
Towards the Minimal Spectrum of Excited Baryons
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In the light baryon sector the resonances can be broad and overlapping and are in most cases not
directly visible in the cross section data. Automatized model selection techniques that introduce
penalties for choosing particular resonance sets can be used to determine the minimally needed
set of resonances to describe the data. Several possible penalization schemes for the occurrence
of resonances are compared. As an application we perform a blindfold identification of hyperon
resonances in the K̄N → KΞ reaction based on the Least Absolute Shrinkage and Selection Operator
(LASSO) in combination with the Bayesian Information Criterion (BIC). We find ten resonances
— out of the 21 above-threshold hyperon resonances with spin J ≤ 7/2 listed by the Particle Data
Group. In traditional analyses, it is practically impossible to test the relevance of all resonances and
their combinations that may potentially contribute to the reaction. By contrast, the present method
proves capable of determining the relevant resonances among a relatively large pool of candidates.

PACS numbers: 02.70.Rr, 13.75.Jz, 13.60.Rj, 13.88.+e, 14.20.Jn

I. INTRODUCTION

One challenge in the phenomenological interpretation
of data from scattering or production experiments is
the determination of the resonance spectrum. Typically,
the quark model predicts more states than are found
in experiments, a phenomenon referred to as the miss-
ing resonance problem [1–5]. Pioneering lattice QCD
calculations [6–8] obtain the same SU(6)×O(3) symme-
try pattern of the spectrum [6] as in many quark mod-
els although the lattice QCD calculations are still car-
ried out at rather large pion masses and without full
control of finite-volume effects. In the framework of
Dyson-Schwinger and Faddeev equations, several reso-
nances and their properties can be identified with their
physical counterparts [9–12]. Chiral unitary approaches
operate directly with the physical degrees of freedom –
mesons and baryons – and explain the masses and prop-
erties of some states [13–17] although it is clear that not
all excited baryons can be hadronic molecules. Some
baryons might even be kinematic effects from triangle
singularities [18–20].

Even if a unique determination of the amplitude were
possible —referred to as a complete experiment [21–24]—
the decomposition into the partial waves, or multipoles in
case of photon-induced reactions, usually requires a trun-
cation [25, 26]. Even then, the multipoles are not guar-
anteed to clearly reveal resonances, especially if obtained
from data with statistical and systematic uncertainties
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because broad, potentially overlapping resonances are
difficult to distinguish from the background.

In principle, one has to test an arbitrary number of
resonances and their combinations in the parametriza-
tion of the partial-wave amplitudes. The goal is to keep
the overall number of needed resonances as small as pos-
sible, i.e., to find the simplest description of the data
within given uncertainties. The number of possible com-
binations is usually far beyond what can be tested in
the traditional way such as by inserting resonances by
hand as s-channel singularities in K-matrix or dynamical
coupled-channel approaches, or as Breit-Wigner terms in
simpler parametrizations.

Several techniques have been developed to address
this problem. In the SAID analysis [26–29] only the
∆(1232)3/2+ resonance is explicitly included in the am-
plitude. If required by data, other resonances can arise
through the non-linearity of the unitary coupled-channel
amplitude without manual intervention. Notably, in the
2006 SAID solution (SP06) the number of resonances
could be significantly reduced without spoiling the de-
scription of elastic πN scattering [30].

Another technique to search for resonances are mass
scans [31–33]. In a given parametrization, additional
Breit-Wigner terms are introduced. Their mass is var-
ied in steps and all other parameters are fitted. If this
leads to a significant minimum of the χ2 at a given mass
—preferably for different final states [33]— it can be in-
terpreted as a sign for a new resonance.

The question arises if there are ways of assessing the
significance of new resonances. One criterion is given by
the F -test [34] which tests for the significance of new fit
parameters, like the Breit-Wigner coupling, or bare cou-
pling of an s-channel resonance state in a K-matrix or
dynamical coupled-channel approach. This method has
two practical drawbacks: On one hand, data from differ-
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ent experiments tend to have systematic inconsistencies
so that the resulting fits are never good in the statisti-
cal sense (i.e., passing a χ2 test). The F -test will then
admit far too many false states. On the other hand, the
F -test does not relieve one from testing “by hand” each
new state, or, more precisely, each combination of an un-
known number of new states and established ones.

There are various “blindfolded” ways to test new res-
onances, without the need of manual intervention, that
are robust in the sense that they allow for relative model
comparison even if the fit cannot be satisfactory in the
statistical sense. Bayesian inference to determine the
resonance spectrum was introduced into baryon spec-
troscopy by the Ghent group [35, 36]. In a related con-
text, the necessary precision of data to discriminate mod-
els was determined in Ref. [37].

Another method for the partial-wave analysis of
mesonic systems was presented in Ref. [38], see also
Ref. [39]. The Least Absolute Shrinkage and Selection
Operator (LASSO) allows one to generate a series of
models with varying partial-wave content. The best
model can be selected by additional criteria like cross val-
idation or various criteria from information theory [40–
42].

In Ref. [43] different models and criteria were compared
with LASSO to determine the minimal multipole con-
tent for low-energy neutral pion photoproduction. The
method was first demonstrated for synthetic data for
which the solution was known and then applied to real
data. It was found that some D-waves are relevant even
at lower energies. The cusp parameter was also precisely
determined. See also Ref. [44] for a related study of dom-
inant partial waves in photoproduction reactions.

Here, we extend the idea further to address the reso-
nance spectrum itself, i.e., we use LASSO to determine
the minimal spectrum required to describe a hadronic re-
action. Different penalties are tested for synthetic data
in which the solution is known. In the second part of the
manuscript, we turn to the analysis of real data for the re-
action K−p→ KΞ. This reaction is selected because the
database is relatively small but still exhibits problems of
data inconsistencies which makes it a suitable candidate
for this pilot calculation. Also, the resonance content of
this reaction was determined “by hand” in Ref. [45] and
it is particularly illuminating to see how this traditional
method compares to the present results.

We expect that the method can be used in hadron
spectroscopy in a wide context, e.g., for mesons [18, 46–
49] or baryons. Light baryon spectroscopy is plagued by
wide and overlapping resonances which makes their de-
termination difficult. Groups like Bonn Gatchina [50–52],
ANL-Osaka [53–55], Jülich-Bonn [56–58], Kent state [59–
61], DMT and MAID [62–66], Giessen [67, 68], and
other groups [69] dedicate much effort to resonance spec-
troscopy. The reaction considered here, K−p → KΞ, is
only one of many in strangeness S = −1 that have been
analyzed by different groups recently [54, 55, 60, 61, 70].

