im [Ka3(s)73(s)] (D5)
+ Biy(s)75 (s) T Ass(s). X [L = Kas(s)ms(s)]
From Egs. (25) and (10),
with Im [IC33(s)73(s)] = Im Kas(s)73(s) +K55(s) Im 73(s).
Im7,,(s,0,) = p3(s,00)pa(on)|fs, (00)]?, (D3)  Combining Egs. (D2), (D4), and (D5) give
J
Im Ay3(s) = Im By (s)
+Im By (s)73(s) Azs(s)
+ lifg(s) Tn 75 (). Ass (s) (D6)
+ Bi3(5)75 () [1 = K35(9)75 ()] Tm Ksa (8)73(s) [1 = Kisa (8)73(5)] ™ Kaa(s)
+ Bis(5)75 () [1 = K3s(s)73 (s )] " K3 (s) T s (s) [1 = Kaa(s)7s(s)] " Kaa(s)
+ Bi3(s)73 [1 = K33(5)75 (5)] " Tm KCaa(s).
The imaginary part of the kernel is
Im Ks3(s) = Im Bsy (s)71(s)Bis(s)
+ B3, (s) Im 71 () Bys(s) (D7)
+ B3 (s)71 (s) Im Bia(s).
We use Eq. (36) to shift the last three lines of Eq. (D6) in terms K11 = 813( )713(s )831( ),
Im Ay3(s) = Im Bis(s)
+ Im Bi3(s)73(s) Ass(s)
+ Bis(s ) m 75(s)Ass (s)
+[1- 71 ()] Biz(s)73 Tm Bya (5)71(5) Bua(s)7s(s) [1 — Kz (s)73(s)] ™ Ksa(s)
+ [ = K5, (s)m (s)] 1’@‘1(8) T 7 (5)Bas ()73 (s) [1 — Ksa(s)a(s)] " Kas(s) (D8)
+ 1= K5y ()7 ()] Ky ()71 (s )Im313 $)73(5) [1 = Kas(s)73(s)] ™" Kas(s)
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Grouping common terms in Im 7, and Im gkj7 and identifying the forms of the amplitudes from Sec. IV, yields

Im Avlg(s) =Im [3;13(8)
—+ Im glg(s)

3(5) Ags (s)

+ A (s)7 (s )ImBlg s

—|—¢Z*{5 s

)

(s) Im
Afi(s) Im
(s)

(s)

1(8)71 (s)

A3S7—3

(s)
75(5) Ags (s)
71(5)Aus (s)
(s)
(s)

*

s (D9)

ImBlg S 7'3(3>~/Z33<s>
(s )IIHB31 s T1(8)4113(3)~

Substituting for the imaginary parts of 7,, and gkj gives the PWIS unitarity relation for ./Zlg, which is given explicitly
for all angular momenta in S-wave. The unitarity relations for the other amplitudes can be found in a similar manner.

mi, P1
M7 k — D1

m37k+P1
Jla-Pl

Figure 21. The triangle diagram with loop momentum labels.

Appendix E: The Feynman Triangle Diagram

For reference, we state the basic formulae for comput-
ing the Feynman triangle diagram, cf. Ref. [47]. The
perturbative Feynman diagram has the form

S dR 1
n0 = G

shown in Fig. 21, where the denominator is the product
of internal propagators,

D1Dy Dy = [k* — i3, + ie]
x [(k+ P1)? —mj + i€ (B2)
x [(k—p1)® — M? + ie] .

Using the Feynman parameterization and standard
loop integration techniques, the Feynman diagram has
the form

1 1 1—oy
TF(S)Z@/O dal/o dog F(s; 01, 00),  (E3)

where
F~ Y (s;01,a0) = M?ay +mias + p*(1 — a1 — ag)
+ m%al(og — 1) + 0'1052(0&2 — 1)

— (s — 01 —m3)aray — ie.

(E4)

(

The remaining integrals over the Feynman parameters
can be computed either numerically, or by analytically
performing the integral over as, then numerically com-
puting the remaining integral over «;.

Alternatively, the Feynman triangle can be written
with a dispersive representation in s using the Cutkosky
rules [47],

T - | arnADEOR L)

s’ — s —ie

where I'z is the path from the threshold (M + ms3)?
to oo, ps3(s, M?) is given by Eq. (26), &1z is given by
Eq. (38), and the S-wave amplitudes are normalized ac-
cording to Eq. (16). The phase space contributes branch
point singularities from the threshold and pseudothresh-
old, (M #+ mj3)?, and a pole at s = 0. The OPE has

branch points s = sg) near the integration region. Fol-
lowing the discussion in Section V A, the OPE branch
points give us the following scenarios:

(a) M2 > ag(b). The RPE branch points pinch the inte-
gration region which starts at s = (M + mg3)?. Fig-
ure 22(a) shows the integrand branch cuts and the

dispersive contour. The RPE branch point sgz) lie
in the unphysical sheet close to threshold, causing
the known as the triangle singularity [49, 60, 61, 64].
The triangle singularity produces an extra thresh-
old in the physical region above the threshold s =
(M + m3)?, and is associated with real particle ex-
change in the intermediate state. The location of the
triangle singularity occurs at

1
Stri = ng (m% —01)(m2 - MQ) - m%

+mZ(m2 +m? 4+ oy + M?) (E6)

+ A2 (m3,m3, 00) AV (m3, m3, M?)|.

(b) U;)(a) < M?2< aé(b). The RPE branch points are both



!
(+) S
531 |

(M —mg)? (M +mg)?

(=
$31

)

(a) M2 > o

_ N
S

() o3 <M <ol

Figure 22. Contours for dispersive triangle Eq. (50) shown in
red, and the integrand cuts. The three cases are (a) M? >
i (b) o < M? < o and (c) o{™ < M? < o\,
Case (a) corresponds to the usual triangle singularity, which
occurs since the OPE branch points pinch the integration re-
gion. Case (c) happens when the initial state of the OPE has
a higher threshold then the intermediate state. The blue re-
gion indicates the physical region from the initial threshold.
Note that a triangle singularity does not occur in this case
and the integration is not pinched.
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above the real axis, and cause no additional singular
behavior. Figure 22(b) illustrates this case.

(c) aéth) < M? < Ué(a). The RPE branch points are
again on opposite sides of the real axis. However, the
integration region begins below the location where
the RPE cut crosses the real axis. This is due to
the fact that the initial state has a higher threshold
then the intermediate state, so the physical region is
above the RPE crossing location. This is illustrated
in Fig. 22 where the blue region indicates the physical
region starting at the initial state threshold, and the

integration contour is a path around the RPE branch

point 5:(3;). No singularity occurs in this region as

the RPE branch points do not pinch the integration
region.

Notice that in contrast to the B-matrix triangle, Eq. (48),
the dispersive triangle moves all the singularities from
the phase space and OPE to the unphysical sheet. Thus,
the only singularity present on the physical sheet is the
unitarity cut starting at s = (M + ms)?.
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