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Previous work has developed a relativistic, model-independent three-particle quantization condi-
tion, but only under the assumption that the two-particle K matrices, which enter in sub-processes,
do not have poles [1–3]. Here we lift this restriction, determining the quantization condition for iden-
tical scalar particles with a G-parity symmetry in the case that the two-particle K matrix has a pole
in the kinematic regime of interest. This quantization condition involves unphysical infinite-volume
scattering quantities, and we show how these are related to the physical three-to-three scattering
amplitude by integral equations. This work opens the door to study processes a2 → ρπ → πππ, in
which the ρ is rigorously treated as a resonance state.

I. INTRODUCTION

Studies of hadronic resonances using lattice QCD (LQCD) have progressed rapidly in recent years.1 The present
frontier of this effort involves resonances that have significant branching ratios into channels with three (or more) par-
ticles. Here the results from lattice calculations are, in some cases, more advanced than the theoretical developments
needed to interpret them. In particular, energy levels above three-particle thresholds are already being calculated,
using three-particle operators [7]. Thus a fully developed theoretical formalism to interpret LQCD quantities in this
sector is of great importance. In recent years significant progress has been made, using a variety of approaches [1–
3, 8–17]. In this work we consider the relativistic model-independent framework of Refs. [1–3], and remove the last
major theoretical restriction on this formalism.

LQCD studies of resonances proceed in two basic steps. First, one uses numerical LQCD to determine the energy
levels in a finite volume for a given range of total energy. Second, these levels are related to infinite-volume scattering
parameters by solving a quantization condition.2 In the case of a single channel of identical scalar particles, the
relation between finite-volume energies and the scattering amplitude was first derived by Lüscher [18, 19]. This has
since been extended to describe all possible, multi-channel two-particle systems [20–25] and by now there is a large
body of work extracting energy levels above multiple open thresholds and relating these to the different components
of the coupled-channel scattering amplitudes [26–31]. For resonances with three-particle decay channels, a further
step is required, in which intermediate infinite-volume quantities are related to the scattering amplitudes. This step
also requires knowledge of the scattering amplitudes in each of the two-particle subsystems.

The approach we follow here was originally derived in Refs. [1, 2] under two major assumptions: first, that a
G-parity-like symmetry forbids 2 ↔ 3 transitions and, second, that two-particle subsystems are nonresonant within
the kinematic range of interest (or, more precisely, that the two-particle K matrices have no poles).3 We removed
the former restriction in Ref. [3], and it is the purpose of the present paper to lift the second restriction, i.e. to allow
arbitrary interactions in the two-particle subsystems. This removes the last major theoretical obstacle to general
implementation of the formalism.

∗e-mail: rbriceno@jlab.org
†e-mail: maxwell.hansen@cern.ch
‡e-mail: srsharpe@uw.edu
1 For recent reviews, see Refs. [4–6].
2 In practice, this requires truncation of the quantization condition by assuming that higher partial waves are negligible. Such truncation

schemes for the three-particle case have been discussed in Refs. [1, 3, 11, 12, 14–16]. We do not consider these further in the present
work.

3 In addition the particles were taken to be identical and spinless. Based on experience with the two-particle case, we expect the
extensions to multiple channels of non-identical and non-degenerate particles, as well as particles with intrinsic spin, will be relatively
straightforward.
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Removing the restriction on sub-channel K matrices is necessary for the application of the formalism to many
interesting three-particle systems. Consider, for example, the three-pion system in the isospin-symmetric limit. Only
for the maximal isospin channel, I = 3, are all two-pion subchannels nonresonant (since they all have Isub = 2). For
Itot < 3, however, the subchannels can have Isub = 1 or 0, and thus contain either the ρ or σ resonance, respectively.
For example, the a2(1320) (IG = 1−, JPC = 2++) decays predominantly to three pions with the ρ resonance in
two-pion subchannels. Another example where sub-channel resonances must be included is the Roper resonance,
which has a significant branch to the ∆π → pππ channel.

It is useful to recall the reason why the analysis in Refs. [1, 3] had to assume the absence of poles in the two-particle
K matrix, K2. These works study finite-volume correlation functions and determine the spectrum from the position
of the poles in these functions. The correlation functions are considered to all orders in perturbation theory in an
arbitrary effective field theory. The core step in the analysis is the replacement of the 3-momentum sums that appear
in finite volume with the corresponding infinite-volume integrals, together with a volume-dependent residue. If the
summand is smooth, this residue is exponentially suppressed (i.e. suppressed by e−mL where m is the particle mass
and L the box size), and such exponentially suppressed corrections are assumed negligible. However, if the summand
is singular then the residue falls only like inverse powers of L, and must be kept. Such singularities occur either when
intermediate states can go on shell or when intermediate infinite-volume quantities are themselves singular. In our
approach the latter class of singularities arise as K-matrix poles. In Refs. [1, 3] we did not include the finite-volume
effects associated with these and thus the formalism derived in those works only applies if they are absent.

Poles in K2 do not correspond to physical particles. If the theory has a narrow resonance in the two-particle
subsystem the two-body scattering amplitude, M2, will have a complex-valued pole close to the real axis. For this
scenario, K2 will have a real-valued pole close to that of M2. Therefore, the K2 pole is approximately equal to
the mass of the resonance. Away from the very-narrow limit of a resonance, however, K2 poles do not have a direct
physical interpretation. Nevertheless, at intermediate stages of the analysis of Ref. [1], terms appear whose summands
contain such singularities. These lead to additional power-law finite-volume dependence, and this must be accounted
for, as it ultimately impacts the form of the quantization condition. The analysis presented here incorporates all such
contributions.

It is worth noting that one may envision taking a different approach than that proposed in Refs. [1, 3] in which
two-particle subprocesses are encoded via M2 instead of K2, and thus the scattering amplitude appears inside of the
summand. The original reason for preferring K2 is thatM2 has a cusp at the two-particle threshold and one must then
include finite-volume effects associated with this singularity. Furthermore, if the system contains a narrow resonance,
of width Γ, thenM2 will vary rapidly as a function of energy and this will induce neglected e−ΓL volume effects, if the
contribution is not explicitly incorporated. In addition, in QCD many resonances lie close to thresholds, leading to
dynamically enhanced cusp effects. In short, one would have to develop a framework to address finite-volume effects
associated with all possible scenarios. With these considerations in mind, we find it preferable to work with K2 and
properly treat its poles in the kinematic window of interest.

In order to keep track of these singularities, we find it convenient to express the problem in terms of two effective
channels: one containing the physical three-particle state, and a second built from a particle and a pseudoparticle
arising from the K2 pole, which we refer to as the “ρπ channel”. The quantization condition turns out to take a
relatively simple form in this presentation, one that is similar to that in the multichannel two-particle problem [22–
24]. An important consistency check is that our final expression for the finite-volume correlator does not contain ρπ
poles, despite their appearance at intermediate stages.

The addition of an unphysical channel appears at first as a negative feature of our approach. We have explored
various alternatives that do not require this artifact, but have not yet been able to use them to derive a useful
alternative formalism. There is, however, one reason to view the appearance of this channel as natural. To explain
this, we return to the example of the ρ resonance, and imagine continuously increasing the quark masses, starting from
their physical values. As is well known, as this is done, the ρ becomes narrower, eventually becoming a bound-state
at threshold, and, beyond that, a physical particle lying below the two-pion threshold. If the masses are chosen such
that the ρ is deeply bound, then the pole in K2 moves far below threshold and becomes irrelevant to our formalism.
Thus, in this case, the unphysical channel is no longer needed. However, the presence of the ρ particle implies that
one should use the 2+3 particle formalism of Ref. [3], including a physical ρπ channel. Given that the stable ρ can be
described in terms of a new open channel, it is natural that this is continuously connected to the effective two-particle
channel for narrow resonances that arises in this work.

As was the case in Refs. [1–3], the derivation of the quantization condition is rather lengthy, despite the fact that
we have found ways to shorten and simplify certain steps compared to the earlier works. To make this paper more
accessible, we have focused in the main text on the logic and key steps of the derivation, pushing most of the details
into appendices. In addition, we have presented fewer intermediate steps, instead presenting a Mathematica notebook
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as supplementary material in which the package The NCAlgebra Suite is used to algebraically manipulate matrices of
unspecified size as generic non-commuting objects [32].

This article is organized as follows. We begin in Sec. II by presenting the final result and defining all of the objects
appearing in it. This section is meant to stand alone so that the lattice practitioner does not need to look elsewhere
in order to make use of the result. In Sec. III we present the derivation of the quantization condition, with technical
details given in Appendix B. The quantization condition is written in terms of the three-body K matrix, which we
relate to the physical scattering amplitude in Sec. IV. We summarize, compare to previous work, and give an outlook
in Sec. V.

The framework presented here relies heavily on two facts: First, that the off-shell version of K2 has the same poles
as its on-shell limit and second, that at the residues of the poles of the off-shell K2 can be written as a product of
functions separately describing the incoming and outgoing two-particle states. In Appendix A we demonstrate these
two results using constraints from unitarity and all-orders perturbation theory.

II. SUMMARY OF THE FINAL RESULT

The main result of this article is a quantization condition with solutions equal to the energies of finite-volume
three-particle states in a generic, relativistic quantum field theory. In contrast to earlier work, this result also holds
for systems with a two-particle resonant subchannel. The particles are assumed to be identical, of physical mass m,
and to have a G-parity-like symmetry that restricts interactions to those involving an even number of fields.

We assume that K2 diverges only for a single angular momentum, denoted J , in the energy range of interest,

specified below. We further assume that there is only one pole in K(J)
2 in this energy range, occurring when the

two-particle center of mass (c.m.) energy equals M .4 These assumptions simplify the discussion and derivation. The
extension to completely general K matrices, achieved by promoting certain quantities introduced here to matrices,
will be described in a future publication.

The result presented in this work holds for fields restricted to a cubic spatial volume of side length L, with periodic
boundary conditions. Following the pattern that is by now well established from previous work [1–3], we find that

for a given total momentum, ~P = 2π~nP /L, the discrete finite-volume spectrum is given by all solutions in E to the
condition

det
[
1 +Kdf(E

∗)F(E, ~P , L)
]

= 0 , (1)

where E∗ =
√
E2 − ~P 2 is the total energy in the c.m. frame. Here both Kdf(E

∗) and F(E, ~P , L) are matrices on a
two-channel space

iKdf ≡
(
iKdf,2̃2̃ iKdf,2̃3

iKdf,32̃ iKdf,33

)
, (2)

iF ≡
(
iF2̃2̃ iF2̃3
iF32̃ iF33

)
, (3)

where the index 3 denotes the three-particle channel while 2̃ denotes an effective two-particle channel containing the
two-particle resonance with the third non-resonating particle. This result holds up to neglected corrections of the
form e−mL, with m the physical mass of the stable particle, and applies only in the region m < E∗ < 5m.

In the remainder of this section we provide the definitions of the quantities Kdf and F appearing in the quantization
condition. We only note here that Kdf is a real, infinite-volume quantity that is related to the three-to-three scattering
amplitude, while F has volume dependence but can be expressed in terms of known geometric functions together with
the two-particle scattering amplitude, including parameters describing the K matrix pole.

We discuss strategies for the practical implementation of the quantization condition, the generalization to multiple
K matrix poles, and the relation of this result to earlier work, in Sec. V.

4 In the following we refer to this energy as the “resonance mass”, which is a convenient label despite the fact that the correct definition
of the resonance mass differs for all but a very narrow resonance. As noted in the introduction, we also refer to the resonance channel
as the ρ.
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A. Kinematics

In this subsection we introduce the kinematic variables used throughout the paper to describe two- and three-
particle states, and the index space implicit in the matrices appearing in the quantization condition, Eq. (1). These
results are summarized in Table I, which we hope will provide a useful reference for the reader. Many of the results
are self-explanatory; for the others we provide further explanation in the following.

Each entry in the two-by-two matrices Kdf and F is itself a matrix in a space that describes the on-shell degrees of
freedom, either for three particles or for the resonance together with the spectator. In particular, 3, when used as an
index, is shorthand for 3; k`m = 3; kxkykz`m and 2̃ is shorthand for 2̃;MJ`m. We use 2̃ rather than 2 to emphasize

that the K matrix pole does not correspond to a physical particle, and so the 2̃ channel is not a physical two-particle
channel.

In the three-particle state, one of the three particles, referred to as the spectator, carries the 3-momentum ~k =
(kx, ky, kz). In infinite volume this momentum can take on a continuous range of values (within the range allowed
by total energy and momentum conservation), but in our quantization condition it is restricted to discrete values:
~k = 2π~n/L where ~n is a 3-vector of integers. Within the three-particle state, `m describes the angular momentum of
the non-spectator pair.

In the 2̃ state, MJ labels the different azimuthal components for a K-matrix pole with angular momentum J .
Roughly speaking, it plays the role of a channel index, labeling different degrees of freedom rather than different
momentum configurations. For a given value of MJ , `m describes the angular momentum of the spectator-resonance
pair.5

The kinematics used for the on-shell three-particle state are described in detail in Refs. [1, 2]. For completeness,

and to introduce new notation, we summarize the discussion here. For a given total energy and momentum, (E, ~P ),

we label one of the three particles (the spectator) with on-shell 4-momentum (ωk,~k), where ωk =
√
~k2 +m2. The

4-momentum of the remaining two particles is then P2,k ≡ (E − ωk, ~P − ~k) and their two-particle c.m. energy is

E∗2,k =
√
P 2

2,k =

√
(E − ωk)2 − (~P − ~k)2 . (4)

We denote the individual 3-momenta of these two particles in the finite-volume frame by ~a and ~bka = ~P − ~k − ~a.

Often we must consider the case were the ~a particle is on shell with 4-momentum (ωa,~a) whereas the ~b particle is

not necessarily on shell, and carries 4-momentum (E − ωk − ωa,~bka). Boosting the 4-vectors corresponding to ~a and
~b to the two-particle c.m. frame then gives, respectively,

(ω∗a;2,k,~a
∗
2,k) , (E∗2,k − ω∗a;2,k,

~b∗ka;2,k) = (E∗2,k − ω∗a;2,k,−~a∗2,k) . (5)

Here the notation is somewhat involved as we must label both the momenta and the frame. Finally, we need to know

the conditions on the kinematic variables such that the ~b particle is also on shell; these are given towards the bottom

of Table I. The upshot is that, for three on-shell particles with total energy and momentum (E, ~P ), the remaining

degrees of freedom are the spectator momentum, ~k, and the direction of the ~a particle in the non-spectator-pair

c.m. frame, â∗2,k. Decomposing the latter in spherical harmonics leads to the indices ~k, `,m, which we abbreviate to

k`m.6

We turn now to the 2̃ state, built from a particle of mass m and the resonance of mass M . In the overall c.m. frame,
each of these has a 3-momentum with a magnitude that we denote by q∗ρ, given by solving

E∗ =
√
m2 + q∗2ρ +

√
M2 + q∗2ρ . (6)

In the finite-volume frame, if the particle has momentum ~k and is on shell, then the resonance has 4-momentum

(E − ωk, ~P − ~k). Boosting these to the overall c.m. frame gives (ω∗k,~k
∗) and (E∗ − ω∗k,−~k∗). The second particle is

then on-shell when any of the three equivalent conditions listed in Table I are satisfied.

5 We stress that the index pair `m plays a very different role in the 3 and 2̃ states. This causes no problems, however, as these two sets
of indices are never contracted.

6 As mentioned above, the quantization condition depends only on the allowed finite-volume spectator momenta, ~k = 2π~n/L with ~n a
3-vector of integers.
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Quantity Definition/Key relation Description

Basic kinematics used throughout

~k (kx, ky, kz) = 2π~n/L 3-momentum (often of the spectator particle)

ωk
√
~k2 +m2 on-shell time component of 4-vector kµ (with physical mass m)

`m indices on Y`m angular-momentum indices (e.g. of the non-spectator pair)

MJ MJ = −J,−J + 1, · · · , J azimuthal component of total angular-momentum J

Multi-particle energies and momenta

(E, ~P ) ~P = 2π~nP /L total energy and momentum of the three-particle state

P2,k (E − ωk, ~P − ~k) 4-momentum of the non-spectator pair or of the resonance

E∗2,k

√
(E − ωk)2 − (~P − ~k)2 energy of the non-spectator pair (two-particle c.m. frame)

q∗2,k

√
E∗22,k/4−m2 on-shell momentum of a non-spectator (two-particle c.m. frame)

Individual particles within the three-particle state

~a, ~bka ~bka ≡ ~P − ~k − ~a individual 3-momenta of the non-spectators (finite-volume frame)

(ωa,~a) 4-momentum of the a-momentum particle (finite-volume frame)

(ω∗a;2,k,~a
∗
2,k) 4-momentum of the a-momentum particle (two-particle c.m. frame)

(E − ωk − ωa,~bka) 4-momentum of the b-momentum particle (finite-volume frame)

(E∗2,k − ω∗a;2,k,~b∗ka;2,k) ~b∗ka;2,k = −~a∗2,k 4-momentum of the b-momentum particle (two-particle c.m. frame)

ωPka

√
m2 + (~P − ~k − ~a)2 on-shell time component of the b-momentum particle

Individual particles within the 2̃-state

M limE∗2→M K2(E∗2 ) =∞ position of the K2 pole

q∗ρ defined via E∗ =
√
m2 + q∗2ρ +

√
M2 + q∗2ρ on-shell momentum of the 2̃ spectator (c.m. frame)

ωρ,k

√
M2 + (~P − ~k)2 on-shell time component of the resonance

(ωk,~k) 4-momentum of the 2̃ spectator (finite-volume frame)

(E − ωk, ~P − ~k) 4-momentum of the resonance (finite-volume frame)

(ω∗k,~k
∗) 4-momentum of the 2̃ spectator (c.m. frame)

(E∗ − ω∗k,−~k∗) 4-momentum of the resonance (c.m. frame)

On-shell conditions and index spaces

E − ωk − ωa = ωPka ⇔ E∗2,k = 2ω∗a;2,k ⇔ a∗2,k = q∗2,k equivalent on-shell conditions for the 3-particle state

E − ωk = ωρ,k ⇔ E∗ − ω∗k =
√
M2 + k∗ 2 ⇔ k∗ = q∗ρ equivalent on-shell conditions for the 2̃-state

k`m = ~k, `,m = kx, ky, kz, `,m where ki = 2πni/L index-space for an on-shell 3-state (implicit with 3 subscript)

MJ , `,m index-space for an on-shell 2̃-state (implicit with 2̃ subscript)

TABLE I: Summary of kinematics used throughout the paper.
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Thus, for fixed (E, ~P ), the two on-shell particles have remaining degree of freedom k̂∗ and decomposing this in
spherical harmonics gives the indices `,m. Combining this with the azimuthal angular momentum of the resonance
gives the full index set, MJ`m.

B. K-matrix poles

The central aim of this paper is to include the finite-volume effects from poles in K2. In order to complete the
definitions of the quantities entering the quantization condition, we need to understand the properties of these poles.
This is nontrivial, because, unlike poles in the scattering amplitude, poles in K2 do not correspond to propagation
of physical degrees of freedom. Nevertheless, as we show in this subsection and the accompanying Appendix A, two
key results do carry over from poles inM2: the off-shell K matrix has the same poles as the on-shell version, and the
residues of the poles factorize. Both results play an important role in the subsequent derivation.

We begin by recalling that the `th angular-momentum component of the two-to-two on-shell scattering amplitude
satisfies a unitarity constraint, relating it to the scattering phase-shift via

M(`)
2 (P 2

2,k) =
16πE∗2,k
q∗2,k

1

cot δ`(q∗2,k)− i , (7)

or equivalently

M(`)
2 (P 2

2,k)−1 −
[

16πE∗2,k
q∗2,k cot δ`(q∗2,k)

]−1

= −i
q∗2,k

16πE∗2,k
. (8)

In anticipation of three-particle scattering, we have taken the squared c.m. energy in the two-to-two amplitude as

P 2
2,k = E∗22,k, where we recall that P2,k ≡ (E − ωk, ~P − ~k) is our notation for the 4-momentum of the non-spectator

pair (see Table I). Thus the spectator momentum ~k serves a proxy for the two-particle c.m frame energy. We are
assuming in Eqs. (7) and (8) that the scattering is above threshold and in the region where only two-particle states
can propagate, 2m ≤ E∗2,k < 4m.

