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Pion Valence Quark Distribution from Matrix Element Calculated in Lattice QCD
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We present the first exploratory lattice QCD calculation of the pion valence quark distribu-
tion, using a lattice calculable, renormalizable, and factorizable matrix element obtained through
spatially-separated current-current correlations in coordinate space. We show that an antisymmet-
ric combination of vector and axial-vector currents provides direct information on the pion valence
quark distribution. Using the collinear factorization approach, we calculate the leading order per-
turbative kernel for this current combination and extract the pion valence distribution. The main
goal of this article is to demonstrate the efficacy of this general lattice QCD approach in the reliable
extraction of parton distributions. With controllable power corrections and a good understanding
of the lattice systematics, this method has the potential to serve as a complementary to the many
efforts to extract parton distributions in global analyses from experimentally measured cross sec-
tions. We perform our calculation on an ensemble of 2+1 flavor QCD using the isotropic-clover
fermion action, with lattice dimensions 323 × 96 at a lattice spacing a = 0.127 fm and the quark
mass equivalent to a pion mass mπ ' 416 MeV.

I. INTRODUCTION

In the hard scattering processes involving hadrons,
such as in the deep inelastic scattering (DIS) of leptons
on hadrons, the experimentally measured cross sections
are a combination of short- and long-distance physics.
The inclusive DIS cross section can be factorized into a
short-distance partonic hard part which is calculable or-
der by order in perturbation theory and a long-distance
hadronic part which can be represented by universal
and nonperturbative distribution functions, called the
parton distribution functions (PDFs), plus corrections
suppressed by inverse power of large momentum transfer
of the scattering. It is the QCD factorization theorem [1]
which enables us to connect the dynamics of quarks
and gluons to the physically measured hard scattering
cross sections of identified hadrons. The collinear (CO)
divergences of the partonic scattering are absorbed into
the non-perturbative PDFs, leaving an infrared-safe and
perturbatively computable hard contribution. According
to Feynman’s parton model [2], the unpolarized PDFs
give the probability to find partons (i.e. quark (q),
anti-quark (q̄), gluon (g)) in a hadron as a function
of the fraction x of the hadron’s longitudinal momen-
tum carried by the parton, probed at a factorization
scale µ. For example, if a parton of type i carries a
fraction x of hadron’s momentum, then the probability
to find the parton is given by fi(x)dx. An accurate
and precise knowledge of parton distribution functions
is required for the cross section predictions of both
Standard Model and Beyond Standard Model processes
at existing and future particle colliders, such as the
LHC and Electron-Ion Collider (EIC). The precision of
numerous experimentally measured observables, such as
the W -boson mass, weak-mixing angle and Higgs cross
section, is driven by a detailed knowledge and precision
of PDFs.

Since a precise knowledge of PDFs is required for the
analysis and interpretation of scattering experiments, as
discussed above, considerable effort has been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [3], CT [4], NNPDF [5],
HERAPDF [6], and JAM [7]. PDFs, the catalyst of
many observables in hadronic scattering, are becoming
better determined as experimental data sets increase and
the global analysis community implements more sophis-
ticated schemes to quantify systematic uncertainties.

The valence quark distribution of the pion is of par-
ticular theoretical interest, as the pion is the lightest
QCD bound state and the Goldstone mode associated
with dynamical chiral symmetry breaking. The pion
PDF has been measured through pionic Drell-Yan ex-
periments at CERN [8, 9] and Fermilab [10]. Several
analyses in Refs. [11–17] of these experimental data have
been performed to determine the pion valence distribu-
tion. Among these analyses, it has been emphasized in
Ref. [16] that the next-to-leading-logarithmic threshold
re-summation effects in the calculation of the Drell-Yan
cross section are important and give a softer valence dis-
tribution which falls of as (1−x)2 near x→ 1, consistent
with the prediction based on the framework of perturba-
tive QCD in Refs. [18–20]. There are also different model
predictions for the large-x behavior of the pion valence
distribution, some of which predict a harder fall-off as
(1 − x) [21–23] or (1 − x)2, such as in Dyson-Schwinger
type models [24, 25]. Therefore, an ab initio knowledge of
the correct large-x behavior of the pion valence PDF can
serve as a discriminator of different model calculations.
In this paper, we will present a calculation of the pion
valence PDF using “Lattice Cross Sections” proposed in
Refs. [26, 27]. In this approach, one factorizes a hadronic
matrix element, such as a two current correlator, into
the PDFs and short-distance matching coefficients, from
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which PDFs could be extracted from lattice calculated
hadronic matrix element with the perturbatively calcu-
lated matching coefficients.

Lattice QCD is a Monte Carlo method for numerically
evaluating QCD in a finite, discretized Euclidean space-
time. To date, Lattice QCD has emerged as the most rig-
orous and systematic tool for studying QCD nonpertur-
batively. As introduced by Feynman [28], PDFs are de-
fined through light cone matrix elements of certain bilo-
cal operators. These light cone matrix elements cannot
be directly calculated on the Euclidean lattice because
the light cone collapses to a point in Euclidean space-
time. Recently several methods have been introduced
to go beyond the calculations of the first few moments
of PDFs on the lattice, such as the path-integral for-
mulation of the deep-inelastic scattering hadronic ten-
sor [29, 30], the inversion method [31], quasi-PDFs [32],
and pseudo-PDFs [33] to obtain the x-dependent hadron
structure functions. A coordinate-space method for the
calculation of light-cone distribution amplitudes has also
been employed [34]. Significant achievements in the lat-
tice QCD implementations of these approaches have been
made in recent years [35–39]. References to many other
lattice QCD calculations, the current status and chal-
lenges for a meaningful comparison of these lattice cal-
culations with the global fits of PDFs can be found in
Refs. [40, 41].

The remainder of this article is organized as follows.
In Sections II and III we discuss what are the good lattice
cross sections, and the essence of calculation of these lat-
tice cross sections in coordinate space. In Section IV, we
present the derivation of the leading-order perturbative
kernel for an antisymmetric vector and axial-vector cur-
rent combination, and show how one can factorize the as-
sociated hadronic matrix element to extract pion valence
distribution in a lattice QCD calculation. We present
the numerical methods and results in Sections V and VI.
We compare the pion valence distribution extracted in
this calculation with other calculations and different fits
of the experimental data. Finally, we summarize our re-
sults and outline the future directions of this method to
obtain pion valence quark distribution with controlled
systematics.

II. “GOOD” LATTICE CROSS SECTIONS

In similarity with the extraction of PDFs in a global
fit through the factorization of different experimental
cross sections, a method was proposed [26] to extract
PDFs from lattice QCD calculations of hadronic matrix
elements, called lattice cross sections (LCSs), which in
the framework of QCD can be factorized into a pertur-
batively calculable hard part and the non-perturbative
PDFs with a small and controllable power correction.
Analogous to the cross sections measured in an experi-
ment, these hadronic matrix elements computed on the
lattice are constructed to be time independent, defined

by equal-time operators and have a well-defined contin-
uum limit; hence the name lattice “cross sections”. It
has been shown in Ref. [42] that as long as such operators
have no temporal extent, a matrix element calculated in
Euclidean space will equal its counterpart in Minkowski
space.

