Three-particle systems with resonant sub-processes in a finite volume
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Previous work has developed a relativistic, model-independent three-particle quantization condi-
tion, but only under the assumption that the two-particle K matrices, which enter in sub-processes,
do not have poles [TH3]. Here we lift this restriction, determining the quantization condition for iden-
tical scalar particles with a G-parity symmetry in the case that the two-particle K matrix has a pole
in the kinematic regime of interest. This quantization condition involves unphysical infinite-volume
scattering quantities, and we show how these are related to the physical three-to-three scattering
amplitude by integral equations. This work opens the door to study processes a2 — pm — 7aw, in
which the p is rigorously treated as a resonance state.

I. INTRODUCTION

Studies of hadronic resonances using lattice QCD (LQCD) have progressed rapidly in recent years.! The present

frontier of this effort involves resonances that have significant branching ratios into channels with three (or more) par-
ticles. Here the results from lattice calculations are, in some cases, more advanced than the theoretical developments
needed to interpret them. In particular, energy levels above three-particle thresholds are already being calculated,
using three-particle operators [7]. Thus a fully developed theoretical formalism to interpret LQCD quantities in this
sector is of great importance. In recent years significant progress has been made, using a variety of approaches [I-
3, [BHI7]. In this work we consider the relativistic model-independent framework of Refs. [IH3], and remove the last
major theoretical restriction on this formalism.

LQCD studies of resonances proceed in two basic steps. First, one uses numerical LQCD to determine the energy
levels in a finite volume for a given range of total energy. Second, these levels are related to infinite-volume scattering
parameters by solving a quantization condition.? In the case of a single channel of identical scalar particles, the
relation between finite-volume energies and the scattering amplitude was first derived by Liischer [I8, [19]. This has
since been extended to describe all possible, multi-channel two-particle systems [20H25] and by now there is a large
body of work extracting energy levels above multiple open thresholds and relating these to the different components
of the coupled-channel scattering amplitudes [26H31]. For resonances with three-particle decay channels, a further
step is required, in which intermediate infinite-volume quantities are related to the scattering amplitudes. This step
also requires knowledge of the scattering amplitudes in each of the two-particle subsystems.

The approach we follow here was originally derived in Refs. [I, 2] under two major assumptions: first, that a
G-parity-like symmetry forbids 2 <+ 3 transitions and, second, that two-particle subsystems are nonresonant within
the kinematic range of interest (or, more precisely, that the two-particle K matrices have no poles).> We removed
the former restriction in Ref. [3], and it is the purpose of the present paper to lift the second restriction, i.e. to allow
arbitrary interactions in the two-particle subsystems. This removes the last major theoretical obstacle to general
implementation of the formalism.
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I For recent reviews, see Refs. [4H6].

2 In practice, this requires truncation of the quantization condition by assuming that higher partial waves are negligible. Such truncation
schemes for the three-particle case have been discussed in Refs. [1I [3, 11, 12} 14HI6]. We do not consider these further in the present
work.

3 In addition the particles were taken to be identical and spinless. Based on experience with the two-particle case, we expect the
extensions to multiple channels of non-identical and non-degenerate particles, as well as particles with intrinsic spin, will be relatively
straightforward.
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Removing the restriction on sub-channel K matrices is necessary for the application of the formalism to many
interesting three-particle systems. Consider, for example, the three-pion system in the isospin-symmetric limit. Only
for the maximal isospin channel, I = 3, are all two-pion subchannels nonresonant (since they all have I, = 2). For
Loy < 3, however, the subchannels can have Iy, = 1 or 0, and thus contain either the p or o resonance, respectively.
For example, the a3(1320) (I¢ = 1=, JP¢ = 2*+%) decays predominantly to three pions with the p resonance in
two-pion subchannels. Another example where sub-channel resonances must be included is the Roper resonance,
which has a significant branch to the Am — pr7 channel.

It is useful to recall the reason why the analysis in Refs. [IL 3] had to assume the absence of poles in the two-particle
K matrix, ICo. These works study finite-volume correlation functions and determine the spectrum from the position
of the poles in these functions. The correlation functions are considered to all orders in perturbation theory in an
arbitrary effective field theory. The core step in the analysis is the replacement of the 3-momentum sums that appear
in finite volume with the corresponding infinite-volume integrals, together with a volume-dependent residue. If the
summand is smooth, this residue is exponentially suppressed (i.e. suppressed by e~™% where m is the particle mass
and L the box size), and such exponentially suppressed corrections are assumed negligible. However, if the summand
is singular then the residue falls only like inverse powers of L, and must be kept. Such singularities occur either when
intermediate states can go on shell or when intermediate infinite-volume quantities are themselves singular. In our
approach the latter class of singularities arise as K-matrix poles. In Refs. [Il, B] we did not include the finite-volume
effects associated with these and thus the formalism derived in those works only applies if they are absent.

Poles in K5 do not correspond to physical particles. If the theory has a narrow resonance in the two-particle
subsystem the two-body scattering amplitude, Mo, will have a complex-valued pole close to the real axis. For this
scenario, Ko will have a real-valued pole close to that of Msy. Therefore, the ICy pole is approximately equal to
the mass of the resonance. Away from the very-narrow limit of a resonance, however, Ky poles do not have a direct
physical interpretation. Nevertheless, at intermediate stages of the analysis of Ref. [I], terms appear whose summands
contain such singularities. These lead to additional power-law finite-volume dependence, and this must be accounted
for, as it ultimately impacts the form of the quantization condition. The analysis presented here incorporates all such
contributions.

It is worth noting that one may envision taking a different approach than that proposed in Refs. [T} [3] in which
two-particle subprocesses are encoded via M instead of Kz, and thus the scattering amplitude appears inside of the
summand. The original reason for preferring Ky is that M5 has a cusp at the two-particle threshold and one must then
include finite-volume effects associated with this singularity. Furthermore, if the system contains a narrow resonance,
of width I, then M will vary rapidly as a function of energy and this will induce neglected e~"% volume effects, if the
contribution is not explicitly incorporated. In addition, in QCD many resonances lie close to thresholds, leading to
dynamically enhanced cusp effects. In short, one would have to develop a framework to address finite-volume effects
associated with all possible scenarios. With these considerations in mind, we find it preferable to work with Ky and
properly treat its poles in the kinematic window of interest.

In order to keep track of these singularities, we find it convenient to express the problem in terms of two effective
channels: one containing the physical three-particle state, and a second built from a particle and a pseudoparticle
arising from the Ky pole, which we refer to as the “pm channel”. The quantization condition turns out to take a
relatively simple form in this presentation, one that is similar to that in the multichannel two-particle problem [22-
24]. An important consistency check is that our final expression for the finite-volume correlator does not contain pm
poles, despite their appearance at intermediate stages.

The addition of an unphysical channel appears at first as a negative feature of our approach. We have explored
various alternatives that do not require this artifact, but have not yet been able to use them to derive a useful
alternative formalism. There is, however, one reason to view the appearance of this channel as natural. To explain
this, we return to the example of the p resonance, and imagine continuously increasing the quark masses, starting from
their physical values. As is well known, as this is done, the p becomes narrower, eventually becoming a bound-state
at threshold, and, beyond that, a physical particle lying below the two-pion threshold. If the masses are chosen such
that the p is deeply bound, then the pole in Ko moves far below threshold and becomes irrelevant to our formalism.
Thus, in this case, the unphysical channel is no longer needed. However, the presence of the p particle implies that
one should use the 2+ 3 particle formalism of Ref. [3], including a physical pm channel. Given that the stable p can be
described in terms of a new open channel, it is natural that this is continuously connected to the effective two-particle
channel for narrow resonances that arises in this work.

As was the case in Refs. [TH3], the derivation of the quantization condition is rather lengthy, despite the fact that
we have found ways to shorten and simplify certain steps compared to the earlier works. To make this paper more
accessible, we have focused in the main text on the logic and key steps of the derivation, pushing most of the details
into appendices. In addition, we have presented fewer intermediate steps, instead presenting a Mathematica notebook



as supplementary material in which the package The NCAlgebra Suite is used to algebraically manipulate matrices of
unspecified size as generic non-commuting objects [32].

This article is organized as follows. We begin in Sec. [[I| by presenting the final result and defining all of the objects
appearing in it. This section is meant to stand alone so that the lattice practitioner does not need to look elsewhere
in order to make use of the result. In Sec. [[TI] we present the derivation of the quantization condition, with technical
details given in Appendix [B] The quantization condition is written in terms of the three-body K matrix, which we
relate to the physical scattering amplitude in Sec. [[V] We summarize, compare to previous work, and give an outlook
in Sec. [Vl

The framework presented here relies heavily on two facts: First, that the off-shell version of Iy has the same poles
as its on-shell limit and second, that at the residues of the poles of the off-shell Xy can be written as a product of
functions separately describing the incoming and outgoing two-particle states. In Appendix [A] we demonstrate these
two results using constraints from unitarity and all-orders perturbation theory.

II. SUMMARY OF THE FINAL RESULT

The main result of this article is a quantization condition with solutions equal to the energies of finite-volume
three-particle states in a generic, relativistic quantum field theory. In contrast to earlier work, this result also holds
for systems with a two-particle resonant subchannel. The particles are assumed to be identical, of physical mass m,
and to have a G-parity-like symmetry that restricts interactions to those involving an even number of fields.

We assume that Ky diverges only for a single angular momentum, denoted J, in the energy range of interest,
specified below. We further assume that there is only one pole in ICéJ) in this energy range, occurring when the
two-particle center of mass (c.m.) energy equals M.* These assumptions simplify the discussion and derivation. The
extension to completely general K matrices, achieved by promoting certain quantities introduced here to matrices,
will be described in a future publication.

The result presented in this work holds for fields restricted to a cubic spatial volume of side length L, with periodic
boundary conditions. Following the pattern that is by now well established from previous work [IH3], we find that
for a given total momentum, P = 2riip /L, the discrete finite-volume spectrum is given by all solutions in E to the
condition

det[1 + Kqe(E*)F(E, P,L)] =0, (1)

where E* = \/ E? — P2 is the total energy in the c.m. frame. Here both Ka¢(E*) and F(E, P, L) are matrices on a
two-channel space
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where the index 3 denotes the three-particle channel while 2 denotes an effective two-particle channel containing the
two-particle resonance with the third non-resonating particle. This result holds up to neglected corrections of the
form e~™L, with m the physical mass of the stable particle, and applies only in the region m < E* < 5m.

In the remainder of this section we provide the definitions of the quantities K4 and F appearing in the quantization
condition. We only note here that Kyt is a real, infinite-volume quantity that is related to the three-to-three scattering
amplitude, while F has volume dependence but can be expressed in terms of known geometric functions together with
the two-particle scattering amplitude, including parameters describing the K matrix pole.

We discuss strategies for the practical implementation of the quantization condition, the generalization to multiple
K matrix poles, and the relation of this result to earlier work, in Sec. [V]

4 In the following we refer to this energy as the “resonance mass”, which is a convenient label despite the fact that the correct definition
of the resonance mass differs for all but a very narrow resonance. As noted in the introduction, we also refer to the resonance channel
as the p.



A. Kinematics

In this subsection we introduce the kinematic variables used throughout the paper to describe two- and three-
particle states, and the index space implicit in the matrices appearing in the quantization condition, Eq. . These
results are summarized in Table [, which we hope will provide a useful reference for the reader. Many of the results
are self-explanatory; for the others we provide further explanation in the following.

Each entry in the two-by-two matrices g and F is itself a matrix in a space that describes the on-shell degrees of
freedom, either for three particles or for the resonance together with the spectator. In particular, 3, when used as an
index, is shorthand for 3; kém = 3; kykyk.¢m and 2 is shorthand for 2; M y¢m. We use 2 rather than 2 to emphasize
that the K matrix pole does not correspond to a physical particle, and so the 2 channel is not a physical two-particle
channel. .

In the three-particle state, one of the three particles, referred to as the spectator, carries the 3-momentum k =
(kz,ky,k;). In infinite volume this momentum can take on a continuous range of values (within the range allowed
by total energy and momentum conservation), but in our quantization condition it is restricted to discrete values:
k= 277t/ L where 71 is a 3-vector of integers. Within the three-particle state, m describes the angular momentum of
the non-spectator pair.

In the 2 state, M; labels the different azimuthal components for a K-matrix pole with angular momentum .J.
Roughly speaking, it plays the role of a channel index, labeling different degrees of freedom rather than different
momentum configurations. For a given value of M, fm describes the angular momentum of the spectator-resonance
pair.?

The kinematics used for the on-shell three-particle state are described in detail in Refs. [I, 2]. For completeness,
and to introduce new notation, we summarize the discussion here. For a given total energy and momentum, (E, P),

we label one of the three particles (the spectator) with on-shell 4-momentum (wy, E), where wy, = Vk2 +m2. The
4-momentum of the remaining two particles is then P j, = (E — wy, P — k) and their two-particle c.m. energy is

B = /P2 = V(B —wi)? — (PR, (4)

We denote the individual 3-momenta of these two particles in the finite-volume frame by @ and gka =P-Fk—a.
Often we must consider the case were the @ particle is on shell with 4-momentum (w,, @) whereas the b particle is

not necessarily on shell, and carries 4-momentum (£ — wy — wy, gka). Boosting the 4-vectors corresponding to @ and
b to the two-particle c.m. frame then gives, respectively,

(War2 k> 2 k) 5 (B3 ) — Waiz ks braso k) = (Eop — Wao g —0a k) - ()

Here the notation is somewhat involved as we must label both the momenta and the frame. Finally, we need to know
the conditions on the kinematic variables such that the b particle is also on shell; these are given towards the bottom
of Table The upshot is that, for three on-shell particles with total energy and momentum (F, ﬁ), the remaining
degrees of freedom are the spectator momentum, I;, and the direction of the @ particle in the non-spectator-pair
c.m. frame, &;yk. Decomposing the latter in spherical harmonics leads to the indices E, £, m, which we abbreviate to
kém.5

We turn now to the 2 state, built from a particle of mass m and the resonance of mass M. In the overall c.m. frame,
each of these has a 3-momentum with a magnitude that we denote by g;, given by solving

B = \[m?+ g2+ /M2 + g2 (6)

In the finite-volume frame, if the particle has momentum k and is on shell, then the resonance has 4-momentum
(E — wk, P — k). Boosting these to the overall c.m. frame gives (w},k*) and (E* — wj, —k*). The second particle is
then on-shell when any of the three equivalent conditions listed in Table [[] are satisfied.

5 We stress that the index pair ¢m plays a very different role in the 3 and 2 states. This causes no problems, however, as these two sets
of indices are never contracted.

6 As mentioned above, the quantization condition depends only on the allowed finite-volume spectator momenta, k= 277i/L with 71 a
3-vector of integers.



Quantity Definition/Key relation Description
Basic kinematics used throughout
k (kg, ky, k) =21/ L 3-momentum (often of the spectator particle)
Wik V2 + m2 on-shell time component of 4-vector k* (with physical mass m)
Im indices on Yy, angular-momentum indices (e.g. of the non-spectator pair)
My My=—-J,—-J+1,---,J azimuthal component of total angular-momentum J
Multi-particle energies and momenta
(E, ﬁ) P= 2niip/L total energy and momentum of the three-particle state
Ps i (F — wy, P— E) 4-momentum of the non-spectator pair or of the resonance
E3, \/(E —wk)? — (13 — E)Q energy of the non-spectator pair (two-particle c.m. frame)
@k A /E;?k /4 —m? on-shell momentum of a non-spectator (two-particle c.m. frame)
Individual particles within the three-particle state
a, bra ba=P—-k—a individual 3-momenta of the non-spectators (finite-volume frame)
(wa, @) 4-momentum of the a-momentum particle (finite-volume frame)
(Whi2.ks @3 1) 4-momentum of the a-momentum particle (two-particle c.m. frame)
(F — wr — wa, gzm) 4-momentum of the b-momentum particle (finite-volume frame)
(B3 — whok, E,’;azk) I_)‘Za;zyk = —ds; 4-momentum of the b-momentum particle (two-particle c.m. frame)
WPka \/m2 +(P— k— a)? on-shell time component of the b-momentum particle
Individual particles within the 2-state
M

limEé«_)M ICQ(E;) = 00

q; defined via E* = \/m?+ ¢;*> + /M? + q}?

M2 + (P — k)2

position of the K2 pole

on-shell momentum of the 2 spectator (c.m. frame)
on-shell time component of the resonance
4-momentum of the 2 spectator (finite-volume frame)
4-momentum of the resonance (finite-volume frame)
4-momentum of the 2 spectator (c.m. frame)

4-momentum of the resonance (c.m. frame)

* * * *
E—wr—we=wpra & E3p=2wa0, © a3, =g

B-wi=wpp & B —wi=VIETE? & K =g

On-shell conditions and index spaces

equivalent on-shell conditions for the 3-particle state

equivalent on-shell conditions for the 9-state

ktm =k, 0,m = ku, ky, k=, 0,m where k; = 2mn;/L

Mj,f,m

index-space for an on-shell 3-state (implicit with 3 subscript)

index-space for an on-shell 2-state (implicit with 2 subscript)

TABLE I: Summary of kinematics used throughout the paper.
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Thus, for fixed (F, ﬁ), the two on-shell particles have remaining degree of freedom k* and decomposing this in
spherical harmonics gives the indices ¢, m. Combining this with the azimuthal angular momentum of the resonance
gives the full index set, M j¢m.