The quantity appearing in square braces in Eq. (8) defines the conventional K matrix when working above threshold.
It is a real function containing all dynamical information about the two-particle scattering. We will also need the
continuation below threshold, and here, following Ref. [1], we use a nonstandard choice that is convenient for the
derivation of the quantization condition. Our K matrix is given by

M(`)
2 (P 2

2,k)−1 −K(`)
2 (P 2

2,k)−1 ≡ H(~k)ρ̃(P 2
2,k) , (9)

where ρ̃ is the standard phase-space factor, including below-threshold analytic continuation,

ρ̃(P 2
2,k) ≡ 1

16π
√
P 2

2,k

×





−i
√
P 2

2,k/4−m2 (2m)2 < P 2
2,k ,

∣∣∣
√
P 2

2,k/4−m2
∣∣∣ 0 < P 2

2,k ≤ (2m)2 ,

(10)

and H(~k) is a smooth, real cut-off function that equals 1 when E∗2,k ≥ 2m (so that the particles in the nonspectator

pair can propagate on-shell) and then smoothly interpolates to 0 in the sub-threshold region. Our choice of K2 differs
from the analytic continuation of the above-threshold K matrix once H differs from unity.

Although we do not need to make a choice of H for the derivation, it is useful to have one in mind as an example.
The choice suggested in Ref. [1], and used in our recent numerical investigation [16], is

H(~k) ≡ J(P 2
2,k/[4m

2]) , (11)

with

J(x) ≡





0 , x ≤ 0 ;

exp
(
− 1
x exp

[
− 1

1−x

])
, 0 < x ≤ 1 ;

1 , 1 < x .

(12)

With this definition, H vanishes for E∗22,k ≤ 0.
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Up to this point, we have considered only the on-shell K matrix, including the analytic continuation to sub-threshold
momenta. However, in our derivation we also require its off-shell extension, in which the individual particle momenta
take on values of p2 differing from m2. Although not necessary for the implementation of the main result of this work,
namely Eq. (1), we find it informative to discuss the off-shell extension of the K matrix. Off-shell extensions are not
uniquely defined, as they depend on the choice of single-particle interpolator. In our all-orders diagrammatic analysis,
based in a generic effective field theory, we define the fully off-shell scattering amplitude M2,off,off by amputating
the corresponding four-point correlation function. The presence of two “off”s indicates that both initial and final
state particles are off shell. This corresponds to choosing the interpolator to be the fundamental field in the theory,
renormalized so that it couples to an on-shell particle with unit amplitude. This is a natural choice in perturbation
theory.

In the diagrammatic framework, this definition is naturally extended to the K matrix. To go from the off-shell
M2 to the off-shell K2, one considers the same amputated correlation function, but replaces the iε prescription for

integrals over poles with the principal value (PV) prescription modified by multiplication by H(~k)—as described
in Ref. [1]. For our kinematic range, 0 < E∗2,k < 4m, this only impacts two-particle intermediate states, and the
difference between the prescriptions occurs only when the intermediate state is on shell. This allows one to write the
fully off-shell K matrix in terms of the fully on-shell K matrix:

iK(`)
2,off,off = iM(`)

2,off,off − iM
(`)
2,off,oniHρ̃K

(`)
2,on,onM

(`) −1
2,on,oniM

(`)
2,on,off , (13)

where momentum arguments are suppressed for the sake of brevity. We derive this result in Appendix A. As also
discussed in the Appendix, it follows from Eq. (13) that the off- and on-shell K matrices have poles at the same
positions, the first of the key results mentioned in the introduction.

We now turn to case of interest in which K(`)
2,on,on has a pole for ` = J . Above threshold, this happens when cot δJ

vanishes, i.e. when the phase shift passes through π/2 + nπ for any integer n. If the phase shift is increasing this
corresponds to a nearby resonance, but we stress that we must also consider the situation in which δJ decreases
through π/2 +nπ, which does not correspond to a resonance but still leads to power-law finite-volume effects. K2 can

also have a pole below threshold, when M(`)−1
2 = −Hρ̃ [see Eq. (9)]. This is not directly associated with anything

physical, e.g. a bound state, but nevertheless also contributes finite-volume effects. In all cases, near the pole the
on-shell K matrix has the form

K(J)
2,on,on(P 2

2,k) =
R

P 2
2,k −M2

+ non-pole , (14)

with M the pole position and R a real constant. The pole must have a Lorentz-invariant form as K2 is relativistically
invariant. Inserting Eq. (14) into Eq. (13), it follows from the structure of the second term on the right-hand side of
the latter equation that the off-shell momentum dependence factorizes, as discussed in Appendix A. This allows us
to write

iK(J)
2,off,off(P 2

2,k; p2, b2, a′2, b′2) = (p∗2,k)J iΓJ(M2, p2, b2)
iηJ

P 2
2,k −M2

iΓJ(M2, a′2, b′2)(a′∗2,k)J

+ iK̃(J)
2,off,off(P 2

2,k; p2, b2, a′2, b′2) . (15)

Here we have made the momentum arguments explicit: a′ and b′ are the incoming four-momenta, while p and b are
the outgoing. Factorization manifests itself as the dependence on a′2 and b′2 being independent of that on p2 and
b2. These dependences arise, respectively, from the factors of M2,on,off and M2,off,on, in Eq. (13). Since they are
related by time reversal, the residue functions ΓJ that carry the off-shell dependence are the same for initial and final
momenta. These residue functions are real.

The remaining factors in Eq. (15) can be understood as follows: ηJ = ±1 encodes the sign of the residue, with both

values allowed since this is not a physical pole. The K̃2 term is the non-pole residue and is a smooth function of its

arguments. Finally, the “barrier factors” (p∗2,k)J and (a′∗2,k)J have been pulled out7 so that when K(J)
2,off,off is multiplied

by spherical harmonics to reconstruct the full K2,off,off there are no nonanalyticities when p∗2,k and a′∗2,k vanish.8

7 The quantities a′∗2,k and p∗2,k are similar to the a∗2,k defined in Table I. They are obtained by boosting the four momenta a′ and p,

respectively, into the two particle c.m. frame. They differ from a∗2,k slightly because a′ and p are not, in general, on shell 4-vectors,

while, in Table I, a is on shell.
8 The key point here is that a`Y`m(â) is a polynomial in the components of ~a, while Y`m(â) is nonanalytic at ~a = 0.



8

We choose in Eq. (15) to set the first argument in ΓJ (which, in general, is P ∗ 2
2,k) to its value at the pole, M2.

This choice is convenient for the derivations. It is allowed as the difference cancels the pole and leads to a term that

can be absorbed in K̃2. We stress, however, that we do not evaluate the barrier factors at the pole, since this would
reintroduce the nonanalyticities that these factors remove.

Taking the on-shell limit, i.e. sending p2, b2, a′2, b′2 −→ m2, we reach

iK(J)
2 (P 2

2,k) = (q∗2,k)J iΓJ
iηJ

P 2
2,k −M2

iΓJ(q∗2,k)J + iK̃(J)
2 (P 2

2,k) , (16)

where we have introduced the following shorthand for the fully on-shell residue function

ΓJ ≡ ΓJ(M2,m2,m2) , (17)

together with analogous notation for K(J)
2 and K̃(J)

2 . As is shown explicitly in the following subsection, the quantities

K(`)
2 , ΓJ and M2 all enter the definition of the finite-volume matrix F .

C. Definition of F

We now have the ingredients necessary to define the entries in the matrix F , Eq. (3). We begin with the 33
component, F33 = F33;k′`′m′;k`m. This is defined by

iF33 ≡
1

2ωL3

[
iF

3
+ iF iTLiF

]
, (18)

where

iTL ≡
1

1− iK2(iF + iG)
iK2 , (19)

and
[

1

2ωL3

]

k′,`′,m′;k,`,m

≡ δk′,kδ`′,`δm′,m
1

2ωkL3
, (20)

iGp,`′,m′;k,`,m ≡ Y3,`′m′(~k
∗
2,p)iS

0
3(~p,~k)Y∗3,`m(~p ∗2,k)

1

2ωkL3
, (21)

iFk′,`′,m′;k,`,m ≡ δk′,kiF`′,m′;`,m(~k) , (22)

iF`′,m′;`,m(~k) ≡ iF iε`′,m′;`,m(~k) + iρ`′,m′;`,m(~k) , (23)

iF iε`′,m′;`,m(~k) ≡ 1

2

[
1

L3

∑

~a

−
∫

~a

]
1

2ωa
Y3,`′m′(~a

∗
2,k)iSiε3 (~p,~k)Y∗3,`m(~a ∗2,k) , (24)

iK2;k′`′m′;k`m ≡ δk′,kδ`′,`δm′,miK(`)
2 (P 2

2,k) , (25)

with
∫
~a
≡
∫
d3a/(2π)3 and

∑
~a =

∑
~n∈Z3, ~a=2π~n/L. We have introduced a compact notation for poles and harmonic

polynomials

Y3,`m(~k∗2,p) ≡
√

4π

(
k∗2,p
q∗2,p

)`
Y`m(k̂∗2,p) , iSiε3 (~p,~k) ≡ iH3(~p,~k)

b2pk −m2 + iε
. (26)

In Eq. (23), ρ(~k) is a phase-space factor defined by

ρ`′,m′;`,m(~k) ≡ δ`′,`δm′,mH(~k)ρ̃(P2,k) , (27)

where ρ̃(P 2
2,k) and H(~k) are defined in Eqs. (10) and (11) above. Finally, H3(~p,~k) is a symmetric product of the

smooth cutoff function, H(~k),

H3(~p,~k) = H(~k)H(~p)H(~bpk) . (28)
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This definition is nearly the same as that used in Refs. [1, 2]. There are two differences. The first is that F and
G are expressed here in a manifestly Lorentz covariant way—the pole term in S3 involves the square of a four-vector
rather than the energies in the finite-volume frame. This changes F only by exponentially suppressed contributions,
but for G the modification is significant. In particular, using the definition above leads to Kdf being a Lorentz scalar,

as noted in Ref. [3]. The second change is that, in Refs. [1, 2], G is defined with H3 → H(~k)H(~p) rather than the
form with three H functions given in Eq. (28). The present definition is that which appears in the case of no Z2

symmetry, as shown in Ref. [16]. Thus, although it is not mandatory here, this choice of H3 seems more likely to
lead to a formalism that smoothly goes over to the result when the resonance becomes stable. In any case, it is one
possible choice.

The other three entries of F are new to this work, and are all brought about by the presence of the pole in K2.
They are defined as

iF2̃2̃ ≡ iFρπ + iGρiΓJ
1

2ωL3
(iF + iG)

1

1− iK2(iF + iG)
iΓJ iG

†
ρ , (29)

iF2̃3 ≡ iGρiΓJ
1

2ωL3

1

1− (iF + iG)iK2
iF , (30)

iF32̃ ≡
1

2ωL3
iF

1

1− iK2(iF + iG)
iΓJ iG

†
ρ , (31)

where ΓJ is the on-shell residue defined in Eq. (17), and we have introduced two new kinematic functions, needed to
describe the finite-volume dependence arising from the K-matrix pole:

iGρ;M ′J`′m′;k`m ≡ Y2̃,`′m′(
~k∗) iS2̃(~k) δJ,`δM ′J ,m(q∗2,k)J , (32)

iFρπ;M ′J`
′m′;MJ`m ≡ δM ′JMJ

1

L3

∑

~k

1

2ωk
Y2̃,`′m′(

~k∗) iS2̃(~k) Y∗
2̃,`m

(~k∗) , (33)

Y2̃,`m(~k∗) ≡
√

4π

(
k∗

q∗ρ

)`
Y`m(k̂∗) , (34)

iS2̃(~k) ≡ iηJHρ(~k )

P 2
2,k −M2

, (35)

where ηJ = ±1 encodes the sign of the residue of the K2 pole and is defined in Eq. (15).

Here we require an additional cutoff function, Hρ(~k), the role of which is to provide a ultraviolet cutoff for the sum
in Eq. (33).9 The range of possible K2 pole masses that we need to accommodate is 0 < M < 4m, with the lower limit

set by the value of P 2
2,k for which H(~k) vanishes, and the upper limit set by the opening of the five-particle threshold

with respect to E∗. For any choice of ~k such that P 2
2,k lies in this range, we need Hρ(~k) = 1, so as not to distort the

pole. However, as P 2
2,k drops below zero, the cutoff function should smoothly drop to zero. The detailed choice is not

important, but we display one example for illustration,

Hρ(~k) = J

(
P ∗ 2

2,k + 4m2

4m2

)
. (36)

This is chosen so that Hρ vanishes when P ∗ 2
2,k ≤ −4m2.

One of the important properties of F33, stressed in Ref. [1, 2], is that it is fully determined if one knows K2 in
the relevant kinematic range. Thus a separate study using the two-particle quantization condition can, in principle,
determine the finite-volume function. We stress here that the same is true for all four components of F . The only
difference is that we must pull out the pole contribution from K2, and use this in the determination of F32̃, F2̃3 and

F2̃2̃. The added complexity when there is a pole in K(J)
2 manifests only in the way that information about two-particle

interactions appears in the finite-volume functions.

9 Hρ(~k) also appears in Gρ through the pole factor, S2̃. In fact, here the cutoff function has no effect because Gρ is always accompanied

by F or G and thus Hρ(~k) is always multiplied by H(~k). From the definitions of the cutoff function it trivially follows that Hρ(~k)H(~k) =

H(~k). We nonetheless find it convenient to keep the cutoff within Gρ as written.
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D. Definition of Kdf

We close this section with some brief comments on Kdf , whose components are given by Eq. (2). These four
entries (Kdf,2̃2̃, Kdf,2̃3, Kdf,32̃ and Kdf,33) are each infinite-volume quantities, characterizing scattering in the indicated

channels. They are, themselves, matrices with indices matching those of the corresponding components of F , Eq. (3).
When multiplied by the appropriate spherical harmonics, and summed over angular momentum indices, they become
real, Lorentz-invariant functions of the on-shell kinematic variables.

Another key property is that, in each of the four components, all kinematic singularities and possible K2 poles have
been removed from Kdf . Thus, these can be viewed in position space as quasi-local vertices connecting the various
channels. This analogy is not perfect, however, since the components of Kdf are not physical, as they depend on the
details of the cutoff functions described above. It is also possible, just as for K2, that there are dynamical singularities
in Kdf due to three-particle resonances.

The derivation presented in the next section provides a (very complicated and implicit) definition of the components
of Kdf . This turns out to be sufficient, however, because what really matters is how these components are related to
the physically measurable three-to-three scattering amplitude. This relation can be derived based solely on how Kdf

enters the final result. This is presented in Sec. IV, following the approach of Ref. [2].

III. DERIVATION

We now derive the result described in the previous section. Begin by defining a finite-volume correlation function

CL(E, ~P ) ≡ −
∫

L

d4x e−iEt+i
~P ·~x 〈Ω|TO(x)O†(0)|Ω〉 , (37)

where O†(0) is any operator with the quantum numbers of the three-particle states that we are after.10 Inserting a
complete set of states, one can show that this object has poles in E at the finite-volume energies. Our aim is thus to
derive an equation—the quantization condition—for the locations of these poles.

In the following subsections we show that the correlator can be written as

CL(E, ~P ) = C∞(E, ~P ) + iA′iF 1

1− iKdf iF
iA , (38)

up to exponentially suppressed corrections. Here C∞(E, ~P ) and

iA′ ≡
(
iA′

2̃
iA′3
)
, iA ≡

(
iA2̃
iA3

)
, (39)

are infinite-volume quantities, defined in the course of the following subsections. Note that the second term in
Eq. (38) is a product of a row vector, a matrix, and a column vector, with all indices contracted. As the infinite-

volume quantities contain no finite-volume poles, the poles in CL(E, ~P ) correspond to divergent eigenvalues in the
matrix between A′ and A. This is equivalent to the inverse of the matrix having a vanishing determinant, and thus
to the quantization condition given in Eq. (1) above.

A. Compact notation for the derivation

In order to make the following derivation more readable, in this section we introduce a compact notation for the
various quantities introduce above. Our aim is to minimize explicit factors of i and of 2ωL3. We thus define

G ≡ 1

2ωL3
iG , F ≡ 1

2ωL3
iF , K2 ≡ 2ωkL

3iK2 , (40)

ΓΓΓ ≡ iΓJ , Gρ ≡ iGρ , Gρ ≡ iG†ρ , Fρπ ≡ iFρπ . (41)

10 The overall minus sign included in this definition should be understood as a factor of i2. We choose to accompany each operator with
a factor of i for reasons explained below.
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One advantage of these definitions is that G is now given by

Gp,`′,m′;k,`,m ≡
1

2ωL3
iGp,`′,m′;k,`,m ≡

1

2ωpL3
Y3,`′m′(~k

∗
2,p)iS

0
3(~p,~k)Y∗3,`m(~p ∗2,k)

1

2ωkL3
, (42)

and is therefore anti-hermitian (due to the factor of i in the definition). This avoids the need to define the separate
object [2ωL3]−1G[2ωL3] that would otherwise appear in the derivation.

In this new notation, the quantization condition becomes

det
[
1−Kdf(E

∗)FFF(E, ~P , L)
]

= 0 , (43)

where

iKdf ≡ Kdf ≡
(
Kdf,2̃2̃ Kdf,2̃3

Kdf,32̃ Kdf,33

)
, iF ≡ FFF ≡

(
F2̃2̃ F2̃3
F32̃ F33

)
, (44)

and

F33 =
1

3
F + FTLF , with TL ≡

1

1−K2(F + G)
K2 , (45)

F2̃2̃ = Fρπ + GρΓΓΓ(F + G)
1

1−K2(F + G)
ΓΓΓGρ , (46)

F2̃3 = GρΓΓΓ
1

1− (F + G)K2
F , (47)

F32̃ = F
1

1−K2(F + G)
ΓΓΓGρ . (48)

B. Definition and decomposition of C
[B2]
L

We begin by following the same steps as taken by Ref. [1] in the derivation of the quantization condition in the
absence of K2 poles. This will allow us to reuse a fair amount of work from that reference. The derivation begins
with an all-orders skeleton expansion in which CL is defined diagrammatically in terms of two- and three-particle
Bethe-Salpeter kernels, denoted iB2 and iB3 respectively, as well as fully dressed propagators. Examples are shown
in Fig. 4 of Ref. [1]. The skeleton expansion is designed to make all power-law finite-volume effects explicit. Such
effects arise from on-shell intermediate states in Feynman diagrams and, since we constrain the overall c.m. energy to
the range m < E∗ < 5m, this amounts to keeping track of three-particle states. The restriction to a finite, periodic
spatial volume is effected by summing the spatial components of all loop momenta over ~p = (2π/L)~n where ~n ∈ Z3

runs over all 3-vectors of integers.
As in Ref. [1], the challenging part of the derivation is that involving the kernels B2. Thus it is useful to begin by

analyzing a reduced correlator, denoted C
[B2]
L , defined by the same skeleton expansion except that all three-particle

kernels are set to zero (B3 → 0). Adding back in the effects of B3 is relatively straightforward and will be done at a

later stage. To decompose C
[B2]
L we can piggyback on Ref. [1] by directly taking over Eq. (174) of that work, since

this equation was derived without assuming smoothness of K2 as a function of the two-particle center-of-mass energy.
Written in our present notation, the result is

C
[B2]
L = CL,0F −

2

3
σσσ∗Fσσσ†∗ + A

′(u)
L,3 F

(0)
33

∞∑

n=0

(
K

(u,u)
L,33 F

(0)
33

)n
A

(u)
L,3 , (49)

where the quantity called [A] in Ref. [1] is here denoted F
(0)
33 , and is given by

F
(0)
33 ≡ F

1

1−K2F
. (50)

The other quantities in Eq. (49) will be explained shortly.
What has been achieved in Eq. (49) is to make explicit a subset of the finite-volume effects due to three-particle

intermediate states. We recall from Eqs. (24) and (41) that F is defined by a sum-integral difference of a quantity
with a three-particle pole. This object therefore has power-law finite-volume dependence, and also sets the quantities
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multiplying it on either side to be on shell. Thus F
(0)
33 collects such dependence from a sequence of three-particle

“cuts” separated by two-to-two interactions occuring between the same pair. The subscript “33” is included here to
distinguish this object from similar quantities involving K2 poles that arise below.

We now turn to the definitions of the remaining quantities in Eq. (49). With the exception of σσσ∗ and σσσ†∗, these
are finite-volume quantities, involving some loops in which momenta are summed rather than integrated.11 This is
indicated by the subscripts L.

