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Abstract

We study the imaginary parts of the isoscalar electromagnetic and isovector axial form
factors of the nucleon close to the 3π-threshold in covariant baryon chiral perturbation theory.
At the two-loop level, the contributions arising from leading and next-to-leading order chiral
πN -vertices, as well as pion-induced excitations of virtual ∆(1232)-isobars, are calculated.
It is found that the heavy baryon treatment overestimates substantially these 3π-continua.
From a phenomenological analysis, that includes the narrow ω(783)-resonance or the broad
a1-resonance, one can recognize small windows near threshold, where chiral 3π-dynamics
prevails. However, in the case of the isoscalar electromagnetic form factors GsE,M (t), the

radiative correction provided by the π0γ-intermediate state turns out to be of similar size.

1 Introduction

The structure of the nucleon as revealed in elastic electron-nucleon and (anti)neutrino-nucleon
scattering is encoded in four electromagnetic form factors Gp,n

E,M(t) and two axial form factors
GA,P (t), with t the squared momentum-transfer. Dispersion theory is a tool to interpret (and
cross check) these scattering data in a largely model independent way [1, 2]. The nucleon form
factors are assumed to satisfy unsubtracted dispersion relations and their absorptive parts are often
parametrized by a few vector meson poles. However, such an approach is not in conformity with
general constraints from unitarity and analyticity. In particular, the singularity structure of the
ππN -triangle diagram leads to a pronounced enhancement of the isovector electromagnetic spectral
functions on the left wing of the ρ(770)-resonance. The two-pion intermediate state can actually
be treated exactly (in the energy region 2mπ <

√
t < 1 GeV) in terms of the pion charge form

factor Fπ(t) and the p-wave πN partial wave amplitudes f 1
±(t) in the crossed t-channel ππ → N̄N .

For the latter quantities improved results have been obtained in recent dispersion analyses of πN -
scattering [3, 4] based on solutions of the Roy-Steiner equations. The calculation of the isovector
electromagnetic spectral functions ImGv

E,M(t) in chiral perturbation theory up to two loops [5] is
able to account (step by step) for the strong enhancement above the 2π-threshold (which originates
from a logarithmic singularity at tc = 4m2

π −m4
π/M

2 = 3.978m2
π on the second Riemann sheet),

but an additional (adjusted) ρ(770)-resonance contribution is necessary to reproduce reasonably
the empirical spectral functions. On the other hand, the isoscalar electromagnetic form factors
Gs
E,M(t) are usually represented by sums of a few vector meson poles (ω, φ, s1, s2, s3) [2, 6]. The
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effects of the 3π-continuum on the spectral functions ImGs
E,M(t) close to threshold have been

calculated in ref. [7] using heavy baryon chiral perturbation theory, and it was concluded that
these are small against the tails of an ω(783)-resonance with constant width. In that work [7]
the axial spectral function ImGA(t) near the 3π-threshold was also computed and the analogous
calculation for the induced pseudoscalar form factor GP (t) has been performed in ref. [8].

The purpose of the present paper is an improved calculation of the 3π-continua in covariant
baryon chiral perturbation theory. This seems appropriate in view of the expected size of rela-
tivistic corrections:

√
t/M > 3mπ/M = 0.44. In addition to leading order chiral πN -vertices,

we consider also the next-leading order ones (involving the low-energy constants c1, c2, c3, c4) and
we treat the pion-induced excitation of the low-lying ∆(1232)-resonance, described by a Rarita-
Schwinger spinor. Our paper is organized as follows. In section 2 we recapitulate the Cutkosky
cutting rule applied to two-loop diagrams with a 3π-absorptive part and we present the Lorentz-
invariant 3π-phase space integral in explict form together with all kinematical variables. The
formulas to project out individual nucleon form factors from the transition matrix elements of
the vector and axial-vector currents are also given. Section 3 is devoted to the presentation and
discussion of the calculated 3π-spectral function ImGs

E,M(t) and ImGA(t), separated into con-
tributions from leading order chiral πN -vertices, next-to-leading order ones, and the inclusion of
explicit ∆-isobars. In each case we give also convenient formulas, which refer to the non-relativistic
approximation. In section 4 we perform a simple phenomenological analysis by considering the
narrow ω(783)-resonance for ImGs

E,M(t) and the broad a1(1260)-resonance for ImGA(t). In the
first case this draws our attention to electromagnetic effects and are thus compelled to compute
the radiative correction to ImGs

E,M(t) provided by the π0γ-intermediate state. The paper ends
with a summary and conclusions in section 5.