B. K-matrix poles

The central aim of this paper is to include the finite-volume effects from poles in K. In order to complete the
definitions of the quantities entering the quantization condition, we need to understand the properties of these poles.
This is nontrivial, because, unlike poles in the scattering amplitude, poles in Ky do not correspond to propagation
of physical degrees of freedom. Nevertheless, as we show in this subsection and the accompanying Appendix [A] two
key results do carry over from poles in Ms: the off-shell K matrix has the same poles as the on-shell version, and the
residues of the poles factorize. Both results play an important role in the subsequent derivation.

We begin by recalling that the ¢th angular-momentum component of the two-to-two on-shell scattering amplitude
satisfies a unitarity constraint, relating it to the scattering phase-shift via

167w Es 1
4 2,k
MY (P3) = — - (7)

45 cot 6@((]37,@) —3

or equivalently

167 Ex -1 X
2.k )} . Dy 8)

MO P2yt — { = —j—
2 (o) a5 5 cot Se(g3 167E3 ,
In anticipation of three-particle scattering, we have taken the squared c.m. energy in the two-to-two amplitude as
P227k = S,ka where we recall that Psj, = (E — wg, P — k) is our notation for the 4-momentum of the non-spectator

pair (see Table . Thus the spectator momentum k serves a proxy for the two-particle c.m frame energy. We are
assuming in Eqgs. and that the scattering is above threshold and in the region where only two-particle states
can propagate, 2m < Ej . < 4m.

The quantity appearing in square braces in Eq. defines the conventional K matrix when working above threshold.
It is a real function containing all dynamical information about the two-particle scattering. We will also need the
continuation below threshold, and here, following Ref. [I], we use a nonstandard choice that is convenient for the
derivation of the quantization condition. Our K matrix is given by

MP(P2)~ = K (P2t = H(R)p(P2,), 9)

where p is the standard phase-space factor, including below-threshold analytic continuation,

1 —i\/P3,/A—m2 (2m)* < P, ,
— X
16m,/ P3), ‘, /P2, /4 — m2‘ 0< P2, < (2m)?,

and H (k) is a smooth, real cut-off function that equals 1 when E3,; > 2m (so that the particles in the nonspectator
pair can propagate on-shell) and then smoothly interpolates to 0 in the sub-threshold region. Our choice of Ky differs
from the analytic continuation of the above-threshold K matrix once H differs from unity.

Although we do not need to make a choice of H for the derivation, it is useful to have one in mind as an example.
The choice suggested in Ref. [1], and used in our recent numerical investigation [16], is

p(P3)) = (10)

H(k) = J(P5/[4m?), (11)
with
0, xz<0;
— 1 1 .
J(z) = { exp (—Eexp [_ED , 0<a <1, (12)
1, 1<x.

With this definition, H vanishes for E;zk <0.



Up to this point, we have considered only the on-shell K matrix, including the analytic continuation to sub-threshold
momenta. However, in our derivation we also require its off-shell extension, in which the individual particle momenta
take on values of p? differing from m?. Although not necessary for the implementation of the main result of this work,
namely Eq. , we find it informative to discuss the off-shell extension of the K matrix. Off-shell extensions are not
uniquely defined, as they depend on the choice of single-particle interpolator. In our all-orders diagrammatic analysis,
based in a generic effective field theory, we define the fully off-shell scattering amplitude Ms og og by amputating
the corresponding four-point correlation function. The presence of two “off”s indicates that both initial and final
state particles are off shell. This corresponds to choosing the interpolator to be the fundamental field in the theory,
renormalized so that it couples to an on-shell particle with unit amplitude. This is a natural choice in perturbation
theory.

In the diagrammatic framework, this definition is naturally extended to the K matrix. To go from the off-shell
M to the off-shell s, one considers the same amputated correlation function, but replaces the ie prescription for
integrals over poles with the principal value (PV) prescription modified by multiplication by H (E)—as described
in Ref. [I]. For our kinematic range, 0 < Ej, < 4m, this only impacts two-particle intermediate states, and the
difference between the prescriptions occurs 0nfy when the intermediate state is on shell. This allows one to write the
fully off-shell K matrix in terms of the fully on-shell K matrix:

(¢ . 14
Z’(:2 ())ff ,off — ZMQ ,off ,off ZM2 ,off, onZHp IC2 on, OHM2 on,on Mg Z)n ,off » (13)

where momentum arguments are suppressed for the sake of brevity. We derive this result in Appendix [A] As also
discussed in the Appendix, it follows from Eq. that the off- and on-shell K matrices have poles at the same
positions, the first of the key results mentioned in the introduction.

We now turn to case of interest in which IC2 on,on has a pole for £ = .J. Above threshold, this happens when cot d;
vanishes, i.e. when the phase shift passes through 7/2 + nm for any integer n. If the phase shift is increasing this
corresponds to a nearby resonance, but we stress that we must also consider the situation in which §; decreases
through /2 4+ n7, which does not correspond to a resonance but still leads to power-law finite-volume effects. Ko can

also have a pole below threshold, when Mg)_l = —Hp [see Eq. @] This is not directly associated with anything
physical, e.g. a bound state, but nevertheless also contributes finite-volume effects. In all cases, near the pole the
on-shell K matrix has the form

) R

K2,011,0n (P2 k) W

+ non-pole, (14)

with M the pole position and R a real constant. The pole must have a Lorentz-invariant form as /Cs is relativistically
invariant. Inserting Eq. into Eq. , it follows from the structure of the second term on the right-hand side of
the latter equation that the off-shell momentum dependence factorizes, as discussed in Appendix [A] This allows us
to write

© N\ in.g .
]CQ ,off, OH(P22,k;p27b27al2ab/2) = (p2,k)JZFJ(M27p2ab2)P2 MQZPJ(M ’ I2,b/2)(al2,k)J
2,k

+ KD o (P2 p2 0%, a,6%) . (15)

Here we have made the momentum arguments explicit: a’ and b’ are the incoming four-momenta, while p and b are
the outgoing. Factorization manifests itself as the dependence on a'? and b2 being independent of that on p? and
b2. These dependences arise, respectively, from the factors of M3 onof and Ma o on, in Eq. . Since they are
related by time reversal, the residue functions I' ; that carry the off-shell dependence are the same for initial and final
momenta. These residue functions are real.

The remaining factors in Eq. can be understood as follows: n; = £1 encodes the sign of the residue, with both
values allowed since this is not a physical pole. The ]62 term is the non-pole residue and is a smooth function of its
arguments. Finally, the “barrier factors” (p3, )7 and (a5 .)” have been pulled out” so that when IC2 oft o is multiplied

by spherical harmonics to reconstruct the full K of of there are no nonanalyticities when ]92,,€ and az,k vanish.®

7 The quantities a2 , and p;k are similar to the a;’k defined in Table [I] They are obtained by boosting the four momenta a’ and p,
respectively, into the two particle c.m. frame. They differ from a;k slightly because a’ and p are not, in general, on shell 4-vectors,
while, in Tablem a is on shell.

8 The key point here is that a‘Yy,, () is a polynomial in the components of @, while Yp,, (@) is nonanalytic at @ = 0.



We choose in Eq. to set the first argument in I'; (which, in general, is PJ k) to its value at the pole, M?2.
This choice is convenlent for the derivations. It is allowed as the difference cancels the pole and leads to a term that
can be absorbed in ICQ. We stress, however, that we do not evaluate the barrier factors at the pole, since this would
reintroduce the nonanalyticities that these factors remove.

Taking the on-shell limit, i.e. sending p?, b2, a’?, > — m?2, we reach

(T « ).y . N (T
Z’C; )(P227k) = <Q27k) ZFJipg 2 @FJ(QMC)J + “Cg )(P22,k)a (16)
2k

where we have introduced the following shorthand for the fully on-shell residue function
FJ EFJ(M27m2am2)7 (17)
together with analogous notation for Ké‘]) and l%é‘]). As is shown explicitly in the following subsection, the quantities

ICg), I'; and M2 all enter the definition of the finite-volume matrix F.

C. Definition of F

We now have the ingredients necessary to define the entries in the matrix F, Eq. . We begin with the 33
component, Fz3 = F33.50'm/;kem. This is defined by

. 1 F
'LF33 = W |:3 + ’LF?,’]—LZF:| 5 (18)
where
T, = ! Te (19)
L= T GG +iG)
and
1 1
— = O 1 0pr 5m/m77 20
|:2(A)L3:| K e o k' kOC ¢ s 2ka3 ( )
. Tk - — T\ % % 1
iGp sk bm = y&z'm'(kzm)lsg(pa k)y:a,em(pz,k)m ) (21)
B s b = Ok ki For s (K (22)
PP s (F) = lFef st () + iper rsem (K) (23)
() = 5 BEZE/ 5 Va3 VS B RV (@5, (24)
“C2;k/f/m’;k5m = 5k’,k52/,25m/,milcz< (PQJC) y (25)
with [ = [d®a/(27)? and ), = ez, G=ari/r- We have introduced a compact notation for poles and harmonic
polynomials
(K ) H3(5.)
(k) = Var | 222 ) Yy (k3 Sk (k) = 26
yg,f ( 2’1)) ™ (q;p) L ( 2,p)’ 33 (p7 ) b]Q)k 7 m2 + i€ ( )
In Eq. , p(E) is a phase-space factor defined by
per it (F) = S0r 08 n H (F)p(Poyt) (27)

where p(P3,) and H(K) are defined in Egs. and above. Finally, Hs(p, k) is a symmetric product of the
smooth cutoff function, H(k),

Hy(5.F) = HRHHE,) (28)



This definition is nearly the same as that used in Refs. [T, 2]. There are two differences. The first is that F' and
G are expressed here in a manifestly Lorentz covariant way—the pole term in S3 involves the square of a four-vector
rather than the energies in the finite-volume frame. This changes F' only by exponentially suppressed contributions,
but for G the modification is significant. In particular, using the definition above leads to Kq¢ being a Lorentz scalar,
as noted in Ref. [3]. The second change is that, in Refs. [IL 2], G is defined with Hs — H(k)H(p) rather than the
form with three H functions given in Eq. . The present definition is that which appears in the case of no Zs
symmetry, as shown in Ref. [I6]. Thus, although it is not mandatory here, this choice of Hjz seems more likely to
lead to a formalism that smoothly goes over to the result when the resonance becomes stable. In any case, it is one
possible choice.

The other three entries of F are new to this work, and are all brought about by the presence of the pole in Ks.
They are defined as

1 1
iFs5 = iF,, + ZG,,ZFJTULS (iF +1iG) T IGGF 1 i0) il yiG, (29)
1 1
Fs. = iG,il F 30
s =TS I8 — (iF +4G)iKs (30)
1 1
iFys = iF ZF]ZG (31)

2wl3 T 1 —ikKo(iF 4+ iG)

where I'; is the on-shell residue defined in Eq. , and we have introduced two new kinematic functions, needed to
describe the finite-volume dependence arising from the K-matrix pole:

iG ot vt = Vs g (67) 185(E) 05.0000,m (a5 1) (32)

) 1 1 EA 7 * T
sz‘/r;M",Z’m’;MJEm = 6M}M_7ﬁ Z myie/m/(k ) ZS§(]€) yi/m(kj ) ) (33)

kE
. O\ ¢ .
y27€m(k*) =V 47T <q*> nm(k*), (34)
P
iy g H,(k)

where n; = £1 encodes the sign of the residue of the 5 pole and is defined in Eq. .

Here We require an additional cutoff function, H (k) the role of which is to provide a ultraviolet cutoff for the sum
in Eq. (33).° The range of possible K5 pole masses that we need to accommodate is 0 < M < 4m, with the lower limit

set by the value of P227 i for which H (k) vanishes, and the upper limit set by the opening of the five-particle threshold
with respect to E*. For any choice of k such that P22k lies in this range, we need H (E) =1, so as not to distort the

pole. However, as P2  drops below zero, the cutoff function should smoothly drop to zero. The detailed choice is not
important, but we dlsplay one example for illustration,

Hy(k)=J <P4:124m> . (36)

This is chosen so that H, vanishes when Py < —4m?.

One of the important properties of Fis, stressed in Ref. [Il 2], is that it is fully determined if one knows Ky in
the relevant kinematic range. Thus a separate study using the two-particle quantization condition can, in principle,
determine the finite-volume function. We stress here that the same is true for all four components of F. The only
difference is that we must pull out the pole contribution from Kz, and use this in the determination of Fy3, F5, and

F55. The added complexity when there is a pole in ICéJ) manifests only in the way that information about two—partlcle
interactions appears in the finite-volume functions.

9 H p(E) also appears in G, through the pole factor, S5. In fact, here the cutoff function has no effect because G, is always accompanied
by F or G and thus HP(E) is always multiplied by H(k). From the definitions of the cutoff function it trivially follows that H,,(E)H(l;) =
H(E) We nonetheless find it convenient to keep the cutoff within G, as written.
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D. Definition of gt

We close this section with some brief comments on Kg4¢, whose components are given by Eq. . These four
entries (Ky; 35, Kyt 33, Kgp 33 and Kag,33) are each infinite-volume quantities, characterizing scattering in the indicated
channels. They are, themselves, matrices with indices matching those of the corresponding components of F, Eq. .
When multiplied by the appropriate spherical harmonics, and summed over angular momentum indices, they become
real, Lorentz-invariant functions of the on-shell kinematic variables.

Another key property is that, in each of the four components, all kinematic singularities and possible Iy poles have
been removed from KCg¢. Thus, these can be viewed in position space as quasi-local vertices connecting the various
channels. This analogy is not perfect, however, since the components of 4¢ are not physical, as they depend on the
details of the cutoff functions described above. It is also possible, just as for s, that there are dynamical singularities
in Kq4r due to three-particle resonances.

The derivation presented in the next section provides a (very complicated and implicit) definition of the components
of ICq¢. This turns out to be sufficient, however, because what really matters is how these components are related to
the physically measurable three-to-three scattering amplitude. This relation can be derived based solely on how KCy¢
enters the final result. This is presented in Sec. following the approach of Ref. [2].

ITT. DERIVATION
We now derive the result described in the previous section. Begin by defining a finite-volume correlation function
CL(E,P) = — / dig e iEHPE (QITO ()01 (0)]0) (37)
L

where OF(0) is any operator with the quantum numbers of the three-particle states that we are after.' Inserting a
complete set of states, one can show that this object has poles in F at the finite-volume energies. Our aim is thus to
derive an equation—the quantization condition—for the locations of these poles.

In the following subsections we show that the correlator can be written as

_ - 1
E,P)=C(E,P) +iA'iF——iA,
CL(E,P)=Cx(E,P)+i Z‘Fl—infi.Fz (38)
up to exponentially suppressed corrections. Here Coo(FE, 13) and
s . . (iAs
iA = (A5 iAy) A= <2A§) , (39)

are infinite-volume quantities, defined in the course of the following subsections. Note that the second term in
Eq. (38]) is a product of a row vector, a matrix, and a column vector, with all indices contracted. As the infinite-

volume quantities contain no finite-volume poles, the poles in Cf(E, }3) correspond to divergent eigenvalues in the
matrix between A’ and A. This is equivalent to the inverse of the matrix having a vanishing determinant, and thus
to the quantization condition given in Eq. above.

A. Compact notation for the derivation

In order to make the following derivation more readable, in this section we introduce a compact notation for the
various quantities introduce above. Our aim is to minimize explicit factors of i and of 2wL?. We thus define

1 1
) F =
Qw3 iG, 2wl3
=iy, G,=iG,, G,=iG), Fyr=iF,. (41)

iF, Ky =2w,L%K,, (40)

10 The overall minus sign included in this definition should be understood as a factor of i2. We choose to accompany each operator with
a factor of ¢ for reasons explained below.
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One advantage of these definitions is that G is now given by

1 . 1 - . L S
Gpermiihm = 575 1Gprmiiktm = m%x’m'(@,p)%sg(n k)3 om (D5 1)
P

1
— 42
ENER (42)
and is therefore anti-hermitian (due to the factor of ¢ in the definition). This avoids the need to define the separate
object [2wL3]71G[2wL?] that would otherwise appear in the derivation.