We begin with CL,0F . This is the contribution to C
[B2]
L containing no factors of F. It can be expanded according

to the number of factors of K2 that it contains

CL,0F =

∞∑

n=0

C
(n)
L,0F . (51)

The objects on the right-hand side are identical to those with the same names appearing in Ref. [1]. They are defined
in Eqs. (114), (154), (169), (173) and (176) of that work, and shown diagrammatically there in Figs. 11(c), 15(b) and
17(c). We repeat the diagrammatic representation in Fig. 1(a) below.

The quantity K
(u,u)
L,33 involves three-to-three transitions that are built from K2 interactions alternating between

different pairs. It is closely related to K(n,u,u)
3,L , defined in Ref. [1]:

K
(u,u)
L,33 ≡

∞∑

n=2

K
(n,u,u)
L,33 , K

(n,u,u)
L,33 ≡ iK(n,u,u)

3,L . (52)

Here K
(n,u,u)
L,33 is the contribution containing n factors of K2, where n ≥ 2. As above, we have amended the subscripts

to facilitate the addition of the ρπ channel, and also absorbed a factor of i. The definition of K(n,u,u)
3,L is given in

Ref. [1] by Eqs. (155) and (171) and Figs. 11(a), 15(c) and 17(c). We repeat the diagrammatic representation of

K
(n,u,u)
L,33 in Fig. 2(a) below.

The remaining quantities in Eq. (49) are endcaps. A
′(u)
L,3 and A

(u)
L,3 can be expanded as above according to the

number of factors of K2, with σσσ∗ and σσσ†∗ being the zeroth order terms in these expansions:

A
′(u)
L,3 =

∞∑

n=0

A
′(n,u)
L,3 , A

(u)
L,3 =

∞∑

n=0

A
(n,u)
L,3 , σσσ∗ ≡ A

′(0,u)
L,3 , σσσ†∗ ≡ A

(0,u)
L,3 . (53)

The relation to the corresponding quantities from Ref. [1] simply involves a change of subscripts to allow for future
K2 pole contributions

A
′(n,u)
L,3 ≡ iA′(n,u)

L , A
(n,u)
L,3 ≡ iA(n,u)

L , (54)

where the quantities on the right-hand side are those appearing in Ref. [1].
The expressions for these quantities are given in Eqs. (60), (84), (85), (113), (153) and (170) of Ref. [1], and

illustrated in Figs. 9(c), 11(b), and 17(a) of that work. We repeat the diagrammatic representation of the left endcap

A
′(n,u)
L,3 in Fig. 1(c) below. Note that it can be obtained from that for C

(n)
L,0F by removing the σσσ†∗ at the right end. The

representation of the corresponding right endcap, A
(u)
L,3, is given simply by a horizontal reflection of that for A

′(u)
L,3 , or

equivalently by removing σσσ∗ from the left end of C
(n)
L,0F .

In the following subsections, our aim is to make explicit the full volume dependence of CL,0F , A
′(u)
L,3 , A

(u)
L,3 and

K
(u,u)
L,33 .

11 Here and in the following a loop momentum being “summed” is shorthand for a sum over spatial components and an integral over the
temporal component.
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FIG. 1: Diagrammatic definitions of quantities entering the derivation of Eq. (55). Open circles on the left and right ends
represent σσσ∗ and σσσ†∗, respectively. Open circles in the middle represent the full off-shell iK2, while the circles with an integral

sign indicate that only the smooth component, iK̃′2, is included. Loops that are summed contain a “V ”, while those that are
integrated contain an “∞”. The superscript n indicates the number of factors of K2 or its smooth counterpart. Thin lines are
fully-dressed propagators, with unit residue at the one-particle pole. Thick lines [present in (e) and (f)] represent the resonance,

corresponding to the subscript 2̃. Double thin lines [present only in (f)] indicate that only the smooth part of the exchanged
particle propagator is kept. In (c), the superscript “u” indicates that the index k corresponds to the momentum carried by
the spectator propagator at the right-hand end. In (d), the superscript “u/s” indicates that the diagram serves to define the
quantity with both superscripts. If the superscript is u, then the momentum k is assigned to the spectator propagator, while
if it is s, then k is assigned to the upper propagator. Further details are given in the text.

C. Decomposition of CL,0F

We first consider the quantity CL,0F , and show in this subsection that it can be decomposed as

CL,0F = C [B2]
∞ +

(
2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)
(A

(u)
L,3 − σσσ†∗) + A′

2̃
Fρπ /AL,2̃ . (55)

This is a partial decomposition, involving both finite- and infinite-volume quantities (the latter having subscripts
including L) separated by “cuts”. In deriving this result, we must, for the first time, account for the poles in K2, as
shown by the presence of factors of Gρ and Fρπ, which set the ρπ states on either side on shell. If these two quantities
are set to zero we reproduce the result in Eq. (189) of Ref. [1].

As can be seen from Fig. 1(a), CL,0F is defined by the sum over all pairwise scatterings in which the interaction
switches to a different pair with each new insertion of iK2. By construction, this quantity has n summed loop momenta

plus two additional loops with integrated momenta. It is convenient to extend this notation by defining C
(m,n)
L,0F to be

the same quantity as C
(n)
L,0F but with the leftmost m momentum sums converted to integrals (with poles integrated

using the P̃V prescription of Ref. [1]), and with the integrated iK2 factors replaced by their smooth parts, iK̃′2 [see

Fig. 1(b)].12 This requires 0 ≤ m ≤ n, with m = 0 leading to C
(0,n)
L,0F ≡ C

(n)
L,0F , and m = n to C

(n,n)
L,0F ≡ C

(n)
∞ , a

fully-integrated, infinite-volume quantity.

12 As explained in Appendix B 1, several terms combine to give the smooth part, with iK̃2 from Eq. (B7) being just one contribution.
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To decompose C
(m,n)
L,0F we consider the leftmost sum, i.e. that directly adjacent to the m integrated loops. Finite-

volume effects arise in this sum due to both the pole in K2 and the intermediate on-shell three-particle state. In
Appendix B 1 we explain the procedure for converting a given summed loop (with the full K2) to an integrated loop

(with the smooth part only). In other words we derive a system for converting C
(m,n)
L,0F to C

(m+1,n)
L,0F , plus finite-volume

correction terms. This leads to the following recursion relation

C
(m,n)
L,0F =





C
(m+1,n)
L,0F +

(
2A
′(m+1,s)
3 F + A

′(m+1)
2 GρΓΓΓG

)
A

(n−m−1,u)
L,3 + A

′(m+1)
2 Fρπ /A

(n−m)

L,2̃
0 ≤ m < n− 1 ,

C
(n,n)
L,0F + A

′(n)
2 Fρπ /A

(1)

L,2̃
0 ≤ m = n− 1 ,

C
(n)
∞ 0 ≤ m = n .

(56)

The pole in K2 leads to the terms involving Gρ and Fρπ. These equations contain three new quantities, A
′(n,s)
3 , A

(n)

2̃

and /A
(n)

L,2̃
, in addition to the right endcap A

(n,u)
L,3 introduced in the previous subsection.

The infinite-volume left endcap A
′(n,s)
3 is defined diagrammatically in Fig. 1(d). It contains n factors of iK̃′2, with

all loop momenta integrated. The superscript s indicates the manner in which the on-shell external three-particle
state is projected into spherical harmonics, as explained in Ref. [1].

The second new quantity is the infinite-volume left endcap A
′(n+1)

2̃
, defined diagrammatically in Fig. 1(e). Here the

“on-shell” external state consists of the K-matrix pole plus the spectator, which we refer to as the ρπ state. A
′(n+1)

2̃

contains n factors of K̃′2, n loop integrals, and one factor of ΓΓΓ in the loop adjacent to the external state. We will later

need the analogous right endcap, denoted A
(n+1)

2̃
. [Changed the boldface K̃′2 to nonboldfaced.]

The final new quantity, /A
(n+1)

L,2̃
, is defined diagrammatically in Fig. 1(f). It is closely related to A

(n+1)
L,2 , the reflection

of A
′(n+1)
L,2 , which consists of n factors of iK2, n summed loops, and one factor of ΓΓΓ adjacent to the external ρπ state.

The slashed version differs in that the leftmost three-particle intermediate state is replaced by the smooth difference
that remains when the G singularity is subtracted. This subtraction in indicated in the figure with a double line. The

lowest value of n, n = 1, is a special case, for which there is no summed loop and /A
(1)

L,2̃
= A

(1)

2̃
. For further discussion,

see Appendix B 1.

Iterating Eq. (56) leads to an expression for C
(0,n)
L,0F = C

(n)
L,0F in terms of C

(n)
∞ . Summing over n then gives the desired

result, Eq. (55), where we define

C [B2]
∞ =

∞∑

n=0

C(n)
∞ , A

′(s)
3 =

∞∑

n=1

A
′(n,s)
3 , A′

2̃
=

∞∑

n=1

A
′(n)

2̃
, /AL,2̃ =

∞∑

n=1

/A
(n)

L,2̃
. (57)

Note that the last three sums begin at n = 1, in contrast to the sum for A
(u)
L,3, Eq. (53), which begins at n = 0. It is

because of this that σσσ†∗ must be subtracted from A
(u)
L,3 in the final result, Eq. (55).

D. Decompositions of A
′(u)
L,3 , A

(u)
L,3 and /AL,2̃

In this subsection, we continue the decomposition of the quantities entering C
[B2]
L , Eq. (49), by considering the

finite-volume endcaps A
′(u)
L,3 and A

(u)
L,3. In addition, we decompose the related quantity /AL,2̃ that appears in Eq. (55).

The results we obtain are

A
′(u)
L,3 = A

′(u)
3 +

(
2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)(
K

(u,u)
L,33 + K2

)
+ A′

2̃

(
FρπK

(u)

L,2̃3
+ GρΓΓΓ

)
, (58)

A
(u)
L,3 = A

(u)
3 +

(
K

(u,u)
L,33 + K2

)(
F2A

(s)
3 + GΓΓΓGρA2̃

)
+
(
K

(u)

L,32̃
Fρπ + ΓΓΓGρ

)
A2̃ , (59)

/AL,2̃ = /A2̃ + K
(u)

L,2̃3

(
F 2A

(s)
3 + GΓΓΓGρA2̃

)
+ KL,2̃2̃FρπA2̃ . (60)

This is illustrated in Fig. 7(f). It is for this reason that we require the prime to denote, iK̃′2, the quantity entering integrated loops of

C
(m,n)
L,0F .
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FIG 2 - fixed

V

V

q1

q2

FIG. 2: Diagrammatic definitions of the elements of the finite-volume K matrices involving three-particle or ρπ external states.
The notation is as in Fig. 1.

Here we have introduced three new finite-volume K matrices,

KL,2̃2̃ =

∞∑

n=2

K
(n)

L,2̃2̃
, K

(u)

L,2̃3
≡
∞∑

n=2

K
(n,u)

L,2̃3
, K

(u)

L,32̃
≡
∞∑

n=2

K
(n,u)

L,32̃
, (61)

all closely related to K
(u,u)
L,33 . Specifically, K

(n)

L,2̃2̃
is obtained from K

(n,u,u)
L,33 by replacing the K2s on both ends with

factors of ΓΓΓ, and connecting these ΓΓΓs to the adjacent K2s with the smooth (G-subtracted) part of the neighboring

exchange propagator. This is shown in Fig. 2(d). K
(n,u)

L,2̃3
and K

(n,u)

L,32̃
are obtained by performing these steps on only

one side of K
(n,u,u)
L,33 while leaving the other side unchanged, as shown in Figs. 2(b) and (c), respectively. Also new in

Eqs. (58)-(60) are the infinite-volume endcaps A
′(u)
3 , A

(u)
3 , /A2̃. and A2̃. These are defined below.

Intuitively, Eqs. (58)-(60) summarize the various ways that finite-volume effects enter the endcap functions. For

example, Eq. (58) splits A
′(u)
L,3 into its infinite-volume counterpart, A

′(u)
3 , plus six types of finite-volume corrections

(counted by multiplying out the products of binomials in the middle term). Each term is characterized by a different
type of cut-factor, e.g. F encodes the finite-volume effects associated with two of the three particles propagating
between adjacent pairwise re-scatterings and G describes the volume effects of an exchanged particle. Similarly, Gρ

and Fρπ correspond to different types of volume effects associated with the K-matrix poles. A
(u)
L,3, in Eq. (59), is simply

a mirror image of A
′(u)
L,3 , while /AL,2̃, in Eq. (60), is given by replacing the right-most state with a 2̃ and dropping

terms that do not arise with this type of external state.

To derive these results we use a similar method to that of the previous subsection. We first consider A
′(u)
L,3 , and

introduce A
′(m,n,u)
L,3 , which contains n two-particle kernels, m integrated loop momenta and n − m summed loop

momenta. As for C
(m,n)
L,0F , the integrated K matrices are iK̃′2s, while the summed ones are the full iK2s. We need

this quantity for n ≥ m ≥ 1 together with the special case n = m = 0, giving A
′(0,0,u)
L,3 = A

′(0,u)
L,3 = σσσ∗. A second

special case is A
′(1,n,u)
L,3 = A

′(n,u)
L,3 (since there is always one integrated loop for n ≥ 1). Finally, we note that the

fully integrated version is an infinite-volume quantity, A
′(n,n,u)
L,3 = A

′(n,u)
3 . This quantity is shown diagrammatically

in Fig. 1(d), and differs from the quantity A′(n,s) encountered above only by the choice of spectator propagator.
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The steps detailed in Appendix B 1 apply also here, except that the right endcaps σσσ†∗ are replaced with an on-shell
three-particle state. We find that the resulting recursion equations are

A
′(m+1,n,u)
L,3 =





A
′(m+2,n,u)
L,3 +

(
2A
′(m+1,s)
3 F+A

′(m+1)

2̃
GρΓΓΓG

)
K

(n−m−1,u,u)
L,33 + A

′(m+1)

2̃
FρπK

(n−m,u)

L,2̃3
0 ≤ m < n− 2 ,

A
′(n,n,u)
L,3 +

(
2A
′(n−1,s)
3 F+A

′(n−1)

2̃
GρΓΓΓG

)
K2 + A

′(n−1)

2̃
FρπK

(2,u)

L,2̃3
0 ≤ m = n− 2 ,

A
′(n,u)
3 + A

′(n)

2̃
GρΓΓΓ 0 ≤ m = n− 1 .

(62)
We stress that all quantities to the left of the cuts are, by construction, identical to those appearing in Eq. (56). The

quantities appearing to the right, however, have changed: A
(n,u)
L,3 has been replaced by K

(n,u,u)
L,33 and /A

(n)

L,2̃
has been

replaced by K
(n,u)

L,2̃3
.

Solving the recursion relation for A
′(n,u)
L,3 and summing over n using the definition

A
′(u)
3 ≡

∞∑

n=0

A
′(n,u)
3 , (63)

yields Eq. (58). We observe that the combination K
(u,u)
L,33 +K2 appears. This arises because the sum over n for K

(u,u)
L,33

begins at n = 2, since at least two factors of iK2 are needed for a connected scattering of three particles. The n = 1

term then becomes simply K2. Similarly, the n = 1 term is absent in the definition of FρπK
(u)

L,2̃3
and this leads to the

additional contribution containing GρΓΓΓ. Note that, if Gρ and Fρπ are set to zero, then we recover the result given in
Eq. (186) of Ref. [1].

The horizontal reflection of Eq. (58) gives the decomposition of the other endcap, Eq. (59).
Finally, we need to decompose /AL,2̃. We recall that this is the finite-volume right endcap, defined diagrammatically

in Fig. 1(f). It thus differs from AL,3 only in its final state, in which a factor of ΓΓΓ combines with the smooth part of
the exchange propagator. This means that we can adapt the result from that for AL,3 by replacing the three-particle
external state with a two-particle one, and dropping the contribution from the K2 factor on the end (since this is
replaced by smooth quantities). The result is given in Eq. (60).

E. Decomposition of KL,2̃2̃, K
(u)

L,2̃3
, K

(u)

L,32̃
and K

(u,u)
L,33

In this subsection we complete the decomposition of the quantities entering C
[B2]
L into infinite-volume objects and

finite-volume cuts, with some technical details relegated to Appendix B 2.
What remains is to decompose the four finite-volume K matrices whose components are shown in Fig. 2. They are

conveniently packaged into a two-by-two matrix

K
(u)
L ≡

(
KL,2̃2̃ K

(u)

L,2̃3

K
(u)

L,32̃
K

(u,u)
L,33

)
. (64)

The result we will derive in the following can be written compactly as

K
(u)
L =

(
0 0

0 K
(0)
L,33

)
+ EEELVK

(u)
df

1

1−XK
(u)
df

VEEER , (65)
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FIG. 3: Diagrammatic description of the procedure described in the text leading to the Eq. (71). The notation is the same as
in Fig. 1, with the addition of a dashed line to indicate a propagator proportional to G.

where

K
(0)
L,33 ≡ K2 GK K2 =

1

1−K2G
K2GK2 , (66)

X ≡
(
Fρπ + GρΓΓΓGK ΓΓΓGρ GρΓΓΓGK

GK ΓΓΓGρ GK

)
, (67)

V ≡
(

1 GρΓΓΓ
0 1

)
, V ≡

(
1 0

ΓΓΓGρ 1

)
, (68)

EEEL ≡
(

1 0
0 1 + TG

)
, EEER ≡

(
1 0
0 1 + GT

)
, (69)

GK ≡
1

1−GK2
G , T ≡ K2

1

1−GK2
. (70)

The final new quantity is K
(u)
df . This is a two-by-two matrix of infinite-volume, divergence-free K matrices, defined

below in Eq. (80). The motivation for all these new quantities is described in more detail during the following
derivation.

As above, our task is replace all summed loop momenta with integrals, separating out the divergences due to
both the three-particle on-shell intermediate states and the poles in K2. It turns out that, at first, we do not need

to decompose those factors of K2 that lie directly adjacent to K
(u)
L components with a 3 index. This applies, for

example, to the K2s at both the left and right ends of K
(n,u,u)
L,33 in Fig. 2. These can remain as the full K matrices,

despite containing poles, since they do not appear in sums. Leaving these factors of K2 unseparated leads to shorter
expressions at intermediate stages, at the cost of requiring an additional step to remove the final divergences. We
denote by K33, K32̃ and K2̃3 these intermediate infinite-volume quantities that still contain external divergences from
the external K2.

The method we use here is simpler than the approach adopted in Ref. [1], where the result for any number of K2

factors was deduced by working out the cases with 2, 3, and 4 factors of K2 and then determining the pattern. Here
we use matrix equations that take care of all orders at once. We find it convenient to keep track of finite-volume
contributions in two stages: first those from G cuts and second those from K-matrix poles, the latter leading to Gρ

and Fρπ cuts.

We begin by considering K
(u,u)
L,33 . Moving from left to right, we consider each three-particle intermediate state in

turn. At each stage this consists of two fully-dressed propagators, e.g. ∆(a)∆(b) with a the spectator momentum. We
replace this with the product 2πδ(a0−ωa)(2ω)GL6 together with the difference, which is a smooth function of ~a. By
construction, the insertion of G sets the nonspectator pairs on either side on shell. The details of how this works are
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unchanged from Ref. [1] and we do not repeat them here. After the substitution is made, in the term containing the

factor of G this first stage of decomposition is complete and a factor of K
(u,u)
L,33 appears to the right of G. In the term

containing the smooth residue we proceed to the next intermediate state to the right and repeat the decomposition.
See Fig. 3 for a diagrammatic sketch of the first steps in this procedure.

This procedure leads to the equation

K
(u,u)
L,33 = K2GK2 + /KL,33 (1 + GK2) +

(
/KL,33 + K2

)
GK

(u,u)
L,33 , (71)

where /KL,33 is the same as KL,33 except that all intermediate states have propagators replaced by the smooth

difference described above. For brevity, we have dropped the “u” superscripts on /KL,33. We note also that the terms
involving K2 in this result arise from special cases where, after the insertion of G, there is only a single K2 on one or
both sides.