2 Calculation of three-pion spectral functions

We follow the (standard) notations for the electromagnetic and axial form factors of the nucleon
as introduced in section 2 of ref. [7], and remind that these form factors are assumed to satisfy
unsubtracted dispersion relations of the form:

F (t) =
1

π

∫ ∞
t0

dt′
ImF (t′)

t′ − t− iε
. (1)

The threshold t0 for hadronic intermediate states is t0 = 4m2
π for the isovector electromagnetic form

factors Gv
E,M(t) and the scalar form factor σN(t), while t0 = 9m2

π for the isoscalar electromagnetic
form factors Gs

E,M(t) and the isovector axial form factors GA,P (t). The measurable electromagnetic
form factors of the proton and neutron are composed of the isoscalar and isovector ones as:

Gp,n
E,M(t) = Gs

E,M(t)±Gv
E,M(t) , (2)

where the normalizations Gs,v
E (0) = 1/2, Gs

M(0) = 0.440 and Gv
M(0) = 2.353 hold at t = 0.

Figure 1 shows a generic two-loop diagram with a 3π-intermediate state contributing to the
nucleon transition matrix element of the vector (or axial-vector) current. The three pions have
four-momenta l1, l2, l3 and a, b, c are their (cartesian) isospin-indices. Exploiting (perturbative)
unitarity in the form of the Cutkosky cutting rules, one obtains for the imaginary (or absorptive)
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Figure 1: Generic two-loop diagram γ∗ → 3π → N̄N generating the three-pion spectral function.

part of the corresponding two-loop amplitude:

ImT2-loop = −1

2

∫
dΦ3A·B , (3)

where A denotes the S-matrix for γ∗ → 3π and B the S-matrix for 3π → N̄N (in the subthreshold
region

√
t < 2M). The integral

∫
dΦ3 goes over the Lorentz-invariant three-pion phase space,

whose volume is determined by the kinematical variable t = (l1 + l2 + l3)2 = (p2 − p1)2 and
the mass mπ. In the center-of-mass frame the phase space integration can be expressed as a
four-dimensional integral over two energies (ω1, ω2) and two angular variables (x, ϕ) by:∫

dΦ3H(. . . ) =
1

64π4

∫∫
z2<1

dω1dω2

∫ 1

−1

dx

∫ π

0

dϕH(. . . ) , (4)

where z is determined by energy and momentum conservation as

|~l1||~l2| z = ω1ω2 −
√
t(ω1 + ω2) +

t+m2
π

2
, |~l1,2| =

√
ω2

1,2 −m2
π , (5)

and
√
t > 3mπ denotes the three-pion invariant mass. The directional cosines

x = l̂1 ·~v, y = l̂2 ·~v = xz +
√

(1− x2)(1− z2) cosϕ , (6)

refer to a unit-vector ~v, which is introduced by the momentum of the nucleon.
Before eqs.(3,4) can be applied to calculate spectral functions, one has to project the (individ-

ual) electric and magnetic form factors out of the (isoscalar) current matrix element

ū2V
µu1 = ū2

[
γµF1(t) +

i

2M
σµν(p2−p1)νF2(t)

]
u1 , (7)

where u1,2 free are Dirac-spinors. This is done by multiplying V µ with on-shell projectors γ·p1,2+M
and taking suitable Dirac-traces:

GE(t) = F1(t) +
t

4M2
F2(t) =

(p1 + p2)µ
4M(4M2 − t)

tr
{
V µ(γ ·p1 +M)(γ ·p2 +M)

}
, (8)

GM(t) = F1(t) + F2(t) =
1

4t
tr
{
V µ(γ ·p1+M)

[
γµ +

2M

t−4M2
(p1+p2)µ

]
(γ ·p2+M)

}
, (9)
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where M = 939 MeV denotes the (average) nucleon mass. The axial and pseudoscalar form factors
are projected out of the isovector axial-current matrix element (proportional to τd/2):

ū2A
µu1 = ū2

[
γµGA(t) +

(p2 − p1)µ

2M
GP (t)