In this new notation, the quantization condition becomes

det[1 — Kqf(E*)F(E,P,L)] =0, (43)
where
K. 355 Kis Fe Fx
. =K = df,22 thdf 23 F=F = 33 L33 44
ZK:df df ( df73§ de,gg) ’ 1F F (]_;‘\3_2~ F33> ) ( )
and
Fi3 = 1F—FFT F ith T, = 1 K (45)
33 = 3 Ly, w1 L_I—KQ(FJrG) 2,
1 _
F7=F, . +GI'F+G)——TG,, 4
22 p + P ( + )1—K2(F—|—G) 4 (6)
Fs5,. =G F;F (47)
BT (F+GKy
1 __
Fs=F—F1——TG (48)

1-Ky(F+G) L

B. Definition and decomposition of C}??!

We begin by following the same steps as taken by Ref. [I] in the derivation of the quantization condition in the
absence of Ko poles. This will allow us to reuse a fair amount of work from that reference. The derivation begins
with an all-orders skeleton expansion in which Cp, is defined diagrammatically in terms of two- and three-particle
Bethe-Salpeter kernels, denoted iBy and iBj respectively, as well as fully dressed propagators. Examples are shown
in Fig. 4 of Ref. [I]. The skeleton expansion is designed to make all power-law finite-volume effects explicit. Such
effects arise from on-shell intermediate states in Feynman diagrams and, since we constrain the overall c.m. energy to
the range m < E* < 5m, this amounts to keeping track of three-particle states. The restriction to a finite, periodic
spatial volume is effected by summing the spatial components of all loop momenta over 7 = (27/L)7 where 71 € Z3
runs over all 3-vectors of integers.

As in Ref. [I], the challenging part of the derivation is that involving the kernels By. Thus it is useful to begin by
analyzing a reduced correlator, denoted C[LBQ], defined by the same skeleton expansion except that all three-particle
kernels are set to zero (B — 0). Adding back in the effects of Bj is relatively straightforward and will be done at a
later stage. To decompose C[LB2] we can piggyback on Ref. [I] by directly taking over Eq. (174) of that work, since
this equation was derived without assuming smoothness of ICy as a function of the two-particle center-of-mass energy.
Written in our present notation, the result is

2 u > u,u n u
O = Cror — So'Fol + ALYFG S (K{FS ) ALY, (49)
n=0
where the quantity called [A] in Ref. [I] is here denoted Fg%), and is given by
FO-—p_ L (50)
33 1 - KyF

The other quantities in Eq. will be explained shortly.

What has been achieved in Eq. is to make explicit a subset of the finite-volume effects due to three-particle
intermediate states. We recall from Egs. and that F is defined by a sum-integral difference of a quantity
with a three-particle pole. This object therefore has power-law finite-volume dependence, and also sets the quantities
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multiplying it on either side to be on shell. Thus Fé%) collects such dependence from a sequence of three-particle
“cuts” separated by two-to-two interactions occuring between the same pair. The subscript “33” is included here to
distinguish this object from similar quantities involving Ko poles that arise below.

We now turn to the definitions of the remaining quantities in Eq. . With the exception of ¢* and o, these
are finite-volume quantities, involving some loops in which momenta are summed rather than integrated.'’ This is
indicated by the subscripts L.

We begin with Cr, or. This is the contribution to CEBQ] containing no factors of F. It can be expanded according
to the number of factors of ICq that it contains

Cror =Y CYp. (51)

The objects on the right-hand side are identical to those with the same names appearing in Ref. [I]. They are defined
in Egs. (114), (154), (169), (173) and (176) of that work, and shown diagrammatically there in Figs. 11(c), 15(b) and
17(c). We repeat the diagrammatic representation in Fig. a) below.

The quantity K(Lu;g) involves three-to-three transitions that are built from o interactions alternating between
different pairs. It is closely related to ICénL’“’u), defined in Ref. [1]:

K =D K", K" =ik (52)

n=2

Here K(Ln;gu) is the contribution containing n factors of Ko, where n > 2. As above, we have amended the subscripts

to facilitate the addition of the pm channel, and also absorbed a factor of i. The definition of ICgfLL’u’u) is given in

Ref. [I] by Egs. (155) and (171) and Figs. 11(a), 15(c) and 17(c). We repeat the diagrammatic representation of

K(Ln;g ) in Fig. a) below.

The remaining quantities in Eq. are endcaps. Aéu?) and A L:)3 can be expanded as above according to the
number of factors of Ko, with ¢* and a‘T* being the zeroth order terms in these expansions:

u n,u u n,u * 0,u * 0,u
ALY = ZA’( YAl =N Al =A%, = Al (53)
n=0

The relation to the corresponding quantities from Ref. [I] simply involves a change of subscripts to allow for future
K2 pole contributions
(nyu) _ . 41(n, _
AL Z ) Al g, (54)
where the quantities on the right-hand side are those appearing in Ref. [IJ.

The expressions for these quantities are given in Egs. (60), (84), (85), (113), (153) and (170) of Ref. [I], and
illustrated in Figs. 9(c), 11(b), and 17(a) of that work. We repeat the diagrammatic representation of the left endcap

Agg’u) in Fig. c) below. Note that it can be obtained from that for C(L"())F by removing the o™ at the right end. The

representation of the corresponding right endcap, A(ng, is given simply by a horizontal reflection of that for A/L(fg), or

equivalently by removing ¢* from the left end of Cg?()) P

In the following subsections, our aim is to make explicit the full volume dependence of Cp, or, A'L(fg), A(Lu:)3

(u,u)
KL,33 .

and

11 Here and in the following a loop momentum being “summed” is shorthand for a sum over spatial components and an integral over the
temporal component.
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A gy dm+2 dn

v O
O @ =\
Gm+1 qn—1

FIG. 1: Diagrammatic definitions of quantities entering the derivation of Eq. (55). Open circles on the left and right ends
represent o* and o'*, respectively. Open circles in the middle represent the full off-shell ¢/C2, while the circles with an integral
sign indicate that only the smooth component, iK5, is included. Loops that are summed contain a “V”, while those that are
integrated contain an “co”. The superscript n indicates the number of factors of K2 or its smooth counterpart. Thin lines are
fully-dressed propagators, with unit residue at the one-particle pole. Thick lines [present in (e) and (f)] represent the resonance,
corresponding to the subscript 2. Double thin lines [present only in (f)] indicate that only the smooth part of the exchanged
particle propagator is kept. In (c), the superscript “u” indicates that the index k corresponds to the momentum carried by
the spectator propagator at the right-hand end. In (d), the superscript “u/s” indicates that the diagram serves to define the
quantity with both superscripts. If the superscript is u, then the momentum k is assigned to the spectator propagator, while
if it is s, then k is assigned to the upper propagator. Further details are given in the text.

C. Decomposition of Cr or
We first consider the quantity Cf, or, and show in this subsection that it can be decomposed as
Cpor = ClB2 4 (QA;fS)F + A%GJ‘G) (AL — o) + ALF, A, 5. (55)

This is a partial decomposition, involving both finite- and infinite-volume quantities (the latter having subscripts
including L) separated by “cuts”. In deriving this result, we must, for the first time, account for the poles in Ko, as
shown by the presence of factors of G, and F,,, which set the pm states on either side on shell. If these two quantities
are set to zero we reproduce the result in Eq. (189) of Ref. [1].

As can be seen from Fig. au)7 Cror is defined by the sum over all pairwise scatterings in which the interaction
switches to a different pair with each new insertion of i/Cy. By construction, this quantity has n summed loop momenta

plus two additional loops with integrated momenta. It is convenient to extend this notation by defining C(L"B’;) to be
the same quantity as C'(LT,L()) 7 but with the leftmost m momentum sums converted to integrals (with poles integrated
using the PV prescription of Ref. [1]), and with the integrated iy factors replaced by their smooth parts, 2]%’2 [see

Fig. (b)].12 This requires 0 < m < n, with m = 0 leading to Cg?gg = (Lyf())F, and m = n to C’?OT;) = C’(()g), a

fully-integrated, infinite-volume quantity.

12 As explained in Appendix several terms combine to give the smooth part, with ilzg from Eq. lj being just one contribution.
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To decompose CL O,F) we consider the leftmost sum, i.e. that directly adjacent to the m integrated loops. Finite-

volume effects arise in this sum due to both the pole in 5 and the intermediate on-shell three-particle state. In
Appendix we explain the procedure for converting a given summed loop (with the full K2) to an integrated loop
(with the smooth part only). In other words we derive a system for converting C’é 0;) to Cé%;l n), plus finite-volume
correction terms. This leads to the following recursion relation

Cé%?’n) + (2Al<m+1 s)F + A/(m+1)G I‘G) (n m—1,u) + Al2(m+1) A(n m) 0O<m<n-—1,
Ol = 4 o) + ASVE, AL 0<m=n—1, (56)

The pole in Ky leads to the terms involving G, and F,,. These equations contain three new quantities, Aé(n’s), Aén)

and A L3 in addition to the right endcap A( Y introduced in the previous subsection.

The infinite-volume left endcap A3(" ) i deﬁned diagrammatically in Fig. (d) It contains n factors of ik}, with
all loop momenta integrated. The superscript s indicates the manner in which the on-shell external three-particle
state is projected into spherical harmonics, as explained in Ref. [I].

The second new quantity is the infinite-volume left endcap A%(nﬂ), defined diagrammatically in Fig. e). Here the

“on-shell” external state consists of the K-matrix pole plus the spectator, which we refer to as the prm state. A%(nﬂ)

contains n factors of 16’2, n loop integrals, and one factor of I in the loop adjacent to the external state. We will later

(n+1)_

need the analogous right endcap, denoted Az [Changed the boldface l@ to nonboldfaced.]

The final new quantity, A( ni1) , is defined diagrammatically in Fig. I(f It is closely related to A(Ln; D the reflection

of A L("QH) which consists of n factors of iz, n summed loops, and one factor of I' adjacent to the external pr state.
The slashed version differs in that the leftmost three- particle intermediate state is replaced by the smooth difference
that remains when the G singularity is subtracted. This subtraction in indicated in the figure with a double line. The

lowest value of n, n = 1, is a special case, for which there is no summed loop and A(Ll)i = Aél). For further discussion,
see Appendix [B 1]

Iterating Eq. 1) leads to an expression for C’g)ozz = C’gf())  in terms of C’gf ), Summing over n then gives the desired
result, Eq. (55)), where we define

o0 oo

Cgfz] — Z C( /(s) Z Al(n s) , Z A/(n) L”f _ Z Agrj)i ) (57)

n=0 n=1

Note that the last three sums begin at n = 1, in contrast to the sum for A(Lu,;, Eq. , which begins at n = 0. It is
because of this that ¢* must be subtracted from A(L"é in the final result, Eq. .

D. Decompositions of AL“3>, A<u) and AL,§

In this subsection, we continue the decomposition of the quantities entering C, [B2] , Eq. , by considering the

finite-volume endcaps A L(3)

and A(Lué In addition, we decompose the related quantity A 1,5 that appears in Eq. .
The results we obtain are

ALY = ALY + (2A17F + ALG,IG) (K'Y + Ko ) + Af (FK(') + G F) (58)
Al = ALY + (K% + Ko ) (F2A0) + GTG,A5) + (K(L J5For +TG,) A (59)
Az =A;+ K" (F2AL) + GIG,A;) + K, 5, As (60)

This is illustrated in Fig. ﬁf) It is for this reason that we require the prime to denote, 116’2, the quantity entering integrated loops of

(m,n)
CL,OF :
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H

q2

H

q2

=

q2

FIG. 2: Diagrammatic definitions of the elements of the finite-volume K matrices involving three-particle or pm external states.
The notation is as in Fig.

Here we have introduced three new finite-volume K matrices,

oo

(w) __ (n,u) (w) __ (n,u)
Ky 5= ZK KLQS_ZKLQS’ KLSQ_ZKLSQ’ (61)
n=2 n=2

all closely related to Kéug? Specifically, K(n%i is obtained from K(Ln?:; ) by replacing the Kos on both ends with

factors of I, and connecting these I's to the adjacent Kos with the smooth (G-subtracted) part of the neighboring
exchange propagator. This is shown in Flg I(d K(n ") and K(n % are obtained by performing these steps on only

one side of K(Ln:;; ) while leaving the other side unchanged as shown in Figs. I(b and (c), respectively. Also new in

Eqgs. (5 — are the infinite-volume endcaps AS(u), Ag"), AQ. and Az. These are defined below.
Intuitively, Eqgs. — summarize the various ways that finite-volume effects enter the endcap functions. For

example, Eq. 1) splits A’L(ug) into its infinite-volume counterpart, Ag(u)

, plus six types of finite-volume corrections
(counted by multiplying out the products of binomials in the middle term). Each term is characterized by a different
type of cut-factor, e.g. F encodes the finite-volume effects associated with two of the three particles propagating

between adjacent pairwise re-scatterings and G describes the volume effects of an exchanged particle. Similarly, G,
and F,, correspond to different types of volume effects associated with the K-matrix poles. A(L 2)), in Eq. , is simply

a mirror image of A L 3, while A L3 in Eq. , is given by replacing the right-most state with a 2 and dropping
terms that do not arise with this type of external state.

To derive these results we use a similar method to that of the previous subsection. We first consider A'L(“:,)), and

A/L(Tg’n’u), which contains n two-particle kernels, m integrated loop momenta and n — m summed loop

momenta. As for Cg%’;), the integrated K matrices are iIE' s, while the summed ones are the full iKss. We need

introduce

this quantity for n > m > 1 together with the special case n = m = 0, giving A/(0 0w — Ag?é“) = o*. A second
special case is A} (1 ) A/,EZ“) (since there is always one integrated loop for n > 1). Finally, we note that the
fully integrated version is an infinite-volume quantity, A'L(%’"’“) = Ag("’u). This quantity is shown diagrammatically

in Fig. d)7 and differs from the quantity A’(™*) encountered above only by the choice of spectator propagator.
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The steps detailed in Appendix apply also here, except that the right endcaps o!* are replaced with an on-shell
three-particle state. We find that the resulting recursion equations are

Ay (ZAg(mH’S)F—kAgmH)GpI‘G) K3 4 ALV, KT 0<m <n—2,

AT = A (2A;,(”*1’S)F+A’§<”*”GPFG) K, + A VE, K O<m=n-—2,
ALY 4 AIYG,T 0<m=n-—1.
(62)
We stress that all quantities to the left of the cuts are, by construction, identical to those appearing in Eq. . The
quantities appearing to the right, however, have changed: A(Lr?éu) has been replaced by K(Ln;éu) and A(Ln% has been
(n,u)
L,23°
Solving the recursion relation for A/I(/Z);U) and summing over n using the definition

replaced by K

ALY =3 A (63)

n=0

yields Eq. . We observe that the combination K(Lu;g) + K5 appears. This arises because the sum over n for K(Lu;é)
begins at n = 2, since at least two factors of iKCo are needed for a connected scattering of three particles. The n =1

term then becomes simply K. Similarly, the n = 1 term is absent in the definition of F,,7rK(Lu-)2~3 and this leads to the
additional contribution containing G,I'. Note that, if G, and F,, are set to zero, then we recover the result given in
Eq. (186) of Ref. [1].

The horizontal reflection of Eq. gives the decomposition of the other endcap, Eq. (59).

Finally, we need to decompose A L3 We recall that this is the finite-volume right endcap, defined diagrammatically
in Fig. (f) It thus differs from A 3 only in its final state, in which a factor of I' combines with the smooth part of
the exchange propagator. This means that we can adapt the result from that for Ay 3 by replacing the three-particle
external state with a two-particle one, and dropping the contribution from the Ky factor on the end (since this is
replaced by smooth quantities). The result is given in Eq. .

E. Decomposition of K; 53, K;j%, K(L"?ﬁ and K(Lu;g)

In this subsection we complete the decomposition of the quantities entering C[LBQ] into infinite-volume objects and
finite-volume cuts, with some technical details relegated to Appendix

What remains is to decompose the four finite-volume K matrices whose components are shown in Fig. 2] They are
conveniently packaged into a two-by-two matrix

kW
S ) o
KL73§ K} 33

The result we will derive in the following can be written compactly as

0 0
(u) (u) V
I<L = (O I:(LO7)33> + gL V de 1 ((;?) gR y (65)
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(n7u7u) —_—
K133

KGR

FIG. 3: Diagrammatic description of the procedure described in the text leading to the Eq. . The notation is the same as
in Fig. [I} with the addition of a dashed line to indicate a propagator proportional to G.

where
1
K, =K;Gk K = ngGKQ, (66)
X = Fp.,r + G[,I‘ GK I‘@,, GpF GK (67)
B GkIG, Gk ’
_ (1 G, - (1 0
v:(o ; ) v:(mp 1), (68)
_ {1 0 /(1 0
5L:(0 1+TG)’ ER:(O 1+GT>’ (69)
1 1
= T=Ky——.
G =1k, & ’1- GK; 0

The final new quantity is K((;;) This is a two-by-two matrix of infinite-volume, divergence-free K matrices, defined
below in Eq. (80). The motivation for all these new quantities is described in more detail during the following
derivation.

As above, our task is replace all summed loop momenta with integrals, separating out the divergences due to
both the three-particle on-shell intermediate states and the poles in Ko. It turns out that, at first, we do not need

to decompose those factors of [y that lie directly adjacent to KSLU) components with a 3 index. This applies, for

(n,u,u)

example, to the s at both the left and right ends of K L33 in Fig. These can remain as the full K matrices,
despite containing poles, since they do not appear in sums. Leaving these factors of Ko unseparated leads to shorter
expressions at intermediate stages, at the cost of requiring an additional step to remove the final divergences. We
denote by K33, K45 and K5, these intermediate infinite-volume quantities that still contain external divergences from
the external Cs.

