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How Variation in Analytic Choices Can Affect Normalization Parameters and Proton
Radius Extractions From Electron Scattering Data
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In order to make use of prior knowledge, such as analytic behavior or a known value at a kinematic
endpoint, regressions often make use of floating normalization parameters to allow the fit to shift
the data to the known physical limit. As there is often no unique way to make use of this prior
knowledge or apply these shifts, different analysis choices can lead to very different conclusions from
the same set of data. In this work, we use the Mainz elastic data set with its 1422 cross section
points and 31 normalization parameters to illustrate how a single difference in a subjective analysis
decision can dramatically affect the results.

I. INTRODUCTION

As pointed out by Silberzahn et al. [1], there is often
little appreciation for how chosen analytic strategies can
affect a reported result. In this work we will show how a
single logical difference can impact the normalization of
the Mainz cross section data [2].

II. PROTON ELASTIC SCATTERING

There has been a renewed interest in low four mo-
mentum transfer, Q2, proton elastic scattering data due
to the unexpected Muonic lamb shift proton radius re-
sults of 0.84078(39) fm [3, 4] while the recommended val-
ues from CODATA-2014 was 0.8751(61) fm [5] For the
electron scattering data, the proton charge radius, rp,
is extracted from the cross sections by determining the
slope of the electric form factor, GE , in the limit of four-
moment transfer, Q2, approaching zero:

rp ≡

(
−6

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

)1/2

. (1)

Unfortunately, the scattering data is always measured
at finite Q2, require extrapolation to extract the charge
radius. Many authors have taken many different ap-
proaches to do this extraction with systematically dif-
ferent outcomes [6–14].

To illustrate what exactly is happening, and how a
single analysis choice can strongly affect the extracted
radius, we use the full set of Mainz data and fit it with
an eleventh order polynomial. First we perform an un-
bounded fit, similar to the Mainz approach. Then we fit
a second time adding a requirement that the terms alter-
nate in sign, as one might expect from fitting standard
dipole function with a high order polynomial.

III. CROSS SECTION FORMULAS

The cross section is given by
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where τ = Q2

2mp(EBeam−E′ with Q2 = 4EBeamE
′ sin2 θ
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where EBeam is the energy of the electron beam, E’ is
the energy of the outgoing electron and θ is the scattering
angle of the outgoing electron. Following the notation of
Bernauer etal ., the form factors can be parameterized in
terms of a polynomial function

GE,Mpolynomial,n(Q2) = 1 +

n∑
i=1

aE,Mi Q2 i. (3)

IV. NORMALIZATION PARAMETERS

As noted in the work of Bernauer etal ., the absolute
knowledge of the cross sections is limited by determina-
tion of the absolute luminosity. So in order to bring the
normalization uncertainty down, we use prior knowledge
of the form factors in the limit of Q2=0. This in fine, but
it brings a model dependence to the analysis that isn’t
easily understood, as there are 31 normalization parame-
ters. These parameters are taken in combinations to link
sets of data together as shown in Table I with the final
value of each cross section point defined by:

σ = σp · norm1 · norm2. (4)

Details of how these parameters connect to each of the
1422 cross section points can be found in the supplemen-
tal material of Bernauer etal . [2].

To show how a single analytic change can affect these
normalization parameters, we first do an unbounded re-
gression where the polynomial parameters are allowed to
vary freely and then a second regression where we force
the parameters to alternate sign.
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TABLE I: Shown are the 34 different combinations of
the 31 normalization parameters, Nj , found in the
Mainz data which link the data set together. Also

shown are the number of data points and Q2 range of
each data set.

Energy Spec. norm1 norm2 Points Q2 Range [GeV2]