]
γ5u1 , (10)

in a similar way:

GA(t) = − 1

4(4M2 − t)
tr
{
Aµ(γ ·p1 +M)

[
γµ +

2M

t
(p2 − p1)µ

]
γ5(γ ·p2 +M)

}
, (11)

GP (t) =
M

t(4M2 − t)
tr
{
Aµ(γ ·p1 +M)

[
Mγµ +

(6M2

t
− 1
)

(p2 − p1)µ

]
γ5(γ ·p2 +M)

}
.(12)

In our calculation the S-matrices A(γ∗ → 3π) and B(3π → N̄N) are built from chiral vertices and
hence the integrand H(. . . ) in eq.(4) becomes a rational function of the Lorentz scalar products:

l1 ·l2 =
√
t(ω1 + ω2)− t+m2

π

2
, p1 ·p2 = M2 − t

2
, (13)

l1 ·p1,2 =
1

2

(
∓
√
t ω1 − ix

√
4M2 − t |~l1|

)
, (14)

l2 ·p1,2 =
1

2

(
∓
√
t ω2 − iy

√
4M2 − t |~l2|

)
. (15)

We note that in the nonrelativistic limit M →∞ the nucleon propagators become complex-valued
distributions:

−1

ix− ε
= πδ(x)+ iP

1

x
,

−1

(ix− ε)(iy + ε)
= P

1

x
P

1

y
+π2δ(x)δ(y)+ iπ

[
P

1

x
δ(y)−δ(x)P

1

y

]
, (16)

and the angular integrations
∫ 1

−1
dx
∫ π

0
dϕ can (and must) be performed analytically. For example,

the outcomes of the two distributions in eq.(16) are π2 and 2π(1− z2)−1/2 arccos(−z).

3 Results of digrammatic calculation and discussion

In this section we present the results for the spectral functions ImGs
E,M(t) and ImGA(t) as cal-

culated from leading-order chiral πN -vertices, next-to-leading order ones, and pion-induced exci-
tations of virtual ∆(1232)-isobars. Since one works at all three stages with the same couplings
of the external sources to three pions, we recapitulate these first. The momentum-dependent
(anomalous) coupling of the virtual photon to three pions πa(l1), πb(l2), πc(l3) reads [9]:

εabc
4π2f 3

π

εµναβl
ν
1 l
α
2 l
β
3 , (17)

where the charge factor e has been dropped, and fπ = 92.2 MeV is the pion decay constant. On
the other hand the momentum-dependent coupling of the axial source (with isospin-index d) to
three pions πa(l1), πb(l2), πc(l3) is given by [10]:

1

fπ

[
δadδbc(l2 + l3 − l1)µ + δbdδac(l1 + l3 − l2)µ + δcdδab(l1 + l2 − l3)µ

]
. (18)
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Figure 2: Two-loop diagrams contributing to the current matrix elements under consideration.
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Figure 3: Spectral functions ImGs
E(t) (red), ImGs

M(t) (blue), and ImGA(t) (green) calculated with
leading order chiral πN -vertices. The dashed lines correspond to the nonrelativistic approximation.
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3.1 Leading-order chiral vertices

The four relevant two-loop diagrams that need to be evaluated are shown in Fig. 2. In addi-
tion to the well-known pseudovector πN -coupling and the (vectorial) Weinberg-Tomozawa ver-
tex, one encounters for the axial form factor GA(t) the chiral contact-vertex with three pions
πa(l1), πb(l2), πc(l3) absorbed on a nucleon (see right half of diagram (d) in Fig. 2):

− gA
4f 3

π

[
τaδbc γ ·(l2 + l3) + τbδac γ ·(l1 + l3) + τcδab γ ·(l1 + l2)

]
γ5 . (19)

The rational integrand-functions H(. . . ) resulting from the Dirac-traces turn out to be quite
lengthy, and are therefore not given here. The four-dimensional phase space integration in eq.(4)
has been performed numerically, setting gA = 1.3 (to have a strong πN -coupling constant gπNN =
gAM/fπ = 13.24) and taking an average pion mass mπ = 138 MeV. The obtained leading order
spectral functions ImGs