The method we use here is simpler than the approach adopted in Ref. [I], where the result for any number of K
factors was deduced by working out the cases with 2, 3, and 4 factors of Ko and then determining the pattern. Here
we use matrix equations that take care of all orders at once. We find it convenient to keep track of finite-volume
contributions in two stages: first those from G cuts and second those from K-matrix poles, the latter leading to G,
and F,, cuts.

We begin by considering K(L“;;) Moving from left to right, we consider each three-particle intermediate state in
turn. At each stage this consists of two fully-dressed propagators, e.g. A(a)A(b) with a the spectator momentum. We

replace this with the product 276 (a® — w,)(2w)G LS together with the difference, which is a smooth function of @. By
construction, the insertion of G sets the nonspectator pairs on either side on shell. The details of how this works are



18

unchanged from Ref. [I] and we do not repeat them here. After the substitution is made, in the term containing the

factor of G this first stage of decomposition is complete and a factor of K( 33) appears to the right of G. In the term

containing the smooth residue we proceed to the next intermediate state to the right and repeat the decomposition.
See Fig. [3| for a diagrammatic sketch of the first steps in this procedure.
This procedure leads to the equation

K(Lu?:;) =KoGKy + K, 33 (1 + GKo) + (K 33 + Ko) GK(L%? ; (71)

where KL 33 is the same as Ky, 33 except that all intermediate states have propagators replaced by the smooth
difference described above. For brevity, we have dropped the superscripts on K L,33- We note also that the terms
involving K in this result arise from special cases where, after the insertion of G, there is only a single K5 on one or
both sides.

If there were no poles in Ky we could replace the momentum sums in K 1,33 With integrals and obtain the divergence-
free K matrix. This was the procedure followed in Ref. [I]. However, here we need to extract the finite-volume effects
that arise from the K-matrix poles. To do so, we work through K .33 from left to right, replacing each full Xy with
the F,. cut and the difference, with the latter being a smooth function of the spectator momentum. In the term with
the F,. cut the procedure stops, leaving a factor of K 133 to the right. The remaining, F,,-independent terms build
up quantities in which all loop sums can be replaced by integrals because the integrands are divergence free. These
are the quantities mentioned above that contain divergences only in the external K matrices and are denoted by Kjss,
K5 etc. (Again we drop the superscripts (u) for brevity.) The result is

LL »

K33 =Kss+ Ky FPWKL,§3 . (72)

()

Proceeding in the same way for K L33 and K L33 We obtain

(u) (u,u)
K\ =K, 5 (1+GKs + GK{'3Y)) | (73)
KL,§3 =Ks; + K'é‘inwKL,ig : (74)

We note here the appearance of Kz, which is the infinite-volume version of K 135 once all divergences have been
removed. This quantity does not have factors of Iy at its ends, so it is already dlvergence—free These matrix equations
can now be solved sequentially. The solution to Eq. (74)) is

1
= —— K 75
KL,23 1— K§§Fpﬂ' 237 ( )
and inserting this in Eq. (72]) yields
1
K33 = Kss + K;5F,r 7K~ . (76)
32 _ K§§pr 23

Taken together, Egs. and give a complete prescription for writing K(L 33) in terms of infinite-volume
quantities and finite- volume cuts. Appendlx [B2] we outline the remaining steps in this decomposition expl1c1tly

In the appendix we also work through the decompositions for the remaining finite-volume K matrices, K(L 5 and

K 53, and for the slashed objects, K L33 and K 135 The procedure in all cases is similar to that outlined above:
One works through the summed loops in a diagram from left to right, substituting singular and smooth pieces for the
propagators to reach matrix equations for the various finite-volume objects entering the correlator. We find that the
solutions to the resulting equations can be succinctly displayed in two key relations

0 0 1
K\ = ( 0 >+8 ———E&, m
0 K(L)33 LKzlng f ( )
=K = F,., (78)

where we have introduced two-by-two matrix generalizations of the various quantities appearing above

(K, 5 K, 5 (K5 Ks _(F,. 0 {0 0
K, = (KL,QE Ki;;) , K= <K23 K;g) , For = < 6 O) , and Gk = (O GK) . (79)

L,32 32
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To complete the work of this section we need to remove the K-matrix poles contained in K. This is neccesary in
order to symmetrize over choices of spectator, as we see in the next subsection. To do so we introduce appropriate
factors of G, corresponding to the poles in the external factors of 5. This leads to the result

K=VKYV, (80)

where V and V are defined in Eq. @ This relation defines a matrix of non-singular infinite-volume K-matrices
already displayed in the result given at the beginning of the subsection!?

Ktz df,23

K\ = w (81)
de,3§
Combining Egs. , and we reach the main result of this subsection given in Eq. above. The

quantity X appears as

(u,u)
Kt'ss

X = V(]-'M + GK)V, (82)

which can be rearranged into the form shown in Eq. .

At this stage we have decomposed all objects appearing in C[LBQ] into matrix products of finite- and infinite-volume
quantities. In the following subsections we reshuffle these decompositions into a compact form for this partial finite-
volume correlator. We then show how the three-particle Bethe-Salpeter kernls, Bs, can be reintroduced to derive the
main result of the section, Eq. .

F. (Ku)° contribution to C1°?

We now have all the ingredients needed to determine the volume dependence of the correlator C[LBQ]. The initial

decomposition of this object is given in Eq. . To derive the final form we work order by order in Kgf, and
begin by considering the contributions that are independent of this local three-body interaction. In particular, in this
subsection we demonstrate

[Ba] B Bs] _ Fs5 Fy) (As
Cp 2 = clBl —s0lBl = (AL Aj) (Fzg Fgg) < AL )+ OKap), (83)
where F33, F335, F3;, and Fg3 are defined in Egs. — , respectively, while 5C<[>§ 2l is an additional volume-
independent term, defined at leading order in Kg4¢ in Eq. (94) below. As mentioned in the introduction, many of the

steps in the derivation of Eq. presented here have been checked using a Mathematica notebook implementing the
package The NCAlgebra Suite. Equations verified in this way are preceded by the indicator “(v' NCA V).

If Ké’f‘) = 0, the only nonzero component of Kiu) is K(Lu?:?, which becomes K(L({?33, defined in Eq. . Thus the
infinite sum in Eq. becomes (v NCA V)

oo n o0 n 1

0 u,u 0 _ 0 0 0

PO (KUED) o z=F S (KOE0) —r L n
n=0 n=0

where the arrow indicates Kg;) — 0. Here we have used Fé%) and T, defined in Egs. and respectively. In
this same limit the quantities A/L(fg), A(Lu;) and A 13 simplify to (VNCAV)

ALY — AT = ALY L 2AYFT + ALG,I(1+ GT), (85)
A — A =AM L TR2AY + (14 TGIIG A5, (86)

Az —  4As, (87)

13 'We note that K¢ 35 = K33, so the df subscript is not needed for this component. We include it anyway for uniformity of notation.
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where the superscript {n} indicates the contribution to the indicated object with n factors of Kgs.

At this stage we can use the following result from Ref. [I: if QAQ)(S) is adjacent to a factor of FKy then it can be
replaced by A’(®) + A’G) | with (5) indicating the third independent permutation of the external momenta. This is
the case in Eq. because T always has a factor K5 on its left-hand end. The same holds for the factor of QAQ(S) in
Eq. 1) because A(L“:)3 and o™ are symmetric under the interchange of the nonspectator pair. Similarly, the factor of

2A:(,)S in Eq. can be replaced by Ags) + Az(f). These substitutions are important because the fully symmetrized
endcaps are given by

A=A+ A LA and Ag=A0 + AP A (88)

We expect the final result to depend only on symmetrized quantities. In the following, for the sake of brevity, we
use 2A(8) as an abbreviation for A®) 4+ A(®) and 2A/() for A’(®) + A’ Using this simplification, we can rewrite

Eqgs. and as
AL = AL 2A (1 - FT) + ALG,I(1 + GT), (89)
AP = Ay — (1 - TF)2AY + (1+ TG)IG,A;. (90)

The final quantity we are missing is Cf, or, whose decomposition is given in Eq. . Sending Kg¢ — 0 in this
result, and using Eq. , gives (V NCAV)

OL,OF N Cé?gF — C(ijz]’{o} + <2A;(S)F + A%GpFG)
x (Ag = (1= TF)2A) + (1+ TGITG Az — 0™ ) + ALF, Az (91)

We have now gathered all the pieces to evaluate the full correlation function, decomposed in Eq. 7 at O([Kat]?).
This equation reduces to

2 u u
ClFH i), - 2ot 4 AL ZAL . 92)
Substituting Eqs. (84)), and and significantly rearranging, we find (v NCA V)
[B2],{0} _ ~[B2],{0 B5],{0 Ay (Fsz Fs As
olP = ¢80} 4 5oBa1 {0} (AE Aj) (Fzg F?;) <A§ , (93)

where
§CIB0 = _25*Fg — 2AYFol* — AJF2A) + 2ALFA,
+ ALF, (A5 — Ag) + ALG,T [G(Ag“) ot F 2A§S)} . (94)

To obtain Eq. we have made use of the following identities (v" NCA v):

{_§+1_117"I‘}F:F[§+TLF} : (95)

1—1TFT: 1—K22F+G)K2’ (96)
17TF(1+TG):ﬁ, 97)

(1+GT)q —1FT T 1 (Fi(—:)K2 ’ (98)
[G+(1+GT)1_1FTF] (1+TG) = — (FiG)KQ (F+G), (99)

which follow from straightforward manipulations using the definitions Eqs. and .

Equation is equivalent to Eq. , where CE21 1% is understood as the O|(Ka¢)°] contribution to sCiB2 At

this stage it remains only to show that 5C’C[£ 2),{0} only has exponentially suppressed volume dependence. This is done

in Appendix



21

G. C[LBQ] to all orders in Kfffb): Unsymmetrized

In this subsection we collect the terms contributing to C[LBQ], Eq. , that contain at least one factor of Kg;).
Throughout this subsection and the next, we use the superscript ! to denote the contribution to a quantity with
one or more factors of the unsymmetrized divergence free K matrix.

Beginning with C, or, decomposed in Eq. , we use the results in Eqs , , and (67) and find that
the part containing at least one factor of Kqs can be written as (v' NCA

cfed — (2A’<S>F + ALG FG) [Kgug (F2A(S +GIG, A~) +K >3§F As }

() ( o)
/ u S G
+ ALF,, {Kﬁg (F2A3 + GFGpAg) + KL,ﬁprAi} ’
_ ( Al o A,<s>) (Fpﬂ GpFG) K(u)( For 0) As (101)
5 2A; 0 F L \GIG, F) \2a(¥ ]~
F,. G,IG), < 1 Fr  0)( A2
= (AL 24/ (Pw 2 )6 VK ————VE ( G ) ) 102
(3 203%) (i O —ven (ol ) (oa "
] Yal u 1
— [A—’j(l 0) X +2A5YF(1 + TG) (TG, 1)} Ky ———
1= XK (103)

- [X (é) A+ <Gfr) (1+ GT)F 2A§;“>] .

In Eq. - we have Simply substituted Egs. and ( into Eq. (| . and dropped terms that have no factors of
K("). To obtain Eq. we then rearrange terms 1nto a matrix form using the definition of K(") Eq . Next

we substitute the result Eq for K(L ), dropping terms with no factors of K df) leading to Eq. We then use
the definition of X, Eq. @ to brmg the result to the final form, Eq. (103]

We next turn to the terms in Eq. (49) that contain at least one factor of F ) These terms always include the endcap
factors A L(u:,)) and A(Lu?,) so that we ﬁrst require the full decomposition of these. Beginning with A/L(Lg, decomposed in
Eq. , we insert the expressions for the different components of K(") [Eq. } to find (Vv NCA V)

ALY = A+ (2809F + ALG,IG) (K3 + Ko ) + A% (FK (") + G,T) | (104)

— AL 2A;(s) I <2A;’(S)F + A%GPI‘G) (K(L()33 + Kz) + A%GpI‘

. — o 1 G,

+ (2A;f 'F+ A%G,,I‘G) (1+TG) (TG, 1)- Kggm : ( ° ) (1+GT) (105)
- df
1 G,
+ALF,. (10 .K<“).< p )(1+GT),
27 P ( ) df 1—XK‘(§) 1
] 1 G,T
= A, —2A(1-FT) + AL (1 WW' ( ¢ )(1+GT)
- df
(106)
+2AF(1+ TG) (TG, 1) - Kg?# : <GPF) (1+GT).
g 1-xk( \ 1

Here the first line is just a repeat of Eq. and in the remaining lines we have substituted the expressions for K(L“S%)

and Ki %3 and simplified.

The expression for the mirror-imaged endcap is then given by (v NCA V)

_ 1 1
A =A;— (1-TF)2A + (1+TG)ITG, 1) ————— - ( >A~
L3 3 (TG, 1) 1—K§§)X 0/ 2
el w__ 1 G,T' (s)
+(1+TG) (TG, 1)-de7(u)- 7)1+ GT)F2A57 . (107)
1- XK
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In both cases we include the (K((;;))O part, since the factors of K((;f) can come from the sum appearing between the
finite-volume endcaps in the expression for C[LBQ].

Finally, to derive an expression for the sum appearing between A/IEUS) and A(Lug), in Eq. , we make use of the
following identity (v NCA V)

— 1 0
K =K+ (0 1) - ELVKY ——— V- (1> , (108)
1- XK
) u 1 r
= Kb+ (1+TG) (TG, 1) K ———- <Gf ) (1+GT), (109)
1- XK
= Ky + K5 (110)

where K(L%é%)’[de] is defined by comparing Eqs. 1) and 1)
Combining this with the expression for Z, defined in Eq. (84]), we find (v NCA V)

(0) 1 1

=7 : (111)
PlokPEER -k elz
=z 2K Y (2K ) 2 (112)
n=0
_ T 1\ (Gr
=Z+Z(1+TG) (TG, 1) - KW—— YKW~( P>Q+GTm,
( P ) df 1— XK((;;) ; df 1— XK((;;) 1
(113)
_ y 1
~Z+Z(1+TG) (TG, 1) - K ok (Gfr) (1+GT)Z, (114)
1— (X+Y)Ky
where the new matrix Y is (v NCA V)
Yz(Gf>.u+GTﬂuﬁﬂnn-@GpU7 (115)
— GPF _ 1 rel
(]>>[ GK+1_&w43KJF+Gﬂ TG, 1). (116)

From this, together with the expression for X [Eq. (67)] and Fs3 [Eq. (29)], we find that the combined matrix
appearing between factors of Kg;) is (VNCAV)

X+Y = ( | _ 1 (117)
F+G)raoléG —FoxF+G6)

We observe that the off-diagonal elements are close to F5, and F3, differing only by the presence of F + G rather

than F on the ends. Similarly, the 33 element is close to F33. These differences will be removed when we change from

the unsymmetrized Kglf) to the symmetrized version.

With these preliminaries, we begin the determination of C’[LB?HK“] by collecting the terms involving factors of AL

and Az on the ends. All terms appearing in Eq. (103]) as well as the appropriate combinations of Egs. (106], (107))
‘E

and (114]) that contain these endcaps have the form

C[LBz]v[de] S A% (1 0) W . ((1)> Az, (118)
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and our task is to determine the matrix W. Collecting terms, we find'* (v NCA V)

1 1 1 1
W = XK X+ o | Y+ YK =Y ao- Y, (119)
1 - XK 1 - XK 1- (X+Y)Ky 1-K'X
1
X+Y K(“) X+Y). (120)
= ) - (X+Y)KY ( )

Next we consider the cases with either Ag(s) on the left-hand side, or Aés) on the right, or both. After some algebra,
we find that all such terms vanish identically (v NCA V).
The remaining, non-vanishing terms are those involving the endcaps A% and Az. We find (V NCA V)

_ 1 1
clPbKal 5 Atz L T@) (TG, 1) - KW X+Y ( >A~
L 3 ( )( 4 ) df 7(X+Y)K$)( ) 0 2
1 G,
+AL(10)- (X+Y)KWY ( P) 1+ GT)ZA
2( ) ( ) df 1—(X+Y)K$) 1 ( ) 3
+ALZ(1+TG) (TG, 1)-K{Y ! .(GPF) (1+GT)ZAs. (121)
1- (X+Y)K{ \ 1

Finally, we can combine the results in Eqgs. (118]) and (121)) into a compact matrix form (v"NCA V')

, 1 As;
o2l Kal _ (AL Al ,FLK(M) Fg - < 2) 7 (122)

g (Az 45) - X+ Y)KY As

where we have introduced
Fs; X5:,+Y5 Fss Fs;

Fp = (22 R T ) and F E( 22 123 ) . 123
L (F:{i F17K2(F+G) R X5+ Yg3 17(F+G)K2F (123)
To obtaln this form we have used the identities and ., as well as the definitions of F3; and Fg3, given in

Eqgs. (47) and (48], respectively.