Bayesian priors have been used in the determination of

low-energy constants in Chiral Perturbation Theory [71]
and to quantify truncation errors [72]. Similarly, the
LASSO could be useful in selecting relevant low-energy
constants in meson-baryon scattering [14, 73–75].

LASSO was also used in Ref. [13] in an attempt to
actively remove a resonance to explain data convention-
ally, i.e., with non-resonant background. This turned out
to be impossible, favoring the non-conventional, i.e., res-
onant explanation. In a different context, LASSO has
been recently used in the analysis of lattice QCD data
via an optical potential [76]. In general, LASSO is ex-
pected to be particularly relevant in the analysis of lattice
QCD calculation because relatively few data points are
available for systems with several two-body channels [77–
81] or three-body systems [82–87]. LASSO could then be
used to limit the number of fit parameter and/or relevant
two or three-body channels.

This paper is organized as follows. In Secs. II, syn-
thetic data, generated from a partial-wave solution with
known resonance content, are analyzed with LASSO reg-
ularization and using the Bayesian information criterion
(BIC). The efficacy of different penalties to recover the
resonance spectrum is tested. In Sec. III, LASSO is ap-
plied to the actual data of the reaction K−p→ KΞ. As
there are experimental inconsistencies, the effect of data
pruning is discussed and results are compared to the pre-
vious analysis of Ref. [45].

II. ANALYSIS OF SYNTHETIC DATA

The considered world database for the transition
K̄N → KΞ consists of polarized and unpolarized dif-
ferential cross sections up to total energy of the system
of W ∼ 3.0 GeV. In this section, however, we work with
synthetic data, while in Sec. III the actual data are ana-
lyzed.

A. Parametrization

We first consider (synthetic) data addressing the tran-
sition K−p → KΞ in terms of the total, polarized and
unpolarized differential cross sections. These observ-
ables are related to the partial-wave amplitudes (de-
noted by τ in the following), as presented in App. A.
For given isospin, total angular momentum, and orbital
angular momentum (I, J, L), we assume the following
parametrization of the partial-wave amplitudes as a func-
tion of energy W ,

τ(W ) = eiφ
(
kf (W )

Λ

)L+1/2

(1)

×
(
a e
−α2

(
kf (W )

Λ

)2

− x eiΦ Γ/2

W −M + iΓ/2

)
,

where the scale parameter is fixed as Λ = 103 MeV, and
a, α, φ,Φ, x,Γ,M are free (real) parameters for each set
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FIG. 1. Partial-wave amplitudes τ (in dimensionless units) of the synthetic data for the considered isospin channels. Blue
dashed and red solid lines show the real and imaginary parts, respectively.

of quantum numbers. We refer to this parametrization
as the benchmark model. In this approach, resonances
are introduced as poles with complex residues x eiΦ. The

correct threshold behavior ∼ kL+1/2
f for kf being the rel-

ative momentum in the final state is respected. Also, we
cannot exclude relative phases φ between different partial
waves because the amplitude is not real at threshold due
to many open channels. Yet, to avoid an overall-phase
problem that would make the fit problem ill-defined, we
set φ = 0 for one partial wave, (I, J, L) = (1, 5/2, 2).

It should be noted that the present partial-wave
parametrization is very minimalistic. Properties from
S-matrix theory like left-hand cuts, energy-dependent
widths or unitarity could be used to improve the
parametrization (see, e.g., Ref. [88]), but this is not the
aim of this study. Note that the background phase φ and
residue phase Φ are related through coupled-channel uni-
tarity. However, here we fit only one channel in the pres-
ence of many other open channels, and leave, therefore,
these parameters independent from each other. Also, if
one analyzes lighter channels like K̄N , it is indispensable
to include S-wave threshold cusps from heavier channels
explicitly in the parametrization so that they are not mis-
takenly identified as resonances. Similarly, thresholds in
the complex plane from three-body states may result in
false-positive resonance signals [89]. In the analysis of
real K−p→ KΞ data, a more sophisticated parametriza-
tion is employed, see Sec. III C.

To avoid that the fit can perfectly reproduce the
true solution, the synthetic data were generated us-
ing a slightly different parametrization, i.e. including
an additional energy dependence in the background i.e.
a→ a+b kf (W )/Λ for b ∈ R. From this parametrization,
and with realistic choices of free parameters, synthetic
data are generated for each partial wave over the same
energy range with equal spacing between energy points.
Adopting the standard notation LI(2J), four resonances

are included in the partial waves S01, P11, D05, and D15

overall. The partial waves used to generate the data can
be seen in Fig. 1, whereas the data themselves can be
seen in Figs. 9, 10 and 11.

B. Criteria based on information theory

With the parametrization of Eq. (1) and synthetic data
at hand, we turn to the LASSO method to select the
simplest model, which describes the data with the mini-
mal number of resonances. In general, the χ2 is a good
measure for determining under fitting but not over fit-
ting [43]. Other means to penalize model complexity are
needed like the penalization on parameter values. The
penalized χ2

T is defined as follows

χ2
T (λ) = χ2 + P (λ) , (2)

where χ2 denotes the usual measure of the goodness of
fit, while the penalty is denoted by P (λ) and reads

P (λ) = λ4
imax∑
i=1

|xi| , (3)

i.e., the i-th resonance is penalized through its coupling
xi. We allow here for one resonance in each partial wave,
i.e., ten resonances altogether, imax = 10. In practice,
we change (in- or decreasing) λ in small steps, minimiz-
ing each time χ2

T . Subsequently, we use various criteria
based on information theory in order to determine the
optimal λ. Note also that the power of four in Eq. (3)
is simply chosen to provide a more convenient graphical
representation of these criteria in the following plots. We
chose the Bayesian Information Criterion (BIC) to search
for the optimal λ, defined as

BIC = keff log(n)− 2 log(L) = keff log(n) + χ2 + c , (4)
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where c is an irrelevant offset that depends on the number
of data but not the model. Here L is the likelihood,
keff denotes the effective number of parameters which
changes dynamically as a function of λ (see discussion
below), while n is the number of data points.

For BIC, the optimal value of λ can be determined
from the respective minimum. This is because it takes
on small values for models with low test error. Note that
another common criterion from information theory is the
Akaike Information Criterion (AIC). The BIC tends to
penalize models with more parameters due to the factor
log(n) which allows for a more distinct minimum to be
seen and, thus, a clearer indication of which model to
favor. The different criteria are compared and illustrated
in Ref. [43]. For a further comparison between the AIC,
and the BIC, see Refs. [40, 42].