E(t), ImGs
M(t) and ImGA(t) in the low-energy region 3mπ <

√
t < 6mπ

are shown in Fig. 3 by red, blue and green lines, respectively. A logarithmic scale is used to make
visible the very small values in the threshold region. The dashed lines in Fig. 3 correspond to the
nonrelativistic approximation. For the leading terms in the 1/M -expansion of the electromagnetic
spectral functions one can actually give convenient formulas:

ImGs
E(t) =

gA

8M(8π)4f 6
π

√
t

∫ √t−mπ

2mπ

dw (w2 − 4m2
π)3/2λ(w, t)

+
3g3

At

(4π)5f 6
π

∫∫
z2<1

dω1dω2 |~l1||~l2|
√

1− z2 arccos(−z) , (20)

ImGs
M(t) =

gAM

4(8π)4f 6
πt

3/2

∫ √t−mπ

2mπ

dw
√
w2 − 4m2

π

[
w2 − 4m2

π + g2
A(5w2 − 8m2

π)
]
λ(w, t) , (21)

with the abbreviation λ(w, t) = [t − (w + mπ)2][t − (w − mπ)2] and w denotes a 2π-invariant
mass. The prefactor M in ImGs

M(t) originates from the magnetic coupling i~σ×(~p2− ~p1)/2M . The
analogous (nonrelativistic) formula for ImGA(t) can be found in eq.(26) of ref. [7] and that for
ImGP (t) in eqs.(4,5) of ref. [8]. Note that eq.(20) includes in the first line also the leading 1/M -
correction to ImGs

E(t) coming from the two diagrams proportional to gA. By inspection of Fig. 3
one observes that the heavy baryon treatment (used in ref. [7]) leads to an overestimation of the
spectral functions near the 3π-threshold by about a factor of 2 to 3. This noteworthy property of
the chiral 3π-continua points to sizeable relativistic corrections of magnitude

√
t/M > 3mπ/M =

0.44.

3.2 Second-order chiral vertices

Next, we compute the spectral functions with vertices from the second-order chiral πN -Lagrangian.
The pertinent S-matrix for the absorption of two pions πa(l1), πb(l2) on a nucleon reads:

− 2i

f 2
π

δab

[
2c1m

2
π +

c2

4M2
(p+ p′)·l1(p+ p′)·l2 + c3 l1 ·l2

]
+
ic4

f 2
π

εabeτeσµνl
µ
1 l
ν
2 , (22)

where p and p′ denote in-going and out-going nucleon four-momenta. This 2π-contact vertex
enters now diagrams (a) and (b) in Fig. 2. Note that due to the contraction with εabc only the
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Figure 4: Spectral functions ImGs
E(t), ImGs

M(t), and ImGA(t) calculated with second-order chiral
πN -vertices. The dashed lines correspond to the nonrelativistic approximation.

(last) c4-term contributes to ImGs
E,M(t), whereas all four ci-terms contribute to ImGA,P (t). For

the numerical evaluation of
∫
dΦ3H(. . . ), we choose the (rounded) values c1 = −0.8 GeV−1, c2 =

3.3 GeV−1, c3 = −4.7 GeV−1 and c4 = 3.4 GeV−1 of the second-order low-energy constants ci.
Similar values are often employed in chiral NN-potentials and they are consistent with recent
determinations from πN -dispersion relation analyses. With this fixed input the results for the
spectral functions ImGs

E(t), ImGs
M(t) and ImGA(t) are shown in Fig. 4. One sees that these

(formally) subleading corrections are roughly of similar size as the leading order terms displayed
in Fig. 3. A more detailed comparison reveals that the c4-contribution to ImGs

E(t) is suppressed
for 3mπ <

√
t < 5mπ and this suppression is more pronounced for ImGs

M(t). On the other
hand the combined ci-contributions to ImGA(t) exceed the leading order axial spectral function
already for

√
t > 3.7mπ. The latter feature is explained by the large value of the low-energy

constant c3. The dashed lines in Fig. 4 refer to the nonrelativistic approximation, which again
leads to an overestimation by about a factor 2. In the nonrelativistic limit the following integral-
representations can be derived for the electromagnetic spectral functions:

ImGs
E(t) =

gAc4

2(8π)4f 6
π

√
t

∫ √t−mπ

2mπ

dw (w2 − 4m2
π)3/2λ(w, t) , (23)