If there were no poles in K2 we could replace the momentum sums in /KL,33 with integrals and obtain the divergence-
free K matrix. This was the procedure followed in Ref. [1]. However, here we need to extract the finite-volume effects
that arise from the K-matrix poles. To do so, we work through /KL,33 from left to right, replacing each full K2 with
the Fρπ cut and the difference, with the latter being a smooth function of the spectator momentum. In the term with
the Fρπ cut the procedure stops, leaving a factor of /KL,2̃3 to the right. The remaining, Fρπ-independent terms build
up quantities in which all loop sums can be replaced by integrals because the integrands are divergence free. These
are the quantities mentioned above that contain divergences only in the external K matrices and are denoted by K33,
K32̃ etc. (Again we drop the superscripts (u) for brevity.) The result is

/KL,33 = K33 + K32̃ Fρπ /KL,2̃3 . (72)

Proceeding in the same way for K
(u)

L,2̃3
and /KL,2̃3 we obtain

K
(u)

L,2̃3
= /KL,2̃3

(
1 + GK2 + GK

(u,u)
L,33

)
, (73)

/KL,2̃3 = K2̃3 + K2̃2̃Fρπ /KL,2̃3 . (74)

We note here the appearance of K2̃2̃, which is the infinite-volume version of KL,2̃2̃ once all divergences have been
removed. This quantity does not have factors of K2 at its ends, so it is already divergence-free. These matrix equations
can now be solved sequentially. The solution to Eq. (74) is

/KL,2̃3 =
1

1−K2̃2̃Fρπ
K2̃3 , (75)

and inserting this in Eq. (72) yields

/KL,33 = K33 + K32̃Fρπ
1

1−K2̃2̃Fρπ
K2̃3 . (76)

Taken together, Eqs. (71) and (76) give a complete prescription for writing K
(u,u)
L,33 in terms of infinite-volume

quantities and finite-volume cuts. In Appendix B 2 we outline the remaining steps in this decomposition explicitly.

In the appendix we also work through the decompositions for the remaining finite-volume K matrices, K
(u)

L,32̃
and

KL,2̃2̃, and for the slashed objects, /KL,32̃ and /KL,2̃2̃. The procedure in all cases is similar to that outlined above:
One works through the summed loops in a diagram from left to right, substituting singular and smooth pieces for the
propagators to reach matrix equations for the various finite-volume objects entering the correlator. We find that the
solutions to the resulting equations can be succinctly displayed in two key relations

K
(u)
L =

(
0 0

0 K
(0)
L,33

)
+ EEEL

1

/K
−1
L −GGGK

EEER , (77)

/K
−1
L = KKK−1 −FFFρπ , (78)

where we have introduced two-by-two matrix generalizations of the various quantities appearing above

/KL ≡
(
/KL,2̃2̃

/KL,2̃3

/KL,32̃
/KL,33

)
, KKK ≡

(
K2̃2̃ K2̃3
K32̃ K33

)
, FFFρπ ≡

(
Fρπ 0
0 0

)
, and GGGK ≡

(
0 0
0 GK

)
. (79)
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To complete the work of this section we need to remove the K-matrix poles contained in KKK. This is neccesary in
order to symmetrize over choices of spectator, as we see in the next subsection. To do so we introduce appropriate
factors of Gρ corresponding to the poles in the external factors of K2. This leads to the result

KKK = VK
(u)
df V , (80)

where V and V are defined in Eq. (67). This relation defines a matrix of non-singular infinite-volume K-matrices
already displayed in the result given at the beginning of the subsection13

K
(u)
df ≡



Kdf,2̃2̃ K

(u)

df,2̃3

K
(u)

df,32̃
K

(u,u)
df,33


 . (81)

Combining Eqs. (77), (78) and (80) we reach the main result of this subsection given in Eq. (65) above. The
quantity X appears as

X ≡ V
(
FFFρπ +GGGK

)
V , (82)

which can be rearranged into the form shown in Eq. (67).

At this stage we have decomposed all objects appearing in C
[B2]
L into matrix products of finite- and infinite-volume

quantities. In the following subsections we reshuffle these decompositions into a compact form for this partial finite-
volume correlator. We then show how the three-particle Bethe-Salpeter kernls, B3, can be reintroduced to derive the
main result of the section, Eq. (38).

F. (Kdf)
0 contribution to C

[B2]
L

We now have all the ingredients needed to determine the volume dependence of the correlator C
[B2]
L . The initial

decomposition of this object is given in Eq. (49). To derive the final form we work order by order in Kdf , and
begin by considering the contributions that are independent of this local three-body interaction. In particular, in this
subsection we demonstrate

C
[B2]
L − C [B2]

∞ − δC [B2]
∞ =

(
A′

2̃
A′3
)(F2̃2̃ F2̃3

F32̃ F33

)(
A2̃
A3

)
+O(Kdf) , (83)

where F33, F2̃2̃, F2̃3, and F32̃ are defined in Eqs. (45)-(48), respectively, while δC
[B2]
∞ is an additional volume-

independent term, defined at leading order in Kdf in Eq. (94) below. As mentioned in the introduction, many of the
steps in the derivation of Eq. (83) presented here have been checked using a Mathematica notebook implementing the
package The NCAlgebra Suite. Equations verified in this way are preceded by the indicator “(XNCAX)”.

If K
(u)
df = 0, the only nonzero component of K

(u)
L is K

(u,u)
L,33 , which becomes K

(0)
L,33, defined in Eq. (66). Thus the

infinite sum in Eq. (49) becomes (XNCAX)

F
(0)
33

∞∑

n=0

(
K

(u,u)
L,33 F

(0)
33

)n
−→ Z ≡ F

(0)
33

∞∑

n=0

(
K

(0)
L,33F

(0)
33

)n
= F

1

1−TF
, (84)

where the arrow indicates K
(u)
df → 0. Here we have used F

(0)
33 and T, defined in Eqs. (50) and (70) respectively. In

this same limit the quantities A
′(u)
L,3 , A

(u)
L,3 and /AL,2̃ simplify to (XNCAX)

A
′(u)
L,3 −→ A

′(u),{0}
L,3 = A

′(u)
3 + 2A

′(s)
3 FT + A′

2̃
GρΓΓΓ(1 + GT) , (85)

A
(u)
L,3 −→ A

(u),{0}
L,3 = A

(u)
3 + TF 2A

(s)
3 + (1 + TG)ΓΓΓGρA2̃ , (86)

/AL,2̃ −→ /A2̃ , (87)

13 We note that Kdf,2̃2̃ = K2̃2̃, so the df subscript is not needed for this component. We include it anyway for uniformity of notation.
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where the superscript {n} indicates the contribution to the indicated object with n factors of Kdf .

At this stage we can use the following result from Ref. [1]: if 2A
′(s)
3 is adjacent to a factor of FK2 then it can be

replaced by A′(s) + A′(s̃), with (s̃) indicating the third independent permutation of the external momenta. This is

the case in Eq. (85) because T always has a factor K2 on its left-hand end. The same holds for the factor of 2A
′(s)
3 in

Eq. (55), because A
(u)
L,3 and σσσ†∗ are symmetric under the interchange of the nonspectator pair. Similarly, the factor of

2A
(s)
3 in Eq. (86) can be replaced by A

(s)
3 + A

(s̃)
3 . These substitutions are important because the fully symmetrized

endcaps are given by

A′3 ≡ A
′(u)
3 + A

′(s)
3 + A

′(s̃)
3 , and A3 ≡ A

(u)
3 + A

(s)
3 + A

(s̃)
3 . (88)

We expect the final result to depend only on symmetrized quantities. In the following, for the sake of brevity, we
use 2A(s) as an abbreviation for A(s) + A(s̃) and 2A′(s) for A′(s) + A′(s̃). Using this simplification, we can rewrite
Eqs. (85) and (86) as

A
′(u),{0}
L,3 = A′3 − 2A

′(s)
3 (1− FT) + A′

2̃
GρΓΓΓ(1 + GT) , (89)

A
(u),{0}
L,3 = A3 − (1−TF)2A

(s)
3 + (1 + TG)ΓΓΓGρA2̃ . (90)

The final quantity we are missing is CL,0F , whose decomposition is given in Eq. (55). Sending Kdf → 0 in this
result, and using Eq. (90), gives (XNCAX)

CL,0F −→ C
{0}
L,0F = C [B2],{0}

∞ +
(

2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)

×
(
A3 − (1−TF)2A

(s)
3 + (1 + TG)ΓΓΓGρA2̃ − σσσ†∗

)
+ A′

2̃
Fρπ /A2̃ . (91)

We have now gathered all the pieces to evaluate the full correlation function, decomposed in Eq. (49), at O([Kdf ]
0).

This equation reduces to

C
[B2],{0}
L = C

{0}
L,0F −

2

3
σσσ∗Fσσσ†∗ + A

′(u),{0}
L,3 ZA

(u),{0}
L,3 . (92)

Substituting Eqs. (84), (89) and (90) and significantly rearranging, we find (XNCAX)

C
[B2],{0}
L = C [B2],{0}

∞ + δC [B2],{0}
∞ +

(
A′

2̃
A′3
)(F2̃2̃ F2̃3

F32̃ F33

)(
A2̃
A3

)
, (93)

where

δC [B2],{0}
∞ ≡ − 2

3σσσ
∗Fσσσ†∗ − 2A

′(s)
3 Fσσσ†∗ −A′3F 2A

(s)
3 + 2

3A
′
3FA3

+ A′
2̃
Fρπ( /A2̃ −A2̃) + A′

2̃
GρΓΓΓ

[
G(A

(u)
3 − σσσ†∗)− F 2A

(s)
3

]
. (94)

To obtain Eq. (93) we have made use of the following identities (XNCAX):
[
−2

3
+

1

1− FT

]
F = F

[
1

3
+ TLF

]
, (95)

1

1−TF
T =

1

1−K2(F + G)
K2 , (96)

1

1−TF
(1 + TG) =

1

1−K2(F + G)
, (97)

(1 + GT)
1

1− FT
=

1

1− (F + G)K2
, (98)

[
G + (1 + GT)

1

1− FT
F

]
(1 + TG) =

1

1− (F + G)K2
(F + G) , (99)

which follow from straightforward manipulations using the definitions Eqs. (45) and (70).

Equation (93) is equivalent to Eq. (83), where δC
[B2],{0}
∞ is understood as the O[(Kdf)

0] contribution to δC
[B2]
∞ . At

this stage it remains only to show that δC
[B2],{0}
∞ only has exponentially suppressed volume dependence. This is done

in Appendix B 3.
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G. C
[B2]
L to all orders in K

(u)
df : Unsymmetrized

In this subsection we collect the terms contributing to C
[B2]
L , Eq. (49), that contain at least one factor of K

(u)
df .

Throughout this subsection and the next, we use the superscript [Kdf ] to denote the contribution to a quantity with
one or more factors of the unsymmetrized divergence-free K matrix.

Beginning with CL,0F , decomposed in Eq. (55), we use the results in Eqs. (59), (60), (65) and (67) and find that
the part containing at least one factor of Kdf can be written as (XNCAX)

C
[Kdf ]
L,0F =

(
2A
′(s)
3 F + A′

2̃
GρΓΓΓG

) [
K

(u,u)
L,33

(
F2A

(s)
3 + GΓΓΓGρA2̃

)
+ K

(u)

L,32̃
FρπA2̃

]

+ A′
2̃
Fρπ

[
K

(u)

L,2̃3

(
F2A

(s)
3 + GΓΓΓGρA2̃

)
+ KL,2̃2̃FρπA2̃

]
,

(100)

=
(
A′

2̃
2A
′(s)
3

)(
Fρπ GρΓΓΓG
0 F

)
K

(u)
L

(
Fρπ 0

GΓΓΓGρ F

)(
A2̃

2A
(s)
3

)
, (101)

=
(
A′

2̃
2A
′(s)
3

)(
Fρπ GρΓΓΓG
0 F

)
EEELVK

(u)
df

1

1−XK
(u)
df

VEEER
(

Fρπ 0
GΓΓΓGρ F

)(
A2̃

2A
(s)
3

)
, (102)

=

[
A′

2̃

(
1 0

)
X + 2A

′(s)
3 F(1 + TG)

(
ΓΓΓGρ 1

) ]
·K(u)

df

1

1−XK
(u)
df

·
[
X

(
1
0

)
A2̃ +

(
GρΓΓΓ

1

)
(1 + GT)F 2A

(s)
3

]
.

(103)

In Eq. (100) we have simply substituted Eqs. (59) and (60) into Eq. (55) and dropped terms that have no factors of

K
(u)
df . To obtain Eq. (101) we then rearrange terms into a matrix form using the definition of K

(u)
L , Eq. (64). Next

we substitute the result Eq. (65) for K
(u)
L , dropping terms with no factors of K

(u)
df , leading to Eq. (102). We then use

the definition of X, Eq. (67), to bring the result to the final form, Eq. (103).

We next turn to the terms in Eq. (49) that contain at least one factor of F
(0)
33 . These terms always include the endcap

factors A
′(u)
L,3 and A

(u)
L,3 so that we first require the full decomposition of these. Beginning with A

′(u)
L,3 , decomposed in

Eq. (58), we insert the expressions for the different components of K
(u)
L [Eq. (65)] to find (XNCAX)

A
′(u)
L,3 = A

′(u)
3 +

(
2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)(
K

(u,u)
L,33 + K2

)
+ A′

2̃

(
FρπK

(u)

L,2̃3
+ GρΓΓΓ

)
, (104)

= A′3 − 2A
′(s)
3 +

(
2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)(
K

(0)
L,33 + K2

)
+ A′

2̃
GρΓΓΓ

+
(

2A
′(s)
3 F + A′

2̃
GρΓΓΓG

)
(1 + TG)

(
ΓΓΓGρ 1

)
·K(u)

df

1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)

+ A′
2̃
Fρπ

(
1 0

)
·K(u)

df

1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT) ,

(105)

= A′3 − 2A
′(s)
3 (1− FT) + A′

2̃

(
1 0

)
· 1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)

+ 2A
′(s)
3 F(1 + TG)

(
ΓΓΓGρ 1

)
·K(u)

df

1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT) .

(106)

Here the first line is just a repeat of Eq. (58) and in the remaining lines we have substituted the expressions for K
(u,u)
L,33

and K
(u)

L,2̃3
and simplified.

The expression for the mirror-imaged endcap is then given by (XNCAX)

A
(u)
L,3 = A3 − (1−TF)2A

(s)
3 + (1 + TG)

(
ΓΓΓGρ 1

)
· 1

1−K
(u)
df X

·
(

1
0

)
A2̃

+ (1 + TG)
(
ΓΓΓGρ 1

)
·K(u)

df

1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)F2A

(s)
3 . (107)
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In both cases we include the
(
K

(u)
df

)0
part, since the factors of K

(u)
df can come from the sum appearing between the

finite-volume endcaps in the expression for C
[B2]
L .

Finally, to derive an expression for the sum appearing between A
′(u)
L,3 and A

(u)
L,3 in Eq. (49), we make use of the

following identity (XNCAX)

K
(u,u)
L,33 = K

(0)
L,33 +

(
0 1

)
· EEELVK

(u)
df

1

1−XK
(u)
df

VEEER ·
(

0
1

)
, (108)

= K
(0)
L,33 + (1 + TG)

(
ΓΓΓGρ 1

)
·K(u)

df

1

1−XK
(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT) , (109)

≡ K
(0)
L,33 + K

(u,u),[Kdf ]
L,33 , (110)

where K
(u,u),[Kdf ]
L,33 is defined by comparing Eqs. (109) and (110).

Combining this with the expression for Z, defined in Eq. (84), we find (XNCAX)

F
(0)
33

1

1−K
(u,u)
L,33 F

(0)
33

= Z
1

1−K
(u,u),[Kdf ]
L,33 Z

, (111)

= Z + ZK
(u,u),[Kdf ]
L,33

∞∑

n=0

(
ZK

(u,u),[Kdf ]
L,33

)n
Z , (112)

= Z + Z(1 + TG)
(
ΓΓΓGρ 1

)
·K(u)

df

1

1−XK
(u)
df

∞∑

n=0

(
YK

(u)
df

1

1−XK
(u)
df

)n
·
(
GρΓΓΓ

1

)
(1 + GT)Z ,

(113)

= Z + Z(1 + TG)
(
ΓΓΓGρ 1

)
·K(u)

df

1

1−
(
X + Y

)
K

(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)Z , (114)

where the new matrix Y is (XNCAX)

Y ≡
(
GρΓΓΓ

1

)
· (1 + GT)Z(1 + TG) ·

(
ΓΓΓGρ 1

)
, (115)

=

(
GρΓΓΓ

1

)
·
[
−GK +

1

1− (F + G)K2
(F + G)

]
·
(
ΓΓΓGρ 1

)
. (116)

From this, together with the expression for X [Eq. (67)] and F2̃2̃ [Eq. (29)], we find that the combined matrix

appearing between factors of K
(u)
df is (XNCAX)

X + Y =

(
F2̃2̃ GρΓΓΓ

1
1−(F+G)K2

(F + G)

(F + G) 1
1−K2(F+G)ΓΓΓGρ

1
1−(F+G)K2

(F + G)

)
. (117)

We observe that the off-diagonal elements are close to F2̃3 and F32̃, differing only by the presence of F + G rather
than F on the ends. Similarly, the 33 element is close to F33. These differences will be removed when we change from

the unsymmetrized K
(u)
df to the symmetrized version.

With these preliminaries, we begin the determination of C
[B2],[Kdf ]
L by collecting the terms involving factors of A′

2̃
and A2̃ on the ends. All terms appearing in Eq. (103) as well as the appropriate combinations of Eqs. (106), (107)
and (114) that contain these endcaps have the form

C
[B2],[Kdf ]
L ⊃ A′

2̃

(
1 0

)
·W ·

(
1
0

)
A2̃ , (118)
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and our task is to determine the matrix W. Collecting terms, we find14 (XNCAX)

W = XK
(u)
df

1

1−XK
(u)
df

X +
1

1−XK
(u)
df

(
Y + YK

(u)
df

1

1−
(
X + Y

)
K

(u)
df

Y

)
1

1−K
(u)
df X

−Y , (119)

=
(
X + Y

)
K

(u)
df

1

1−
(
X + Y

)
K

(u)
df

(
X + Y

)
. (120)

Next we consider the cases with either A
′(s)
3 on the left-hand side, or A

(s)
3 on the right, or both. After some algebra,

we find that all such terms vanish identically (XNCAX).
The remaining, non-vanishing terms are those involving the endcaps A′3 and A3. We find (XNCAX)

C
[B2],[Kdf ]
L ⊃ A′3Z(1 + TG)

(
ΓΓΓGρ 1

)
·K(u)

df

1

1−
(
X + Y

)
K

(u)
df

(
X + Y

)
·
(

1
0

)
A2̃

+ A′
2̃

(
1 0

)
·
(
X + Y

)
K

(u)
df

1

1−
(
X + Y

)
K

(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)ZA3

+ A′3Z(1 + TG)
(
ΓΓΓGρ 1

)
·K(u)

df

1

1−
(
X + Y

)
K

(u)
df

·
(
GρΓΓΓ

1

)
(1 + GT)ZA3 . (121)

Finally, we can combine the results in Eqs. (118) and (121) into a compact matrix form (XNCAX)

C
[B2],[Kdf ]
L =

(
A′

2̃
A′3
)
· FLK

(u)
df

1

1−
(
X + Y

)
K

(u)
df

FR ·
(
A2̃
A3

)
, (122)

where we have introduced

FL ≡
(
F2̃2̃ X2̃3 + Y2̃3

F32̃ F 1
1−K2(F+G)

)
and FR ≡

(
F2̃2̃ F2̃3

X32̃ + Y32̃
1

1−(F+G)K2
F

)
. (123)

To obtain this form, we have used the identities (97) and (98), as well as the definitions of F2̃3 and F32̃, given in
Eqs. (47) and (48), respectively.

H. Symmetrization of Kdf in C
[B2]
L

A pleasing feature of the result of the previous section, Eq. (122), is that it contains only symmetrized endcaps,
despite the presence of unsymmetrized endcaps at earlier stages. It does, however, contain the unsymmetrized quantity

K
(u)
df , and in this section we manipulate the result so that all infinite-volume quantities have the desired exchange

symmetry. Here we build upon the work of Ref. [1], but again need additional techniques to deal with the poles in
K2. We also have found ways to shorten the argumentation given in Ref. [1]. Nevertheless, this section is the most
algebraically involved in this work.