The degrees of freedom (d.o.f.) in the penalized fits are
increased due to LASSO regularization, i.e., the number
of fit parameters is effectively reduced. In particular, the
d.o.f. are not simply given by the number of data n minus
number of parameters k but

d.o.f. = n− keff , (5)

where keff is the effective number of parameters [90],

keff =

n∑
i=1

COV(ŷi, yi) , (6)

given by the covariance of the ith predicted observable ŷi
and the true ith observable yi. In practice, we calculate
the covariance via bootstrap aggregation, generating m
different fits

COV(ŷi, yi) =

m∑
j=1

(ŷi,j − ¯̂yi)(yi,j − ȳi)
m− 1

, (7)

where ŷi,j is the jth predicted value for ith data point,
and the averaged value for all m predictions for the ith

point is denoted by ¯̂yi =
∑m
j=1 ŷi,j/m. The correspond-

ing notation holds for the data points, i.e. yi,j and ȳj .
In practical calculations we simplify the described pro-

cedure to determine keff by counting a fit parameter xi
towards keff if it is above some limit, |xi| > xlim. To
determine this limit, we perform a simulation with syn-
thetic data and find that with xlim ≈ 0.01. The quantity
keff is well determined as can be seen in Fig. 2.

C. LASSO in a benchmark model

In the present section, we describe several initial trials
using various LASSO implementations on three different
benchmark datasets in order to gain a robust understand-
ing of the individual method’s strengths and weaknesses
before moving onto fitting the real data. The latter will
be discussed in detail in Sec. III.

The models we use to generate all of the data sets are
slightly more complicated than the model we use to fit

0 2 4 6 8 10
2046

2048

2050

2052

2054

λ

d
.o

.f
.

FIG. 2. Degrees of freedom as a function of λ. The blue
bars correspond to counting a parameter x if |x| > 0.01 while
the red line shows the d.o.f. with keff calculated according to
Eq. (6).

the data as noted in Sec. II A. All data sets are gener-
ated using the same background parameters, energies,
and error distributions; they differ with respect to the
generation of resonances. Our main data set consists of
four resonances, each corresponding to a different par-
tial wave with differing masses. However, we also look at
a data set containing four resonances all with the same
mass as well as a set with two groups of two resonances
in two different partial waves, all of differing masses. In
our exploratory analysis, we find, as detailed later in the
paper, that some methods are more effective than oth-
ers, however, we find a consistency among datasets in
which particular methods are better than others. In the
following we concentrate the discussion on the data set
containing four resonances with different masses in four
different partial waves, as it is the most general data set.
See Sec. II A for details. Our conclusions remain consis-
tent across the other datasets.

In all three fit strategies discussed in the following
we allow one resonance in each of the ten partial waves
(imax = 10).

With a model parametrization similar to ours, where
one parameter being sent to zero implicitly removes a
group of other parameters (Γi, Φi, Mi), one actually
needs to consider the group LASSO [90] instead of the
traditional LASSO. The group LASSO can be expressed
by the following modification to the penalty term,

Pgr(λ) = λ4
imax∑
i=1

√
pi|xi| , (8)

where pi are the number of parameters in the ith group
and a group represents a predefined set of variables that
are either all included or excluded together. In our case,
a group represents the set of parameters which corre-
sponds to the ith resonance. The new term, pi acts as a
weight for various groups, countering the effects caused
by potential differences in group size. Here, pi = 4,∀i
which in practice allows one to absorb them into λ. In
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FIG. 3. Fit results from forward (left), backward automatic shutoff (central) and second derivative penalty (right) LASSO for
the benchmark model. Top panel: χ2 per degree of freedom in blue with the upper limit of Pearson’s χ2 test per degree of
freedom in orange dashed, both as a function of λ. Middle panel: Absolute value of the ten residues x as a function of λ in a
logarithmic scale. The red dashed lines indicate the final set of parameters, the gray lines show the unnecessary parameters.
Bottom panel: The Bayesian Information Criterion (BIC). The vertical line signifies the minimum of the BIC that defines the
chosen model.

doing so, one retains the same best fit results as normal
LASSO, however it is found at a optimal different value
of λ, shifted from the position of the minima of the BIC.
This is an import caveat that must be remembered when
using differing resonance parametrizations in various par-
tial waves.

D. Forward LASSO

For this forward selection model, all ten resonances
are initialized with random values selected from Gaus-
sian distributions, i.e. xi ∼ N (0, 0.25) , Γi ∼ N (100, 25) ,
Mi ∼ N (2500, 150) , Φi ∼ N (0, 1) , taking subsequently
the absolute value of xi, Γi, Mi to ensure the correct
physical scenario. The initialization of the background
terms comes from using the fit results from fitting the
benchmark model data with no resonances included. We
iterate λ stepwise as 10, 9.5, ...0, each time minimizing
χ2
T from Eqs. (2) and (3), thus penalizing the occurrence

of resonances. For each new step in λ, the converged so-
lution of the previous λ is taken as starting value in the
fit. In other words, resonances are added until they are
all present in the fit, at λ = 0. From the BIC we see the
minimum and thus our best model occurs at λopt = 4, see
left panel of Fig. 3. This model contains 5 resonances,
the 4 correct ones and 1 false one as seen in the same
figure (some of the red lines in the figure overlap and are
difficult to distinguish). Note also that all of the models
from λ = 0 to λ = 4 have a χ2 within the confidence

interval given by a 90% two-sided confidence level calcu-
lated from the χ2 distribution (referred to as “Pearson’s
χ2 test” in the following). While the best fit results for
the forward model is not in complete agreement with the
benchmark model, it still represents a good local mini-
mum in the χ2 and a starting point for the initial guesses
of subsequent models.

E. Backward Automatic Shutoff LASSO

In linear regression one can expect that the LASSO
path, i.e., the estimated parameters as function of λ in
parameter space, does not depend whether forward se-
lection or backward selection is applied. There is only
one local minimum and the χ2 is a multi-dimensional
parabola in parameter space. Our current problem, how-
ever, is inherently non-linear because the observables are
bilinear in the parameters (c.f. App. A)

In particular, there are multiple local minima and the
result of the backward selection (starting with λ = 0 and
dynamically updating the initial values as described in
the previous section) depends on the local minimum one
starts from.