ImGs
M(t) =

gAc4M

2(4π)5f 6
πt

∫ √t−mπ

2mπ

dw (w2 − 4m2
π)3/2

√
λ(w, t)

[
t− w2 −m2

π −
λ(w, t)

3t

]
, (24)

and for the axial spectral functions:

ImGA(t) =
gA

(4fπ)4π2
√
t

∫ √t−mπ

2mπ

dw
√
w2 − 4m2

π

{2c4

3
(w2 − 4m2

π)(t− w2 −m2
π)

+
λ(w, t)

t

[
c3(2m2

π − w2)− 4c1m
2
π +

c2 + c4

6
(4m2

π − w2)
]}

, (25)
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ImGP (t) =
gAM

2

64π2f 4
π(t−m2

π)t3/2

∫ √t−mπ

2mπ

dw
√
w2 − 4m2

π

{[
c3(2m2

π − w2)− 4c1m
2
π

+
c2 + c4

6
(4m2

π − w2)
][3m2

π

t
(w2 −m2

π)2 − 3w2m2
π −m4

π − λ(w, t)
]

+
c4

6
(w2 − 4m2

π)
[
t(4w2 + 5m2

π)− 4t2 − w2m2
π +m4

π

]}
, (26)

where the latter expression includes also pion-pole diagrams (axial source→ π → 3π → N̄N) in-
volving the chiral ππ-interaction. As a good check, one can verify that the combination ImGA(t)+
(t/4M2)ImGP (t), related to the divergence of the isovector axial-current, scales as m2

π. Note that
the dw-integrals in eqs.(23,25,26) can be solved in terms of square-root and logarithmic functions.

3.3 Inclusion of explicit ∆(1232)-isobars

The sizeable magnitude of the low-energy constants c2,3,4 is explained by large contributions from
the ∆(1232)-resonance, which strongly couples to the πN -system. The covariant description of
the ∆(1232)-isobar with spin and isospin 3/2 requires a Rarita-Schwinger spinor field Ψα. In this
formulation the spin-3/2 propagator (vector-index β to α) takes the (common) form [10]:

i

3

γ ·P +M∆

M2
∆ − P 2

(
3gαβ − γαγβ −

2PαPβ
M2

∆

+
Pαγβ−γαPβ

M∆

)
, (27)

with P the four-momentum of the propagating ∆(1232)-isobar. In order to keed the two-loop
calculations tractable, we choose minimal forms of the vertices for the coupling of an in-going
pion to ∆N and ∆∆, which read:

∆αNπ
a(l1) : − 3gA

2
√

2fπ
lα1Ta , ∆α∆βπ

b(l2) :
3gA
10fπ

gαβγ ·l2γ5 Θb . (28)

The isospin transition operator Ta satisfies the relation TaT
†
b = (2δab − iεabcτc)/3, and for the

isospin-3/2 operator Θa (a 4× 4 matrix) the reduction formula TaΘbT
†
c = (5iεabc− δabτc + 4δacτb−

δbcτa)/3 is relevant. The coupling constants in eq.(28) obey the ratios gπN∆/gπNN = 3/
√

2 and
gπ∆∆/gπNN = 1/5 as inferred from large-Nc QCD [11]. One should note that extended versions
of the vertices in eq.(28) with further off-shell parameters have been proposed [10, 11], but these
parameters are not well determined. Since no direct empirical information is available, the relation
gπ∆∆ = gπNN/5 is commonly used [11].

Employing the just described formulation of vertices and propagators, we have derived the
integrand-functions H(. . . ) for ImGs

E,M(t) and ImGA(t) from the diagrams with single and double
virtual ∆(1232)-excitation (analogous to diagram (c) in Fig. 2). The corresponding numerical re-
sults are shown by the full lines in Fig. 5. By comparison with Fig. 4 one observes that the spectral
functions get appreciably reduced by the energy-dependent ∆-propagators. The suppression fac-
tor is about 2 to 3 for ImGE(t) and ImGA(t), whereas it amounts to about 7 to 8 for ImGM(t). Of
course, the physics here and in subsection 3.2 is somewhat different. The ci-parameters represent
more than the ∆-intermediate state (c

(∆)
2 = −c(∆)

3 = 2c
(∆)
4 ' 2.9 GeV−1) and there are partly

compensating effects from single and double ∆-isobar excitation. It is also instructive to present
formulas which refer to the nonrelativistic approximation. For doing that we take first the limit
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Figure 5: Spectral functions ImGs
E(t), ImGs