A key observation for doing the symmetrization is that, if Eq. (122) is expanded in powers of K
(u)
df , then in all terms

with more than one factor of this unsymmetrized three-particle quantity, it always lies next to a factor of F+G, due
to the structure of X + Y, Eq. (117). This allows us to use a class of symmetrization results exemplified by

K2(F + G)K
(u,u)
df,33 = K2FS

[
K

(u,u)
df,33

]
+ ΓΓΓGρ I2̃3 ⊗K

(u,u)
df,33 + I33 ⊗K

(u,u)
df,33 , (124)

where S is the symmetrization operator than converts a (u) quantity into the symmetric (u+ s+ s̃) version,15 while

I2̃3 and I33 are integral operators, to be explained below. The result (124) holds with K
(u,u)
df,33 replaced by any three-

particle quantity with the (u) superscript, e.g. K
(u)

df,32̃
. It also assumes that there is at least one factor of F or G on

the left, as is true in general because
(
X + Y

)
, FL and FR contain the geometric series 1/(1− (F + G)K2).

14 On the right-hand side of the first equality, the final −Y term is needed to remove the (K
(u)
df )0 contribution to the previous term.

15 Here S acts to the right, but, in the following, it will also act to the left. Which is the case will be clear from the context.
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FIG 4 - fixed
[Requested changes (am I being picky enough!): (1)Top-left diagram: move right-
hand u to above the top line to match those on the right-hand side of the equality. 
(2) Drop the u underneath the K2 (i.e. between the two cuts) in all diagrams except 
the bottom right one—I think this is confusing as it does not correspond to any 
symbol in the equations. (3) In the bottom right diagram drop the upper u but keep 
the lower u. (4) Bold face the expressions, dropping i’s. (5) The bottom-left 
underbrace should have its left-hand end to the right of the F/G cut, but to the left 
of the left-hand small circle. :( (6) On the bottom left again, the top line through the 
F/G cut should be dashed. (7) Bottom left yet again: the ”off” should be changed to 
”on”—and drop primes?. (8) For consistency, shouldn’t the middle line in the G cut 
always be dashed? 

FIG. 4: Derivation of Eq. (125), using the notation of Figs. 1 and 7. On the left-hand side of the equality, the quantity to the

right of the G cut is K
(u,u)
df,33 , with the u above the upper-right dashed line indicating that this is an unsymmetrized quantity.

The left-hand cut in all diagrams must be present, but can be either F or G. The box at the left-hand end of each diagram
represents whatever lies to the left of the F/G cut, which depends on the context, but whose details are irrelevant. The first
two equalities show how G is converted to F by adding and subtracting an integral. This method is used extensively in Ref. [1]
and is explained in Eqs. (163)-(165) of that work and accompanying text. It results in the u superscript on Kdf,33 changing
to s+ s̃ in the F term. In the second step (indicated by the arrow connecting the two boxed diagrams), K2 is replaced by the
pole term, with on-shell projection onto the K-matrix pole, and the smooth part. Since there is now an integral to the right

of the G, rather than a sum, the infinite volume quantity K
(u,u)
df,33 is extended to the left by the addition of either a Γ or K′2,

implicitly defining the integral operators I23 and I33, respectively.

To demonstrate Eq. (124) we derive the equivalent result

K2GK
(u,u)
df,33 = K2FK

(s+s̃,u)
df,33 + ΓΓΓGρ I2̃3 ⊗K

(u,u)
df,33 + I33 ⊗K

(u,u)
df,33 , (125)

in Fig. 4. As seen from the figure, the integral operator I2̃3, attaches a factor of ΓΓΓ to K
(u,u)
df,33, leading to an infinite-

volume “two-particle” quantity, while I33 attaches iK̃′2 to K
(u,u)
df,33, creating another infinite-volume three-particle

quantity with the (u) superscript.
The reflected equation is derived similarly and is

K
(u,u)
df,33(F + G)K2 =

[
K

(u,u)
df,33

]
S FK2 + K

(u,u)
df,33 ⊗ I32̃ GρΓΓΓ + K

(u,u)
df,33 ⊗ I

†
33 , (126)

where I32̃ and I†33 are integral operators acting to the left on three-particle unsymmetrized quantities. The direction
of action of the integral operators is indicated by the position of the ⊗ symbol.

We can iterate Eq. (124), assuming implicitly that it acts on an unsymmetrized three-particle quantity on the right,
and that there are additional implicit factors of F or G on the left. We find

1

1−K2(F + G)
=

∞∑

n=0

{K2(F + G)}n =
1

1−K2(F + G)

{
K2FS + ΓΓΓGρ I2̃3⊗

} 1

1− I33⊗
+

1

1− I33⊗
. (127)

The first term in curly braces on the right-hand side leads to symmetrized quantities (since it contains the operator
S), while the second, ΓΓΓ-dependent term does not require symmetrization. The final term on the right-hand side of
this result is an unsymmetrized residue that will be dealt with subsequently.
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We now apply this result to the quantity of interest, C
[B2],[Kdf ]
L in Eq. (122). We begin by considering the contri-

bution in which cuts appear between the endcaps A′3 and A3 and the outermost K
(u)
df insertions. Here the analysis

is simplified by having a symmetrized quantity on one side. Focusing first on the right-side endcap, we find

A′3[FL]33K
(u)

df,32̃
= A′3F

1

1−K2(F + G)
K

(u)

df,32̃
, (128)

= A′3F
1

1− I33⊗
K

(u)

df,32̃
+ A′3F

1

1−K2(F + G)

{
K2FS + ΓΓΓGρI2̃3⊗

} 1

1− I33⊗
K

(u)

df,32̃
, (129)

= 1
3A
′
3FKdf,32̃ + A′3F

1

1−K2(F + G)
K2FKdf,32̃ + A′3F32̃ δKdf,2̃2̃ + δ33A

′
2̃
, (130)

= A′3F33Kdf,32̃ + A′3F32̃ δKdf,2̃2̃ + δ33A
′
2̃
. (131)

The first line recalls the definition of FL, while the second substitutes Eq. (127). To obtain the third line we use the
definition of F32̃ as well as the following new definitions:

Kdf,32̃ ≡ S
1

1− I33⊗
K

(u)

df,32̃
, (132)

δKdf,2̃2̃ ≡ I2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃
, (133)

δ33A
′
2̃
≡ A′3

iρ

3ω

(
1

1− I33⊗
K

(u)

df,32̃

)(u−s)
. (134)

In addition we use the result from Ref. [1] that a factor of F sandwiched between a symmetric object (here A′3) and
a (u − s) object can be replaced by iρ/(2ω), so that the resulting matrix sum can be replaced by an integral. The
final line follows immediately using the definition of F33. We see that the symmetrization has produced the desired
factors of F32̃ and F33, as well as an additional contribution to Kdf,2̃2̃ and to the endcap A′

2̃
. An almost identical set

of results holds with K
(u)

df,32̃
replaced with K

(u,u)
df,33, except that the final index is changed from 2̃ to 3, and an additional

(u) superscript is added.
We next consider terms where the endcap is A′

2̃
or its reflection. In this case we need a slightly different sym-

metrization result,

A′
2̃
GρΓΓΓ(F + G)K

(u)

df,32̃
= A′

2̃
GρΓΓΓFS

[
K

(u)

df,32̃

]
+ A′

2̃
Fρπ I2̃3 ⊗K

(u)

df,32̃
+ A′

2̃
⊗ ρ2̃3 ⊗K

(u)

df,32̃
. (135)

This follows from

A′
2̃
GρΓΓΓGK

(u)

df,32̃
= A′

2̃
GρΓΓΓFK

(s+s̃)

df,32̃
+ A′

2̃
Fρπ I2̃3 ⊗K

(u)

df,32̃
+ A′

2̃
⊗ ρ2̃3 ⊗K

(u)

df,32̃
, (136)

the derivation of which is described in Fig. 5. Here ρ2̃3 is a second type of integral operator that acts both to the left

and right, and is defined in the figure. It joins A′
2̃

with K
(u)

df,32̃
into an expanded endcap. We stress that the results

in Eqs. (135) and (136) hold when K
(u)

df,32̃
is replaced by any unsymmetrized three-particle quantity.

Using the definition of FL and Eqs. (127) and (135), we find

A′
2̃
[FL]2̃3K

(u)

df,32̃
= A′

2̃
GρΓΓΓ

1

1− (F + G)K2
(F + G)K

(u)

df,32̃
, (137)

= A′
2̃
GρΓΓΓ(F + G)

{
1

1−K2(F + G)

(
K2FS + ΓΓΓGρ I2̃3⊗

)
+ 1

}
1

1− I33⊗
K

(u)

df,32̃
, (138)

= A′
2̃
F2̃3Kdf,32̃ + A′

2̃
F2̃2̃δKdf,2̃2̃ + δ2̃3A

′
2̃
, (139)

where

δ2̃3A
′
2̃
≡ A′

2̃
⊗ ρ2̃3 ⊗

1

1− I33⊗
K

(u)

df,32̃
. (140)

As above, an almost identical equation holds with K
(u)

df,32̃
replaced by K

(u,u)
df,33.
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FIG 5 - fixed
(1) Boldfaced symbols, with notation for integral operators matching text.
(2) Remove all the "on" and "off"s in all diagrams. I had these in the original 
diagrams, but I now think that they are wrong and/or misleading. The "off" really 
refers to the fact that $\K_{\df,32}^\u$ is not forced to lie at the $\rho\pi$ pole. But 
the "off" presently sits over a $\Gamma$ which {\bf IS} on shell throughout the 
derivation.
(3) The last line is wrong---one needs something like the last term in my original 
diagram, with a $\delta_\rho$ and an $\infty$ sign through the G-cut.
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FIG. 5: Derivation of Eq. (136), using the notation of Figs. 1 and 7. The left-hand boxes represent A′
2̃
, aside from the loop

that is exposed explicitly to the left of the left-most cut. The steps are similar to those in Fig. 4: replacing the sum adjacent
to the G with a sum-integral difference and an integral, the former giving rise to an F. The difference from Fig. 4 concerns
the integral, in which the factor of Gρ can be converted into an Fρπ cut by projecting the entire quantity to the right onto the

K-matrix pole onto the 2̃ mass shell, leading to the I2̃3 term. The residue (the δρ term) cancels the K-matrix pole, allowing

the sum over the momentum k to be replaced by an integral, so that the implicit A′
2̃

and the K
(u)

df,32̃
are connected by an

infinite-volume integral operator denoted ρ2̃3.

Combining Eqs. (131), (139) and their analogs with the right-hand index changed to 3, we find

A′FLK
(u)
df = A′FFF SSSL

[
K

(u)
df

]
+
(
δA′

2̃
δA
′(u)
3

)
, (141)

where FFF is defined in Eq. (44),

A′ ≡
(
A′

2̃
A′3
)
, SSSL ≡

(
1 I2̃3 ⊗ 1

1−I33⊗
0 S 1

1−I33⊗

)
, (142)

and we have introduced

δA′
2̃

= δ33A
′
2̃

+ δ2̃3A
′
2̃

and δA
′(u)
3 = A′

2̃

iρ

3ω

(
1

1− I33⊗
K

(u,u)
df,33

)(u−s,u)

+ A′
2̃
⊗ ρ2̃3 ⊗

1

1− I33⊗
K

(u,u)
df,33 . (143)

Note that δA
′(u)
3 inherits a superscript (u) from the right-hand superscript of K

(u,u)
df,33. In the following it will be useful

to rewrite the shifts in A′ as
(
δA′

2̃
δA
′(u)
3

)
= A′ ⊗ IFL ⊗K

(u)
df , (144)

where IFL is a matrix of integral operators.
The result for the FR term is given by reflection and is

K
(u)
df FRA =

[
K

(u)
df

]
SSSRFFFA +

(
δA2̃

δA
(u)
3

)
, (145)

where

A =

(
A2̃
A3

)
, SSSR =

(
1 0

1

1−⊗I†33
⊗ I32̃

1

1−⊗I†33
S

)
, (146)

and δA2̃ and δA
(u)
3 are reflections of the results in Eq. (143). Again, we introduce the matrix of integral operators

IFR such that
(
δA2̃

δA
(u)
3

)
= K

(u)
df ⊗ IFR ⊗A . (147)

Finally, we turn to the symmetrization between two factors of K
(u)
df , i.e. to the analysis of

K
(u)
df

(
X + Y

)
K

(u)
df . (148)
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Only the 33 component of
(
X + Y

)
requires new work. This is because [X + Y]2̃2̃ = F2̃2̃ is already symmetrized,

while, since [X + Y]2̃3 = [FL]2̃3, the analysis for the 2̃3 component is identical to that leading to Eq. (139), with the

32̃ component given by reflection.
The contribution of the 33 component is analyzed in Appendix B 4. Combined with the results for the other

components, we find that

K
(u)
df

(
X + Y

)
K

(u)
df = K

(u)
df

(
1 0

1

1−⊗I†33
⊗ I32̃

1

1−⊗I†33
S

)(
F2̃2̃ F2̃3
F32̃ F33

)(
1 I2̃3 ⊗ 1

1−I33⊗
0 S 1

1−I33⊗

)
K

(u)
df + δK

(u)
df , (149)

= K
(u)
df SSSRFFF SSSLK

(u)
df + δK

(u)
df . (150)

Many of the complications of the analysis are buried in the final term, δK
(u)
df . This arises when the two factors of

K
(u)
df are joined by an integral. There are several contributions to this term—those analogous to δA′

2̃
, δA

′(u)
3 , δA2̃ and

δA
(u)
3 , as well as additional terms discussed in the Appendix. For this derivation we do not require the detailed form

of δK
(u)
df . We only require that it is composed of infinite-volume quantities, and that the symmetrization structure

of its external indices is the same as that of K
(u)
df . Again, it is useful to write this term using a matrix of integral

operators

δK
(u)
df ≡ K

(u)
df ⊗ IXY ⊗K

(u)
df . (151)

This emphasizes the fact that IXY is independent of the detailed form of the quantities on either side.

We now have all the results to give a final form for the correlator. Combining Eqs. (83), (122), (141), (145) and
(150), and performing straightforward but tedious algebra, we find (XNCAX)

C
[B2]
L = C

[B2],{0}
L + C

[B2],Kdf

L , (152)

= C [B2]
∞ + δC [B2]

∞ + A′[B2]FFF 1

1−K
[B2]
df FFF

A[B2] , (153)

where

A′[B2] ≡ A′ + A′ ⊗ IFL ⊗Ku
df

1

1−⊗IXY ⊗K
(u)
df

SSSR , (154)

A[B2] ≡ A +SSSLK(u)
df

1

1−⊗IXY ⊗K
(u)
df

⊗ IFR ⊗A , (155)

K
[B2]
df ≡ SSSLK(u)

df

1

1−⊗IXY ⊗K
(u)
df

SSSR . (156)

δC [B2]
∞ = δC [B2],{0}

∞ + A′ ⊗ IFL ⊗K
(u)
df

1

1−⊗IXY ⊗K
(u)
df

⊗ IFR ⊗A . (157)

Equation (153) is the culmination of all the analysis contained in Secs. III B-III H, together with the corresponding
appendices, and is by far the most tedious result to derive in all our work on three-particle scattering. Having reached
the very final form for all B2-only diagrams, note that we introduce slightly more precise notation, labeling all infinite-
volume quantities with the [B2] superscript to emphasize the missing B3 kernels. In the next section we show that
these are simple to incorporate.

I. Including three-to-three kernels, B3

In order to complete the derivation of Eq. (38) we must include the contributions of the three-to-three kernel, B3.
This can be done by a straightforward extension of the method used in Sec. IVE of Ref. [1]. As in that work, the
essential point is that the analysis described above, which takes place between endcaps σσσ∗ and σσσ†∗, applies equally
well if one or both of the endcaps are replaced by factors of iB3 ≡ B3. This is because, like σσσ∗ and σσσ†∗, B3 is
nonsingular in our kinematic regime. The net result is that we can reuse all the work leading to Eq. (153).
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To do so we rewrite the components of Eq. (153) as

C [B2]
∞ + δC [B2]

∞ ≡ σσσ∗ ⊗DC ⊗ σσσ†∗ , (158)

A′[B2] ≡ σσσ∗ ⊗DA′ , (159)

A[B2] ≡ DA ⊗ σσσ†∗ , (160)

ZZZ ≡ FFF 1

1−K
[B2]
df FFF

, (161)

in terms of which

C
[B2]
L = σσσ∗ ⊗ {DC +DA′ZZZDA} ⊗ σσσ†∗ . (162)

Here DC , DA′ and DA are infinite-volume decoration operators that contain the complicated contributions worked
out above.16 Note that DA and DA′ are, respectively, 2× 1 and 1× 2 matrices. All we need to know in this section is
that the decoration operators are well defined, and apply just as well when the endcaps are replaced by factors of B3.

The full finite-volume correlator, including all possible B2 and B3 insertions, can now be written

CL = σσσ∗ ⊗ {DC +DA′ZZZDA} ⊗
∞∑

n=0

(B3 ⊗ {DC +DA′ZZZDA}⊗)
n
σσσ†∗ . (163)

Rearranging the series in powers of ZZZ we find

CL = C∞ +

∞∑

n=0

A′ZZZ
(
K

[B3]
df ZZZ

)n
A , (164)

where we have defined the infinite-volume quantities

C∞ ≡ σσσ∗ ⊗DC ⊗
∞∑

n=0

(B3 ⊗DC ⊗)
n
σσσ†∗ , (165)

A′ ≡ σσσ∗ ⊗
∞∑

n=0

(DC ⊗B3⊗)
nDA′ , (166)

A = DA ⊗
∞∑

n=0

(B3 ⊗DC ⊗)
n
σσσ∗ , (167)

K
[B3]
df ≡ DA ⊗B3 ⊗

∞∑

n=0

(DC ⊗B3⊗)
nDA′ . (168)

Inserting the definition of ZZZ, Eq. (161), into the result for CL, and rearranging, we reach the final form given in
Eq. (38) above. In terms of our boldface quantities it reads

CL = C∞ + A′FFF 1

1−KdfFFF
A , (169)

where

Kdf ≡ K
[B2]
df + K

[B3]
df . (170)

IV. RELATING Kdf TO THE THREE-PARTICLE SCATTERING AMPLITUDE

Having completed the derivation of the quantization condition, i.e. the relation between the finite-volume spectrum
and Kdf , we now turn to relating the latter to the physical three-to-three scattering amplitude, M3. Following
Ref. [2], we derive equations relating Kdf to M3 in two steps. First, in Sec. IV A we give a modified version of our
main result, Eq. (38), in terms of a new finite-volume correlator, denotedML,3. Second, in Sec. IV B, we analytically
study a carefully-defined L→∞ limit in which ML,3 →M3. The result is a series of integral equations relating the
divergence-free K matrix to the scattering amplitude. In this section we return to the notation of Sec. II in which
factors of i and 1/(2ωL3) are displayed explicitly.

16 In Ref. [1] the corresponding decoration operators were given superscripts, but here we drop these for the sake of brevity.
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A. Relating Kdf to ML,3

In order to relate the components of Kdf to physical quantities, we need to determine the volume-dependence
of ML,3, first introduced in Ref. [2]. ML,3 differs from CL in two ways. First, the diagrams have three on-shell,
amputated propagators on each end, rather than the generic operators O(x) and O†(x) included in Eq. (37). Second,
we allow the momenta of these external particles to be arbitrary, and not constrained to lie in the finite-volume set.
As discussed at length in Ref. [2], the latter property is necessary in order to take the infinite-volume limit. Despite
these differences we argue here that we can obtain the result for ML,3 from that for CL, Eq. (38).

We rely on several key observations from Ref. [2], where, we recall, ML,3 was analyzed for systems without poles
in K2. The first is that CL contains all the diagrams contributing to ML,3. The task is to separate these out. In
particular, we need contributions in which three particles are on shell, rather than part of an unconstrained loop sum.
The second observation is that, in the final form for CL, on-shell three-particle states occur whenever there is a factor
of F or G. In particular, if we take the expression for CL and restrict attention to terms with at least two F or
G “cuts”, then the expression lying between the outermost such cuts will contain all contributions to ML,3. It will
turn out that the outermost cuts are always factors of F rather than G. The third observation is that amputation is
effected by removing the external factors of iF and multiplying by 2ωL3. After doing so, the result is equal to ML,3

aside from two final adjustments. The first is to drop disconnected contributions, and the second is to symmetrize.
We discuss these two relatively minor steps in more detail below.