In the backward selection, we start with the minimum
determined at λ = 0 with the forward selection discussed
before. Similarly as before, we iterate λ stepwise as
0, 0.5, . . . , 10, each time minimizing χ2

T from Eqs. (2-3)
for imax = 10 and updating the initialization of each fit
by the converged fit of the previous value of λ. As a re-
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sult the minimum in the BIC occurs at λopt = 6 at which
the resonances are correctly selected and their properties
are very close to their correct values (masses, widths,
couplings).

Next, we discuss a greedier version of the backward se-
lection, referred to as backward automatic shutoff in the
following. The modification is that once a pole residuum
xi becomes smaller than 10−3, which is our shut off cri-
terion, that resonance is permanently removed from the
model and is no longer fit for the remaining iterations.
From the BIC results shown in the right panel of Fig. 3
we see the minimum and thus our best model occurs at
λ = 6. This model contains only the four genuine reso-
nances, successfully sending all of the others to zero as
shown. The minimum in BIC also coincides with the
intersection of the χ2 with the value given from Pear-
son’s χ2 test for 95% confidence indicating that the model
passes the test.

F. Second-Derivative Penalty

In many approaches to extract the baryon spectrum it
is not possible to directly penalize the size of the reso-
nance residue as tested before. In dynamical coupled-
channel approaches, one can still penalize bare reso-
nance couplings and, thus, remove the dressed resonance
poles. Yet, in these approaches, the non-linear meson-
baryon dynamics can lead to the formation of resonance
poles [91], and it is difficult to pin down the correspond-
ing parameters responsible for resonance formation. In
the SAID approach [27] resonances are almost exclusively
generated through the unitary coupled-channels dynam-
ics if required by data.

One way of minimizing the number of resonances, when
fit parameters cannot be clearly attributed to their exis-
tence, is to penalize the second derivative of the partial-
wave amplitude.

In this study, we are working in a one-channel approx-
imation, with no threshold opening above KΞ such that
non-analyticities for physical energies are not an issue.
Accordingly, we introduce the penalty

P (λ) = λ5
10∑
i=1

∫Wmax

mK+mΞ

∣∣∣ ∂2

∂W 2 τi(W )
∣∣∣2 dW∫Wmax

mK+mΞ
|τi(W )|2 dW

, (9)

where index i denotes the corresponding partial wave in-
dices (I, J, L), and Wmax = 3200 MeV is the maximum
energy of the data. For numerical convenience, we pe-
nalize here only the resonance term in τ , i.e., the second
term in Eq. (1).

The introduced penalty term is significantly different
than the normal penalty of just the resonance amplitude
x since this penalty term depends only on Γ and M . This
allows for resonances to effectively disappear by their
widths becoming so large that they flatten out and be-
come indistinguishable from the background, or by their
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FIG. 4. Derivative penalty. Resonance trajectories (thick
solid lines) in the (M,Γ) plane as function of penalty param-
eter λ from λ = 0 (dark shading) to λ = λopt (light shad-
ing). The very short trajectories of significant resonances
are highlighted by red circles. The thick blue dashed line
shows the (M,Γ) region in which resonance parameters are
counted towards the total number of parameters. The typi-
cal penalty size is indicated with white contours ranging from
large penalty (close to Γ = 0) to small penalty (large Γ and/or
high/low M .)

masses moving outside of the fitted region. The typical
form for this penalty is indicated in Fig. 4 with the white
contours ranging from large penalty (close to the phys-
ical axis) to small penalty (for wide and/or sub/above-
threshold resonances.)

For the determination of the resonance spectrum, we
proceed like in case of backward LASSO, i.e., from the
same local minimum at λ = 0, dynamically updating λ.
With respect to counting parameters to determine the
degrees of freedom, the four parameters of a given reso-
nance are only counted in the BIC if the it is within a
certain (M,Γ) region. This “resonance area” is indicated
in Fig. 4 with the thick blue dashed line. The window in
mass reaches from threshold to Wmax and in width up to
Γmax. The χ2 and BIC are shown in Fig. 3. The mini-
mum in the BIC occurs at λ = λopt = 50 which coincides
with one false resonance leaving the resonance area (see
Fig. 4 at around (M,Γ) = (1.85, 0.4) GeV). At λ = λopt,
the significant resonances have barely moved (white/red
thick lines) while the false resonances are completely
driven out of the resonance area.

We have checked explicitly that for Γmax ∈
[250, 400] MeV different values of λopt are obtained, in
each case leading to the same best resonance content. As
in the case of backward LASSO, the second-derivative
penalty is able to correctly identity the four genuine res-
onances while eliminating the others by sending their
widths above Γmax and/or their masses out of the fitted
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energy window.

G. Discussion

The discussed LASSO variants perform similarly.
Backward LASSO and second-derivative penalty are able
to correctly identify which resonances are present in the
data while the forward selection is off by one resonance.
The automatic shut off method leads to a more pro-
nounced minimum in the BIC than the second-derivative
penalty. It is, however, more greedy in the sense that
once a parameter is zero, it is forever removed from the
fit. This can become an issue if there are multiple local
minima and the fit cannot explore them because param-
eters have been shut off.

The second-derivative penalty has the advantage that
parameters are not removed at all, but they can still con-
tribute to shape the background that varies slowly with
energy. This possibly protects the fit against bias in the
background terms: In case the background parametriza-
tion is not flexible enough this could lead to false-positive
resonance signals.

Yet, the derivative penalty has a slightly different
meaning than the penalty of Eq. (3). While in the latter,
resonance poles are completely removed from the partial-
wave amplitude, the derivative penalty moves resonance
poles far away from the physical axis and the region of fit-
ted data. From a phenomenological point of view, these
scenarios are quite similar to each other. However, if
spectra from theory are to be tested with phenomenol-
ogy, wide resonances pose a problem because in quark
models and related approaches, resonance widths cannot
be reliably determined and one does not know if a pole
far in the complex plane corresponds to a quark model
state or not. Such questions are, however, not of interest
for this data-driven phenomenological approach.

Higher derivatives in the penalization are also possible
and, if they can be reliably evaluated, even desirable: For
example, if one has a small resonance signal on top of a
large background the denominator of Eq. (9) could be-
come large and the penalty small. Replacing both the nu-
merator and denominator with higher derivatives might
be more suitable to detect such special circumstances.