M(t), and ImGA(t) calculated from diagrams with single
and double propagation of ∆-isobars. The dashed lines refer to the nonrelativistic approximation.

of ∆N -degeneracy, M∆ = M , and then expand in 1/M . This way one obtains for the electric
spectral function:

ImGs
E(t) =

3g3
At

(4π)5f 6
π

(
1 +

5

2

)∫∫
z2<1

dω1dω2 |~l1||~l2|
√

1−z2 arccos(−z) , (29)

where the factor (1 + 5/2) displays the separate contributions from ∆N and ∆∆. Likewise, one
finds for the magnetic spectral function:

ImGs
M(t) =

g3
AM

4(8π)4f 6
πt

3/2

∫ √t−mπ

2mπ

dw
√
w2 − 4m2

π(8m2
π − 5w2)λ(w, t) , (30)

which is opposite to the term proportional to g3
A in eq.(21). This opposite sign and the factor

(1 + 5/2) can be deduced from the spin- and isospin-algebra involved in the (nonrelativistic)
three-pion to nucleon coupling, which has to be spin-independent (spin-dependent) for the electric
(magnetic) form factor. The dashed lines in Fig. 5 correspond to the nonrelativistic approximations
written in eqs.(29,30) as well as to a more complicated formula for limM∆=M→∞ ImGA(t). One can
see that the proposed nonrelativistic approximation strongly overestimates the results for spectral
functions with ∆(1232)-excitation based on fully relativistic kinematics. In the case of ImGs

M(t)
there is even a difference in sign.

4 Phenomenological analysis and π0γ intermediate state

In this section we want find out the low-energy region, where the 3π-continua calculated in co-
variant baryon chiral perturbation theory could become physically relevant. For that purpose we
compare with the spectral functions produces by the respective lowest-lying vector-meson reso-
nance. For the isoscalar electromagnetic form factors Gs

E,M(t) this is obviously the narrow ω-meson
with mass mω = 783 MeV and decay width Γω = 8.5 MeV = (7.6 + 0.7 + 0.2) MeV [12]. In this
decomposition of Γω the first two entries refer to the dominant decay modes ω → π+π0π− and
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Figure 6: Isoscalar electromagnetic spectral functions ImGs
E,M(t) assuming ω(783)-meson domi-

nance.

ω → π0γ. The reasonable assumption of ω(783)-meson dominance in the region 3mπ <
√
t < 7mπ

leads to the following complex-valued form factors:

Gs
E,M(t) =

(0.5, 0.44)m2
ω

m2
ω − t− imωΓω(t)

, (31)

with Γω(t) an energy-dependent ω-meson decay width. Modelling the two dominant decay modes
by appropriate contact-couplings, one gets:

Γω(t) =
h2

mωt

∫ √t−mπ

2mπ

dw
[
(w2 − 4m2

π)λ(w, t)
]3/2

+
h′2

mωt
(t−m2

π)3 , (32)

with the parameters h = 2.72 GeV−3 and h′ = 0.040 GeV−1 adjusted to the partial decay widths.
The resulting imaginary parts ImGs

E,M(t) are shown in Fig. 6. The resonance curves for the
electric and magnetic form factor are almost equal, due to similar normalizations 0.5 ' 0.44. One
sees that in the region 3mπ <

√
t < 5mπ the 3π-only contributions from the ω(783)-resonance fall

below the (combined) chiral 3π-continua, whereas the additional π0γ-mode introduces appreciable
strength in the threshold region. In view of this striking effect, one is compelled to compute
the radiative correction to the isoscalar electromagnetic spectral functions coming from the π0γ-
intermediate state. The pertinent S-matrix for π0 → γγ reads: (−iαem/πfπ)εµναβk

α
1 k

β
2 , where

(k1, µ) and (k2, ν) pertain to out-going photons. The one-loop calculation of both diagrams γ∗ →
π0γ → N̄N requires only one angular integration (m2

π − t)/(32πt)
∫ 1

−1
dx, such that the π0γ-

contribution to the isoscalar electromagnetic spectral functions can be given in analytical form:

ImGs
E(t) =

αemgA(t−m2
π)2

(4πfπ)2(4M2 − t)