In fact, Ref. [2] did not apply these observations to the final result for CL, but rather to an intermediate result.
Additional analysis was then required to obtain the final expression for ML,3. It was noted that the result for ML,3

could have been obtained by applying the amputation procedure directly to the decomposition of CL, but it was
argued that this was a mnemonic rather than a rigorous procedure (see footnote 10 of Ref. [2]). We now think,
however, that inferring the form ofML,3 from CL, by directly converting the final result is justified, and indeed that
the work of Ref. [2] supports this claim. We explain additional justification for this new approach below, once we
have obtained the result for ML,3.

Due to the presence of poles in K2, the procedure described above must be amended. To understand the issue, we
focus on the contribution to CL arising from a single insertion of the 32̃ component of F , namely

iA′3iF32̃iA2̃ = iA′3
1

2ωL3
iF

1

1− iK2(iF+iG)
iΓJ iG

†
ρiA2̃ , (171)

= iA′3
1

2ωL3
iF iΓJ iG

†
ρiA2̃ + iA′3

1

2ωL3
iF iK2(iF+iG)iΓJ iG

†
ρiA2̃

+ iA′3
1

2ωL3
iF iK2(iF+iG)iK2(iF+iG)iΓJ iG

†
ρiA2̃ + · · ·

. (172)

The first term in Eq. (172) can be dropped as it has only one F or G cut. The second term has two such cuts, but
only a single K2 lies between them, so this corresponds to a disconnected contribution to ML,3. Thus this term is
also dropped. The third term has two external cuts, and part of the contribution between them is connected, namely
the iK2iGiK2 part. However, such a contribution is already contained in the iA′3iF33iA3 term, as is readily checked.
A signal for this double counting is that there is a ρπ cut, G†ρ, that is external relative to the right-hand F/G-cut in
each of the terms in Eq. (172). Indeed, one can show that the complete set of contributions to ML,3 are obtained
by taking only terms in which the outermost cut contains three particles rather than the ρπ effective channel. This
extra criterion implies that none of the terms in Eq. (172) should be kept.

The same conclusion holds for single insertions of F2̃3 or F2̃2̃, which have, respectively, one and two external ρπ cuts.
Thus the only surviving contribution from a single insertion of F is that from F33. This contribution is unaffected
by the presence of poles in K2, and so is unchanged from that obtained in Ref. [2]. We recall briefly how this term is
obtained. Using the result for F33, Eq. (18), we find that the term with at least two three-particle cuts is

CL ⊃ iA′3iF33iA3 ⊃ iA′3
1

2ωL3
iF

1

1− iK2(iF + iG)
iK2iF iA3 . (173)

Applying the recipe given above we obtain

iML,3 ⊃
{

1

1− iK2(iF + iG)
iK2[2ωL3]

} ∣∣∣∣∣
connected, symmetrized

. (174)
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The disconnected part is that obtained by setting G → 0. We can remove this, and at the same time make contact
with the notation of Ref. [2], using the identity

1

1− iK2(iF + iG)
iK2[2ωL3] = iML,2[2ωL3] + iD(u,u)

L , (175)

where

iML,2 =
1

1− iK2iF
iK2 , (176)

iD(u,u)
L =

1

1− iM2,LiG
iML,2iGiML,2[2ωL3] . (177)

The first term in Eq. (175) contains no switches and thus leads to a disconnected contribution. The second term
contains at least one switch and thus is connected; it agrees with the quantity of the same name given in Eq. (25) of
Ref. [2]. Thus we find

iML,3 ⊃
{
iD(u,u)

L,2

} ∣∣∣∣∣
symmetrized

≡ SiD(u,u)
L,2 S . (178)

We can now explain the need for symmetrization. In the original expression, iA′3iF33iA3, the endcaps A′3 and A3

are fully symmetrized, as described earlier in the derivation. By this we mean that the quantities are invariant under
interchange of any of the three particle momenta. The adjacent factors of F that will be removed are not, however,
symmetric, since they single out one of the on-shell particles as the spectator. Similarly, what lies between the two
amputated F s is not symmetric. Within CL this does not matter, because of the symmetry of the endcaps. ButML,3

is defined to be symmetric on the external lines, and to reproduce this we must sum over all permutations of the three
incoming and three outgoing particle momenta. However, it turns out that all quantities entering these expressions
are already invariant under interchange of the two non-spectators, so that one need only sum over the remaining three
distinct permutations. The precise action of the symmetrization operators is described by the paragraph containing
Eqs. (35)-(37) in Ref. [2].17

Now we apply the updated rules to the terms in Eq. (38) having more than one factor of F , namely

CL ⊃ iA′iF
1

1− iKdf iF
iKdf iFiA . (179)

Since we are requiring an external three-particle cut rather than a ρπ cut, only F33 and F32̃ contribute from the
left-hand F , and only F33 and F2̃3 contribute from the right-hand F . Thus we find that the contribution to ML,3 is

iML,3 ⊃ SL(u)
L

1

1− iKdf iF
iKdfR(u)

L S , (180)

L(u)
L =

(
1

1−iK2(iF+iG) iΓJ iG
†
ρ

1
3 + 1

1−iK2(iF+iG) iK2iF
)
, (181)

R(u)
L =

(
iGρiΓJ

1
1−(iF+iG†)iK2

1
3 + iF iK2

1
1−(iF+iG†)iK2

)
. (182)

Here G† = [2ωL3]−1G[2ωL3], as follows from the definition of the matrix G, Eq. (21). Combining this result with
that from Eq. (178) leads to the full expression for ML,3

ML,3 = S
{
D(u,u)
L + L(u)

L Kdf
1

1 + FKdf
R(u)
L

}
S . (183)

Here we have multiplied various factors of i together and divided both sides of the equation by i. We stress again
that no factors of i or 2ωL3 have been absorbed here by redefinitions.

17 Note that, in that work, the symmetrization operators acting to the right and left are packaged into a single overall symmetrization
operator.
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A consistency check on this derivation is that the external factors that are “amputated” to obtain ML,3 from CL
are the same for both Eqs. (178) and (180), namely iA′3

1
2ωL3 iF on the left and iF 1

2ωL3 iA3 on the right.18

Finally, we return to the issue of why we now think the above procedure for obtaining ML,3 from CL is valid.
We raised two concerns in Ref. [2]. The first was essentially that the infinite-volume quantities appearing in CL
resulted from a sequence of redefinitions, obscuring the relation to the underlying diagrams. Here we have been able
to give a more explicit form for these redefinitions, i.e. those in Eqs. (154)-(156), (166), (167) and (170). This gives
us confidence that there are no subtleties in picking out the parts of the diagrams that contribute to ML,3. The
second concern was that the symmetrization procedure after amputation was not justified. We have now convinced
ourselves, as described above, that it is correct.

B. Applying the formal L→∞ limit to relate Kdf to the three-to-three scattering amplitude

We are now ready to apply the L→∞ limit to Eq. (183), and thereby derive an integral equation relating Kdf to
the physical three-to-three scattering amplitude, M3. We begin by recalling the expression for F

F =

(
F2̃2̃ F2̃3
F32̃ F33

)
, (184)

F2̃2̃ ≡ Fρπ +GρΓJ
1

2ωL3
(F +G)

1

1 +K2(F +G)
ΓJG

†
ρ , (185)

F2̃3 ≡ −GρΓJ
1

2ωL3

1

1 + (F +G)K2
F , (186)

F32̃ ≡ −
1

2ωL3
F

1

1 +K2(F +G)
ΓJG

†
ρ , (187)

F33 =
1

2ωL3

[
F

3
− F 1

1 +K2(F +G)
K2F

]
. (188)

Here we have again combined various factors of i to simplify the expressions.
The method we use is that developed in Ref. [2]. We want to take L → ∞ in such a way that ML,3 goes over to

M3. This requires that that we first regularize poles in integrands with the iε prescription, and then take the L→∞
limit with ε held fixed. As explained in Ref. [2], this limit sends F → ρ (since F iε → 0), and ML,2 →M2. Matrix
products, combined with factors of 1/L3, go over to integrals. We also need to introduce G∞, defined by

G∞`′m′,`m(~p,~k) = Y3,`′m′(~k
∗
2,p)S

iε
3 (~p,~k)Y∗3,`m(~p ∗2,k) . (189)

In Ref. [2], the only poles present were the three-particle poles in S3. Here we also have the possibility of K-matrix
poles, which are present in Gρ and Fρπ as well as in K2 itself. However, we know that K-matrix poles cannot be
present in M3, because poles on the real axis of scattering amplitudes would imply a violation of unitarity. In fact,
we will show that they are absent also in ML,3, so that there is no need to regularize them.

To see the absence of K-matrix poles we begin by rewriting Eq. (182) as

R(u)
L =

(−GρΓJ 1
1+FK2

1
3 − FML,2

)
1

1 +G†ML,2
. (190)

Here we recall that

ML,2 =
1

1 +K2F
K2 =

1

K−1
2 + F

, (191)

which shows explicitly that poles in K2 do not lead to poles in ML,2. The same cancellation occurs for the poles in
Gρ:

−GρΓJ
1

1 + FK2
= −GρΓJK−1

2 ML,2 . (192)

18 Note that the matrices 1
2ωL3 and F commute, though neither commutes with G.
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Since ΓJ is a constant, GρΓJK−1
2 is smooth at the pole position. It is also a known quantity, assuming that we know

K2 from the two-particle quantization condition, and has a well-defined infinite-volume limit.
We can similarly rewrite the other quantities involving Gρ (or its hermitian conjugate) in such a way that they are

manifestly free of K-matrix poles:

L(u)
L =

1

1 +ML,2G

(
−ML,2K−1

2 ΓJG
†
ρ

1
3 −ML,2F

)
, (193)

F2̃3 = −GρΓJK−1
2 ML,2

1

1 +G†ML,2

1

2ωL3
F = −GρΓJK−1

2

1

2ωL3

1

1 +ML,2G
ML,2F , (194)

F32̃ = − 1

2ωL3
F

1

1 +ML,2G
ML,2K−1

2 ΓJG
†
ρ . (195)

This leaves F2̃2̃, which contains Fρπ. This can be rewritten as

F2̃2̃ = −GρΓJK−1
2

1

2ωL3

1

1 +ML,2G
ML,2K−1

2 ΓJG
†
ρ +

{
Fρπ +GρΓJ

1

2ωL3
K−1

2 ΓJG
†
ρ

}
. (196)

The first term is manifestly free of K-matrix poles. For the term in curly braces, the poles also cancel. To see this
we note that Fρπ contains a sum over spectator momenta, which is matched in the Gρ[· · · ]G†ρ part by the sum over
matrix indices. The infinite-volume limit of this term is known given knowledge of K2.

The final quantity to be considered is F33. Here the absence of K-matrix poles is manifest, but it is still useful to
rewrite it as

F33 =
1

2ωL3
F

[
1

3
− 1

1 +ML,2G
ML,2F

]
. (197)

It is now a tedious but straightforward exercise to take the infinite volume limit of Eq. (183). We first introduce
useful infinite-volume quantities

GρΓJK−1
2

L→∞−−−−→ Gρ;M ′J`′m′;`m(~k) , (198)

K−1
2 ΓJG

†
ρ
L→∞−−−−→ G

†
ρ;`m,MJ`′m′(

~k) , (199)
{
Fρπ +GρΓJ

1

2ωL3
K−1

2 ΓJG
†
ρ

}
L→∞−−−−→ F ρπ;M ′J`

′m′;MJ`m . (200)

We note that these quantities contain information about the spin of the resonance; for example, Gρ contains a factor
of δJ`. All three quantities are determined by K2.

The matrix [1 +M2,LG]−1 occurs repeatedly. In the L → ∞ limit, multiplication by this matrix is replaced by

integration with the U(~p,~k)`′m′;`m, which solves the integral equation

U(~p,~k) = (2π)3δ3(~p− ~k)−
∫

s

M2(~p)G∞(~p,~s)
1

2ωs
U(~s,~k) . (201)

Here
∫
s
≡
∫
d3s/(2π)3, and we are keeping the angular-momentum indices implicit.

We next construct the infinite-volume limits of the elements of F . Pulling out overall factors of 1/L3 that will turn
sums into integrals, we find that these limits give

F 2̃2̃ = −
∫

s

∫

t

Gρ(~s)
1

2ωs
U(~s,~t)M2(~t)G

†
ρ(~t) + F ρπ , (202)

F 2̃3(~k) = −
∫

s

1

2ωs
Gρ(~s) U(~s,~k)M2(~k)ρ(~k) , (203)

F 32̃(~p) = −ρ(~p)

2ωp

∫

s

U(~p,~s)M2(~s)G
†
ρ(~s) , (204)

F 33(~p,~k) =
ρ(~p)

6ωp
(2π)3δ3(~p− ~k)− ρ(~p)

2ωp
U(~p,~k)M2(~k)ρ(~k) . (205)
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All these quantities can be determined given knowledge of M2. We also recall that ρ(~k) contains the cutoff function

H(~k), so that all integrals have finite range.
The next stage is to determine the limit of Kdf(1 + FKdf)

−1, which we call T . This leads to two pairs of coupled
matrix-integral equations for the components of T . The first pair is

T2̃2̃ = Kdf,2̃2̃ −Kdf,2̃2̃F 2̃2̃T2̃2̃ −
∫

t

Kdf,2̃2̃F 2̃3(~t)T32̃(~t)−
∫

s

Kdf,2̃3(~s)F 32̃(~s)T2̃2̃ −
∫

s,t

Kdf,2̃3(~s)F 33(~s,~t)T32̃(~t) , (206)

T32̃(~p) = Kdf,32̃(~p)−Kdf,32̃(~p)F 2̃2̃T2̃2̃ −
∫

t

Kdf,32̃F 2̃3(~t)T32̃(~t)−
∫

s

Kdf,33(~p,~s)F 32̃(~s)T2̃2̃

−
∫

s,t

Kdf,33(~p,~s)F 33(~s,~t)T32̃(~t) .
(207)

The second pair is a straightforward generalization given by replacing all rightmost 2̃ indices with 3 indices and
including the appropriate additional momentum dependencies.

Finally, given T we can obtain M3 by doing integrals. The contribution of D(u,u)
L is unchanged from Ref. [2]. We

obtain it using

D(u,u)(~p,~k) = −
∫

s

U(~p,~s)M2(~s)G∞(~s,~k)M2(~k) . (208)

For the remaining term we multiply T on the left with

L(u)

∞ (~p,~s) ≡
(
−U(~p,~s)M2(~s)Gρ(~s) U(~p,~s)[ 1

3 −M2(~s)ρ(~s)]
)
, (209)

and integrate the ~s coordinate. Similarly we multiply with the conjugate, R(u)

∞ (~t,~k), on the right and integrate again
to reach

M(u,u)
3 (~p,~k) = D(u,u)(~p,~k) +

∫

s,t

L(u)

∞ (~p,~s)T (~s,~t)R(u)

∞ (~t,~k) . (210)

This result can then be converted to a function of the three incoming and three outgoing momenta via

M(u,u)
3 (~p,~a′,~b′;~k,~a,~b) ≡ 4πY`′m′(â

′∗
2,p)M(u,u)

3;`′m′;`m(~p,~k)Y ∗`m(â∗2,k) , (211)

where ~b′ ≡ ~P − ~p − ~a′ and ~b ≡ ~P − ~k − ~a, and we have restored the angular momentum indices on M(u,u)
3 on the

right-hand side. Finally, the physical scattering amplitude is reached by symmetrizing

M3(~p,~a′,~b′;~k,~a,~b) = S
[
M(u,u)

3

]
S ≡

∑

~p1,~p2,~p3∈P~p

∑

~k1,~k2,~k3∈P~k

M(u,u)
3 (~p1, ~p2, ~p3;~k1,~k2,~k3) , (212)

where

P~p ≡
{
{~p,~a′,~b′}, {~b′, ~p,~a′}, {~a′,~b′, ~p}

}
, and P~k ≡

{
{~k,~a,~b}, {~b,~k,~a}, {~a,~b,~k}

}
. (213)

V. CONCLUSION

In this work we have lifted the final major restriction on our formalism relating finite-volume energies to relativistic
two- and three-particle scattering amplitudes. To summarize, at this stage we have the building blocks to treat any
system of identical scalar particles. Our results fall into three classes:

1. 3→ 3 scattering assuming a Z2 symmetry and no sub-channel resonances (i.e. no poles in K2, see Refs. [1, 2]),

2. {2,3} → {2,3} scattering in the case of no Z2 symmetry and, again, no sub-channel resonances (see Ref. [3]),

3. 3→ 3 scattering for systems with a pole in K2 (this work).
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To complete the formalism for all two- and three-particle systems of identical scalars, it remains only to extend
item 3 to any number of K2 poles in any angular momentum channels, and then to combine items 2 and 3 to describe
2→ 3 systems with resonant subprocesses. Beyond this, the remaining extensions to general two- and three-particle
systems require incorporating non-identical and non-degenerate particles, multiple two- and three-particle channels
and, finally, particles with spin. Based on the structure of the results derived so far and on our experience with two-
particle quantization conditions, we expect that all of these extensions will be significantly easier than the derivation
presented here.

The approach detailed in this article requires treating the pole in K2 as a pseudoparticle and constructing an
effective two-particle state, labeled 2̃, built from the pole together with the remaining spectator. From this set-up we
have derived a quantization condition in the usual form of a determinant involving a finite-volume matrix, F , and
a divergence-free K matrix, Kdf , both of which carry matrix indices on the 2̃ + 3 effective channel space. The final
aspect of the result presented here is the relation between Kdf and the physical scattering amplitude, denoted M3.
The latter has the usual degrees of freedom and in particular carries no memory of the unphysical 2̃ channel.

One of the central questions raised by this derivation, to be further explored in future work, is whether it is really
neccesary or natural to explicitly treat the K2 poles as we have done. One motivation for this approach follows from
considering, e.g., isospin two πππ scattering for varying quark masses. For physical-mass pions, in the allowed energy
range of 3Mπ <

√
s < 5Mπ, the energy of the ππ subsystem is well below the ρ mass and therefore well below any

poles in K2. Thus, for this system, the formalism of item 1 above is appropriate. By contrast, for sufficiently heavy
pions the ρ is stable so that one requires the formalism of item 2 to describe the ρπ → πππ scattering amplitude.
The latter depends on a two-channel version of Kdf represented by a two-by-two matrix with indices 2 and 3.19 Since
one can, at least in principle, vary the quark masses continuously between these two scenarios, it is necessary to
understand how the quantization conditions transition between the two different matrix spaces.

The result of this work provides a natural answer to this question. As the quark mass increases from the physical
point, the ρ pole moves into the sampled energy range and the corresponding pole in K2 is treated by opening an
effective 2̃ channel. If the quark mass is further increased, this pole location moves closer to the two-particle threshold
until it drops below, leading to a stable ρ. Note that, even for the case of Mρ < 2Mπ, if the mass hierarchy is such
that κ2 ≡ M2

π −M2
ρ/4 � M2

π , i.e. the state is shallow, then the quantization condition derived here should be used

to properly incorporate potentially large volume effects of the form e−κL, arising from the large size of the weakly
bound state. If the quark masses are instead chosen very large, such that κ > Mπ, then the finite size of the ρ can be
neglected and the two-to-three formalism may be applied.

We further remark that the key difference between the case of the unphysical 2̃ and the physical 2 channels is that
the off-diagonal elements of F vanish only in the latter case. We speculate that this will arise through F2̃3 and F32̃

becoming exponentially suppressed with the scale e−κL. Conversely, we recall that the elimination of off-diagonal

elements in the 2 → 3 formalism of Ref. [3] required construction of the cutoff function H(~k) such that the finite-
volume cuts of one- and two-particle subspaces (within the two- and three-particle states respectively) did not overlap.

The results derived here could also allow one to explore more freedom in the definition of H(~k), at the cost of allowing
unsuppressed off-diagonal entries in the finite-volume matrix.

Although these observations give some motivation for the 2̃ effective channel, it is nonetheless possible that one
might reformulate the results without this unphysical aspect. We are motivated to consider this in more detail
especially following the demonstration in Sec. X that all entries of F do not contain K2 poles. We note, in addition,
that our result requires special treatment of K2 poles regardless of the sign of the residue. Thus also poles with no
connection to a resonance state must be separated out. In this case we can provide no physical motivation for this
mathematical necessity.