H. Symmetrization of Kyr in C[LBz]

A pleasing feature of the result of the previous section, Eq. , is that it contains only symmetrized endcaps,
despite the presence of unsymmetrized endcaps at earlier stages. It does, however, contain the unsymmetrized quantity
ng), and in this section we manipulate the result so that all infinite-volume quantities have the desired exchange
symmetry. Here we build upon the work of Ref. [I], but again need additional techniques to deal with the poles in
K. We also have found ways to shorten the argumentation given in Ref. [I]. Nevertheless, this section is the most
algebraically involved in this work.

A key observation for doing the symmetrization is that, if Eq. (122f) is expanded in powers of K df , then in all terms
with more than one factor of this unsymmetrized three-particle quantlty, it always lies next to a factor of F + G, due
to the structure of X + Y, Eq. . This allows us to use a class of symmetrization results exemplified by

K(F + G) Ky = KoF S[K(i53] + TG, Ty © K + Ty © K] (124)

where S is the symmetrization operator than converts a (u) quantity into the symmetric (u + s + §) version,!> while
5 and 733 are integral operators, to be explained below. The result holds with K((jlft ;; replaced by any three-

éf)ﬁ It also assumes that there is at least one factor of F or G on

the left, as is true in general because (X +Y), Fr, and Fg contain the geometric series 1/(1 — (F + G)K3).

artlcle quantity with the (u) superscript, e.g. K

14 On the right-hand side of the first equality, the final —Y term is needed to remove the (K(u)) contribution to the previous term.
15 Here S acts to the right, but, in the following, it will also act to the left. Which is the case will be clear from the context.
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FIG. 4: Derivation of Eq. , using the notation of Figs. |[l|and |7} On the left-hand side of the equality, the quantity to the
right of the G cut is Kg;;g, with the u above the upper-right dashed line indicating that this is an unsymmetrized quantity.
The left-hand cut in all diagrams must be present, but can be either F or G. The box at the left-hand end of each diagram
represents whatever lies to the left of the F'//G cut, which depends on the context, but whose details are irrelevant. The first
two equalities show how G is converted to F by adding and subtracting an integral. This method is used extensively in Ref. [1]
and is explained in Egs. (163)-(165) of that work and accompanying text. It results in the u superscript on Ka¢,ss changing
to s + § in the F term. In the second step (indicated by the arrow connecting the two boxed diagrams), K2 is replaced by the
pole term, with on-shell projection onto the K-matrix pole, and the smooth part. Since there is now an integral to the right
of the G, rather than a sum, the infinite volume quantity Kg?gg is extended to the left by the addition of either a I' or K5,
implicitly defining the integral operators I23 and Is3, respectivély.

To demonstrate Eq. (124)) we derive the equivalent result
K,GK“") = K,FK 5" + TG, T, @ K1) + Tys o K 125
2GR 53 2B R Gp 557 + 16, 155 @ Kgp'ss + 133 @ Kyge'ss s (125)

in Fig. 4 As seen from the figure, the integral operator Zs,, attaches a factor of I' to K((;ég?z, leading to an infinite-

volume “two-particle” quantity, while Z33 attaches 21%’2 to Ké?_’gg, creating another infinite-volume three-particle

quantity with the (u) superscript.
The reflected equation is derived similarly and is

K9 (F + G)Ky = K] SFK, + K1) © T; G, + Kl @ Tl (126)

where Z,5 and I;[S are integral operators acting to the left on three-particle unsymmetrized quantities. The direction
of action of the integral operators is indicated by the position of the ® symbol.

We can iterate Eq. , assuming implicitly that it acts on an unsymmetrized three-particle quantity on the right,
and that there are additional implicit factors of F or G on the left. We find

1 > , 1 _ 1 1
- = Ks(F (L N 2 T e . 12
- Ko(F + G) ;}{ 2B+ G = e gy KPS TG @} o+ 77 o (120)

The first term in curly braces on the right-hand side leads to symmetrized quantities (since it contains the operator
§), while the second, I'-dependent term does not require symmetrization. The final term on the right-hand side of
this result is an unsymmetrized residue that will be dealt with subsequently.
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We now apply this result to the quantity of interest, CEBﬂJde] in Eq. l) We begin by considering the contri-

bution in which cuts appear between the endcaps A5 and Aj and the outermost Kgé) insertions. Here the analysis
is simplified by having a symmetrized quantity on one side. Focusing first on the right-side endcap, we find

(u) / 1 (u)
AslFelssK e o = AsF T gy Karas (128)
1 1

—AF—— K% _ A F— K,FS+TG,7;,0)} —— K" _ 12

- I arsz T3 1-Ky(F+ Q) {K2FS + 350} 1—I3s® dr,33” (129)
1

= 3 AT K g3 + ASF Ty KoF K + ARy 0K e 33 1 053 Ag, (130)
= AéFgngf’:ﬁ + AéFsi 5de’§§ + 633Af/2~ . (131)

The first line recalls the definition of Fr,, while the second substitutes Eq. (127). To obtain the third line we use the
definition of F.5 as well as the following new definitions:

_ 1 (w)
Karss =ST7 o Karss (132)
_ 1 ()
Ko =T © 7o —=Korss (133)
Sy AL = AL L (L g " (134)
BT TR 1 — Ty af2 '

In addition we use the result from Ref. [I] that a factor of F sandwiched between a symmetric object (here Aj) and
a (u — s) object can be replaced by ip/(2w), so that the resulting matrix sum can be replaced by an integral. The
final line follows immediately using the definition of F33. We see that the symmetrization has produced the desired
factors of F45 and F33, as well as an additional contribution to K ; 5 and to the endcap A’ An almost identical set

of results holds with K( ) ~ replaced with Kéf 332, except that the final index is changed from 2 to 3, and an additional

(u) superscript is added
We next consider terms where the endcap is A% or its reflection. In this case we need a slightly different sym-
metrization result,

/ (u) / 'R () / (w)
ASG,I(F+G)K ~_AGI‘FS[ ]+A Ty @K s+ A5 @ pgs @K 5 (135)

This follows from

ALG,IGK"Y ~ = ALG,ITFK“Y L ALF, T;, o K+ AL @ ps, 9 K™

df,32 df,32 df,32 df,32 "’ (136)

the derivation of which is described in Fig. @ Here p3, is a second type of integral operator that acts both to the left
and r1ght and is defined in the figure. It joins A’ with K( ) 5 into an expanded endcap. We stress that the results

in Egs. and 1.| hold when Kgf)ﬁ is replaced by any unsymmetrized three-particle quantity.
Using the deﬁnition of Fr, and Egs. (127) and (135]), we find

A%[FL]§3KS7;?3§ = A%Gprﬁ@“ +G)K df 32 : (137)
=ALG,I(F+G) {1_K2(1F+G) (Ko.FS + TG, Z3,0) + 1} ﬁqgﬁ : (138)
= A§F§3de,3§ + A%Fé’i&deﬁ‘i + 5§3A/§ ) (139)
where
b5AL = AL® pyy 0 — K@ (140)
23433 3@ P YT Taz®  df32

As above, an almost identical equation holds with Kg;,)ﬁ replaced by Kgﬁgg
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u
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o A .
(s+3) - (u) - (u)
G, ITFK 5 Fon Loy @ K 35 P33 @ Ky'os

FIG. 5: Derivation of Eq. l) using the notation of Figs. |If and [7] The left-hand boxes represent A%, aside from the loop
that is exposed explicitly to the left of the left-most cut. The steps are similar to those in Fig. 4t replacing the sum adjacent
to the G with a sum-integral difference and an integral, the former giving rise to an F. The difference from Fig. 4| concerns
the integral, in which the factor of G, can be converted into an F,» cut by projecting the entire quantity to the right onto the
K-matrix pole onto the 2 mass shell, leading to the Zs; term. The residue (the J, term) cancels the K-matrix pole, allowing
the sum over the momentum k£ to be replaced by an integral, so that the implicit A'§ and the K((;ft)ﬁ are connected by an

infinite-volume integral operator denoted ps5.

Combining Eqgs. (131)), (139) and their analogs with the right-hand index changed to 3, we find

ATFLK = AFSUK] + (5a5 5AL") (141)
where F is defined in Eq. ,
1 7= 1
A= (AL ALY, Sy = (O 2.9 11—Iss®> , (142)
1-TZ33®

and we have introduced
SAL — g AL+ 5y, AL and SALY = AL (L g} B {5 143
5 = 033A5 +053A5 an 3 TP, 1T - T 33 + A5 QP33 @ 1= Tgg 33 (143)

Note that 6Ag(u) inherits a superscript (u) from the right-hand superscript of Kg;;g In the following it will be useful

to rewrite the shifts in A’ as
((SA% 5Agf">) — A @TpL oKW, (144)

where Zgy, is a matrix of integral operators.
The result for the Fr term is given by reflection and is

u u 5A5
KYFrA = [K(Y|Sr FA + <5A§3)) : (145)
where
A (A'2'> S ' ! (146)
= ; =|_1 _o7. 1t g
Az R 1-®T], ® 15 1—®I§3S

and 0Az and 5A:(3") are reflections of the results in Eq. |i Again, we introduce the matrix of integral operators
Zrr such that

A5
&) =K eTrmmoA. (147)
SAS

Finally, we turn to the symmetrization between two factors of K((;;% i.e. to the analysis of

KY(X+Y)KY. (148)
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Only the 33 component of (X + Y) requires new work. This is because [X + Y55 = Fy5 is already symmetrized,
while, since [X + Y]5, = [FL]55, the analysis for the 23 component is identical to that leading to Eq. l) with the
32 component given by reflection.

The contribution of the 33 component is analyzed in Appendix Combined with the results for the other
components, we find that

1 0 Fs5 Fs\ (1 53 @
KO (X 4+ YIK® — KW 1 < 2 23) ( 2= Iss®> K + oK', 149
df ( ) df df m ®I.32 WS F3§ F33 0 81 1228 ( )
= K((;;)SR -FSLde) + 5KdlfL) : (150)

Many of the complications of the analysis are buried in the final term, JKSE). This arises when the two factors of
K(d?) are joined by an integral. There are several contributions to this term—those analogous to A%, 5Ag(u), 0A5 and
5Agu), as well as additional terms discussed in the Appendix. For this derivation we do not require the detailed form
of §Kglf). We only require that it is composed of infinite-volume quantities, and that the symmetrization structure

of its external indices is the same as that of ng). Again, it is useful to write this term using a matrix of integral
operators

KW =KW @ Ixy o KW (151)
This emphasizes the fact that Zxvy is independent of the detailed form of the quantities on either side.

We now have all the results to give a final form for the correlator. Combining Eqs. , (122)), (141), (145) and
(150]), and performing straightforward but tedious algebra, we find (v NCA V)

OlBal _ lBah 0} | ool Kar (152)
_ Cc[gz] + 50([52] + A'[BZ]}-%A[BQ] , (153)
1-K,*F
where
1
A/lB2] = A’ + A @ TpL ® de o ) (154)
-®Ixy ® Ky
1
AlBl = A+SLK£1 ® ®Irr ® A, (155)
- ®Ixy ® Ky
1
KPP =5, kW (156)
df af 1—®Ixy®K()
“ 1

sClPel — 5C1B2140 L A @ Tpp, @ KW QTrr ® A. (157)

1-®Ixy ® K((;;)

Equation is the culmination of all the analysis contained in Secs. together with the corresponding
appendices, and is by far the most tedious result to derive in all our work on three-particle scattering. Having reached
the very final form for all By-only diagrams, note that we introduce slightly more precise notation, labeling all infinite-
volume quantities with the (P2} superscript to emphasize the missing Bs kernels. In the next section we show that
these are simple to incorporate.

I. Including three-to-three kernels, B3

In order to complete the derivation of Eq. we must include the contributions of the three-to-three kernel, Bs.
This can be done by a straightforward extension of the method used in Sec. IVE of Ref. [I]. As in that work, the
essential point is that the analysis described above, which takes place between endcaps o* and o', applies equally
well if one or both of the endcaps are replaced by factors of iB3 = Bs. This is because, like ¢* and o!*, Bj is
nonsingular in our kinematic regime. The net result is that we can reuse all the work leading to Eq. .
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To do so we rewrite the components of Eq. (153)) as

Pl 4 5CP = 6" @ Do @ ot (158)
APzl = 6% @ Dy (159)
Al =Dy 9ot (160)
1
Z= IW : (161)
in terms of which
C[LBZ] =0"® {DC + DA/ZDA} ® al*. (162)

Here D¢, Dar and Da are infinite-volume decoration operators that contain the complicated contributions worked

out above.'® Note that Da and Da: are, respectively, 2 x 1 and 1 x 2 matrices. All we need to know in this section is

that the decoration operators are well defined, and apply just as well when the endcaps are replaced by factors of Bg.
The full finite-volume correlator, including all possible By and Bjs insertions, can now be written

L)
Cr = oF® {DC + DA/ZDA} (24 Z (Bg (24 {DC + DA/ZDA} ®)n D'T* . (163)

n=0

Rearranging the series in powers of Z we find

Cp=Co + i A'Z (Kgffﬂz)n A, (164)
n=0

where we have defined the infinite-volume quantities

Cx=0"®Dc® Y (B3®Do®)" o', (165)
n=0
A'=0"®) (Dc®B3®)" Da, (166)
n=0
A=Dr®) (B3®Dc®)"o", (167)
n=0
[ee]
K7 =Dy ®Bs @ (Do ©@B3®)" Dar . (168)
n=0

Inserting the definition of Z, Eq. (161), into the result for C, and rearranging, we reach the final form given in
Eq. above. In terms of our boldface quantities it reads

1
CL=Co+AF—— _A, 169
L + ~7'-1 " K F (169)

where
K = K[+ kP (170)

IV. RELATING Kgs TO THE THREE-PARTICLE SCATTERING AMPLITUDE

Having completed the derivation of the quantization condition, i.e. the relation between the finite-volume spectrum
and K4f, we now turn to relating the latter to the physical three-to-three scattering amplitude, Mj3. Following
Ref. [2], we derive equations relating KCqr to M3 in two steps. First, in Sec. we give a modified version of our
main result, Eq. , in terms of a new finite-volume correlator, denoted My, 3. Second, in Sec. we analytically
study a carefully-defined L — oo limit in which My, 5 — M3. The result is a series of integral equations relating the
divergence-free K matrix to the scattering amplitude. In this section we return to the notation of Sec. [[] in which
factors of 7 and 1/(2wL?) are displayed explicitly.

16 Tn Ref. [I] the corresponding decoration operators were given superscripts, but here we drop these for the sake of brevity.
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A. Relating Kqf to My 3

In order to relate the components of 4¢ to physical quantities, we need to determine the volume-dependence
of My 3, first introduced in Ref. [2]. M 3 differs from Cp in two ways. First, the diagrams have three on-shell,
amputated propagators on each end, rather than the generic operators O(z) and OT( ) included in Eq. ( . Second,
we allow the momenta of these external particles to be arbitrary, and not constrained to lie in the finite-volume set.
As discussed at length in Ref. [2], the latter property is necessary in order to take the infinite-volume limit. Despite
these differences we argue here that we can obtain the result for My, 3 from that for Cr, Eq. .

We rely on several key observations from Ref. [2], where, we recall, M, 3 was analyzed for systems without poles
in KCy. The first is that Cf, contains all the diagrams contributing to My, 3. The task is to separate these out. In
particular, we need contributions in which three particles are on shell, rather than part of an unconstrained loop sum.
The second observation is that, in the final form for Cp,, on-shell three-particle states occur whenever there is a factor
of F or G. In particular, if we take the expression for Cp and restrict attention to terms with at least two F' or
G “cuts”, then the expression lying between the outermost such cuts will contain all contributions to My, 5. It will
turn out that the outermost cuts are always factors of F' rather than G. The third observation is that amputation is
effected by removing the external factors of iF' and multiplying by 2wL3. After doing so, the result is equal to M, 3
aside from two final adjustments. The first is to drop disconnected contributions, and the second is to symmetrize.
We discuss these two relatively minor steps in more detail below.

In fact, Ref. [2] did not apply these observations to the final result for Cf, but rather to an intermediate result.
Additional analysis was then required to obtain the final expression for My, 3. It was noted that the result for My, 3
could have been obtained by applying the amputation procedure directly to the decomposition of Cp, but it was
argued that this was a mnemonic rather than a rigorous procedure (see footnote 10 of Ref. [2]). We now think,
however, that inferring the form of My 3 from Cp, by directly converting the final result is justified, and indeed that
the work of Ref. [2] supports this claim. We explain additional justification for this new approach below, once we
have obtained the result for My, 3.