{
− 1

4
+
κv
3

(t−m2
π

16M2
− 1 +

m2
π

4t

)
+

(1 + κv)M
2√

t(4M2 − t)
arccos

√
t

2M

}
, (33)

ImGs
M(t) =

αemgAM
2(t−m2

π)2

(4πfπ)2(4M2 − t)t

{
1

2
+
κv
3

(
2− t+ 2m2

π

8M2
+
m2
π

t

)
+

4M2 − (2 + κv)t

2
√
t(4M2 − t)

arccos

√
t

2M

}
,

(34)
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Figure 7: Contributions to the isoscalar electromagnetic spectral functions ImGs
E,M(t) from the

π0γ-intermediate state.

with κv = κp − κn = 3.706 the (large) isovector anomalous magnetic moment and αem = 1/137.
Note that one averages here over proton and neutron form factors, while the π0N -coupling ∼
τ3 introduces an opposite sign for the magnetic moment term. The curves resulting from the
expressions in eqs.(33,34), with threshold behavior ImGs

E,M(t) ∼ (t −m2
π)2, are drawn in Fig. 7.

One observes that in the region 3mπ <
√
t < 4mπ the radiative corrections due to the π0γ-

intermediate state exceed the chiral 3π-continua. This behavior is explained kinematically by the
fast decrease of the 3π-phase space towards the threshold

√
t = 3mπ, while the π0γ-phase space

remains open down to
√
t = mπ.

In analogy to eq.(31) the nucleon axial form factor GA(t) dominated by the a1-resonance reads:

GA(t) =
gAm

2
a1

m2
a1
− t− ima1Γa1(t)

, (35)

with the axial-vector coupling constant gA = 1.27 [12]. The mass and width of the broad a1-meson
are still under debate, due to conflicting results from different experiments. A very recent partial
wave analysis of diffractive dissociation data (π−p→ π−π+π−p) by the COMPASS collaboration
[13] finds the (central) values ma1 = 1.3 GeV and Γa1 = 0.38 GeV. On the other hand the values
extracted from τ -lepton decays in ref.[14] are ma1 = 1.2 GeV and Γa1 = 0.48 GeV, while a later
reanalysis in ref. [15] gave a somewhat lower a1-mass of ma1 = 1.12 GeV.

The full lines in Fig. 8 show the axial spectral function ImGA(t) using the specific form [15]
of Γa1(t), which follows from integrating (interfering) Breit-Wigner functions for the ρ(770)-
resonance over the 3π-phase space. The dashed lines were obtained with the phenomenological
parametrization of Γa1(t) from ref. [16], which describes separately the regions below and above
the ρπ-threshold t = (mρ + mπ)2. The light and dark pair of curves refer to the parameter sets
(ma1 ,Γa1) = (1.3, 0.38) GeV [13] and (ma1 ,Γa1) = (1.2, 0.48) GeV [14], which are clearly distin-
guished by their shifted peaks. By comparison with the full (green) lines in Figs. 3 and 4 one can
recognize an energy window near threshold, 3mπ <

√
t < 5mπ, in which the chiral 3π-continua do

prevail. However, such tiny contributions to the axial spectral function are presumably irrelevant
for physical observables.
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and dark green) curves correspond to masses and widths of (ma1 ,Γa1) = (1.3, 0.38) GeV [13] and
(ma1 ,Γa1) = (1.2, 0.48) GeV [14].

5 Summary and conclusions

In this work we have studied the imaginary parts of the isoscalar electromagnetic and isovector
axial form factors of the nucleon close to the 3π-threshold. The contributions to ImGs

E,M(t) and
ImGA(t) arising from chiral πN -vertices at leading and next-to-leading order, as well as
pion-induced ∆(1232)-excitations have been calculated and compared with each other. It was
found that the heavy baryon approach overestimates the chiral 3π-continua. From a
phenomenological analysis, that included the narrow ω(783)-resonance or the broad
a1(1260)-resonance, one could recognize small windows near threshold, where chiral 3π-dynamics
prevails. However, for ImGs

E,M(t) the radiative correction provided by the π0γ-intermediate state
becomes actually more relevant in the region close to thesshold. Altogether, one may conclude
that the chiral 3π-continua for nucleon form factors are too weak to influence physical
observables in a significant way.
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