To be more specific, such hadronic matrix elements
are good lattice cross sections if they have the following
properties:

• are a Lorentz covariant single-hadron matrix ele-
ment computable on a Euclidean lattice,

• have a well-defined continuum limit when the lat-
tice spacing a→ 0,

• are factorizable to PDFs convoluted with infrared
(IR)-safe hard coefficients, plus a small and con-
trollable power correction.

The single-hadron matrix elements of renormalized
nonlocal operators On(ξ) can be written as, suppressing
renormalization scale dependence,

σn(ξ, p) = 〈p|T{On(ξ)}|p〉, (1)

where the subscript n is a label for different operators, T
stands for time-ordering, p the hadron momentum, and
ξ (ξ2 6= 0 ) is the largest separation of all fields in the
operator On. One choice which allows for factorization
is a pair of parton field operators linked by a Wilson
line operator and has been used for the calculation of
pseudo-PDFs [33] and quasi-PDFs [32]. A broader class
of operators with factorizable matrix elements is pairs of
space-like separated currents.

The operator can be chosen to be a Lorentz scalar,
such as

Oj1j2(ξ) ≡ ξdj1+dj2−2 Zj1 Zj2j1(ξ/2) j2(−ξ/2) , (2)

where j1 and j2 are currents with no Lorentz indices such
as ψ̄ψ or ψ̄/ξψ, dj and Zj are the dimension and renor-
malization constant of the current j, respectively, and
the overall dimensional factor is introduced so that the
matrix elements in Eq. (1) are dimensionless with our
normalization, 〈p|p′〉 = (2Ep)(2π)3δ3(p − p′). In this
case the LCS can be written in terms of only Lorentz
invariants

σj1j2(ω, ξ2) = 〈p|T{Oj1j2(ξ)}|p〉, (3)

where the Lorentz scalar ω ≡ p · ξ is the Ioffe time [43],
and p2 dependence is suppressed. This type of LCS can
be directly factorized into the PDF when the separation
|ξ| is small [26].

Other choices of operators can have a more compli-
cated Lorentz structure, such as the vector-vector matrix
element of the operator

OµνV V (ξ) ≡ ξ4 jµV (ξ/2) jνV (−ξ/2) , (4)
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where jµV is the vector current which requires no renor-
malization constants. This type of LCS will need to be
decomposed into the Lorentz structures allowed by sym-
metry. The functions of Lorentz invariants which accom-
pany these Lorentz structures are the objects which will
be factorized into PDFs. For the case of the operator
OµνV V , its matrix element of an unpolarized hadron state
is symmetric in {µ, ν} and can be decomposed as,

σµνV V (ξ, p) = pµpνT1(ω, ξ2) +
1

2
(pµξν + ξµpν)T2(ω, ξ2)

+gµνT3(ω, ξ2) + ξµξνT4(ω, ξ2)

where Ti are Lorentz invariant functions. In the fol-
lowing section, we discuss the vector and axial-vector
current combination which will be used to extract the
pion valence quark distribution.

It is worth noting that the LCSs have the following
analogs to hard scattering experiments:

• the label “n” in Eq. (1) is related to the dynamical
features of LCSs and mimics different processes in
experiments.

• p and ξ are analogous to observed scales defining
the collision kinematics; p relating to the collision
energy

√
S and ξ2 relating to the hard probe 1

Q2 .

III. THE ESSENCE OF CALCULATION IN
COORDINATE SPACE

It is crucial to mention that a large p alone does
not guarantee the applicability of the operator prod-
uct expansion of the matrix element and contributions
from large ξ can invalidate the perturbative factorization,
whether for the case of quark-antiquark fields linked by
a Wilson line, or for the case of spatially-separated cur-
rents. The validity of perturbative factorization requires
that the separation’s scale, ξ2, be much smaller than the
inverse square of typical hadronic scale, ΛQCD, namely
ξ2Λ2

QCD � 1.
We now show why the coordinate space approach pro-

vides distinct theoretical advantages. One can write the
Fourier transform of σn(ω, ξ2):

σ̃n(ω̃, q2) ≡
∫
d4ξ

ξ4
eiq·ξσn(ω, ξ2), (5)

where corresponding On can be any operator defined in
Eq. (1), and ω̃ ≡ 2p·q

−q2 = 1
xB

with xB the Bjorken variable

for the lepton-hadron DIS. However, though q is related
to ξ through the Fourier transform above, it is not a
one-to-one relation. σ̃ with small or large values of q will
receive contribution from σ with all values of ξ, small and
large. In particular, it can involve contributions from val-
ues of ξ � 1

ΛQCD
, thereby violating factorization. This is

why, in the LCSs approach, ξ is a very well-defined quan-
tity, analogous to a probe of hadron structure in a DIS

experiment. It has also been demonstrated in Ref. [27]
that, the non-analytic cut of σ̃n comes from the inte-
gration region of large ξ. That is, even if we demand
|q2| � Λ2

QCD, σ̃n in momentum space can always re-

ceive contribution from large ξ region so long as ω̃2 > 1.
On the other hand, in coordinate space, if we fix ξ to
be short-distance, we do not have contribution from the
large ξ region and thus σn has a good analytic behavior.

IV. FACTORIZATION

The lattice calculable hadronic matrix elements of
Eq. (1) are shown in Ref. [27] to be factorizable into
PDFs with perturbatively calculable coefficients by ap-
plying the operator product expansion (OPE) to the non-
local operator On (ξ), with small but non-vanishing ξ2

σhn(ω, ξ2, p2) =
∑
a

∫ 1

−1

dx

x
fha (x, µ2)

×Ka
n(xω, ξ2, x2p2, µ2) +O

(
ξ2Λ2

QCD

)
,

(6)

where σhn is On (ξ) measured in a hadron h, Ka
n are

the parton flavor a ∈ {q, q, g} contributions to the per-
turbative hard coefficients with corresponding PDF fha ,
and factorization scale µ2. The short-distance coefficient
functions Ka

n

(
ω, ξ2; p2, µ2

)
are determined by applying

the factorized formula in Eq. (6) to an asymptotic par-
ton of momentum p with p2 = 0 and flavor a = q, q,
or g, and expanding each side as a power series in the
strong coupling constant αs. Although the perturbative
coefficient functions are process-dependent, they apply
equally to different external hadron states. At leading-
order O (αs), the matching coefficient only receives quark
contributions and the factorized relation in Eq. (6) be-
comes

σq(0)
n

(
ω, ξ2

)
=

∑
a=q,q,g

∫ 1

0

dx

x
fq(0)
a

(
x, µ2

)
×Ka(0)

n

(
xω, ξ2;µ2

)
+O

(
ξ2Λ2

QCD

)
, (7)

where p2 = 0 is suppressed and f
q(0)
a

(
x, µ2

)
=

δ (1− x) δqa is the quark distribution of an asymptotic
quark at zeroth order in αs and does not have the factor-

ization scale µ2-dependence. Upon substitution of f
q(0)
a

into Eq. (7), it can be shown

σq(0)
n

(
ω, ξ2

)
= Kq(0)

n

(
ω, ξ2

)
. (8)

where the active quark momentum p2 = 0 is suppressed.
Thus determination of the leading-order coefficient func-

tions K
q(0)
n follows directly from the expression of the

matrix elements σ
q(0)
n

(
ω, ξ2

)
in the coordinate space.