The obvious disadvantages of the derivative penalty
lie in the more complicated analytic structure in form of
threshold cusps in the physical scattering region on or
close to the real axis [89]. In the analysis of the K−p→
KΞ reaction, we assume that those thresholds (e.g., from
K∗Ξ or KΞ∗) play no role. One could explicitly exclude
threshold regions from the integrals of Eq. 9 but then
has to pay attention to resonances on hidden sheets that
might enhance thresholds.

Another possibility to penalize resonance close to
the physical axis, not explored here, is given by suit-
able closed-contour integrals on the unphysical Riemann
sheets [88] that could be used to penalize the size of res-
onance residues. This method can deal with threshold

openings if the contour is chosen appropriately.
Due to its performance identifying correct resonance

content (of synthetic data) and its simplicity, the back-
ward automatic shutoff LASSO will be used in the next
section for the determination of the resonance spectrum
with actual data from experiment.

III. ANALYSIS OF K̄N → KΞ WITH LASSO

In this section we present a blindfold analysis of the
resonance content of the actual data using LASSO in
combination with the BIC as explained in the previous
sections, see also Refs. [42, 90, 92] and [93]. To this end
we consider the reaction K−p → KΞ. This choice of
the reaction is on purpose for this exploratory calcula-
tion because for many existing data one often encoun-
ters a situation where data sets from different groups are
inconsistent with each other due to underestimation of
systematic uncertainties. As the data of the K−p→ KΞ
reaction is known to show this problem, we choose this
reaction to test the LASSO for robustness.

Obviously, the resonance content extracted from the
data can depend on which data sets one includes in the
analysis. Thus, in general, the selection of the data to
be considered is the first step toward an extraction of
resonances. To this end, here, we apply the so-called
self-consistent 3σ criterion [94, 95]. Once the data sets
to be included in the analysis are selected, we proceed
to fit the model parameters using the LASSO method in
combination with BIC (LASSO+BIC). Our model for the
reaction at hand contains initially all the known above-
threshold hyperon resonances from the Particle Data
Group (PDG) [96], irrespective of their rating status.
The LASSO+BIC method will tell us which resonances
will actually be required to fit the data.

A. Calculation of the merit function

In general, the theoretical description of a given ex-
perimental data set is achieved by fitting the model pa-
rameters through a minimization procedure of the (chi
square) merit function

χ2 =
∑
k

χ2
k , (10)

where the summation runs over all datasets, specified by
the index k. For each dataset k, χ2

k is given by

χ2
k =

n∑
i=1

(
yi − Zkŷi

δyi

)2

+

(
Zk − 1

δsys k

)2

, (11)

where, yi and δyi are, respectively, the experimental
value and corresponding statistical uncertainty of the ob-
servable at the kinematical point, e.g.,(total energy and
scattering angle), specified by the index i. The number
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Λ states Σ states
State mR (MeV) ΓR (MeV) Rating State mR (MeV) ΓR (MeV) Rating

Λ(1810) 1/2+ 1810 150 *** Σ(1840) 3/2+ 1840 100 *
Λ(1820) 5/2+ 1820 80 **** Σ(1880) 1/2+ 1880 194 **
Λ(1830) 5/2− 1830 95 **** Σ(1900) 1/2− 1900 191 *
Λ(1890) 3/2+ 1890 100 **** Σ(1915) 5/2+ 1915 120 ****
Λ(2000) ?? 2000 167 * Σ(1940) 3/2+ 1941 400 *
Λ(2020) 7/2+ 2020 195 * Σ(1940) 3/2− 1940 220 ***
Λ(2100) 7/2− 2100 200 **** Σ(2000) 1/2− 2000 273 *
Λ(2110) 5/2+ 2110 200 *** Σ(2030) 7/2+ 2030 180 ****
Λ(2325) 3/2− 2325 169 * Σ(2070) 5/2+ 2070 220 *

Σ(2080) 3/2+ 2080 177 **
Σ(2100) 7/2− 2100 103 *
Σ(2250) ?? 2265 100 ***

TABLE I. Λ and Σ hyperons considered in this work. Masses (mR) and widths (ΓR) are extracted from the PDG [96], except
for the Σ(2250) resonance, whose mass has been adjusted to reproduce the peak position of the bump structure seen in the
total cross section data. For one- and two-star resonances, where no estimates are available, we take the average of the values
quoted in PDG. In this average for the width of the Σ(2070)5/2+, we have excluded the 906 MeV width by Kane [97].

of data points in each dataset is denoted by n, while ŷi
stands for the model fit value for that observable. The
contribution to χ2

k arising from systematic uncertainty is
addressed by the last term in the above equation, ex-
pressed by the systematic uncertainty (δsys k) and the
scaling factor (Zk). We note that every experimental
data set can be subject to a known and common system-
atic uncertainty (normalized data), an arbitrarily large
systematic uncertainty (floated data) or no systematic
uncertainty at all (absolute data). Absolute data have
δsys k = 0 and are not scaled (Zk = 1). The correct
value of Zk for normalized and floated data is obtained
by minimizing χ2

k with respect to Zk. This leads to

Zk =

(
n∑
i=1

yi ŷi
δy2
i

+
1

δ2
sys k

)[
n∑
i=1

(
ŷi
δyi

)2

+
1

δ2
sys k

]−1

.

(12)
Due to the nature of the currently available data for

K−p → KΞ as discussed in the following subsection,
where systematic uncertainties are unknown, we treat the
data as absolute, i.e., set δsys k = 0 and Zk = 1 in this
work. This is also what has been done in Ref. [45]. Fur-
thermore, each data point is considered to be a dataset,
i.e., n = 1. The total χ2 given by Eq. (10) is then min-
imized using the MINUIT minimization code. As sys-
tematic uncertainties are neglected, problems tied to the
d’Agostini bias [98, 99] play no role.

B. Data selection

The reaction process K−p → KΞ has been studied
experimentally, mainly, throughout the 60’s [100–109],
which was followed by several measurements made in the
70’s and 80’s [110–116]. The existing data (total cross
sections, differential cross sections, and recoil polariza-
tion asymmetries) are rather limited and suffer from large
uncertainties. The total cross section and some of the

differential cross section data are tabulated in Ref. [117].
Some of them are not in the tabular (numerical) form
that can be readily used but are given only in graphical
form or as parametrization in terms of the Legendre poly-
nomial expansions. In Ref. [118], Sharov et al. have care-
fully considered the data extraction from these papers.
We have checked that the extracted data are consistent
with those in the original papers within the permitted
accuracy of the check. In the present work, we use these
data from Ref. [118]. No cross sections given in terms of
the Legendre polynomial expansions are included.