Due to the presence of poles in Ky, the procedure described above must be amended. To understand the issue, we
focus on the contribution to C, arising from a single insertion of the 32 component of F, namely

1 1
. . T S A
iA5iFy5iAs = ’LA32 L3 F1 T (iF£iG) il yiGLiAsz, (171)
1
=A% 55 L3 1Fil ]ZGTZA~ +iAy—— R zeng(zF—HG)ZI‘ 7ZGT2A~

(172)
+iAy ——s 55 L3 i1FiICy (ZF+ZG)Z’C2(1F+ZG)ZFJZGTZA~

The first term in Eq. can be dropped as it has only one F' or G cut. The second term has two such cuts, but
only a single I’y lies between them, so this corresponds to a disconnected contribution to My, 5. Thus this term is
also dropped. The third term has two external cuts, and part of the contribution between them is connected, namely
the i[C2iGikCy part. However, such a contribution is already contained in the iA5iF53iA3 term, as is readily checked.
A signal for this double counting is that there is a pm cut, G;, that is external relative to the right-hand F'/G-cut in
each of the terms in Eq. (172)). Indeed, one can show that the complete set of contributions to My, 3 are obtained
by taking only terms in which the outermost cut contains three particles rather than the pm effective channel. This
extra criterion implies that none of the terms in Eq. (172)) should be kept.

The same conclusion holds for single insertions of I, or F22, which have, respectively, one and two external pm cuts.
Thus the only surviving contribution from a single insertion of F is that from Fs3. This contribution is unaffected
by the presence of poles in K3, and so is unchanged from that obtained in Ref. [2]. We recall briefly how this term is
obtained. Using the result for Fs3, Eq. , we find that the term with at least two three-particle cuts is

1

Cr, D iA3iF33iA3 D ZA32 I3 F1 — Ko (iF +iG)

iKqiFiAs . (173)

Applying the recipe given above we obtain

1
1— ik (iF +iG)

iMps D { Ko [2wL3]} (174)

connected, symmetrized
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The disconnected part is that obtained by setting G — 0. We can remove this, and at the same time make contact
with the notation of Ref. [2], using the identity

1

Ko [2wL?] = i 2wL?] + D 175
T iGGF 1 i) el = iMeLa el ] + iDL (175)
where
Mps = — ik (176)
R I ¥y ek
1
iD;, 1_’L.M2’L7:GZML7QZGZML72[ wL?] (177)

The first term in Eq. (175)) contains no switches and thus leads to a disconnected contribution. The second term
contains at least one switch and thus is connected; it agrees with the quantity of the same name given in Eq. (25) of
Ref. [2]. Thus we find

iMps D {iD(L“)’Q“)} = SiD}";"s. (178)

symmetrized

We can now explain the need for symmetrization. In the original expression, iA%iF33iAs, the endcaps A5 and As
are fully symmetrized, as described earlier in the derivation. By this we mean that the quantities are invariant under
interchange of any of the three particle momenta. The adjacent factors of F' that will be removed are not, however,
symmetric, since they single out one of the on-shell particles as the spectator. Similarly, what lies between the two
amputated F's is not symmetric. Within C7, this does not matter, because of the symmetry of the endcaps. But My, 3
is defined to be symmetric on the external lines, and to reproduce this we must sum over all permutations of the three
incoming and three outgoing particle momenta. However, it turns out that all quantities entering these expressions
are already invariant under interchange of the two non-spectators, so that one need only sum over the remaining three
distinct permutations. The precise action of the symmetrization operators is described by the paragraph containing
Egs. (35)-(37) in Ref. [2].17

Now we apply the updated rules to the terms in Eq. having more than one factor of F, namely

1
A F —————iKgsi FiA. 1
Cr D1 z}"l — Z,dez,]__ledfz]:z (179)

Since we are requiring an external three-particle cut rather than a pm cut, only F33 and Fi5 contribute from the
left-hand F, and only F33 and Fj; contribute from the right-hand F. Thus we find that the contribution to My 3 is

Sct —— — ik aRWS 180
iMrpsDSLY 172’Cdffl atky, S, (180)
u 1 1 - ;
Kg ) — (W’LFJ’LG; 3 —+ mlﬁglF) s (181)
RO iG’f . W , (182)
3 +bn 21 (1F+ZGT)ZIC2

Here GT = [2wL3]71G[2wL?], as follows from the definition of the matrix G, Eq. . Combining this result with
that from Eq. . ) leads to the full expression for My 3

_ (wu) | p(u) 1 (w)
=S!{p S — . 1
ML,3 S{ I, +£L ’Cdfl-i-]:lcdeL }S ( 83)

Here we have multiplied various factors of ¢ together and divided both sides of the equation by i. We stress again
that no factors of i or 2wL? have been absorbed here by redefinitions.

17 Note that, in that work, the symmetrization operators acting to the right and left are packaged into a single overall symmetrization
operator.
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A consistency check on this derivation is that the external factors that are “amputated” to obtain My 3 from Cp,
are the same for both Egs. and (180]), namely iA% 55 iF on the left and iF 5 75iAs on the right.'®

Finally, we return to the issue of why we now think the above procedure for obtaining My 3 from Cp, is valid.
We raised two concerns in Ref. [2]. The first was essentially that the infinite-volume quantities appearing in C,
resulted from a sequence of redefinitions, obscuring the relation to the underlying diagrams. Here we have been able
to give a more explicit form for these redefinitions, i.e. those in Egs. —, , and . This gives
us confidence that there are no subtleties in picking out the parts of the diagrams that contribute to My, 3. The
second concern was that the symmetrization procedure after amputation was not justified. We have now convinced
ourselves, as described above, that it is correct.

B. Applying the formal L — oo limit to relate ar to the three-to-three scattering amplitude

We are now ready to apply the L — oo limit to Eq. (183]), and thereby derive an integral equation relating KCq¢ to
the physical three-to-three scattering amplitude, M3. We begin by recalling the expression for F

7= (5 B, o
Eﬁ;;zgw47GprJigig(F47Gyf17a£?ﬁ;65rJG;, (185)
F%EE_Gﬂhé;L31+(FiwanF’ (186)
‘%55'¥m;3F1+Kg&t%GfVGZ’ (187)
e (E_p 1 ep| (188)

wL3 |3 1+ Ka(F+G)

Here we have again combined various factors of ¢ to simplify the expressions.

The method we use is that developed in Ref. [2]. We want to take L — oo in such a way that M 3 goes over to
Ms. This requires that that we first regularize poles in integrands with the ie prescription, and then take the L — oo
limit with € held fixed. As explained in Ref. [2], this limit sends F' — p (since F** — 0), and My, 2 — My. Matrix
products, combined with factors of 1/L3, go over to integrals. We also need to introduce G, defined by

G om (k) = Va0 (K3)S5 (B, k) V5 g (55.1.) - (189)

In Ref. [2], the only poles present were the three-particle poles in S3. Here we also have the possibility of K-matrix
poles, which are present in G, and F,, as well as in Ky itself. However, we know that K-matrix poles cannot be
present in M3, because poles on the real axis of scattering amplitudes would imply a violation of unitarity. In fact,
we will show that they are absent also in M, 3, so that there is no need to regularize them.

To see the absence of K-matrix poles we begin by rewriting Eq. as

u SER 1
R( ) _ P 1+ FIKCa EE— 190
L ( %—FML,Q ) 14+ GTMp (190)
Here we recall that
1 1
Mpog=——Kyg= ——— 191
R T Sy e Sy (191)

which shows explicitly that poles in Ky do not lead to poles in My, 5. The same cancellation occurs for the poles in
G,:

1
— r,—— = G, I';K;t . 192
G, TP, Gl Ky " Mg o (192)

18 Note that the matrices ﬁ and F' commute, though neither commutes with G.
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Since I'; is a constant, G,I' Ky 1'is smooth at the pole position. It is also a known quantity, assuming that we know
Ko from the two-particle quantization condition, and has a well-defined infinite-volume limit.

We can similarly rewrite the other quantities involving G, (or its hermitian conjugate) in such a way that they are
manifestly free of K-matrix poles:

1
14+ MG

F23 = —GpFJ’Cz_lML,Q

i (~MpaoK5' TG L= MyoF) . (193)

1 1 1 1
-G, ;K5
1 +GTML’2 2WL3 J 2 2w L3 1 +ML 2G

Mo F, (194)

1 1
F
2wL3™ 1+ My oG

Fs=— My 2K5' TG (195)

This leaves F35, which contains F,. This can be rewritten as

1 1

T
—GoLaky ! 2wL3 1+ My oG

My K5 'T Gl + {Fpﬂ + Gl 5Ky 1FJGT} (196)

w3

The first term is manifestly free of K-matrix poles. For the term in curly braces, the poles also cancel. To see this
we note that F,, contains a sum over spectator momenta, which is matched in the G,[- -- }G;‘) part by the sum over
matrix indices. The infinite-volume limit of this term is known given knowledge of K.

The final quantity to be considered is F33. Here the absence of K-matrix poles is manifest, but it is still useful to
rewrite it as

1 1 1

F33=——F|-——— M F]| . 197
BT w3 |3 14+ MGl (197)

It is now a tedious but straightforward exercise to take the infinite volume limit of Eq. (183). We first introduce
useful infinite-volume quantities

L—oo e
Gp]:‘JIC ! ; Gp;Mf]Z’7rL/;Z7rz(k) ) (198)
o TG L2 G e (R), (199)
1 _ L—oo 4
{Fpﬂ— +GPFJMICQ 1FJG}L)} ‘__)_% Fpﬂ' M’ 'm/ ;M jm - (200)

We note that these quantities contain information about the spin of the resonance; for example, ép contains a factor
of §74. All three quantities are determined by Ks.
The matrix [1 + Mo LG}_ occurs repeatedly. In the L — oo limit, multiplication by this matrix is replaced by

integration with the U (p, )g/m/ .¢m, which solves the integral equation

??‘l
~

U(s, (201)

UG F) = (2r)26% (5 / My(5)G= (5

Here [, = [d®s/(2n)?, and we are keeping the angular-momentum indices implicit.
We next construct the infinite-volume limits of the elements of F. Pulling out overall factors of 1/L3 that will turn
sums into integrals, we find that these limits give

Fr=— [ [G 5 UGDMAIGL + T (202)
Foal) =~ [ 5-Gol®) UG5 B Ma(Brp(F). (203)

P =52 [ U ama@6 6, (204)
Pl ) = 2 2m0 5~ F) = 52017 F) Mol (). (205)
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All these quantities can be determined given knowledge of Msy. We also recall that p(E) contains the cutoff function

—.

H(k), so that all integrals have finite range.
The next stage is to determine the limit of Kq¢(1 + FKq¢) ™!, which we call 7. This leads to two pairs of coupled
matrix-integral equations for the components of 7. The first pair is

T’i‘i = de,’i’i - de,'iﬁf'ﬁTii - /f’Cdf,iﬁF'ﬁ(ﬂ%ﬁ(a - /de,§3(9F3§(§)T‘2'§ - /t de,§3(§)F33<§?ﬂ7§§(£§’ (206)

Ts3(p) = ’Cdf,:ﬁ(ﬁ) - ’Cdf,:si(mﬁiﬂ%’z‘ - /t’Cdf,a'éF’é?)@E’é@ - /’Cdf’33(ﬁ’ §F3§(§j7‘§5

s B (207)

— / Kat 33 (7, 8) F33(5,6) Ty (%) -
s,t

The second pair is a straightforward generalization given by replacing all rightmost 2 indices with 3 indices and
including the appropriate additional momentum dependencies.

Finally, given 7 we can obtain M3 by doing integrals. The contribution of Dgu’u) is unchanged from Ref. [2]. We
obtain it using

D) (5 F) = — / U(F, 5 Ma(3)G (5, F) Ma() (208)

S

For the remaining term we multiply 7 on the left with
s _ o -
Lo (7,5) = ( ~UD.HMADG,(3)  UF3)[5 — M2(3)p(5)] ) , (209)

and integrate the § coordinate. Similarly we multiply with the conjugate, ﬁg) (t, E), on the right and integrate again
to reach

MG R =D @R + [ TG ITE AR ER). (210)
s,t

3

This result can then be converted to a function of the three incoming and three outgoing momenta via

M (5.8 B3k, @) = 4o (@5, ME 00 (5. F) Y @5 1) (211)
where b/ = P — p—d and b=P—Fk— a, and we have restored the angular momentum indices on Mgu’u) on the
right-hand side. Finally, the physical scattering amplitude is reached by symmetrizing

Ms(F.a@ b5 kab) = SM{Ms= Y ST M, . s e Ks) (212)
p1,P2,03E€EPs EI’EQ,IE’BQPE
where
Py={{pd v}, {V,p,@},{@.V,p}}, and Pp={{ka b}, {bk a} {abk}}. (213)

V. CONCLUSION

In this work we have lifted the final major restriction on our formalism relating finite-volume energies to relativistic
two- and three-particle scattering amplitudes. To summarize, at this stage we have the building blocks to treat any
system of identical scalar particles. Our results fall into three classes:

1. 3 — 3 scattering assuming a Zs symmetry and no sub-channel resonances (i.e. no poles in Ko, see Refs. [I], 2]),
2. {2,3} — {2, 3} scattering in the case of no Zy symmetry and, again, no sub-channel resonances (see Ref. [3]),

3. 3 — 3 scattering for systems with a pole in Ko (this work).
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To complete the formalism for all two- and three-particle systems of identical scalars, it remains only to extend
item 3 to any number of Ky poles in any angular momentum channels, and then to combine items 2 and 3 to describe
2 — 3 systems with resonant subprocesses. Beyond this, the remaining extensions to general two- and three-particle
systems require incorporating non-identical and non-degenerate particles, multiple two- and three-particle channels
and, finally, particles with spin. Based on the structure of the results derived so far and on our experience with two-
particle quantization conditions, we expect that all of these extensions will be significantly easier than the derivation
presented here.

The approach detailed in this article requires treating the pole in Xy as a pseudoparticle and constructing an
effective two-particle state, labeled 2, built from the pole together with the remaining spectator. From this set-up we
have derived a quantization condition in the usual form of a determinant involving a finite-volume matrix, F, and
a divergence-free K matrix, KCq¢, both of which carry matrix indices on the 2 4 3 effective channel space. The final
aspect of the result presented here is the relation between Kgr and the physical scattering amplitude, denoted M3.
The latter has the usual degrees of freedom and in particular carries no memory of the unphysical 2 channel.

One of the central questions raised by this derivation, to be further explored in future work, is whether it is really
neccesary or natural to explicitly treat the Ko poles as we have done. One motivation for this approach follows from
considering, e.g., isospin two a7 scattering for varying quark masses. For physical-mass pions, in the allowed energy
range of 3M, < /s < 5M,, the energy of the w7 subsystem is well below the p mass and therefore well below any
poles in y. Thus, for this system, the formalism of item 1 above is appropriate. By contrast, for sufficiently heavy
pions the p is stable so that one requires the formalism of item 2 to describe the pr — wrw scattering amplitude.
The latter depends on a two-channel version of K4f represented by a two-by-two matrix with indices 2 and 3.1? Since
one can, at least in principle, vary the quark masses continuously between these two scenarios, it is necessary to
understand how the quantization conditions transition between the two different matrix spaces.

The result of this work provides a natural answer to this question. As the quark mass increases from the physical
point, the p pole moves into the sampled energy range and the corresponding pole in Ky is treated by opening an
effective 2 channel. If the quark mass is further increased, this pole location moves closer to the two-particle threshold
until it drops below, leading to a stable p. Note that, even for the case of M, < 2M, if the mass hierarchy is such
that k2 = M2 — M3/4 < M2 i.e. the state is shallow, then the quantization condition derived here should be used

to properly incorporate potentially large volume effects of the form e *L, arising from the large size of the weakly
bound state. If the quark masses are instead chosen very large, such that x > M, then the finite size of the p can be
neglected and the two-to-three formalism may be applied. B

We further remark that the key difference between the case of the unphysical 2 and the physical 2 channels is that
the off-diagonal elements of F vanish only in the latter case. We speculate that this will arise through Fs, and Fi3
becoming exponentially suppressed with the scale e=*¥. Conversely, we recall that the elirriination of off-diagonal

elements in the 2 — 3 formalism of Ref. [3] required construction of the cutoff function H (k) such that the finite-
volume cuts of one- and two-particle subspaces (within the two- and three-particle states respectively) did not overlap.

-

The results derived here could also allow one to explore more freedom in the definition of H(k), at the cost of allowing
unsuppressed off-diagonal entries in the finite-volume matrix.

Although these observations give some motivation for the 2 effective channel, it is nonetheless possible that one
might reformulate the results without this unphysical aspect. We are motivated to consider this in more detail
especially following the demonstration in Sec. X that all entries of F do not contain Ko poles. We note, in addition,
that our result requires special treatment of Ky poles regardless of the sign of the residue. Thus also poles with no
connection to a resonance state must be separated out. In this case we can provide no physical motivation for this
mathematical necessity.

Beyond completing the quantization condition for completely general two- and three-particle systems, going forward
we plan to develop and learn from the results in three ways. First we hope to understand simplifications in both the
derivation and the final result that can be made without adding any approximations. We have a sense that these
can be identified by better understanding the relation of this work to Refs. [I1], 12} [I4], and by studying the pole
structures of the final quantities appearing in all our results. Second we plan to understand systematic approximations
and truncations. This will likely involve subducing the quantization condition to irreducible representations of the
finite-volume symmetry groups and truncating the angular momentum basis as is done in all two-particle studies.
Third, and finally, we intend to continue our numerical investigations of these results, along the lines of Ref. [16].