Specializing to the case of the pion, consider a generic
tensor operator

Oµνij (ξ) = ξ4J µi (ξ/2)J νj (−ξ/2) , (9)
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and have it evaluated in the pion state |π (p)〉, where Jk
is a local quark bilinear and ξ4 is included to maintain
an overall dimensionless matrix element. By examining
the path-integral definition of an arbitrary operator de-
fined at a single Euclidean time removes complications
in analytically continuing our results back to Minkowski
space. In this case, the general time-ordering of Oµνij (ξ)
is instead expressed as a sum of diagrams with momenta
flowing in/out of the fixed current locations. We define
the matrix element of Oµνij (ξ) in the pion as

σµνij (ξ, p)= 〈π (p)| Oµνij (ξ) |π (p)〉
= ξ4 〈π (p)| J µi (ξ/2)J νj (−ξ/2) |π (p)〉 (10)

Projecting onto an asymptotic quark state, we are left
with two distinct diagrams at leading order (LO):

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(a)

k = xp k = xp

�⇠/2 ⇠/2

⌫ µ
l

(b)

FIG. 1. The lowest order Feynman diagrams contributing
to the σµνij in Eq.(10) on an asymptotic on-shell quark state
of momentum k.

Depending on the current-current combinations con-
sidered, the resulting Lorentz decomposition of σµνij (ξ, p)
will introduce numerous scalar form factors consistent
with parity and time-reversal invariance. It is these form
factors that will provide information on a wide array
of distribution functions, when factorized according to
Eq. (6). A general expression from which the LO pertur-
bative kernels can be obtained follows from application of
perturbative formulae to the diagrams above. Averaging
over quark spin, the ordering depicted in Fig. 1a yields

M(a)
ij =

ξ4

2

∑
s

〈0|us (k) eik·ξ/2Γµi ψ (ξ/2)

× ψ (−ξ/2) Γνj e
ik·ξ/2us (k) |0〉

=
ξ4

2

∑
s

eik·ξus (k) Γµi 〈0|ψ (ξ/2)ψ (−ξ/2) |0〉Γνjus (k)

=
ξ4

2
eik·ξ Tr

[
(γ · k) Γµi

∫
d4l

(2π)
4

iγ · l
l2 + iε

e−il·ξ Γνj

]
(11)

where an inverse Fourier transform has been used to ex-
press the quark propagator from −ξ/2 → ξ/2 in coor-
dinate space. The second ordering, shown in Fig. 1b,
similarly yields

M(b)
ji =

ξ4

2
e−ik·ξ Tr

[
(γ · k) Γνj

∫
d4l

(2π)
4

−iγ · l
l2 + iε

e−il·ξ Γµi

]
(12)

Combining Eqs. (11) and (12) and writing the quark
momentum as kµ = xpµ, we obtain a general relation in
the LO denoted by the superscript (0) as

σ
µν(0)
ij (p · ξ, p;x, ξ) =

i

4π2
xpαξβ

{
eixp·ξ Tr

[
γαΓµi γ

βΓνj
]

−e−ixp·ξ Tr
[
γαΓνj γ

βΓµi
]}

(13)

from which the kernels K
q(0)
n

(
ω, ξ2;x

)
with ω = p · ξ can

be isolated for currents {i, j}.
Given invariance of the strong interaction under par-

ity (P) and time-reversal (T ) transformations, the pion
matrix element σµνij (ξ, p) has the following property,

σµνij (ξ, p) = 〈π (p)| (PT )
(
Oµνij (ξ)

)†
(PT )

−1 |π (p)〉 .
(14)

In this work, we consider the case of a vector J µV =

ψγµψ and axial-vector J νA = ψγνγ5ψ current combina-
tion, whose transformation properties are

(PT )J µA (ξ) (PT )
−1

= −J µA (−ξ)
(PT )J µV (ξ) (PT )

−1
= J µV (−ξ)

With these transformation properties, we find that the
following combination of these two currents, σµνV A (ξ, p) +
σµνAV (ξ, p) ≡ 〈π (p)| [OµνV A (ξ) +OµνAV (ξ)] |π (p)〉, is anti-
symmetric in Lorentz indices, {µ, ν}, and can be ex-
pressed in terms of two dimensionless scalar form factors
as

1

2
[σµνV A (ξ, p) + σµνAV (ξ, p)]

≡ εµναβξαpβT1

(
ω, ξ2

)
+ (pµξν − ξµpν)T2

(
ω, ξ2

)
(15)

where Ti
(
ω, ξ2

)
are the dimensionless functions of the

Lorentz invariants {ω, ξ2}.
The dimensionless functions are isolated by taking ap-

propriate tensor contractions of the antisymmetric ma-
trix element in Eq. (15),

T1

(
ω, ξ2

)
=

1

2 (ω2 − p2ξ2)
(16)

×
(
εµναβξ

αpβ
)1

2
[σµνV A (ξ, p) + σµνAV (ξ, p)] ,

T2

(
ω, ξ2

)
=

1

2 (ω2 − p2ξ2)
(17)

× (ξµpν − pµξν)
1

2
[σµνV A(ξ, p)+σµνAV (ξ, p)] .

A judicious choice of ξ, p, and Lorentz indices {µ, ν},
exposes the structure functions T1

(
ω, ξ2

)
and T2

(
ω, ξ2

)
without recourse to a full tensor contraction as in
Eqs. (16) and (17). To isolate the structure functions
we stipulate p = (p0, 0, 0, p3) and ξ = (0, 0, 0, ξ3). T1 is
then isolated by choosing µ = 1 and ν = 2:

T1

(
ω, ξ2

)
=

1

p0ξ3

1

2

[
σ12
V A (ξ, p) + σ12

AV (ξ, p)
]
. (18)
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While T2 is isolated by choosing µ = 0 and ν = 3:

T2

(
ω, ξ2

)
=

1

p0ξ3

1

2

[
σ03
V A(ξ, p)+σ03

AV (ξ, p)
]
. (19)

From Eq. (6), the Ti
(
ω, ξ2

)
can be thus factorized as

Ti
(
ω, ξ2

)
=

∑
a=q,q,g

∫ 1

0

dx

x
fa
(
x, µ2

)
Cai
(
xω, ξ2, µ2

)
+O

(
ξ2Λ2

QCD

)
. (20)

with the perturbatively calculable matching coefficients
Cai
(
xω, ξ2, µ2

)
for parton flavor a.