From the database mentioned above we select the data
points to be included in our analysis using the self-
consistent 3σ criterion applied in Refs. [94, 95] to the
potential-model analyses of NN scattering. This is an
improved version of the 3σ criterion introduced by the
Nijmegen group in their 1993 partial wave analysis [119]
which became an essential aspect of their success and the
subsequent high quality fits of the NN scattering data
[120–123]. This criterion discards mutually incompati-
ble data, but can also prevent a fraction of the data to
contribute to the final fit. This is so because no distinc-
tion is made between mutually incompatible data sets in
similar kinematical conditions and which of them, if any,
are actually incompatible with the remaining data in dif-
ferent kinematical conditions. The latter is encoded in
the phenomenological parametrization which intertwines
all kinematical regions. The self-consistent 3σ criterion
is an extension of the 3σ criterion, which differentiates
both situations.

For a set of n measurements with Gaussian distri-
bution, the quantity z ≡ χ2

k/n follows a re-scaled, re-
normalized χ2 distribution,

Pn(z) =
n(nz/2)n/2−1

2Γ(n/2)
e−nz/2 . (13)

Here, Γ(x) stands for the usual gamma function. Ac-
cording to the 3σ criterion, a dataset (here: a sin-
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FIG. 5. Full unpruned data (black+red) and 3σ-pruned data (red) as described in the text. The fit results using the over-
parametrized model described in Sec. III B are shown by the blue curve with χ2

d.o.f. = 2.53 with respect to the full data. The
numbers in the plots of dσ/dΩ and P indicate the total scattering energy W in GeV.

gle data point) is considered inconsistent with the rest
of the database if its statistics z > zmax where zmax

is given by by the cumulative distribution function,
CDF[Pn(zmax)] = 1 − 0.0027. In most cases, a dataset
will have a highly improbable z-value if the systematic
errors are underestimated (z will be very large). The
discussed one-sided criterion reads∫ ∞

zmax(n)

Pn(z) dz =
Γ(n/2, nzmax/2)

Γ(n/2)
= 0.0027 , (14)

where Γ(x, y) is the incomplete gamma function. One
could also consider a two-sided criterion as in Ref. [95]
to exclude data with too good of a χ2. However, in the
present situation, in which every data point counts as
a data set, this does not make much sense; there is no
problem if the χ2 of a single point is very small; the
problem arises only if the χ2 of an entire data set is too
small, and then one might conclude that the errors in
that data set are overestimated and a two-sided criterion
might be needed. In a test, we found no evidence for
overestimated error bars that would justify the usage of
a two-tailed pruning criterion.

In practice, the above methodology is applied as fol-
lows: 1) we fit the entire database (unpruned data) with
some phenomenological model to represent the database.
The model used just in this subsection for data pruning
purposes is chosen to be over-flexible in the sense that the
pruning should not occur due to a biased parametriza-
tion. This model is constructed based on the model of
Ref. [45]. The differences are that, here, we include more
contact and resonance contributions. In addition, we re-
lax the constraints imposed in Ref. [45] on the complex
phases in the contact amplitudes as well as the constancy
of the masses and widths of the resonances. All these dif-
ferences is to allow the model to be more flexible. As to
the additional number of resonances included, we have
made sure that these does not start to fit the obvious
statistical fluctuations in the data. 2) Using the fitted
model, we calculate z of each data point, subsequently
pruning the database according to the 3σ criterion de-
scribed above. 3) The pruned database is then fitted
anew and the 3σ criterion is applied again to the en-
tire unpruned database to obtain a new pruned database.
The process is repeated until self-consistency is reached,
i.e, the pruned database remains unchanged after the it-
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erations.
The results of the pruning according to the self-

consistent 3σ criterion described above are shown in
Fig. 5. Only 10 data points out of 448 in total are outside
of the allowed range of z.

C. Theoretical model

In the analysis of the K̄N → KΞ reaction we use
the theoretical model of Ref. [45], except for the above-
threshold resonances considered. In contrast to Ref. [45],
in the present blindfold analysis we consider all the
above-threshold hyperon resonances, irrespective of the
rating status of these resonances. Furthermore, the PDG
[96] does not assign the spin-parity quantum numbers
for the Σ(2250) and Λ(2000) resonances. The analy-
ses of Ref. [111] provide two possible parameter sets for
Σ(2250), one with JP = 5/2− at about 2270 ± 50 MeV
and another with JP = 9/2− at about 2210±30 MeV. In
the present work, we assume Σ(2250) to have JP = 5/2−

with the mass of 2265 MeV, the primary reason being
that the total cross section in K−+p→ K++Ξ− shows a
small bump structure at around 2300 MeV, which is well
reproduced in our model with these parameter values.
We refer to this resonance as Σ(2265)5/2− in the follow-
ing. For the Λ(2000) resonance, we adopt JP = 1/2−,
the only quantum numbers claimed in Ref. [60]. The
PDG also quotes an one-star Λ(2050)3/2− resonance
with a mass of 2056 MeV and width of 493 MeV. We
do not consider this resonance in our study here due to
its large width. Neither we consider the high-spin three-
star Λ(2350)9/2− resonance. The full set of considered
resonances is listed in Tab. I.

We emphasize that in the present analysis for deter-
mining the minimally required resonances to describe
the data through the LASSO+BIC method, we keep our
model as close as possible with that of Ref. [45] apart
from the number of resonances considered as described
above. For example, the phenomenological contact am-
plitudes are kept the same expect for the corresponding
parameter values that are refitted here. Also, the masses
and widths of the resonances are kept fixed as in Ref. [45].
Of course, the resonance content depends on whether or
not masses and widths are also allowed to vary in the fit-
ting procedure. However, the major motivation here for
keeping these parameters to be fixed is to be able to make
a close comparison of the resonance content found in the
present LASSO+BIC method and that of a more con-
ventional method of manually determining the resonance
content used in Ref. [45], where these parameters were
kept fixed due to the poor quality of the data. Thus, for
a meaningful comparison, we perform our analysis under
the same constraints.

Obviously, to determine the resonance content more
accurately, we should allow the masses and widths of the
resonances to vary as well during the fitting procedure.
This, however, may be reserved for a future work when
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absolute value of the penalty function fRJP (lower panel) as
a function of the penalty parameter λ. The vertical solid line
indicates the value of λ for which the BIC is minimal.

a more accurate and larger database becomes available.