Beyond completing the quantization condition for completely general two- and three-particle systems, going forward
we plan to develop and learn from the results in three ways. First we hope to understand simplifications in both the
derivation and the final result that can be made without adding any approximations. We have a sense that these
can be identified by better understanding the relation of this work to Refs. [11, 12, 14], and by studying the pole
structures of the final quantities appearing in all our results. Second we plan to understand systematic approximations
and truncations. This will likely involve subducing the quantization condition to irreducible representations of the
finite-volume symmetry groups and truncating the angular momentum basis as is done in all two-particle studies.
Third, and finally, we intend to continue our numerical investigations of these results, along the lines of Ref. [16].

19 Strictly speaking the only available 2 → 3 formalism requires that all particles in the two- and three-particle states are identical.
However based on the nature of the derivation, and the corresponding results in the two-particle sector, it is quite clear that the basic
structure of the quantization conditions, in particular the appearance of channel indices, will persist in the case of non-identical particles.
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Appendix A: Factorization of the off-shell two-particle K matrix at the pole

The aim of this appendix is to present a derivation of Eq. (13) and its consequences. We first consider K matrix
poles above threshold and turn at the end to the case of subthreshold poles.

We begin by reviewing the constraints that unitarity places on two-particle scattering amplitudes. The S-matrix is
related to the on-shell scattering amplitude in the standard way

S
(`)
2 = 1 + 2iρ̃2M(`)

2;on;on, (A1)

where we have introduced ρ̃2 = iρ̃ with ρ̃ defined in Eq. (10). For the purpose of this appendix, ρ̃2 is more convenient,
in particular because it is real above threshold. On the physical scattering axis, i.e. for real energies above threshold
on the physical sheet, the S-matrix is unitary, implying

Im(M(`)
2;on;on) =M(`)

2;on;on ρ̃2M(`) †
2;on;on. (A2)

Given that ρ̃2 is finite, this result prohibits M(`)
2;on;on from having poles on the physical axis (since the left-hand side

would then have a single-pole and the right-hand side a double pole). Of course, poles below threshold for real s,
corresponding to bound states, are allowed, since this constraint applies only for real energies above threshold.

Unitarity alone cannot put constraints on the analytic structure of off-shell scattering amplitudes. Instead, as
described in the main text, we consider this system as a generic effective field theory, with quantities calculated to all
orders in perturbation theory. In this context we can connect the off- and on-shell scattering amplitudes, as we now
show.

The ingredients we need are, first, the product of two fully-dressed propagators with the appropriate symmetry
factor,

∆2 ≡
1

2
∆(P − k) ∆(k) , (A3)

and, second, the fully off shell Bethe-Salpeter kernel B
(`)
2;off;off . We recall that the latter is defined as the sum of all

amputated two-to-two diagrams that are two-particle irreducible in the s channel.20 The pair of subscripts indicates
that both initial and final states are off shell. The on-shell versions have the same definitions except that the 4-
momenta in either one or both states are set to the physical values, p2 → m2. In terms of these building blocks, the
off-shell amplitude can be written as an iteration of s-channel two-particle loops,

iM(`)
2;off;off = iB

(`)
2;off;off +

∫
iB

(`)
2;off;off ∆2 iB

(`)
2;off;off +

∫∫
iB

(`)
2;off;off ∆2 iB

(`)
2;off;off ∆2 iB

(`)
2;off;off + · · · , (A4)

where the integrals are over the loop momenta, e.g. over k in Eq. (A3).
Fully or partially on-shell amplitudes are then given by appropropriate changes to the subscripts, e.g.

iM(`)
2;on;on = iB

(`)
2;on;on +

∫
iB

(`)
2;on;off ∆2 iB

(`)
2;off;on +

∫∫
iB

(`)
2;on;off ∆2 iB

(`)
2;off;off ∆2 iB

(`)
2;off;on + · · · . (A5)

20 As noted in the main text, we are implicitly making a choice of single-particle interpolating operator when defining this kernel. None
of the subsequent considerations depend on this choice.
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These results can be used to rewrite the on-shell amplitude in three useful forms

iM(`)
2;on;on = iB

(`)
2;on;on +

∫
iB

(`)
2;on;off ∆2 iM(`)

2;off;on (A6)

= iB
(`)
2;on;on +

∫
iM(`)

2;on;off ∆2 iB
(`)
2;off;on (A7)

= iB
(`)
2;on;on +

∫
iB

(`)
2;on;off ∆2 iB

(`)
2;off;on +

∫∫
iB

(`)
2;on;off ∆2 iM(`)

2;off;off ∆2 iB
(`)
2;off;on . (A8)

To proceed, we assume that resonances in M(`)
2;on;on arise by the iteration of the two particle loops in Eq. (A5) and

are not present in the kernel B
(`)
2 itself (whether on or off shell). In other words, since B

(`)
2 has no intermediate states

that are on shell in the kinematic range of interest, 4m2 < s < 16m2 (or 4m2 < s < 9m2 if there is no G-parity-like
symmetry), it can be treated as a nearly local two-particle interaction, and it is the iteration of this interaction that

leads to resonances. Given this assumption, B
(`)
2 has no s-channel singularities on the physical axis. This will be a

key input into the following arguments. We note that B(`) can have t- and u-channel singularities (e.g. the left-hand
cut) but these occur for s ≤ 0 and are thus outside of the kinematic range of interest.

Given the inputs that neither M(`)
2;on;on nor B

(`)
2 have poles on the physical axis, it follow from Eqs. (A6), (A7)

and (A8), respectively, that M(`)
2;off;on, M(`)

2;on;off and M(`)
2;off;off cannot have such poles either. Of course, all these

quantities can have poles in the complex plane corresponding to resonances, but the key point here is that the off-shell

amplitudes inherit from M(`)
2;on;on the absence of poles on the real axis above threshold.

With this in hand, we can finally turn our attention to the K matrix. Again, unitarity alone places no constraints
on the K matrix, but we can use its all orders effective field theory definition to relate it to the scattering amplitude.
Indeed, whether on or off shell, the two quantities differ only by the replacement of the iε prescription in two-particle
loops with the principal-value prescription. The difference in these definitions is proportional to ρ̃2 and a δ-function
that places the states on-shell. From this we find that the fully off shell K matrix can be written as [see also Eq. (9)]

iK(`)
2;off;off = iM(`)

2;off;off − iM
(`)
2;off;on ρ̃2 iM(`)

2;on;off + iM(`)
2;off;on ρ̃2 iM(`)

2;on;on ρ̃2 iM(`)
2;on;off + · · ·

= iM(`)
2;off;off − iM

(`)
2;off;on ρ̃2

[
1

1 + iM(`)
2;on;onρ̃2

]
iM(`)

2;on;off

= iM(`)
2;off;off − iM

(`)
2;off;on ρ̃2

[
1

M(`)−1
2;on;on + iρ̃2

]
M(`)−1

2;on;on iM
(`)
2;on;off

= iM(`)
2;off;off − iM

(`)
2;off;on ρ̃2K(`)

2;on;onM
(`)−1
2;on;on iM

(`)
2;on;off . (A9)

In the last step, we have expressed the off-shell K2 in terms of its on shell form. This gives the desired result, Eq. (13),
when working above threshold so that H = 1. The key point is that, on the right-hand side of Eq. (A9), the only

quantity that has poles on the physical axis is K(`)
2;on;on. Thus we conclude that K(`)

2;off;off must share these poles with

K(`)
2;on;on in order for the equality to hold.

The second result we wish to show is the factorization of the residues of poles in K(`)
2;off;off . To do this we note that

the on-shell scattering amplitude is purely imaginary at the poles of K(`)
2;on;on,

M(`)−1
2;on;on −→ −iρ̃2 . (A10)

Therefore, near the poles, the off- and on-shell K matrices are related by

iK(`)
2;off;off ∼ Z

(`)
2;off;on iK

(`)
2;on;on Z

(`)
2;on;off , (A11)

where Z
(`)
2;off;on = −iM(`)

2;off;onρ̃2 and Z
(`)
2;on;off = −iρ̃2M(`)

2;on;off . These two quantities depend, respectively, only on

the final (initial) momenta, thus demonstrating the claimed factorization of momentum dependence. Both quantities
equal unity when the corresponding external legs are placed on shell. Comparing the definitions of the residues of
poles in on- and off-shell K matrices, given in Eqs. (16) and Eq. (15), respectively, we see that

ΓJ(M2, a′2, b′2)(a′∗2,k)J = ΓJ(q∗2,k)J Z
(J)
2;on;off , (A12)
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with a similar relation for Z
(J)
2;off;on.

Before concluding this appendix, we return to the situation in which the K matrix has poles for real values of
the energy lying below threshold. In this case, Eq. (A9) continues to hold—since it is based on a diagrammatic
analysis—except that ρ̃2 becomes iρ̃H, with the factor of H required by our definition of K2 [see Eq. (9)]. Thus we
obtain Eq. (13) also when working below threshold, and consequently it remains true that poles in the on-shell K
matrix appear in its off-shell extension, in the same locations.

There is, however, an additional issue that must be considered. This arises because the scattering amplitude itself
can have poles for real, subthreshold energies, corresponding to bound states. At such poles, the on-shell K matrix

becomes K(`)
2,on;on → −1/(ρ̃H), which is real and finite. The issue is whether the off-shell K matrix is also finite. To

see that this is in fact the case, we make use of the factorization of M2 at the pole, allowing us to write

iM(`)
2;on;on ∼

i(igon)2

(s− E2
b )
, iM(`)

2;off;on ∼
i(igoff) (igon)

(s− E2
b )

, and iM(`)
2;off;off ∼

i(igoff)2

(s− E2
b )
, (A13)

where Eb is the energy of the bound state pole and s = P 2
2,k is the two-particle c.m. energy. Substituting these results

into Eq. (A9) and using the value of K(`)
2;on;on at the pole, we find that K(`)

2;off;off is indeed finite at s = E2
b .

Appendix B: Details of the derivation of results presented in Sec. III

In this appendix we present technical details of the derivations outlined in Sec. III.

1. Derivation of the recursion formula for C
(m,n)
L,0F [Eq. (56)]

Here we derive Eq. (56) and, in doing so, give complete definitions of the quantities defined therein.

C
(m,n)
L,0F is shown diagrammatically in Fig. 1(b). Here we focus on the next momentum to be converted from a sum

to an integral, labeled qm+1 in Fig. 1(b). Thus it is convenient to absorb the integrated loops to the left of qm+1 into

a new endcap iB(m)
∞ , and similarly to absorb the summed loops to the right into iB(n−m−2)

L , since these new endcaps
will maintain their forms throughout the derivation. This new notation is shown in Fig. 6(a), with the diagrammatic

definitions of the endcaps B(m)
∞ and B(m)

L sketched, respectively, in Figs. 6(b) and (c).21 The superscripts on the

21 The definition of B(m)
∞ is imprecise, since additional terms are included for each extra factor of iK2 that is added. This is explained in

Fig. 7 and the accompanying text.
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performed simultaneously with the projection of the exchange propagator, leading to factors of Gρ and G. (d) This leads to a
remainder term that is smooth everywhere except at the K-matrix pole and can be separated into an on-shell term and another

contribution to C
(m+1,n)
L,0F . (e) The remaining piece to decompose, in which the rightmost K matrix is smooth, leads to an F cut

in the middle of the diagram and yet another contribution to C
(m+1,n)
L,0F . (f) Finally we summarize all terms entering B(m+1)

∞ ,
collected from (a), (d) and (e) above. The notation is as in Figs. 1 and 6, with the addition that dashed lines represent on shell
propagators. See text for further discussion.

Bs denote the number of factors of iK2 or its smooth counterpart that they contain. Note that these endcaps are

closely related to A
′(m,u)
3 and A

(m,u)
L,3 , respectively, quantities discussed in the main text. The differences are that the

B endcaps are not projected on shell, and also not decomposed into spherical harmonics.

As an example of the meaning of the endcaps, and their relation to the factors A and A′, we write out iA
(m,u)
L,3 in

terms of iB(m−1)
L explicity (using our new convention that endcaps contain factors of i)

iA
(m,u)
L,3 (a, k) ≡ 1

2

∑

a′

iK2,off(k, b,−a′)∆(a′)∆(b′)iB(m−1)
L (a, a′) , (B1)

iA
(m,u)
L,3 ([ωa,~a], [ωk,~k]) ≡ iA(m,u)

3;`′m′(~a, k
∗
2,a)Y∗3,`′m′(~k∗2,a) , (B2)

iA
(m,u)
3;a,`′m′ ≡ iA

(m,u)
3;`′m′(~a, q

∗
2,a) , [with ~a ∈ (2π/L)Z3] , (B3)

where Y3 is defined in Eq. (26). The B endcaps are shown in the figures as open squares with rounded corners. [Note
I rewrote using Y3]

Using this notation, we can explicitly display the relevant part of C
(m,n)
L,0F ,

C
(m,n)
L,0F =

1

4

∑

k,a,a′′

∫

a′
iB(m)
∞ (k, a′)∆(a′)∆(b′)iK2;off(a′, b′,−a)

×∆(k)∆(a)∆(b)iK2;off(k, b,−a′′)∆(a′′)∆(b′′)iB(n−m−2)
L (a, a′′) . (B4)
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Here we have changed the labels to the more manageable choices shown in Fig. 7(a), and used the definitions b′ ≡
P − k − a′, b ≡ P − a− k, b′′ ≡ P − a− a′′ and

∫

a

≡ P̃V

∫
d4a

(2π)4
,

∑

k

≡
∫
dk0

2π

1

L3

∑

~k

. (B5)

The quantity K2;off is the fully off-shell two-particle K matrix defined as in Ref. [1], with the first two labels denoting
the outgoing momenta, and the third one of the incoming momenta. Note that in Appendix A we refer to this K
matrix as K2;off,off ; here the double subscript is not necessary. The expression (B4) holds for n −m > 2 and n > 2,
which is the case shown in Fig. 7(a). For n −m = 2 and n ≥ 2 the sum over a′′ is replaced by an integral. Other
cases are simpler and will be discussed at the end.

To derive Eq. (56), we begin by making the substitution

∆(k) = (2π)δ(k0 − ωk)
1

2ωk
+R(k) , (B6)

thereby separating the particle-pole contribution to the propagator (which is the only part that can lead to singularities
as a function of k) from the remainder, R(k). This is shown in Fig. 7(a) where, just as in Fig. 3, the pole is shown

by a dashed line and the remainder by double solid lines. In the contribution of R(k) to C
(m,n)
L,0F , we can replace the

sum over k with an integral, leading to a contribution to C
(m+1,n)
L,0F , shown as the second term on the right-hand side

of Fig. 7(a). Thus we focus only on the particle-pole contribution, the first term on the right side of 7(a), in the
following.

The next step is to insert a variant of Eq. (15) for the left-hand K matrix

iK2;off(a′, b′,−a) = 4πY ∗JMJ
(â′∗2,k)(a′∗2,k)J iΓJ(M2, a′2, b′2)

iηJHρ(~k)

(P 2
2,k −M2)

iΓJ(M2, a2, b2)(a∗2,k)JYJMJ
(â∗2,k)

+ iK̃2,off(a′, b′,−a) . (B7)

Here we have added back in the spherical harmonics needed to recreate the full K matrix. Note that, by assumption,
the pole appears only in the Jth partial wave, while the second, smooth term includes contributions from all partial
waves. In the first term of Eq. (B7), J is fixed, while MJ is summed from −J to J . Note also, as compared to
Eq. (15), we have included the UV regulator Hρ in the pole term. This can be added since, by construction, 1−Hρ

cancels the K-matrix pole, and thus leads to a smooth contribution that can be absorbed into K̃2,off .
The result of this insertion is shown in Fig. 7(b). We first consider the K-matrix pole contribution, which is

represented by the second term on the right-hand side of Fig. 7(b), and has the explicit expression

C
(m,n)
L,0F ⊃

1

2

1

L3

∑

~k

∑

a,a′′

∫

a′
iA
′(m)

2̃;MJ
(~k)

iηJHρ(~k)

(P 2
2,k −M2)

iΓJ(M2, a2, b2)(a∗2,k)J
1

2ωk

√
4πYJMJ

(â∗2,k)

×∆(a)∆(b)iK2;off(k, b,−a′′)∆(a′′)∆(b′′)iB(n−1)
L (a, a′′) , (B8)

where

iA
′(m)

2̃;MJ
(~k) ≡ 1

2

∫

a′
iB(m−1)
∞ (k, a′)∆(a′)∆(b′)

√
4πY ∗JMJ

(â′∗2,k)(a′∗2,k)J iΓJ(M2, a′2, b′2) . (B9)

In both of these equations k is on shell, kµ = (ωk,~k). In the figures, we represent the factors of iΓJ by small closed
circles, and the K-matrix pole by a thick horizontal line.

At this stage A
′(m)

2̃;MJ
(~k) is not evaluated at the K pole, i.e. P 2

k 6= M2. We can pick out the “on shell” part (where on

shell here refers to the 2̃ state consisting of a particle plus the K-matrix pole) by hand, by introducing a δ operator
analogous to those used in Ref. [1]

A
′(m)

2̃;MJ
(~k) ≡ A′(m)

2̃;MJ`′m′
Y2;`′m′(~k

∗) + δρA
′(m)

2̃;MJ
(~k) , (B10)

where the on-shell value of A′
2̃

is

A
′(m)

2̃;MJ`′m′

√
4π Y`′m′(k̂

∗) ≡ A′(m)

2̃;MJ
(q∗ρ k̂

∗) . (B11)
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Here we are using the definitions of Y2 from Eq. (34) and of q∗ρ from Eq. (6). This step is represented by the second
line in Fig. 7(b), where in the second term we use the label “on” to indicate those quantities for which the ρπ relative

momentum has been set to its on-shell value, ~k∗ → q∗ρ k̂
∗. If ~k is left at its original value, then we use the label “off”.

The δρ operator cancels the K-matrix pole, and thus its contribution can be absorbed into that from K̃2 to C
(m,n)
L,0F .

This is indicated by the prime on the integrated K matrix symbol in the first term on the right-hand side of Fig. 7(b).

We return to this contribution later. Equation (B11) completes the definition of the infinite-volume endcap A
′(m)

2̃;MJ`m
.

Substituting the on-shell term from Eq. (B10) into Eq. (B8), we obtain the second term on the second line of
Fig. 7(b). The explicit expression is

C
(m,n)
L,0F ⊃

1

2

∑

~k

∑

a,a′′

∫

a′
iA
′(m)

2̃;MJ`′m′
Y2̃,`′m′(

~k∗)
iηJHρ(~k)

(P 2
2,k −M2)

iΓJ(M2, a2, b2)(a∗2,k)J
1

2ωkL3

√
4πYJMJ

(â∗2,k)

×∆(a)∆(b)iK2;off(k, b,−a′′)∆(a′′)∆(b′′)iB(n−1)
L (a, a′′) . (B12)

The final step for this term is to introduce a “G cut” through the a, b and k propagators, following the approach of
Ref. [1]. This cut places all three particles on shell, but in a different manner to the left and the right of the cut.

In both cases, the spectator momentum is unchanged (~k to the left, and ~a to the right), while the interacting pair
have their momenta rescaled in their c.m. frame. The G-cut term thus replaces ΓJ(M2, a2, b2) with the fully on shell
ΓJ , and a∗2,k with q∗2,k. This is shown in Fig. 7(c). Using the definitions given in Sec. II, we find that the G-cut

contribution [the first term on the right-hand side of Fig. 7(c)] is

C
(m,n)
L,0F ⊃ iA

′(m)

2̃;MJ`′m′
iGρ;MJ`′m′;k`′′m′′iΓJ

1

2ωkL3
iGk`′′m′′;a`′′′m′′′iA

(n−m,u)
L,3;a`′′′m′′′ = A

′(m)

2̃
GρΓΓΓGA

(n−m,u)
L,3 , (B13)

where all repeated indices are summed in the middle quality and left implicit in the last. This is the third term on
the right-hand side of first line of Eq. (56).

The cut we have just discussed is the most singular that arises, having the K2 pole (Gρ) and the three-particle
pole (G) separated only by the constant ΓΓΓ. It is possible for both poles go on shell simultaneously, for special values

of ~k and ~a. We stress that these potential double poles appear only in sums over the spectator momenta, and not in
sum-integral differences. Thus we do not need to introduce a generalized zeta-function to describe them, unlike, for
example, in the analysis of finite-volume effects in two-particle matrix elements [33].