19 Strictly speaking the only available 2 — 3 formalism requires that all particles in the two- and three-particle states are identical.
However based on the nature of the derivation, and the corresponding results in the two-particle sector, it is quite clear that the basic
structure of the quantization conditions, in particular the appearance of channel indices, will persist in the case of non-identical particles.
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Appendix A: Factorization of the off-shell two-particle K matrix at the pole

The aim of this appendix is to present a derivation of Eq. and its consequences. We first consider K matrix
poles above threshold and turn at the end to the case of subthreshold poles.

We begin by reviewing the constraints that unitarity places on two-particle scattering amplitudes. The S-matrix is
related to the on-shell scattering amplitude in the standard way

S =14 203 M) o0 Y

where we have introduced ps = ip with p defined in Eq. . For the purpose of this appendix, ps is more convenient,
in particular because it is real above threshold. On the physical scattering axis, i.e. for real energies above threshold
on the physical sheet, the S-matrix is unitary, implying

Im(./\/l(z) ) = MY [)QM(Z)T (A2)

2;on;on 2;on;on 2;on;on*

Given that po is finite, this result prohibits Méf()m;on from having poles on the physical axis (since the left-hand side
would then have a single-pole and the right-hand side a double pole). Of course, poles below threshold for real s,
corresponding to bound states, are allowed, since this constraint applies only for real energies above threshold.

Unitarity alone cannot put constraints on the analytic structure of off-shell scattering amplitudes. Instead, as
described in the main text, we consider this system as a generic effective field theory, with quantities calculated to all
orders in perturbation theory. In this context we can connect the off- and on-shell scattering amplitudes, as we now
show.

The ingredients we need are, first, the product of two fully-dressed propagators with the appropriate symmetry
factor,

Ao = AP — k) A(k), (A3)

o
amputated two-to-two diagrams that are two-particle irreducible in the s channel.2® The pair of subscripts indicates
that both initial and final states are off shell. The on-shell versions have the same definitions except that the 4-
momenta in either one or both states are set to the physical values, p?> — m?. In terms of these building blocks, the
off-shell amplitude can be written as an iteration of s-channel two-particle loops,

and, second, the fully off shell Bethe-Salpeter kernel BS)H; off- We recall that the latter is defined as the sum of all

iMéQ)ffgoff = iBé;zc))ff;ofT + / iBgc))ff;off Ag iBéfc))ff;off + // Z.Béfc)n‘f;oﬂP Ay Z'Béfc)ﬂ‘f;oﬂP Ag iBé;Zc))ff;oﬂf ey (A4)

where the integrals are over the loop momenta, e.g. over k in Eq. (A3]).
Fully or partially on-shell amplitudes are then given by appropropriate changes to the subscripts, e.g.

ngfz)n;on = Z‘Bg())mon + / Z‘Béfngff A2 iBéf())ff§0n + // Z“Béf())ngoff A2 iBé?)ff;off AQ iBé?)ff;on o (A5)

20 As noted in the main text, we are implicitly making a choice of single-particle interpolating operator when defining this kernel. None
of the subsequent considerations depend on this choice.
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These results can be used to rewrite the on-shell amplitude in three useful forms

ng{()m;on = Z.Béfc)m;on / ZBQ ;on;off A2 Z'/\/12 ;off;on (AG)
4 . 4 . (2
- ZB% c)m ;on / ZM;;())n;off AQ ZBé;())H;on (A7)
4 4 4 14 .
- ZBé c)m ;on / Bé ())n ;off A2 ’LBé ()Jff on // Bé ())n ;off AQ Z'/\/12 ;off;off AQ Z‘Bé;())ff;on : (A8)

To proceed, we assume that resonances in M2 -on:on arise by the iteration of the two particle loops in Eq. l) and

are not present in the kernel Bé ) itself (whether on or off shell). In other words, since Bg) has no intermediate states
that are on shell in the kinematic range of interest, 4m? < s < 16m? (or 4m? < s < 9m? if there is no G-parity-like
symmetry), it can be treated as a nearly local two-particle interaction, and it is the iteration of this interaction that
leads to resonances. Given this assumption, Bée) has no s-channel singularities on the physical axis. This will be a
key input into the following arguments. We note that B(*) can have t- and u-channel singularities (e.g. the left-hand

cut) but these occur for s < 0 and are thus outside of the kinematic range of interest.
Given the inputs that neither M2 -onson 1LOT B(Z) have poles on the physical axis, it follow from Egs. 1 , lj

and , respectively, that ./\/l2 off:on? Myon o and ./\/l2 offoff Cannot have such poles either. Of course, all these

quantltles can have poles in the complex plane corresponding to resonances, but the key point here is that the off-shell
amplitudes inherit from Méfzm;on the absence of poles on the real axis above threshold.

With this in hand, we can finally turn our attention to the K matrix. Again, unitarity alone places no constraints
on the K matrix, but we can use its all orders effective field theory definition to relate it to the scattering amplitude.
Indeed, whether on or off shell, the two quantities differ only by the replacement of the ie prescription in two-particle
loops with the principal-value prescription. The difference in these definitions is proportional to p; and a d-function
that places the states on-shell. From this we find that the fully off shell K matrix can be written as [see also Eq. (9]

20no

() . ¢
Z’C2 ;off;off _ZM2 ;off;off Z'/\/l2 0ffonp2 ZM H+ZM2 ;off;on p2 Z'/\/l2 ;on; onp2 ZMé;Z}n;oﬂ?_F“'

im0 O ~
- ZMQ;OH;OH - Z‘/\/IQ;OH';on P2

1

] MG o

1+ ZMQ ;on; onp2

7)) Vi0 5 !

= ZMQ;off;off - ’LMQ;off;on P2 [/\M
2;on;on 2

. 4 £) 4 0 -1 . £
= ZM;;())H;OH ZM(2 ;off;on ,02 é gn ;on M(2 ;on;on Mg;gn;off‘ (Ag)

0)—1 . ¢
M() ; ZMé;z)n;off

2;on;on

In the last step, we have expressed the off-shell /s in terms of its on shell form. This gives the desired result, Eq. (| .,
when working above threshold so that H = 1. The key point is that, on the rlght hand side of Eq. (| . the only

quantity that has poles on the physical axis is IC2 .onon- Lhus we conclude that IC2 off.off Must share these poles with

lCéQmon in order for the equality to hold.
The second result we wish to show is the factorization of the residues of poles in ICgC))H‘OH. To do this we note that
the on-shell scattering amplitude is purely imaginary at the poles of /C2 -onzons
£) -1 .
Mé;())n;on — —ip2. (AlO)

Therefore, near the poles, the off- and on-shell K matrices are related by

ZIcéec))Pf off ™ Z2 ;off;on ik X (6) (All)

2;0n;on 2 ;on;off?
where Zé gff on = —ZM(2 off:onP2 and Z2 onioff = — P2 Mé‘?m,off. These two quantities depend, respectively, only on
the final (1n1t1a1) momenta, thus demonbtratlng the claimed factorization of momentum dependence. Both quantities
equal unity when the corresponding external legs are placed on shell. Comparing the definitions of the residues of
poles in on- and off-shell K matrices, given in Eqgs. and Eq. , respectively, we see that
Ly (M2,a2,6?)(a55)” = Ty(a5,)” 255, (A12)

2;on;off »



37

(a) CYop = |

3

(b) B = |~

m

() B =—"

m

(m,n)

FIG. 6: Diagrammatic definitions for the objects appearing in the initial decomposition of C}, yr’, Eq. . The square
boxes with rounded corners represent the endcaps i3, with the entries inside the box corresponding to the superscripts and
subscripts. The infinite-volume and finite-volume versions of these endcaps are shown, respectively, in (b) and (c). Remaining
notation is as in Fig. [}

with a similar relation for Zéfgff, on-

Before concluding this appendix, we return to the situation in which the K matrix has poles for real values of
the energy lying below threshold. In this case, Eq. continues to hold—since it is based on a diagrammatic
analysis—except that po becomes ipH, with the factor of H required by our definition of Ky [see Eq. @D] Thus we
obtain Eq. also when working below threshold, and consequently it remains true that poles in the on-shell K
matrix appear in its off-shell extension, in the same locations.

There is, however, an additional issue that must be considered. This arises because the scattering amplitude itself

can have poles for real, subthreshold energies, corresponding to bound states. At such poles, the on-shell K matrix
becomes Kélj())n;on — —1/(pH), which is real and finite. The issue is whether the off-shell K matrix is also finite. To
see that this is in fact the case, we make use of the factorization of M5 at the pole, allowing us to write

i(igoﬂ)Q

- (£) i(igOH)Q . ) Z'(igoﬂ?) (igon)
iM ) ZMZ;OH;on N~ T oy m )

~ 1
2;0on;on (S 7 Eg) (S 7 El?) (A 3)

I
,and IMy g g~

where Fj is the energy of the bound state pole and s = P22’ i 1S the two-particle c.m. energy. Substituting these results
into Eq. G] and using the value of Ko at the pole, we find that IC;QH,OH is indeed finite at s = EE.

2;0n;on

Appendix B: Details of the derivation of results presented in Sec. [IT]]

In this appendix we present technical details of the derivations outlined in Sec. [[II}

1. Derivation of the recursion formula for C(L%’;) [Eq. l}

Here we derive Eq. and, in doing so, give complete definitions of the quantities defined therein.

Cﬂ%’;) is shown diagrammatically in Fig. [1(b). Here we focus on the next momentum to be converted from a sum
to an integral, labeled ¢,,+1 in Fig. b). Thus it is convenient to absorb the integrated loops to the left of ¢,,41 into
a new endcap iBé? ), and similarly to absorb the summed loops to the right into iB(Lnfmfz), since these new endcaps
will maintain their forms throughout the derivation. This new notation is shown in Fig. |§|(a)7 with the diagrammatic

definitions of the endcaps Bc(;”) and B(Lm) sketched, respectively, in Figs. |§|(b) and (c).2! The superscripts on the

21 The definition of ngl) is imprecise, since additional terms are included for each extra factor of i/Co that is added. This is explained in
Fig. E and the accompanying text.
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FIG. 7: Summary of the various steps used to derive Eq. , the recursion relation for decomposing C’(LT})’;). (a) First the
leftmost spectator is split into its pole contribution and a second term that is smooth at the pole and thus contributes to
Cg’g}l’"). (b) Next, in the first term from (a) the leftmost K matrix is decomposed into a smooth and singular part and the
latter is projected partially on shell, as explained in the text. (c) The complete on-shell projection at the K-matrix pole is
performed simultaneously with the projection of the exchange propagator, leading to factors of G, and G. (d) This leads to a
remainder term that is smooth everywhere except at the K-matrix pole and can be separated into an on-shell term and another
contribution to Cg%}l ), (e) The remaining piece to decompose, in which the rightmost K matrix is smooth, leads to an F' cut

in the middle of the diagram and yet another contribution to C' "6;1 ), (f) Finally we summarize all terms entering Beo mH)

collected from (a), (d) and (e) above. The notation is as in Figs. |1 and@ with the addition that dashed lines represent on shell
propagators. See text for further discussion.

Bs denote the number of factors of iKs or its smooth counterpart that they contain. Note that these endcaps are
closely related to Al(m " and A(Lrg’u), respectively, quantities discussed in the main text. The differences are that the
B endcaps are not projected on shell, and also not decomposed into spherical harmonics.

As an example of the meaning of the endcaps, and their relation to the factors A and A’, we write out ZA(m W in

1)

terms of ZB(L explicity (using our new convention that endcaps contain factors of 7)

AL (a,k) = 5 ) iKaon(k, b, —a)A()AW®)iBL" ™ (a, ), (B1)
iATS" ([, @), [wi B]) = iAY (@ K3 0 ) Vi s (RS ) (B2)
A =AY (G,q5,),  [with @ € (2n/L)Z7), (B3)

where )5 is defined in Eq. . The B endcaps are shown in the figures as open squares with rounded corners. [Note
I rewrote using )]

Using this notation, we can explicitly display the relevant part of C’g’é’;),

Clp =1 X [ B ) A AW iRz V. ~a)

kaa

x A(k)A(@) A(B)iKaom (k, b, —a") A(@”)AW")iB D (a,a") . (BA)



39

Here we have changed the labels to the more manageable choices shown in Fig. (a), and used the definitions b’ =
P—-k—-ad,b=P—-a—k,b'=P—a—ad' and

/zﬁ//(;lﬂ) ZE/ngrle (B5)

The quantity ICo,of is the fully off-shell two-particle K matrix defined as in Ref. [1], with the first two labels denoting
the outgoing momenta, and the third one of the incoming momenta. Note that in Appendix [A] we refer to this K
matrix as Ko.of oft; here the double subscript is not necessary. The expression ) holds for n —m > 2 and n > 2,
which is the case shown in Fig. [7| I(a For n —m = 2 and n > 2 the sum over a is replaced by an integral. Other
cases are simpler and will be discussed at the end.

To derive Eq. 7 we begin by making the substitution

1
A(k) = (2m)6(k° — wk)Q— +R(k), (B6)
Wk
thereby separating the particle-pole contribution to the propagator (which is the only part that can lead to singularities
as a function of k) from the remainder, R(k). This is shown in Fig. [f[(a) where, just as in Fig. [} the pole is shown

by a dashed line and the remainder by double solid lines. In the contribution of R(k) to C(Lné ;), we can replace the
sum over k with an integral, leading to a contribution to Ci%;l ™ shown as the second term on the right-hand side

of Fig. (a). Thus we focus only on the particle-pole contrlbutlon, the first term on the right side of m(a), in the
following.
The next step is to insert a variant of Eq. for the left-hand K matrix

inJHp(E)

’I:ICQ;OH‘(G/, b/, 7(1) = 47TYJ*MJ (dgﬁk)(ag‘:k)J'LFJ (MQ, a/2, b,2) W

iCy(M?,a%,6%) (a3 )" Yo, (@5 1)

+iKgo(a', b, —a). (BT)

Here we have added back in the spherical harmonics needed to recreate the full K matrix. Note that, by assumption,
the pole appears only in the Jth partial wave, while the second, smooth term includes contributions from all partial
waves. In the first term of Eq. , J is fixed, while M; is summed from —J to J. Note also, as compared to
Eq. , we have included the UV regulator H, in the pole term. This can be added since, by construction, 1 — H,

cancels the K-matrix pole, and thus leads to a smooth contribution that can be absorbed into 162705.
The result of this insertion is shown in Fig. El(b) We first consider the K-matrix pole contribution, which is
represented by the second term on the right-hand side of Fig. (b), and has the explicit expression

m.n m) o ingHy (k) . . 1 .
OlgOF) 2L3ZZ/ iy kL()ZFJ(MQvaab2)(“2,k)JmV47TYJMJ(a2,k)

e 1" 2MJ M2)
x A(a)A(b)iKaof (k, b, —a” ) A(a”) AW )iBY ™ (a,a”), (BS)
where
;(TV}J / B(m Y (k,a")A(a")A(V) V4T Y 0, (a’Q’fk)(a’;k)JiI‘J(MQ,a’Q,b’2). (B9)

In both of these equations k is on shell, k* = (wg, E) In the figures, we represent the factors of iI"; by small closed
circles, and the K- matrlx pole by a thick horizontal line.

At this stage A~ ( ) is not evaluated at the K pole, i.e. P2 # M?. We can pick out the “on shell” part (where on

shell here refers to the state consisting of a particle plus the K-matrix pole) by hand, by introducing a ¢ operator
analogous to those used in Ref. [I]

(m) /7 1(m) (m) (3
A§ My (k) §;IVIJZ/m’y2 &m /( ) +9 A2 s M g (k) (BlO)
where the on-shell value of A»’j is
AR N Yo (k) = ALY (q5k). (B11)
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Here we are using the definitions of )s from Eq. and of ¢, from Eq. @ This step is represented by the second
line in Fig. b), where in the second term we use the label “on” to indicate those quantities for which the pm relative

momentum has been set to its on-shell value, k* — q;ic*. If k is left at its original value, then we use the label “off”.

The J, operator cancels the K-matrix pole, and thus its contribution can be absorbed into that from IEQ to Cy%’;f).

This is indicated by the prime on the integrated K matrix symbol in the first term on the right-hand side of Fig. b).

We return to this contribution later. Equation (B11)) completes the definition of the infinite-volume endcap A%("]C[) .
sV g £

Substituting the on-shell term from Eq. (B10) into Eq. (BS8|), we obtain the second term on the second line of
Fig. [7(b). The explicit expression is

-,

C](L,OIF) > 9 Z Z /a/ ZA%(;J\/I),,z/mryi,e/m/(k )WZFJ(M27(12752)(&2,1€)JWV47TYJMJ (a3x)
i .