Similar to the derivation of Eq. (13), the LO contribu-
tion to the antisymmetric pion matrix element in Eq. (15)
is given by

σ
µν(0)
V A (p · ξ, p;x, ξ) =

i

4π2
xpαξβ

[
Tr
(
γαγµγβγνγ5

)
eixp·ξ

−Tr
(
γαγνγ5γβγµ

)
e−ixp·ξ

]
= − i

π2
xpαξβ

(
iεαµβνeixω − iεανβµe−ixω

)
=

1

π2
xεµναβξαpβ

(
eixω + e−ixω

)
(21)

with Tr
(
γµγνγργσγ5

)
= −4iεµνρσ dictated by the con-

vention ε0123 = 1. Substituting Eq. (21) into Eqs. (16)
and (17), we obtain the two scalar form factors of a quark
state of momentum k = xp at the LO, respectively,

T
q(0)
1 (xω, ξ2) =

x

π2

(
eixω + e−ixω

)
, (22)

T
q(0)
2 (xω, ξ2) = 0 . (23)

With f
q(0)
a

(
x, µ2

)
= δ (1− x) δqa, we obtain the lowest

order perturbative coefficients in Eq. (20) as,

C
q(0)
1 (xω, ξ2) = T

q(0)
1 (xω, ξ2) =

2x

π2
cos(xω) (24)

C
q(0)
2 (xω, ξ2) = 0 , (25)

respectively.
We have the LO momentum-space scalar form factors

by performing a Fourier transformation in ω,

T̃1

(
x̃, ξ2

)
≡
∫
dω

2π
e−ix̃ω T1

(
ω, ξ2

)
≈
∫
dω

2π
e−ix̃ω

∫ 1

0

dx

x
q (x)C

q(0)
1 (xω, ξ2, µ2)

≈
∫
dω

2π
e−ix̃ω

∫ 1

0

dx

x
q (x)

x

π2

(
eixω + e−ixω

)
≈ 1

π2

{
q (x̃) + q (−x̃)

}
≈ 1

π2

{
q (x̃)− q (x̃)

}
=

1

π2
qv(x̃) , (26)

where q(−x̃) = −q(x̃) is used, qv(x̃) ≡ [q (x̃)−q (x̃)] is the
valence quark distribution, and the ξ2 or the factorization
scale dependence is suppressed since we are working at

the LO approximation. Eq. (26) implies that T̃1(x̃, ξ2) is
proportional to the valence quark PDF with momentum
fraction x̃, which is actually true to all orders due to
the symmetry of the coefficient function Cq1(xω, ξ2, µ2) =
−Cq1(−xω, ξ2, µ2).

Therefore direct information on the pion’s valence
quark distribution qv

(
x̃, µ2

)
is accessible by evaluating

the antisymmetric combination of vector and axial-vector
(V-A) current-current correlators, up to an overall factor
of 1/π2 and corrections in powers of αs and/or ξ2Λ2

QCD.

It has been shown in Ref. [27] that the validity of op-
erator product expansion (OPE) guarantees that T1 is
an analytic function of ω, as is its Taylor series around
ω = 0. By keeping ξ to be short distance and increasing
ω by increasing p, there exists no way for new divergences
to appear in T1. Therefore, T1 remains an analytic func-
tion of ω unless ω = ∞ and the factorization holds for
any values of ω and ξ2 as long as ξ is short distance, sim-
ilar to the scenario of the factorization of experimental
cross sections.

V. NUMERICAL METHODS

This calculation is performed on an ensemble of lat-
tice gauge configurations generated by the JLab/W&M
Collaboration [44]. This ensemble employs 2+1 flavors
of clover Wilson fermions and a tree-level tadpole im-
proved Symanzik gauge action. The strange quark mass
was set by requiring the ratio

(
2M2

K+ −M2
π+

)
/MΩ− to

assume its physical value. The configurations were gen-
erated using a rational Hybrid Monte Carlo update algo-
rithm [45]. The fermion action includes a single iteration
of stout smearing with weight ρ = 0.125. This smearing
makes the employed tadpole corrected tree-level clover
coefficient, csw, very close to the non-perturbative value
determined, a posteriori, by the Schrödinger functional
method.

The extraction of hadron-to-hadron matrix elements
in Lattice QCD requires the calculation of correlation
functions. The 2-point function is a vacuum expectation
value of two interpolating fields separated in Euclidean
time T :

C2pt(p, T ) = 〈Πp(T )Πp(0)〉, (27)

where the interpolating field Πp is an operator with quan-
tum numbers of a pion with momentum p. A spectral
decomposition of the 2-point function is given by the fol-
lowing tower of exponentials

C2pt(p, T ) =
∑
n

|Zn|2
2En(p)

e−En(p)T , (28)

where the sum is over all energy eigenstates n with quan-
tum numbers of the pion, Zn = 〈0|Πp|n〉 is the overlap
factor between the operator and the nth excited state and
En(p) is the energy of that state with momentum p. In
the large Euclidean time limit, this correlation function
will be dominated by the ground state.
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A good choice of interpolating field will have a large
overlap factor with the ground state while simultane-
ously having poor overlap with excited states. For low-
momenta or states at rest, spatial smearing is a well-
established method to reduce the overlap of point-like
interpolators onto high energy eigenstates. We employ
in this work the Jacobi-smearing procedure [46], in which
point-like quark fields are smeared according to

q̂ (~x, t) =

(
1 +

σ∇2

nσ

)nσ
q (~x, t) (29)

where ∇2 is the three dimensional gauge-covariant dis-
cretization of the Laplacian, σ the smearing “width” and
nσ the number of applications of the smearing kernel onto
the point-like quark fields. For highly-boosted states,
however, the overlap of even spatially-smeared interpo-
lators can become suboptimal. To ameliorate the effects
of excited-states and improve the overlap of our interpo-
lators onto boosted pions, we implement a combination
of the Jacobi and momentum-smearing [47] techniques.
In practice we apply appropriately constructed phases to
the underlying gauge fields prior to source creation ac-
cording to

Ũµ [x] = ei
2π
L ζdµUµ [x] (30)

where ~d is the direction in which phases are applied, with
magnitude ζ tuned for each desired momenta. The final
interpolating fields are given by

Π~p(t) =
∑
~x

ei~p·~x ¯̃q(~x, t)γ5q̃(~x, t) (31)

where q̃ is a light quark field constructed with the com-
bined application of momentum smearing and Jacobi
smearing. The smearing parameters used were varied
for each momentum and are shown in Table I.