The difference between Eqs. (B12) and (B13), represented by the last term of Fig. 7(c), has no three-particle
singularity, but still retains the K-matrix pole. The absence of this singularity is shown in Fig. 7(c) by the double
line for the b propagator in the last term. We now project the quantity to the right of this pole on shell using the δρ
operator introduced above in Eq. (B10), but now acting to the right. This is shown in Fig. 7(d), leading to the final
term on the first line of Eq. (56),

A
′(m+1)
2 Fρπ /A

(n−m)

L,2̃
, (B14)

in which Fρπ acts like a cut, and provides an implicit definition of /AL,2̃. The term involving δρ removes the K-matrix
pole, and is thus free of singularities. For this term the sum over k can be replaced by an integral, providing an

additional contribution to C
(m+1,n)
L,0F .

Finally we consider the part involving the smooth part of the left-hand K2, i.e the first term in the second line of
Fig. 7(b), whose explicit expression is

C
(m,n)
L,0F ⊃

1

4

1

L3

∑

~k

∑

a,a′′

∫

a′
iB(m)
∞ (k, a′)∆(a′)∆(b′)iK̃′2;off(a′, b′,−a)

1

2ωk

×∆(a)∆(b)iK2;off(k, b,−a′′)∆(a′′)∆(b′′)iB(n−m−2)
L (a, a′′) . (B15)

[changed the leftmost superscript from m− 1 to m] As noted above, another term with the same pole structure has

been implicitly absorbed into this expression. We represent this by adding a prime to K̃′2;off . The situation is now

just as in Ref. [1], since the K-matrix pole is absent. Thus we can replace the sum over ~k with an integral plus the
difference, the latter giving rise to an “F cut”. We do not present the details as they have been presented in Ref. [1].
This step is shown in Fig. 7(e). The F cut gives the second term on the right-hand side of the first line of Eq. (56),
which has the form

2A
′(m+1,s)
3 FA

(n−m−1,u)
L,3 , (B16)
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while the integral leads to the final contribution to C
(m+1,n)
L,0F .

As we have progressed through this derivation, we have picked up three contributions that can be absorbed into

C
(m+1,n)
L,0F . In fact, given our definition CL,0F in terms of the B endcaps, Eq. (B4), the contributions are specifically

absorbed into B(m+1)
∞ . This is shown in Fig. 7(f). In this way B∞ and the meaning of the smooth K2 symbol, K̃′2, are

defined recursively, and this feeds into the definitions of the other infinite-volume endcaps.
The above discussion holds for n −m ≥ 2, so that the two K2 factors can be pulled out and dealt with explicitly.

The case n−m = 1 is special, since there is only a single summed loop and the only singularity arises from the pole
in K2. The analysis is simpler for this case and leads to the second line in Eq. (56).

2. Details on decomposition of K
(u)
L described in Sec. III E

In this appendix we provide various details in the derivation of Eq. (65) described in Sec. III E. As in the main text,
many of these results have been checked using a Mathematica notebook together with the package The NCAlgebra
Suite [32]. Equations verified in this way are preceded by the indicator “(XNCAX)”.

We begin by solving Eq. (71). By isolating K
(u,u)
L,33 in the matrix equation one finds

K
(u,u)
L,33 =

1

1− /KL,33G−K2G

[
K2GK2 + /KL,33 (1 + GK2)

]
, (B17)

which can be rearranged into a compact, symmetric expression (XNCAX) [label in the notebook]

K
(u,u)
L,33 = K

(0)
L,33 + (1 + TG) /KL,33

1

1− GK /KL,33

(1 + GT) , (B18)

where K
(0)
L,33 is defined in Eq. (66). This is identically the 33 component of Eq. (77). To see this, we rewrite the latter

equation as

K
(u)
L =

(
0 0

0 K
(0)
L,33

)
+ EEEL /KL

1

1−GGGK /KL

EEER , (B19)

=

(
0 0

0 K
(0)
L,33

)
+

(
1 0
0 1 + TG

)(
/KL,2̃2̃

/KL,2̃3

/KL,32̃
/KL,33

)[
1−

(
0 0
0 GK

)(
/KL,2̃2̃

/KL,2̃3

/KL,32̃
/KL,33

)]−1(
1 0
0 1 + GT

)
. (B20)

As the two-by-two matrix containing GK , as well as matrices EEEL and EEER, project onto the 3 component of their
neighbors, it is straightforward to determine the 33 component of this relation and see that it indeed matches Eq. (B18).

We now turn to K
(u)

L,2̃3
. Substituting the result for K

(u,u)
L,33 into Eq. (73), and simplifying yields (XNCAX) [label in

the notebook]

K
(u)

L,2̃3
= /KL,2̃3

1

1− GK /KL,33

(1 + GT) . (B21)

The expression for K
(u)

L,32̃
can be obtained similarly, with the result being essentially the left-right reflection of Eq. (B21)

(XNCAX) [label in the notebook]

K
(u)

L,32̃
= (1 + TG)

1

1− /KL,33 GK

/KL,32̃ . (B22)

Together these results give the 2̃3 and 32̃ components of Eq. (77) [equivalently Eq. (B20)].

The final quantity we need is KL,2̃2̃. Using the method detailed in the main text for K
(u,u)
L,33 , we find

KL,2̃2̃ = /K
(u)

L,2̃3
GK

(u)

L,32̃
+ /KL,2̃2̃ . (B23)

Substituting (B22) and rearranging leads to (XNCAX) [label in the notebook]

KL,2̃2̃ = /KL,2̃2̃ + /KL,2̃3 GK
1

1− /KL,33 GK

/KL,32̃ . (B24)
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This gives the 2̃2̃ component of Eqs. (77) and (B20) and completes the demonstration of this result.
It remains to verify Eq. (78), the relation between slashed objects and the infinite-volume matrix, KKK. In the main

text we derived the relations for /KL,2̃3 and /KL,33, Eqs. (75) and (76), respectively. We find the result for /KL,32̃ is

essentially the reflection of that for /KL,2̃3,

/KL,32̃ = K32̃

1

1− FρπK2̃2̃

. (B25)

To complete the discussion we must address /KL,2̃2̃. Following the same decomposition strategy one last time we reach

/KL,2̃2̃ = K2̃2̃Fρπ /KL,2̃2̃ + K2̃2̃ , (B26)

whose solution is

/KL,2̃2̃ =
1

1−K2̃2̃Fρπ
K2̃2̃ . (B27)

Our claim is that the four results (75), (76), (B25) and (B27) are equivalent to the matrix result, Eq. (78). To show
this, we rearrange the latter, and insert the definitions for KKK and FFFρπ, yielding

/KL =

[(
1 0
0 1

)
−
(
K2̃2̃ K2̃3
K32̃ K33

)(
Fρπ 0
0 0

)]−1(
K2̃2̃ K2̃3
K32̃ K33

)
. (B28)

It is then straightforward to pick out various components of the equation by expanding the square-bracketed quantity,
identifying a given component and then resumming. The manipulations are simplified by the fact that the matrix
containing Fρπ is a projector. The most complicated example is the 33 component, for which we find

/KL,33 = K33 + K32̃

∞∑

n=0

Fρπ
(
K2̃2̃Fρπ

)n
K2̃3 , (B29)

which sums into Eq. (76). Similarly one can show that the 2̃3 component of the matrix relation matches Eq. (75),

the 32̃ component yields Eq. (B25), and the 2̃2̃ component gives Eq. (B27).
At this stage we have derived all relations summarized in Eqs. (77) and (78) of Sec. III E. From this point the

discussion in the main text completes the derivation, yielding a decomposition of all entries the matrix K
(u)
L in terms

of infinite-volume divergence-free K matrices.

3. Volume independence of δC
[B2],{0}
∞

In this appendix we explain why δC
[B2],{0}
∞ , defined in Eq. (94) of the main text, has only exponentially suppressed

volume dependence and can thus be taken as an infinite-volume quantitiy.
To show this we begin by focusing on the first four terms, and noting that these can be rewritten as

− 2
3σσσ
∗Fσσσ†∗ − 2A

′(s)
3 Fσσσ†∗ −A′3F 2A

(s)
3 + 2

3A
′
3FA3 = − 2

3A
′(s−u)
3 Fσσσ∗ − 2

3A
′
3FA

(s−u)
3 , (B30)

where22

A
′(s−u)
3 ≡ A

′(s)
3 −A

′(u)
3 + σσσ∗ , and A

(s−u)
3 ≡ A

(s)
3 −A

(u)
3 + σσσ†∗ . (B31)

As explained in Ref. [1] [see Eqs. (196)-(198) of that work, and the surrounding discussion], the s − u differences in
Eq. (B30) can be written as

− 2
3A
′(s−u)
3 Fσσσ∗ − 2

3A
′
3FA

(s−u)
3 = −A′(s−u)

3

iρ

3ω
σσσ∗ −A′3

iρ

3ω
A

(s−u)
3 +O(e−mL) . (B32)

22 The factors of σσσ∗ and σσσ†∗ appear here because A
′(u)
3 and A

(u)
3 are defined to include the n = 0 terms [see Eq. (53)] while A

′(s)
3 and

A
(s)
3 do not [see Eq. (57)].
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FIG 8

Do we need all of the quotation marks in this figure? My vote would be to remove these.] [I agree with removing the quotes, and also 
suggest making the words “on” and “off” a bit larger.] [Other changes: (1) in the first line put in boxed Fρπ, Gρ and G, as in Fig. 7 (c) and 
(d). (2) Put an integral sign and a prime through all open circles. (3) Put a δρ next to the double line in the second term on the right-hand 
side of the first equality, as in the final term in Fig. 7 (d). (4) There should be a second equality, called (b), with the left-hand side being 
the first term on the right-hand side of the first equality, the first term on the right-hand side being unchanged except for the 
addition of a boxed Fρπ, and the second term on the right-hand side having a δρ. (5) (b) should become (c). (6) The second term in 
(a) should have a dashed upper line passing through the G cut, as in the first term in the bottom line. (7) a label ”a” should be 
placed above the upper-right dashed line in the first term on the bottom line.] 
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FIG. 8: Derivation of Eq. (B34), using the notation of Fig. 7. The momentum denoted k is always summed. In the last
equality of (a) we have redefined the “off”-shell term of the K matrix.

The phase-space factor ρ [defined in Eq. (27)] is smooth, allowing the implicit sums in our matrix notation to be re-
placed by integrals, up to exponentially suppressed corrections. Thus, within the framework of dropping exponentially-
suppressed volume dependence, the right-hand side is an infinite-volume quantity.

The remaining two terms in Eq. (94) are

A′
2̃
Fρπ( /A2̃ −A2̃) + A′

2̃
GρΓΓΓ

[
G(A

(u)
3 − σσσ†∗)− F 2A

(s)
3

]
. (B33)

To show that this is also an infinite-volume quantity, we need a new argument, since this quantity involves K-matrix
poles and thus was not encountered in Ref. [1]. We make the argument diagrammatically in Fig. 8, based in part on
the derivation illustrated in Fig. 7. We do not give the corresponding analytic expressions, as our earlier discussion
explains the precise relation between diagrams and equations.

We begin by substituting Fig. 7(d) into the final term in Fig. 7(c) and rearranging so that the terms involving Fρπ
and Gρ are on the left-hand side. We also make several changes to the parts of the diagrams away from the cuts in
order to apply the result to the present quantities of interest. These changes do not impact the derivation. They are
(a) the box on the left end now represents A′

2̃
, with the final loop explicitly exposed; (b) the loops to the right of the

cut are changed from sums to integrals; (c) the kernel on the right is changed from K2 to K̃′2; and, finally, (d), the
box on the right end represents the remainder of a full infinite-volume endcap. These steps lead to the equality in
Fig. 8(a). At this stage, the first term on the left-hand side represents A′

2̃
Fρπ /A2̃, the second term on the right-hand

side is manifestly an infinite volume quantity, while the other two terms need further manipulations to bring them to
a useful form.

The first term on the right-hand side of Fig. 8(a) is rewritten in Fig. 8(b). The approach here is to to expand the off-
shell A2̃ factor lying to the right of the cut about the position of the K-matrix pole, using the δρ operator introduced
above. The leading term gives A′

2̃
FρπA2̃, while the δρ-dependent term is smooth at the K-matrix pole allowing the

sum over the spectator momentum to be replaced by an integral (up to exponentially suppressed corrections). This
is shown in the second term on the right-hand side by the “∞” symbol within the vertical dashed line. This term is
manifestly an infinite-volume quantity.

The final step is shown in Fig. 8(c), where we derive an equality for the second term on the right-hand side of
Fig. 8(a). On the left-hand side we have a G cut with the momentum ~a integrated. To obtain the right-hand side

we replace this integral with a sum minus a sum-integral difference. The sum gives A′
2̃
GρΓΓΓGA

(u)
3 , shown by the first

term on the right-hand side of Fig. 8(c). The sum-integral difference gives rise to a factor of F, and, following the

arguments of Ref. [1], switches A
(u)
3 − σσσ†∗ to A

(s)
3 , leading to −A′

2̃
GρΓΓΓF 2A

(s)
3 .
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The overall result of these steps is23

A′
2̃
Fρπ /A2̃ + A′

2̃
GρΓΓΓ

[
G(A

(u)
3 − σσσ†∗)− F 2A

(s)
3

]
= A′

2̃
FρπA2̃ + δ′C [B2],{0}

∞ +O(e−mL) , (B34)

where δ′C [B2],{0}
∞ is a particular infinite-volume contribution, to be absorbed into δC

[B2],{0}
∞ and ultimately into C

[B2]
∞ .

After rearrangement, this demonstrates the desired result.

4. Symmetrization of factors adjacent to
(
X + Y

)
33

In this final appendix, we demonstrate that the contribution of the 33 component of X + Y to K
(u)
df

(
X + Y

)
K

(u)
df

is consistent with the claimed general result, Eq. (149). For definiteness, we consider the term containing the 23

component of K
(u)
df and the 32 component of K

(u)
df , although the derivation works for any (u)-type three-particle

quantities on the ends. To match with Eq. (149) we need to show that

χ ≡ K
(u)

df,2̃3

(
X + Y

)
33
K

(u)

df,32̃
(B35)

= K
(u)

df,2̃3

1

1−⊗I†33

(
⊗I32̃ S

)
·
(
F2̃2̃ F2̃3
F32̃ F33

)
·
(
I2̃3⊗
S

)
1

1− I33⊗
K

(u)

df,32̃
+ δ′K(u)

df,2̃2̃
, (B36)

where δ′K(u)

df,2̃2̃
is an infinite-volume quantity that can be absorbed into the quantity δK

(u)

df,2̃2̃
defined in Eq. (149). Its

explicit expression is determined below.
Using the definition of X + Y we find

χ = K
(u)

df,2̃3
(F + G)

1

1−K2(F + G)
K

(u)

df,32̃
, (B37)

which can be divided into two contributions using Eq. (127),

χ = χa + χb , (B38)

χa = K
(u)

df,2̃3
(F + G)

1

1−K2(F + G)

{
K2FS + ΓΓΓGρI2̃3⊗

} 1

1− I33⊗
K

(u)

df,32̃
, (B39)

χb = K
(u)

df,2̃3
(F + G)

1

1− I33⊗
K

(u)

df,32̃
. (B40)

χa can be rewritten using the reflected form of Eq. (127),

χa = χa1 + χa2 + χa3 , (B41)

χa1 = K
(u)

df,2̃3

1

1−⊗I†33

{
⊗I32̃GρΓΓΓ + SFK2

} 1

1− (F + G)K2
(F + G)

{
K2FS + ΓΓΓGρI2̃3⊗

} 1

1− I33⊗
K

(u)

df,32̃
, (B42)

χa2 = K
(u)

df,2̃3

1

1−⊗I†33

(F + G)K2FS
1

1− I33⊗
K

(u)

df,32̃
, (B43)

χa3 = K
(u)

df,2̃3

1

1−⊗I†33

(F + G)ΓΓΓGρI2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃
. (B44)

χa1 includes only symmetrized quantities, but χa2 and χa3 need further work. Noting the presence of F + G, we can
apply Eq. (126) to both quantities. For χa this leads to

χa2 = χa2A + χa2B , (B45)

χa2A = K
(u)

df,2̃3

1

1−⊗I†33

SFK2FS
1

1− I33⊗
K

(u)

df,32̃
+ K

(u)

df,2̃3

1

1−⊗I†33

⊗ I32̃GρΓΓΓFS
1

1− I33⊗
K

(u)

df,32̃
, (B46)

χa2B = K
(u)

df,2̃3

1

1−⊗I†33

⊗ I†33FS
1

1− I33⊗
K

(u)

df,32̃
. (B47)

23 Since the difference /A2̃ −A2̃ has at least one K̃′2 insertion, as shown in the figure, the σσσ†∗ part of A
(u)
3 does not contribute.
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FIG. 9: Derivation of Eq. (B50), using the notation of Figs. 1, 4 and 7. The first step is identical to that in Fig. 4: replacing
the sum adjacent to the G cut with a sum-integral difference and an integral, the former giving rise to an F cut. In this case,
however, there are no K-matrix poles, so the integral in the upper-right loop of the final term on the first line removes the
divergence in the summand for the spectator momentum, allowing it to be replaced by an integral, as shown by the final term
on the second line. Since all loops are integrated in this term, it can be represented as the action of a new integral operator,

denoted ρ33, tying the K
(u)

df,2̃3
and K

(u)

df,32̃
together.

Only χa2B contains an unsymmetrized quantity. It can be rewritten as

χa2B =
1

3
K

(u)

df,2̃3

1

1−⊗I†33

⊗ I†33SFS
1

1− I33⊗
K

(u)

df,32̃
+

(
K

(u)

df,2̃3

1

1−⊗I†33

⊗ I†33

)(u−s)
iρ

3ω
S 1

1− I33⊗
K

(u)

df,32̃
, (B48)

where the first term is symmetrized, while in the second the two factors of K
(u)
df are bound together by an integral

operator, giving a contribution to δ′K(u)

df,2̃2̃
.

Returning to χa3, we can apply the reflected form of Eq. (135), yielding

χa3 = K
(u)

df,2̃3

1

1−⊗I†33

SFΓΓΓGρI2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃
+ K

(u)

df,2̃3

1

1−⊗I†33

⊗ I32̃FρπI2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃

+ K
(u)

df,2̃3

1

1−⊗I†33

⊗ ρ32̃ ⊗ I2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃
. (B49)

The final term in this expression gives an additional contribution to δ′K(u)

df,2̃2̃
.

The final step is to analyze χb. This requires the result

K
(u)

df,2̃3
GK

(u)

df,32̃
= K

(u)

df,2̃3
FK

(s+s̃)

df,32̃
+ K

(u)

df,2̃3
⊗ ρ33 ⊗K

(u)

df,32̃
, (B50)

which implies

K
(u)

df,2̃3
(F + G)K

(u)

df,32̃
= K

(u)

df,2̃3
FSK(u)

df,32̃
+ K

(u)

df,2̃3
⊗ ρ33 ⊗K

(u)

df,32̃
, (B51)

=
1

3
K

(u)

df,2̃3
SFSK(u)

df,32̃
+ K

(u)

df,2̃3
⊗ ρ33 ⊗K

(u)

df,32̃
+ K

(u−s)
df,2̃3

iρ

3ω
K

(u)

df,32̃
. (B52)

The derivation of Eq. (B50) is shown diagrammatically in Fig. 9. The result holds, as usual, for any choice of
unsymmetrized (u)-like three-particle quantities on the ends, and thus can be applied to χb, yielding

χb =
1

3
K

(u)

df,2̃3
SFS 1

1− I33⊗
K

(u)

df,32̃
+ K

(u)

df,2̃3
⊗ ρ33 ⊗

1

1− I33⊗
K

(u)

df,32̃
+ K

(u−s)
df,2̃3

iρ

3ω

1

1− I33⊗
K

(u)

df,32̃
. (B53)

The last two terms give additional contributions to δ′K(u)

df,2̃2̃
.
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Combining all these results we find the desired result, Eq. (B36), with

δ′K(u)

df,2̃2̃
=

(
K

(u)

df,2̃3

1

1−⊗I†33

⊗ I†33

)(u−s)
iρ

3ω
S 1

1− I33⊗
K

(u)

df,32̃
+ K

(u)

df,2̃3

1

1−⊗I†33

⊗ ρ32̃ ⊗ I2̃3 ⊗
1

1− I33⊗
K

(u)

df,32̃

+ K
(u)

df,2̃3
⊗ ρ33 ⊗K

(u)

df,32̃
+ K

(u−s)
df,2̃3

iρ

3ω
K

(u)

df,32̃
. (B54)
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