% A(a)A(b)iKaof (k, b, —a”)A(a”) AW )iBY ™V (a,d").  (B12)

The final step for this term is to introduce a “G cut” through the a, b and k propagators, following the approach of
Ref. [I]. This cut places all three particles on shell, but in a different manner to the left and the right of the cut.
In both cases, the spectator momentum is unchanged (E to the left, and @ to the right), while the interacting pair
have their momenta rescaled in their c.m. frame. The G-cut term thus replaces I';(M?, a2, b?) with the fully on shell
I'y, and a3, with ¢35 ,. This is shown in Fig. c). Using the definitions given in Sec. [lLI, we find that the G-cut
contribution [the first term on the right-hand side of Fig. [fj(c)] is

1 . . 4 (n—m,u) 1(m) (n—m,u)
3Zer”m”§ae”/m”/zAL,.?);aZ’”m’” - A§ GpFGAL’g ] (B]'?))

C(m,n) DZAL(m) ZG ey NiF _—
L,0F ;M gl m/’ k0 m J2ka

2 M y'm!
where all repeated indices are summed in the middle quality and left implicit in the last. This is the third term on
the right-hand side of first line of Eq. .

The cut we have just discussed is the most singular that arises, having the Ky pole (G,) and the three-particle
pole (G) separated only by the constant I'. It is possible for both poles go on shell simultaneously, for special values
of k and @. We stress that these potential double poles appear only in sums over the spectator momenta, and not in
sum-integral differences. Thus we do not need to introduce a generalized zeta-function to describe them, unlike, for
example, in the analysis of finite-volume effects in two-particle matrix elements [33].

The difference between Egs. and , represented by the last term of Fig. c), has no three-particle
singularity, but still retains the K-matrix pole. The absence of this singularity is shown in Fig. c) by the double
line for the b propagator in the last term. We now project the quantity to the right of this pole on shell using the J,
operator introduced above in Eq. , but now acting to the right. This is shown in Fig. m(d), leading to the final
term on the first line of Eq. ,

+1 (n—m)
ALTVE, KT (B14)
in which F,, acts like a cut, and provides an implicit definition of A ;. 5- The term involving ¢, removes the K-matrix
pole, and is thus free of singularities. For this term the sum over % can be replaced by an integral, providing an
additional contribution to Cé%;l’").

Finally we consider the part involving the smooth part of the left-hand Ky, i.e the first term in the second line of

Fig. [7(b), whose explicit expression is

1
2wk

11 ~
SHEEEED 30 / B () A () A )i, —a)

P a’a//
x A(a)A(b)iKaos (k, b, —a” ) A(a”) AW )iBY" ™™ P (a,a”). (B15)

[changed the leftmost superscript from m — 1 to m] As noted above, another term with the same pole structure has
been implicitly absorbed into this expression. We represent this by adding a prime to Eé;off’ The situation is now
just as in Ref. [I], since the K-matrix pole is absent. Thus we can replace the sum over k with an integral plus the
difference, the latter giving rise to an “F cut”. We do not present the details as they have been presented in Ref. [T].
This step is shown in Fig. e). The F cut gives the second term on the right-hand side of the first line of Eq. ,
which has the form

m+1,s n—m—1,u
2AL"THIFA ), (B16)
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while the integral leads to the final contribution to Cé%;l’n).

As we have progressed through this derivation, we have picked up three contributions that can be absorbed into

Cé%;l’"). In fact, given our definition Cf, or in terms of the B endcaps, Eq. 1) the contributions are specifically

absorbed into B((;onﬂ). This is shown in Fig. f). In this way B, and the meaning of the smooth Ko symbol, IE’Q, are
defined recursively, and this feeds into the definitions of the other infinite-volume endcaps.

The above discussion holds for n — m > 2, so that the two Ko factors can be pulled out and dealt with explicitly.
The case n —m = 1 is special, since there is only a single summed loop and the only singularity arises from the pole
in 3. The analysis is simpler for this case and leads to the second line in Eq. .

2. Details on decomposition of Kgu) described in Sec. IIIE

In this appendix we provide various details in the derivation of Eq. described in Sec. [I[IT El As in the main text,
many of these results have been checked using a Mathematica notebook together with the package The NCAlgebra
Suite [32]. Equations verified in this way are preceded by the indicator “(v NCA V).

We begin by solving Eq. . By isolating K(Llfgg) in the matrix equation one finds

(wu) _ 1
b33 1 - K 335G — Ko G

[K2GKs + K 33 (14 GKs)] | (B17)

which can be rearranged into a compact, symmetric expression (v'NCA v') [label in the notebook]

1

K 0 TO K e

(1+GT), (B18)

where K(LO,)33 is defined in Eq. . This is identically the 33 component of Eq. . To see this, we rewrite the latter
equation as

0 O 1
(u)
K = YEK, ——Eg, B19
L <0 K(LO)33) L Ll—gKKL R ( )

-1
_ 0 (%) . 1 0 KL;@ KL,§3 1 0 0 KL;ﬁ Kng 1 0 . (B20)
0 K} 3 0 1+TG) \K, 55 Kp33 0 Gk ) \K, 55 Kiss 0 1+GT
As the two-by-two matrix containing Gy , as well as matrices £ and Eg, project onto the 3 component of their
neighbors, it is straightforward to determine the 33 component of this relation and see that it indeed matches Eq. (B18)).

We now turn to K(Lu)jg Substituting the result for K(Lugqg) into Eq. , and simplifying yields (v NCA v') [label in
the notebook]

K® 1

L= 5a———— (1 + GT). B21
L33 KL,231_ Gx KL,SB( +GT) (B21)

The expression for K(Luzﬁ can be obtained similarly, with the result being essentially the left-right reflection of Eq. (B21

(v NCA v) [label in the notebook]

K"_ = (1+TG)

133 = K.z (B22)

Together these results give the 23 and 32 components of Eq. [equivalently Eq. (B20))].
The final quantity we need is K; 53. Using the method detailed in the main text for Kgugg), we find

(u) u
Kpm= KL,isGK(L,:)ﬁ +Kp 5. (B23)
Substituting (B22) and rearranging leads to (v'NCA V) [label in the notebook]

KL,§§ = KL,?Q' + KL,§3 Gk KL 32" (B24)
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This gives the 22 component of Egs. and 1D and completes the demonstration of this result.
It remains to verify Eq. , the relation between slashed objects and the infinite-volume matrix, K. In the main
text we derived the relations for K 133 and K .33, Fgs. and , respectively. We find the result for K 133 18

essentially the reflection of that for K L33

1
K, s=Kz—— . (B25)
L,32 32 1— Fp‘n'Kﬁ

To complete the discussion we must address K 1. 53- Following the same decomposition strategy one last time we reach

K, 5 = KpFpr K, 5 + Kg, (B26)
whose solution is
1
= Ko B2
KL722 1— K§§Fpﬂ- 22 ( 7)

Our claim is that the four results , (76), (B25) and (B27)) are equivalent to the matrix result, Eq. . To show
this, we rearrange the latter, and insert the definitions for K and F,., yielding

-1
— (1 0) _ (Ki Ks) (Fr 0 K5 Kz
K= [(0 1) (K3§ K3\ 0 0 Ky K3/ (B28)
It is then straightforward to pick out various components of the equation by expanding the square-bracketed quantity,

identifying a given component and then resumming. The manipulations are simplified by the fact that the matrix
containing F,, is a projector. The most complicated example is the 33 component, for which we find

KL,BS =Kasz + K3§ Z Fp7r (KﬁFpﬂ)nK§3 5 (B29)

n=0

which sums into Eq. . Similarly one can show that the 23 component of the matrix relation matches Eq. ,

the 32 component yields Eq. 1D and the 22 component gives Eq. ||
At this stage we have derived all relations summarized in Egs. (77) and of Sec. [I[ITEl From this point the

discussion in the main text completes the derivation, yielding a decomposition of all entries the matrix K(Lu) in terms
of infinite-volume divergence-free K matrices.

3. Volume independence of 5CC[,§2]‘{0}

In this appendix we explain why 60([)? 2]’{0}, defined in Eq. of the main text, has only exponentially suppressed
volume dependence and can thus be taken as an infinite-volume quantitiy.
To show this we begin by focusing on the first four terms, and noting that these can be rewritten as

~25*Fo'™ — 2AYFo™ — ALF2AY) + 2ALFA; = —2A° "WFo* — 2ALFAJY (B30)
where??
AP = A ALY 1o, and AP =AY ALY ot (B31)

As explained in Ref. [I] [see Eqgs. (196)-(198) of that work, and the surrounding discussion], the s — u differences in
Eq. (B30) can be written as

—2ATRe* — 2ALFAYTY = AT %0* - Ag%Agf‘“) +0(e ™. (B32)

22 The factors of o* and a'* appear here because Agu) and A§u> are defined to include the n = 0 terms [see Eq. } while AIB(S) and
Ags) do not [see Eq. ]
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FIG. 8: Derivation of Eq. (B34)), using the notation of Fig. The momentum denoted k is always summed. In the last
equality of (a) we have redefined the “off”-shell term of the K matrix.

The phase-space factor p [defined in Eq. ] is smooth, allowing the implicit sums in our matrix notation to be re-
placed by integrals, up to exponentially suppressed corrections. Thus, within the framework of dropping exponentially-
suppressed volume dependence, the right-hand side is an infinite-volume quantity.

The remaining two terms in Eq. are

ALF,. (A5 — Az) + ALG,T |G(AYY —ot*) —F2A{| . (B33)

To show that this is also an infinite-volume quantity, we need a new argument, since this quantity involves K-matrix
poles and thus was not encountered in Ref. [I]. We make the argument diagrammatically in Fig. |8 based in part on
the derivation illustrated in Fig. [/l We do not give the corresponding analytic expressions, as our earlier discussion
explains the precise relation between diagrams and equations.

We begin by substituting Fig. E](d) into the final term in Fig. c) and rearranging so that the terms involving F,
and G, are on the left-hand side. We also make several changes to the parts of the diagrams away from the cuts in
order to apply the result to the present quantities of interest. These changes do not impact the derivation. They are
(a) the box on the left end now represents A%, with the final loop explicitly exposed; (b) the loops to the right of the

cut are changed from sums to integrals; (c) the kernel on the right is changed from Kz to IE’Q, and, finally, (d), the
box on the right end represents the remainder of a full infinite-volume endcap. These steps lead to the equality in
Fig. (a)‘ At this stage, the first term on the left-hand side represents A%FMA% the second term on the right-hand
side 1s manifestly an infinite volume quantity, while the other two terms need further manipulations to bring them to
a useful form.

The first term on the right-hand side of Fig. a) is rewritten in Fig. b). The approach here is to to expand the off-
shell Az factor lying to the right of the cut about the position of the K-matrix pole, using the §, operator introduced
above. The leading term gives A%FpﬂAg, while the d,-dependent term is smooth at the K-matrix pole allowing the
sum over the spectator momentum to be replaced by an integral (up to exponentially suppressed corrections). This
is shown in the second term on the right-hand side by the “co0” symbol within the vertical dashed line. This term is
manifestly an infinite-volume quantity.

The final step is shown in Fig. c), where we derive an equality for the second term on the right-hand side of
Fig. a). On the left-hand side we have a G cut with the momentum & integrated. To obtain the right-hand side

we replace this integral with a sum minus a sum-integral difference. The sum gives A’§Gpl"(-}A:())u)7 shown by the first
term on the right-hand side of Fig. [§c). The sum-integral difference gives rise to a factor of F, and, following the
arguments of Ref. [I], switches Aéu) —o'* to Az(f), leading to —AZG,I'F 2A§S).
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The overall result of these steps is??

ALF, A5 + ALG,T [G(AY) —ot*) ~F2AY | = ALF, A; + §'CLEHO L O(e ), (B34)

where §’ CQ[X,B 2110} 45 particular infinite-volume contribution, to be absorbed into 5Cc[,§ 2L10} and ultimately into Cc[,f 2],
After rearrangement, this demonstrates the desired result.

4. Symmetrization of factors adjacent to (X + Y)33

In this final appendix, we demonstrate that the contribution of the 33 component of X +Y to K(u) (X + Y)K(")

is consistent with the claimed general result, Eq. (149). For definiteness, we consider the term contalnlng the 23

component of Kéf and the 32 component of Kéf), although the derivation works for any (u)-type three-particle

quantities on the ends. To match with Eq. ( we need to show that

(w) (w)
X = de2 (X+Y) Ky 3 (B35)
g L Fi 5\ (13 1 O
- de,§3 1— ®I§3 (®I32 S) (F 5 Fass S 1— 133®de 53+ oK df 22 ’ (B36)

where 5’K( ¢ 55 is an infinite-volume quantity that can be absorbed into the quantity (SK((j ¢35 defined in Eq. 1| Its

explicit expression is determined below.
Using the definition of X +Y we find

_ e 1 (w)
X =K 5F+G) 1-K,(F+G) Kt (B37)

which can be divided into two contributions using Eq. (127)),

X = Xa + Xb (B38)
KO (P4 Q) {KoFS + TG, T30} - _ 1 kW (B39)
Xa = By 33 1-Ky(F +G) 2 23 ~ Tyy® 327
(w) 1 (u)
v = K5 (F+ G 7K. (B40)
Xa can be rewritten using the reflected form of Eq. (127]),
Xa = Xal + Xa2 + Xa3» (B41)
K@ 1 G 7 1 ()
Xal = ngﬁ {®Z;5G,I' + SFK,} F—G)(F + G) {KoFS +T'G,Z5,®} mKdm , (B42)
Yo =K® 1 Py GK,FS— K (B43)
@ df,231 _ ®I§3 1—T3® df327
) 1 G 7 1 (w)
Xa3 = dejsﬁ@l_?g(f“ -+ G)I‘Gpl-zs X %de,?fj . (B44)

Xa1 includes only symmetrized quantities, but y,2 and x.3 need further work. Noting the presence of F + G, we can
apply Eq. (126]) to both quantities. For y, this leads to

Xa2 = Xa2A + Xa2B » (B45)
_ o) 1 1 (u) () 1 - 1 ()
Xood = Kaeo ozt ST T g Kar T Karss 1 gt @ TG PO T oK (BI6)
_ o) 1 t (w)
Xa2B = de7§3% ® I33FSmde73§ . (B47)

(u

23 Since the difference A§ — A3 has at least one Ré insertion, as shown in the figure, the a* part of Ay ) does not contribute.
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(u) (u) (W) ()
Kt 33 F Kt 3 Ky 33 P33 K o5

FIG. 9: Derivation of Eq. , using the notation of Figs. and |7} The first step is identical to that in Fig. |4t replacing
the sum adjacent to the G cut with a sum-integral difference and an integral, the former giving rise to an F cut. In this case,
however, there are no K-matrix poles, so the integral in the upper-right loop of the final term on the first line removes the
divergence in the summand for the spectator momentum, allowing it to be replaced by an integral, as shown by the final term
on the second line. Since all loops are integrated in this term, it can be represented as the action of a new integral operator,

denoted ps3, tying the K( 33 . and K(?)ﬁ together.

Only x42p contains an unsymmetrized quantity. It can be rewritten as

(u—s)
I ) 1 t (u) (u) 1 t ip 1 (w)
Xa2B = ngf%ﬁ ® 1335F3_7133de S de,’z'am ® I @S%Kdﬁ:ﬁv (B48)

u)

where the first term is symmetrized, whlle in the second the two factors of K( are bound together by an integral

u)
df, 23"

Returning to x,3, we can apply the reflected form of Eq. (135), yielding

operator, giving a contribution to ¢’ K"

k@ 1 G 7 1 (u) (w) 1 BT 1 (u)
Xa3 = de7f2-31 - ®I;38FFG,,IQ3 ® T 133®de 53 de7§31 - ®I;[3 ® Lz Fprls @ 1~ Ty var,a3
1 1
KW - T ® ——— K" . (B49
+ df,23 ¢ _ I;[S ® P33 ® L33 & 1 —Tas®  df32 ( )
The final term in this expression gives an additional contribution to ¢’ K((;”; 55
The final step is to analyze x;. This requires the result
() (u) (u) (s+8) (u)
de 23Gde 33 de 23Fde 53 T de 53 9 P33 @ de 337 (B50)
which implies
(u) (u) (u) (u) (u) (u)
de 23(F + G)de 32 de 23F8de 53T de 53 2 P33 @ de 3327 (B51)
(u) (u) (u) (w) (u=s) 1P 1o (u)
7de 23SFSde R de 53 O P33 © de 33 de,§3 @de,g’é : (B52)

The derivation of Eq. (B50) is shown diagrammatically in Fig. @ The result holds, as usual, for any choice of
unsymmetrized (u)-like three-particle quantities on the ends, and thus can be applied to x;, yielding

(u) (u) (u) 1 (u) (w=s) 2P 1 (u)
§de 55FS 1— 133 Kdt a3 T Ky, @ Pz ® %de T Kz @%Kdﬂga- (B53)

The last two terms give additional contributions to ¢’ Kg; 55"
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Combining all these results we find the desired result, Eq. (B36)), with
1 R 1 1 1
(W) (w) f P () () o T ()
"Kam = <de§31 — ®Tl, ® Z33> 30°12 I33®de’3§ BT 1 — T, 9P O T3 © 133®de>35

() (w) (u—s) 1P 1 (u)
+ de 53 @ P33 OK s + K3 3w 35K (B54)
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