D. Penalty function for LASSO

For an above-threshold resonance, the square of its s-
channel amplitude, when the resonance is on-shell, is pro-
portional to [124]

|MJ± |2 ∝

{
(εN ∓mR)(εΞ ∓mR) , if J = 1

2 ,
5
2 ,

(εN ±mR)(εΞ ±mR) , if J = 3
2 ,

7
2 ,

(15)

where MJP denotes the reaction amplitude amplitude in-
volving the intermediate hyperon R with the spin-parity
JP ; εi ≡

√
p2
i +m2

i , with pi and mi denoting the mo-
mentum and mass for i ∈ {N,Ξ}, respectively. This
proportionality is valid only when the intermediate hy-
peron lies on its mass shell, and it does not quite ap-
ply to the low-mass resonances, which are far off-shell
in the present reaction. The above relation shows that
the above-threshold unnatural-parity resonances may be
suppressed with respect to the natural-parity resonances,
unless the corresponding coupling constants are much
larger.

In the backward automatic shutoff LASSO method,
i.e., starting from a reasonably good local minimum at
λ = 0, we minimize the χ2

T from Eq. (2) with the penalty
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FIG. 7. Quality of the model favored by LASSO+BIC for the K−p → K+Ξ− and K−p → K0Ξ0 reactions compared with
the available data [101, 102, 104–106, 108–111, 113–115]. The solid blue line represents the result of the full calculation. The
red (dashed), magenta (dash-dotted) and brown (dotted) line show the contribution of Λ, Σ and combined Λ/Σ hyperons,
respectively. The green dash-dash-dotted line corresponds to the amplitude with no resonances but contact interactions only.

function PJ±(λ) = λ2
∑
R|fR| with respect to couplings

weighted according to Eq. (15) as

fRJ± = gRJ±
Γ0

ΓR


√

(εN∓mR)(εΞ∓mR)
(εN+mR)(εΞ+mR) , if J = 1

2 ,
5
2 ,√

(εN±mR)(εΞ±mR)
(εN+mR)(εΞ+mR) , if J = 3

2 ,
7
2 ,

(16)
where gRJ± and ΓR stand for the coupling constant
and width of the hyperon resonance R, respectively.
The overall scale normalization constant is chosen to be
Γ0 = 150 MeV.

E. Results

In this section, we present our results on resonance
content extracted from the available data for the reac-
tion K̄N → KΞ in different isospin channels based on
LASSO+BIC. The results of LASSO and BIC are col-
lected in Fig. 6. The middle panel shows the result of
the BIC with the minimum at λ = λopt ≈ 5. The up-
per panel displays the χ2

d.o.f. as a function of the penalty

parameter λ, see Eq. (16). The lower panel shows the ab-
solute values of the weighted resonance couplings fRJ±

as given in Eq. (16) as a function of λ. According to the
BIC, the selected resonances are those whose correspond-
ing weighted couplings fRJ± are above the chosen cutoff
of 0.001 at the value of λ where the BIC has a minimum.
In Fig. 6 we observe at λ = λopt a clear distinction be-
tween irrelevant resonances (|fRJP | < 10−3) and relevant
ones that all have couplings of size |fRJP | > 10−1, except
for the mentioned Σ(2265)5/2− that shows a small but al-
most λ-independent coupling (orange line). Indeed, this
resonance produces small but significant bump structures
in the data (see Figs 7). Ten resonances remain out of
21 initial resonances as indicated in Fig. 6 (lower panel).

The quality of the results of the model favored by the
LASSO+BIC method is illustrated in Fig. 7. There,
the contributions from those resonances selected by the
LASSO+BIC are displayed as red (dashed) and magenta
(double-dash-dotted) curves corresponding to the Λ and
Σ resonances, respectively. The brown (dotted) curves
are the total resonance contribution. The green (dash-
dotted) curves correspond to the phenomenological con-
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resonance switched off rating χ2
d.o.f. δχ2(%)

none (full result) - 2.25 -
Σ(2030)7/2+ **** 5.59 59.76
Σ(1940)3/2+ * 2.49 9.60
Σ(2100)7/2− * 2.46 8.36
Λ(2020)7/2+ * 2.41 6.63
Σ(1840)3/2+ * 2.41 6.52
Λ(1890)3/2+ **** 2.40 6.18
Σ(2265)5/2− *** 2.35 4.37
Σ(2070)5/2+ * 2.33 3.36
Σ(1915)5/2+ **** 2.29 1.69
Λ(2100)7/2− **** 2.26 0.48

TABLE II. Effects of individual resonances on χ2
d.o.f. cor-

responding to Fig. 8. The third column shows the χ2
d.o.f.

obtained when the corresponding resonance is switched off.
δχ2 ≡ (χ2 − χ2

full)/χ
2, χ2

full = 2.25.

tact interaction which accounts effectively for the higher-
order (loop) terms in the scattering amplitude [45]. The
blue curves correspond to the full total contributions.
The overall χ2

d.o.f. is 2.25.

To demonstrate the influence of each resonance (se-
lected by LASSO+BIC), we switch each one off individ-
ually, comparing the prediction of the total cross sec-
tions as depicted in Fig. 8. The corresponding numeri-
cal changes of the overall χ2

d.o.f. are collected in Tab. II.
We see in Fig. 8 that the Σ(2030) affects most the cross
sections in the range of W ∼ 2.0 to 2.4 GeV. Also,
in Tab. II, we see that among the ten resonances se-
lected by LASSO+BIC, this resonance affects the over-
all χ2

d.o.f. the most (by ∼ 60%). It is clearly needed
in our model to reproduce the data. Moreover, as
pointed out in Ref. [45], it affects the recoil polariza-
tion as well. It should also be mentioned that this res-
onance helps to reproduce the measured K+Ξ− invari-
ant mass distribution in γp → K+K+Ξ− [125], by fill-
ing in the valley in the otherwise double-bump struc-
tured invariant mass distribution, a feature that is not
observed in the data [126]. The other resonances have
much smaller effects on the total cross sections, as well
as on the overall χ2

d.o.f.; the latter is affected by less
than 10% (cf. Table. II). Five of them (Σ(1940)3/2+,
Σ(2100)7/2−, Λ(2020)7/2+, Σ(1840)3/2+, Λ(1890)3/2+)
affect the χ2

d.o.f. by about 6% to 10%. Here, except
for the Σ(1890)3/2+ resonance, which has 4-star rat-
ing, the other four resonances are all 1-star resonances.
The remaining resonances (Σ(2265)5/2−, Σ(2070)5/2+,
Σ(1915)5/2+, Λ(2100)7/2+) affect the overall χ2

d.o.f. by
less than 5%. In particular, the Λ(2100)7/2+ resonance
affects the χ2

d.o.f. by less than 0.5%. Note that although
the Σ(2265)5/2− resonance affects the overall χ2

d.o.f. by
only about 4.4%, it is very much required to reproduce
the small bump structure observed in the total cross
section in the K−p → K+Ξ− reaction, see Fig. 8 and
discussion above. This comparison shows that simple
LASSO+BIC resonance selection criterion does not di-
rectly translate to the one by examining total χ2

d.o.f.. Fur-

thermore, the PDG-ranking of hyperon resonances is un-
correlated with the LASSO+BIC selection criterion used
in this work.