~p = [0, 0, pz] ζ no. of sources

p = 0.610 GeV 1.75 2

p = 0.915 GeV 2.50 5

p = 1.220 GeV 3.75 6

p = 1.525 GeV 4.50 7

TABLE I. The lattice momenta ~p = [0, 0, pz] of our interpo-
lating operators and the momentum-smearing phases ζ ap-

plied for each lattice momenta in the direction ~d = [0, 0, 1].
Quark sources comprising our interpolators were subsequently
spatially smeared according to the Jacobi-smearing procedure
with smearing parameters σ = 4.0 and nσ = 50.

For the calculation of any good LCS, the composite
operators used have finite spatial extent ξ. Introduction
of a heavy auxiliary quark field Q (mQ > ml), such that

our operators are of the form O(t) = J †Γ(ξ, t)JΓ′(0, t)
with JΓ = q̄ΓQ, limits the available phase space be-
tween the two currents thereby reducing the statistical

noise. An auxiliary heavy quark has also been used in
Ref. [48] to remove higher twist contamination in the
calculation of moments of the PDF and the distribution
amplitude (DA). For our calculation of the pion valence
distribution, multiple auxiliary quark masses between
the light and strange quark mass were tested. A slight
improvement in the signal-to-noise ratio from the heavier
masses was observed for the larger momenta. We set
the auxiliary quark propagator to the strange quark
mass for the remainder of this calculation. In addition,
to minimize excited state contamination, the operator
insertion time (t) will be fixed to be midway between
the source and sink interpolators (i.e. t = T

2 ).

The 4-point correlation function is constructed using
a modified sequential source technique. Because we are
not performing a time slice momentum projection at the
operator, the standard sequential source method using
the operator as sequential source does not work here.
However, for the case of meson there is a straightforward
implementation where momentum projections are per-
formed at source and sink meson operators and the cor-
responding correlation functions are computed as chain
of sequential sources as described below. The correlation
function is expressed as follows

C4pt (ξ, p, T, t) =

〈Πp(~z, T )J †Γ(x0 + ξ, t)JΓ′(x0, t)Πp (~y, 0)〉
=
∑
~z,~y

e−i(~z−~y)·~p〈 ¯̃dγ5ũ (~z, T ) Q̄Γu(x0 + ξ, t)×

ūΓ′Q(x0, t) ¯̃uγ5d̃ (~y, 0)〉
= Tr

[
Ipq (x0 + ξ, t;x0, t)Γγ

5GQ(x0 + ξ, t;x0, t)
†γ5Γ′

]
(32)

where x0 is a randomly determined source point,
GQ(y′;x′) is the flavorQ auxiliary quark propagator from
x′ to y′, and Ipq (y′;x′) is the modified sequential source
with flavor q-quarks and pions at momentum p. The
modified sequential source is constructed through sequen-
tial inversions of the light quark Dirac operator, reusing
already calculated propagators. Heuristically, the mod-
ified sequential source is constructed by calculating the
light quark propagator from a point-source located at
one of the currents to the source interpolator, using this
object as a source for a subsequent propagator to the
sink interpolator, and lastly using this larger object as a
source for propagation from the sink to the second cur-
rent. This construction is done by solving the following
sequence of systems of equations for Gq, H

p
q , and Ipq .

1
∑
x′,s′

Dq(x, s;x
′, s′)Gq(x

′, s′;x0, t) = δ(x− x0)δ(s− t)

2
∑
x′,s′

Dq(x, s;x
′, s′)Hp

q (x′, s′;x0, t) = e−ix·p

×
∑
x′,x′′

S(x;x′)γ5S(x′;x′′)Gq(x
′′, s;x0, t)δ(s)
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J�0(x0, t)

J�(x0 + ⇠, t)

FIG. 2. The 4pt-function is constructed by combining a
heavy quark propagator, represented by the green line, and
a modified sequential source, represented by the black lines.
An advantage of this setup is that any pair of currents with
any separation may be constructed without additional costly
propagator inversions.

3
∑
x′,s′

Dq(x, s;x
′, s′)Ipq (x′, s′;x0, t) = eix·p

×
∑
x′,x′′

S(x;x′)γ5S(x′;x′′)Hp
q (x′′, s;x0, t)δ(s− T )

(33)

where Dq is the Dirac matrix for the light quarks and
S(x;x′) represents the smearing procedure. The phase
projects the interpolating fields onto definite momentum,
while the signs of the momentum-smearing phases ap-
plied to the quark fields must be treated carefully to en-
sure Π and Π correctly project onto states with a given
momentum. Note that the smearing procedures are ap-
plied once for each of the quark fields in the interpo-
lating fields, and no smearing is applied at the current
insertions. This procedure is shown diagrammatically in
Fig 2. An advantage of this procedure is that the correla-
tion function for any current pair with any separation can
be calculated without additional Dirac matrix inversions.

VI. NUMERICAL RESULTS & EXTRACTION
OF PION VALENCE DISTRIBUTION

Reliable extraction of hadronic matrix elements, in
part, hinges on how well a lattice calculation can system-
atically quantify and reduce excited-state contamination.
In this section, we present the numerical results of our
calculation of matrix elements of spatially-separated an-
tisymmetric V-A currents. As discussed in Section V, the
pion source-sink separation T is systematically increased,
while holding the time t = T

2 fixed at which the currents
are inserted. Fig. 3 shows the calculation of the operator
〈π(p)| Ji(x0 + ξ)Jj(x0) |π(p)〉, where Ji and Jj are the
antisymmetric V-A currents discussed in Section IV.

We perform a correlated fit to the jackknife ensemble
ratios of 4pt to 2pt functions for a given momentum p
and spatial separation ξ between the currents. In order
to extract the desired matrix element from fits to our
data, we assume the following single exponential form

for the ratios of 4pt to 2pt functions:

R(T ) =
C4pt(T )

C2pt(T )
= A+Be−∆effT (34)

where ∆eff is the effective energy gap between the
ground-state and the excited states. Therefore the ratio
C4pt(T )
C2pt(T ) will give the desired matrix element 〈π(p)| Ji(x0+

ξ)Jj(x0) |π(p)〉 , up to an additional amplitude obtained
from the fit to the 2pt function in the asymptotic limit
of large T . Given the symmetries engineered into our
calculation, namely the current always being inserted at
t = T

2 and the source/sink interpolators being created
in an identical manner, one can further assume that the
excited state contamination is equal on the source and
sink sides of the current.

In Figs. 3a and 3b we present representative fits ac-
cording to Eq. (34) applied to the jackknife ensemble
ratio of 4pt (C4pt) to 2pt (C2pt) correlation functions as

a function of source-sink separation T , for ~ξ = [0, 0, a]
and momenta along the z-direction p = 0.610 GeV and
p = 1.525 GeV, respectively. For p = 0.610 GeV, the
largest source-sink separation we use is T = 22a. As
the signal-to-noise ratio is significantly reduced for states
with large momentum, we attempt to limit additional
noise in our extracted matrix elements by considering
smaller separations between the currents for states with
large momenta. For instance, we limit the largest source-
sink separation to be T = 16a for p = 1.525 GeV. As
seen from Fig. 3a, the ratio of the correlation function
for p = 0.610 GeV has reasonable signal for almost all
the source-sink separations. However, as expected for
p = 1.525 GeV, after T = 12a, the lattice matrix ele-
ments become very noisy and have no effect on the fit.
Reasonable statistical signal in such a relatively small
window of source-sink separations, compared to lower
momenta data, might be a cause for concern. However
it is worth remembering that with such a coarse lattice
spacing (a = 0.127 fm), T = 12a is sufficiently large
(∼ 1.525 fm) to minimize any excited-state contamina-
tion. We present values of the fit parameters in Table II.

p [GeV] A B ∆eff χ2/d.o.f.

0.610 GeV 0.102(5) -0.028(11) 0.054(20) 1.21

1.525 GeV 0.097(8) -0.267(513) 0.809(503) 0.15

TABLE II. The fit parameters of the V-A matrix elements

with ~ξ = [0, 0, a] for momenta along the z-direction p = 0.610
GeV and p = 1.525 GeV, respectively.

With the fit to the data for momenta along the z-
direction in the range p ∈ {0.610 − 1.525} GeV and
current separations |ξ| ≤ 4a in the z-direction, we ob-
tain the matrix elements shown in Fig. 4. As discussed
in Section IV, we only include |ξ| ≤ 4a in our analysis
so that ξ is sufficiently smaller than 1

ΛQCD
and thereby

ensuring the factorization of Eq. (6).
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FIG. 3. Jackknife ensemble ratio data of the 4pt to 2pt
correlation functions used in the extraction of antisymmetric
V-A current matrix elements. Fig. 3a shows fit to the matrix
elements for p = 0.610 GeV and Fig. 3b shows that for p =
1.525 GeV, both with ξ = 1a. In each figure, the blue data
points are obtained from the lattice QCD calculation, the
green band shows the two-state fit to the data, and the red
band shows the extracted value of the matrix element in the
asymptotically large source-sink separation limit.

For the lowest-order kernel, we use the following simple
relation derived in Section IV

T1

(
ω, ξ2

)
≡ σ(p · ξ, ξ2)

=

∫ 1

0

dx
1

π2
cos(xω)qπv (x) (35)

to extract pion valence distribution qπv (x), by fitting the
antisymmetric V-A current matrix elements σ(p · ξ, ξ2).

For a proper extraction of the PDF and comparison
to global fit results, one would need to extend the LO
matching formula in Eq. (35) to include a higher order
matching kernel between LCSs and PDFs. A next-
to-leading-order (NLO) matching kernel would include

0 1 2 3 4 5
p · ξ

0.02

0.04

0.06

0.08

0.1

0.12

σ
(p
·ξ
,ξ

2
)

 p= 0.610 GeV
 p= 0.915 GeV
 p= 1.220 GeV
 p= 1.525 GeV
  LO pQCD kernel ⊗ qπv (x) fit

FIG. 4. Fit to the antisymmetric V-A currents matrix ele-
ment with leading order (LO) perturbative kernel in Eq. (??)
and functional form of pion valence distribution in Eq. (38).

O(αs) logarithmic ξ2 and constant corrections. The
logarithmic terms contain the scale dependent DGLAP
evolution. The constant terms contain the information
on renormalization of the lattice QCD matrix element
and the partonic PDFs which leads to the scheme
dependence. There also can exist higher twist effects
which contaminate the results without sufficiently small
ξ2. Finally there exist potential discretization errors
from the small separation size, as well as rotational
symmetry breaking effects as observed in [35].

The extraction of the PDF using Eq. (35) from lattice
calculated data constitutes an ill-posed inverse problem.
Lattice data will always be discretized and in a limited
range of ω. A näıve discretized inverse cosine transform
would introduce numerical artifacts into the PDF. So-
lutions to this inverse problem require additional infor-
mation or constraints. In the global fitting community,
additional information is given in the form of smooth
physically motivated functional forms as described be-
low. PDFs extracted using this technique have been suc-
cessfully shown to describe different physical processes,
thereby assuring the universality of the nonperturbative
PDFs. Of importance, it is known that the valence dis-
tributions of nucleon and pion are smooth functions of x
in the region 0 < x < 1. In the spirit of the functional
forms used in global fits of PDFs, we insert

qπv (x) = Nxα(1− x)β(1 + ρ
√
x+ γx) (36)

into Eq. (35) and numerically perform the integration,
where N is the normalization such that∫ 1

0

dx qπv (x) = 1. (37)

With the limitations related to ξ2 corrections in mind,
in this preliminary calculation, we use the numerical fit-
ting program ROOT [49] to fit bootstrap samples of the
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V-A matrix elements and obtain a LO qπv (x)-distribution.
The uncertainty band in the fit has been obtained from
the fit results of the bootstrap samples. With the various
sources of ξ2 corrections not taken into account, we did
not expect the matrix elements as a function of Ioffe time
to fall upon a single curve - consequently the χ2/d.o.f.
was close to 2.2.

We find that the term ρ
√
x has no effect in the fit,

as ρ ' 0. A similar zero-value for ρ was also found in
Ref. [25] and other global fits to experimental data. We
therefore adopt a simpler functional form for the PDF in
our calculation

qπv (x) =
xα(1− x)β(1 + γx)

B(α+ 1, β + 1) + γB(α+ 1 + 1, β + 1)
,(38)

where the beta functions in the denominator ensure the
normalization condition in Eq. (37) is met. Since we
have data only in a limited region of ω, due to the lim-
ited ranges of ξ and p, we set the following physically
motivated and relaxed constraints

α < 0, 0 < β < 4. (39)

The fit to the lattice QCD data using the LO kernel in
Eq. (35) and the functional form of PDF in Eq. (38) is
shown in Fig. 4 with the fit parameters,

α = −0.34(31)

β = 1.93(68)

γ = 3.05(2.50) (40)

The extracted PDF from this fit is shown in Fig. 5a where
the values of the fit parameters are indicated. We also
show the xqπv (x)-distribution in Fig. 5b. The perturba-
tive kernel fixes the value of the integral in Eq. (35) to
be 1

π2 at ω = 0 for any value of x, therefore the fitted

value of T1

(
ω, ξ2

)
has zero uncertainty at this point.