In the analysis of Ref. [45], the Σ(2030)7/2+,
Σ(2265)5/2− and Λ(1890)3/2+ resonances were identi-
fied to be the most relevant ones to reproduce the data.
There, only the above-threshold 4-star hyperon reso-
nances were considered initially. Then, considering many
possible combinations of these resonances, it has been
found that the above mentioned three resonances were
needed to reproduce the data. In the present analysis, the
blindfold search for the above-threshold resonances based
on the LASSO+BIC method, also finds these three reso-
nances to be required. However, in addition, the method
finds seven more resonances. Among these seven reso-
nances, five are rated 1-star and two are rated 4-star. The
latter two resonances, Σ(1915)5/2+ and Λ(2100)7/2− —
which have not been found in the analysis of Ref. [45] —
however, have only minor influence and affects the overall
χ2
d.o.f. by less than 1.7% and 0.5%, respectively.
To close this section we re-iterate that the result of

finding ten relevant resonances depends on (a) the cho-
sen background and (b) whether or not the resonances
masses and widths were held constant at their initial val-
ues. Choice (a) ensures that results are comparable to
Ref. [45] but is, of course, not unique. Restriction (b)
is owed to the sparse data for the K−p → KΞ reaction.
In general, model selection cannot fully address the bias-
variance tradeoff that depends on the flexibility of the
background parametrization (see also Ref. [39]).

IV. CONCLUSION

Many theory approaches rely on the correct deter-
mination of the resonance spectrum from experiment.
The Least Absolute Shrinkage and Selection Operator
(LASSO) produces, for each penalty λ, a model with
minimal resonance content. As the penalty is convex,
the automatized method tests not only resonance by res-
onance but also combinations thereof - something that
cannot be fully achieved manually. Using synthetic data
and criteria from information theory, we have tested for-
ward and backward selection as well as different kinds of
penalties. At the given data precision, most variants were
able to reproduce the spectrum. Forward selection also
provides an efficient way of finding good local minima for
this non-linear optimization problem.

LASSO was then applied to real data of the reaction
K−p → KΞ. After pruning the data in a self-consistent
way to remove outliers, a clear minimum in the Bayesian
Information Criterion (BIC) was found, leading to the
selection of 10 out of 21 resonances. Remarkably, a
minimum in the BIC forms even if the χ2 is not good
(χ2

d.o.f. ≈ 2.3), i.e., the method seems to be robust. How-
ever, while LASSO is a useful tool for model selection,
it does not solve the bias-variance problem regarding the
parametrization of the background; the challenge persists
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FIG. 8. Effects of the individual resonances selected by the LASSO+BIC, as shown in Fig. 6(lower panel), on the total cross
sections. χ2

d.o.f.
∼= 2.25 with respect to the 3σ-pruned data.

to construct an as physical model as possible to constrain
the amplitude. As an outlook, further testing regarding
the impact of systematic uncertainties is advisable as well
as the testing of further variants of LASSO versions in
connection with stability selection [127] to attach proba-
bilities to resonance signals.

ACKNOWLEDGMENTS

The authors thank E. Barut, C. Fernández Ramı́rez
and A. Pilloni for discussions. M.D. acknowledges sup-

port by the National Science Foundation (CAREER
grant no. PHY-1452055 and PIF grant no. PHY-
1415459) and by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under contract num-
ber DE-AC05-06OR23177. M.D. and H.H. acknowledge
support by the U.S. Department Energy, Office of Sci-
ence, Office of Nuclear Physics under contract number
DE-SC0016582. M.M. is thankful to the German Re-
search Foundation (DFG) for the financial support, un-
der the fellowship MA 7156/1-1, as well as to The George
Washington University for the hospitality and inspiring
environment.

Appendix A: Observables

For completeness, the observables in terms of partial-wave amplitudes τ from Eq. (1) are quoted. The differential

cross section dσ/dΩ and polarization P := |~Pf | for an unpolarized target ~Pi = 0 are given by

dσ

dΩ
= (|g|2 + |h|2)

kf
ki

and P
dσ

dΩ
=
kf
ki

(gh∗ + g∗h) , (A1)

where ki/f denotes the magnitude of the initial/final state three-momentum, respectively. The spin-non-flip and

spin-flip amplitudes gI and hI for the total Isospin I = 0 and I = 1 of the reaction K̄N → KΞ can be expressed as an
expansion in pertinent partial-wave amplitudes (τJ±I ) with respect to the total (J) and orbital angular momentum L
where the ± superscript corresponds to L = J ± 1/2:

gI =

Jmax∑
J=1/2

(2J + 1)

2
√
kfki

[
dJ1

2
1
2
(θ) cos

(
θ

2

)(
τJ−I + τJ+

I

)
+ dJ− 1

2
1
2
(θ) sin

(
θ

2

)(
τJ−I − τJ+

I

) ]
,

hI = −i
Jmax∑
J=1/2

(2J + 1)

2
√
kfki

[
dJ1

2
1
2

(θ) sin

(
θ

2

)(
τJ−I + τJ+

I

)
− dJ− 1

2
1
2
(θ) cos

(
θ

2

)(
τJ−I − τJ+

I

) ]
.

The series is truncated at the maximal angular momentum Jmax = 5
2 for the analysis of synthetic data (Sec. II) and

Jmax = 7
2 for the real data (Sec. III).
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Appendix B: Synthetic data

Synthetic data produced from the partial-waves in Fig. 1 as described in the Sec. II A.
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FIG. 9. Synthetic data (blue dots with error bars) for the total cross sections for the reaction K−p → K+Ξ− (left) and
K−p→ K0Ξ0 (right). The generating function is shown in red, while the gray vertical lines depict the resonance masses.
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