VII. COMPARISON WITH OTHER
DETERMINATIONS

This first exploratory lattice QCD calculation of the
pion PDF using spatially-separated current-current cor-
relation function is performed at a relatively heavy pion
mass (mπ ' 416 MeV). This calculation must be re-
peated on several other lattice ensembles to determine
the pion mass dependence, quantify lattice artifacts such
as finite lattice spacing and finite volume [50] corrections
and obtain the PDF in the continuum limit. As men-
tioned earlier, extending the perturbative calculation be-
yond LO will not only lead to a more reliable extraction of
the PDF, but also an understanding of power corrections
and higher twist effects. A NLO matching kernel will
give control over the corrections in ξ, both from DGLAP
and higher twist effects. This calculation was performed
on a fairly coarse lattice with a large minimum ξ, and
in the future these corrections will need to be taken into
account. While such calculations are underway and will
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FIG. 5. The pion valence distribution obtained from the
fit in Eq. (35) using the LO perturbative kernel in Eq. (24)
derived in Section IV and the functional form of the PDF in
Eq. (38). Fig. 5a shows the pion valence distribution qπv (x)
and Fig. 5b shows the xqπv (x)-distribution. The uncertainty
band is obtained from the fits to the Jackknife samples of the
data.

be presented in a future work, the limitations in our cur-
rent extraction of the pion valence PDF do not preclude
comparison with global fits, two different model calcula-
tions and recent lattice calculations of pion valence quasi-
distribution.

For a comparison with the LO extraction of qπv (x) from
Drell-Yan experimental data in Ref. [10], we evolve our
lattice QCD determination of the PDF in LO to an evo-
lution scale of µ2 = 27 GeV2 starting from initial scale
of µ2

0 = 1 GeV2. With only a LO matching kernel, the
initial scale µ0 is chosen to be comparable to the 1

ξ ’s used

in this calculation, but not low enough for perturbation
theory to be doubted. With a NLO matching kernel,
there will exist an explicit relationship between the scales
ξ and µ0 from the logarithmic terms. After the evolu-
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tion, a shift in the peak of the xqπv (x)-distribution toward
smaller values of x and a more convex-up behavior of the
distribution near x = 1 is seen as expected in our calcula-
tion. From the fit parameters in Eq. (38) (α = −0.34(31),
β = 1.93(68), and γ = 3.05(2.50) at the initial scale), it is
seen that this lattice QCD calculation of qπv (x) is in agree-
ment within uncertainty with the analysis in Ref. [16],
where the authors included next-to-leading-logarithmic
threshold soft-gluon re-summation effects in the calcula-
tion of the Drell-Yan cross section. The large-x behavior
is statistically consistent with the expectation based on
perturbative QCD [18–20] but of course with large un-
certainty. In contrast, the large-x behavior of this calcu-
lation has about ∼1σ difference from the two other NLO
fits [15, 17] which obtained a harder (1−x) fall-off of the
pion valence distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

0.0

0.1

0.2

0.3

0.4

0.5

x
q
π v
(x
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µ2 = 27GeV2

 Conway et al
 WRH
 ASV
 JAM
 LFHQCD
 DSE
 This calculation

FIG. 6. Comparison of pion xqπv (x)-distribution with the
leading-order (LO) extraction from Drell-Yan data [10] (gray
data points with uncertainties), next-to-leading order (NLO)
fits [15–17] (orange band, magenta curve, and red band), and
model calculations [23, 25] (black and blue lines). This lattice
QCD calculation of qπv (x) is evolved from an initial scale µ2

0 =
1 GeV2 at LO. All the results are at evolved to an evolution
scale of µ2 = 27 GeV2.

It is seen in Fig. (6) that the large-x behavior of this
calculation is statistically consistent with the Dyson-
Schwinger model prediction [25] labeled as “DSE” in
the momentum fraction region x > 0.7. On the other
hand, this lattice QCD calculation of qπv (x) is in sta-
tistical agreement with the light-front holographic QCD
model calculation labeled as “LFHQCD” in the region
x < 0.5, but shows a slightly softer fall-off at large-x in
its central value. As mentioned earlier, in a future cal-
culation, when all the systematics of this lattice QCD
calculation are to be well-understood and controlled in a
proper way, the first-principles determination of large-x
behavior of pion PDF such as this one can shed light for
understanding different approximations used in an array
of model calculations.

Even with the limitations mentioned above, this first
exploratory lattice QCD determination of qπv (x) using
LCSs provides encouraging results and shows that this
method has the potential to capture the essential dynam-
ics dictating the behavior of hadron PDFs. Of notable in-
terest, our calculation of xqπv (x) , shown in Figs. 5 and 6,
illustrates a peak of the distribution in a region x < 0.50
at any scale µ2. This is consistent with all the global
analyses of the pion valence distribution, wherein xqπv (x)
is peaked below x = 0.50. The readers are referred to [51]
and [52] for recent other lattice calculations of the pion
valence quasi-distribution.

VIII. SUMMARY AND OUTLOOK

We have presented the first lattice QCD calculation of
the pion valence distribution using a spatially-separated
vector and axial-vector current combination. We have
emphasized that the spatial separation ξ between the cur-
rents is a well-defined quantity in the good lattice cross
sections method and plays a role analogous to capturing
the correct collision dynamics in a hard scattering pro-
cess and ensures the validity of factorization to obtain
parton distribution functions. In this exploratory calcu-
lation, we have considered a leading-order perturbative
kernel to obtain the non-perturbative valence PDF of the
pion though factorization of the good lattice cross section
of this vector and axial-vector matrix element. A similar
calculation on other lattice ensembles is in progress to
determine the pion mass dependence, quantify lattice ar-
tifacts and obtain the PDF in the continuum limit. Such
a calculation of the lattice QCD matrix elements in the
continuum limit, and therefore a more reliable extraction
of PDF will be presented in future work with the next-to-
leading-order perturbative matching kernel incorporated
to understand the corrections in ξ and higher twist ef-
fects. Moreover, using this most general approach, other
good lattice cross sections with different current combi-
nations will give information on different types of PDFs.
Within the limitations of the present calculation, how-
ever, we would like to emphasize that the good statistical
agreement between the PDF extracted here, through only
leading-order factorization and the fits to the experimen-
tal data, is very encouraging and shows that this method
has the potential to complement the well-established and
modern state-of-art global fits of PDFs. Upon further in-
vestigation and refinement of our methodology, our lat-
tice QCD results can be a subset of those used in future
global analyses.
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[23] G. F. de Téramond, T. Liu, R. S. Sufian, H. G. Dosch,
S. J. Brodsky and A. Deur[HLFHS Collaboration],
“Universality of Generalized Parton Distributions in
Light-Front Holographic QCD,” Phys. Rev. Lett. 120,
no. 18, 182001 (2018) [arXiv:1801.09154 [hep-ph]].

[24] M. B. Hecht, C. D. Roberts and S. M. Schmidt,
“Valence quark distributions in the pion,” Phys. Rev. C
63, 025213 (2001) [arXiv:nucl-th/0008049].

[25] C. Chen, L. Chang, C. D. Roberts, S. Wan and
H. S. Zong, Valence-quark distribution functions in the
kaon and pion, Phys. Rev. D 93, 074021 (2016)
[arXiv:1602.01502 [nucl-th]].

[26] Y. Q. Ma and J. W. Qiu, “Extracting Parton
Distribution Functions from Lattice QCD
Calculations,” Phys. Rev. D 98, no. 7, 074021 (2018)
[arXiv:1404.6860 [hep-ph]].

[27] Y. Q. Ma and J. W. Qiu, “Exploring Partonic Structure
of Hadrons Using ab initio Lattice QCD Calculations,”

https://doi.org/10.1142/9789814503266_0001
https://doi.org/10.1142/9789814503266_0001
https://arxiv.org/abs/hep-ph/0409313
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://arxiv.org/abs/1412.3989
https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1103/PhysRevD.93.033006
https://arxiv.org/abs/1506.07443
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://arxiv.org/abs/1706.00428
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1103/PhysRevD.96.014011
https://arxiv.org/abs/1701.05838
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevLett.119.132001
https://arxiv.org/abs/1705.05889
https://doi.org/10.1007/BF01573728
https://doi.org/10.1007/BF01550243
https://doi.org/10.1007/BF01550243
https://doi.org/10.1103/PhysRevD.39.92
https://doi.org/10.1103/PhysRevD.39.92
https://doi.org/10.1103/PhysRevD.30.943
https://doi.org/10.1103/PhysRevD.30.943
https://doi.org/10.1016/0370-2693(89)91351-8
https://doi.org/10.1103/PhysRevD.45.2349
https://link.springer.com/article/10.1007%2FBF01559743
https://doi.org/10.1103/PhysRevC.72.065203
https://arxiv.org/abs/nucl-ex/0509012
https://doi.org/10.1103/PhysRevLett.105.252003
https://doi.org/10.1103/PhysRevLett.105.252003
https://arxiv.org/abs/1009.2481
https://doi.org/10.1103/PhysRevLett.121.152001
https://doi.org/10.1103/PhysRevLett.121.152001
arXiv:1804.01965 [hep-ph]
https://doi.org/10.1103/PhysRevLett.43.246
https://doi.org/10.1103/PhysRevLett.42.940
https://doi.org/10.1103/PhysRevLett.42.940
https://doi.org/10.1016/0550-3213(95)00009-H
https://doi.org/10.1016/0550-3213(95)00009-H
https://arxiv.org/abs/hep-ph/9401328
https://doi.org/10.1016/0370-2693(93)91302-4
https://doi.org/10.1016/0370-2693(93)91302-4
https://arxiv.org/abs/hep-ph/9402286
https://doi.org/10.1140/epja/i2003-10006-6
https://arxiv.org/abs/hep-ph/0208258
https://doi.org/10.1103/PhysRevLett.120.182001
https://doi.org/10.1103/PhysRevLett.120.182001
https://arxiv.org/abs/1801.09154
https://doi.org/10.1103/PhysRevC.63.025213
https://doi.org/10.1103/PhysRevC.63.025213
https://arxiv.org/abs/nucl-th/0008049
https://doi.org/10.1103/PhysRevD.93.074021
https://arxiv.org/abs/1602.01502
https://doi.org/10.1103/PhysRevD.98.074021
https://arxiv.org/abs/1404.6860


12

Phys. Rev. Lett. 120, no. 2, 022003 (2018)
[arXiv:1709.03018 [hep-ph]].

[28] R. P. Feynman, “Very high-energy collisions of
hadrons,” Phys. Rev. Lett. 23, 1415 (1969).

[29] K. F. Liu and S. J. Dong, Origin of difference between d
and u partons in the nucleon, Phys. Rev. Lett. 72, 1790
(1994) [arXiv:hep-ph/9306299].

[30] K. F. Liu, Parton degrees of freedom from the
path-integral formalism, Phys. Rev. D 62, 074501
(2000) [arXiv:hep-ph/9910306].

[31] R. Horsley et al. (QCDSF-UKQCD Collaboration), A
lattice study of the glue in the nucleon, Phys. Lett. B
714, 312 (2012) [arXiv:1205.6410 [hep-lat]].

[32] X. Ji, Parton physics on a Euclidean lattice, Phys. Rev.
Lett. 110, 262002 (2013) [arXiv:1305.1539 [hep-ph]].

[33] A. V. Radyushkin, Quasi-parton distribution functions,
momentum distributions, and pseudo-parton
distribution functions, Phys. Rev. D 96, 034025 (2017)
[arXiv:1705.01488 [hep-ph]].

[34] V. Braun and D. Mueller, “Exclusive processes in
position space and the pion distribution amplitude,”
Eur. Phys. J. C 55, 349 (2008) [arXiv:0709.1348
[hep-ph]].

[35] G. S. Bali et al., “Pion distribution amplitude from
Euclidean correlation functions: Exploring universality
and higher-twist effects,” Phys. Rev. D 98, no. 9,
094507 (2018) [arXiv:1807.06671 [hep-lat]].

[36] A. J. Chambers et al., Nucleon structure functions from
operator product expansion on the lattice, Phys. Rev.
Lett. 118, 242001 (2017) [arXiv:1703.01153
[hep-lat]].

[37] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato and F. Steffens, “Light-Cone Parton
Distribution Functions from Lattice QCD,” Phys. Rev.
Lett. 121, no. 11, 112001 (2018) [arXiv:1803.02685
[hep-lat]].

[38] H. W. Lin, J. W. Chen, L. Jin, Y. S. Liu, Y. B. Yang,
J. H. Zhang and Y. Zhao, “Spin-Dependent Parton
Distribution Function with Large Momentum at
Physical Pion Mass,” arXiv:1807.07431 [hep-lat].

[39] K. Orginos, A. Radyushkin, J. Karpie and
S. Zafeiropoulos, Lattice QCD exploration of parton
pseudo-distribution functions, Phys. Rev. D 96, 094503
(2017) [arXiv:1706.05373 [hep-ph]].

[40] H. W. Lin et al., Parton distributions and lattice QCD
calculations: a community white paper,
arXiv:1711.07916 [hep-ph].

[41] K. Cichy and M. Constantinou, “A guide to light-cone
PDFs from Lattice QCD: an overview of approaches,
techniques and results,” arXiv:1811.07248 [hep-lat].

[42] R. A. Briceño, M. T. Hansen and C. J. Monahan, “Role
of the Euclidean signature in lattice calculations of
quasidistributions and other nonlocal matrix elements,”
Phys. Rev. D 96, no. 1, 014502 (2017)
[arXiv:1703.06072 [hep-lat]].

[43] B. L. Ioffe, “Space-time picture of photon and neutrino
scattering and electroproduction cross-section
asymptotics,” Phys. Lett. 30B, 123 (1969).
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