180 MeV B N1 N3 106 0.0038 – 0.0129

B N1 N4 41 0.0101 – 0.0190

A N3 - 102 0.0112 – 0.0658

B N1 N5 19 0.0190 – 0.0295

C N2 N4 38 0.0421 – 0.0740

C N2 N5 17 0.0740 – 0.0834

315 MeV B N6 N9 104 0.0111 – 0.0489

A N7 N9 38 0.0430 – 0.1391

A N9 - 40 0.0479 – 0.1441

C N8 N9 62 0.1128 – 0.2131

450 MeV B N10 N13 77 0.0152 – 0.0572

B N10 N15 52 0.0572 – 0.1175

A N13 - 42 0.0586 – 0.2663

B N10 N14 17 0.0589 – 0.0851

A N11 N13 36 0.0670 – 0.2744

C N12 N15 50 0.2127 – 0.3767

A N14 - 2 0.2744 – 0.2744

585 MeV B N16 N18 41 0.0255 – 0.0433

B N16 N19 47 0.0433 – 0.1110

A N18 - 27 0.0590 – 0.0964

B N16 N20 21 0.0920 – 0.1845

A N19 - 37 0.0964 – 0.4222

C N17 N20 20 0.3340 – 0.5665

720 MeV B N21 N25 47 0.0711 – 0.1564

A N25 - 46 0.1835 – 0.6761

C N24 N26 28 0.6536 – 0.7603

A N23 N26 27 0.2011 – 0.2520

A N22 N26 37 0.4729 – 0.7474

A N21 N26 36 0.1294 – 0.2435

855 MeV B N27 N31 35 0.3263 – 0.4378

C N28 N31 31 0.7300 – 0.9772

A N29 N30 32 0.3069 – 0.5011

A N29 - 13 0.5274 – 0.7656

B N27 N29 54 0.0868 – 0.3263

V. REGRESSION

To find the parameter values, we do a weighted least
squares minimization with a χ2 function defined as fol-
lows:

χ2 =

1422∑
p=1

(
σModel(Ep, θp) − σp · norm1p · norm2p

∆σp · norm1p · norm2p

)2

(5)
where for each data point p there is a cross-section, σp,
with an energy Ep,angle thetap, and normalization pa-

rameters: norm1 and norm2 as shown in Table I. This
function is clearly not linear in terms, nor is the uncer-
tainty fixed, thus one should be careful when interpreting
the results of the regression [15]. As always, one should
make plots to check the fit quality [16] especially since
this type of minimization can be very sensitive to outliers.

VI. RESULTS

In Table II and Table III we show the results of fitting
with both the bound and unbound polynomial. Inter-
preting the aE1 term as being related to the charge ra-
dius of the proton via Eq. 1, one can immediately see
two very different radii: 0.882 fm and 0.847 fm. Thus
the unbounded regression is close to the expected CO-
DATA value while the function with alternating signs
(bounded) is closer to the muonic result. Depending on
what the researcher was expecting to see, it is clear that
such freedom in analysis choices can make it difficult to
avoid confirmation bias in a non-blinded analysis.

TABLE II: The values of the polynomial terms for the
unbounded and bounded fits.

i aE
i aM

i aE
i aM

i

1 -3.33171 -2.52364 -3.07331 -2.79516

2 13.06315 -0.70594 7.90249 5.17258

3 -63.80113 40.12781 -19.06093 -5.72911

4 250.22516 -176.44192 36.42947 2.80974

5 -661.93288 379.37094 -46.31889 -0.00000

6 1107.02551 -390.33782 33.71220 0.00251

7 -996.16448 8.34513 -10.65379 -0.27676

8 58.48740 444.90791 0.00003 0.00197

9 861.75495 -492.96968 -0.00000 -0.00000

10 -818.96268 230.24980 0.00000 0.00000

11 253.05655 -40.84251 -0.00000 -0.00000

As should be clear from this example, if one does re-
gressions with so many free parameters, it can be very
challenging to understand the regression code and results.
Also, confirmation bias can easily lead to improper inter-
pretation of results from a non-frequentist analysis. As
Johnny von Neumann is creditting with saying, ”With
four parameters I can fit an elephant, and with five I can
make him wiggle his trunk [17].” Thus, instead of debat-
ing which of these two extremely complex regressions (if
either) has merit, want we really want are physical mod-
els, such as Lorenz etal . [18] or Alarcø’n and Weiss [19]
and/or radius limits that don’t depend on the normal-
ization parameters [20].
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FIG. 1: Shown are 1422 point of data analyzed with two different analytic choices. The green points were analyzed
using an unbounded eleventh order polynomial in GE and GM while the gold points used a bounded polynomial.

The systematic difference in the location of the points is due to how the 31 normalization parameters are affected by
the choice of a function. While the means are different, the residuals of the fits to the respective functions are rather

similar.
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TABLE III: Shown are the normalization parameters
for the unbounded and bounded regressions along with

the difference between them. Compared to the
uncertainty of the initial normalizaitons of a few

percent, these charges are all small. More interesting,
since these affect the data in combinations, many of the
changes are simply flips. For example, for the lowest Q2

data, the normalization is given by N1 · N4 which is
1.00033 · 0.99856 vs. 0.99794 · 1.00719 for the

unbounded and bounded fits respectively.

Unbounded Bounded Difference

N1 1.00033 0.99794 0.00239

N2 1.00047 0.99572 0.00475

N3 0.99891 1.00488 -0.00597

N4 0.99856 1.00719 -0.00863

N5 0.99852 1.00645 -0.00793

N6 0.99988 1.00004 -0.00016

N7 1.00000 0.99989 0.00011

N8 1.00019 1.00057 -0.00038

N9 0.99900 1.00608 -0.00708

N10 1.00014 1.00108 -0.00094

N11 1.00004 1.00004 -0.00001

N12 0.99984 1.00119 -0.00135

N13 0.99878 1.00563 -0.00685

N14 0.99892 1.00540 -0.00648

N15 0.99882 1.00402 -0.00520

N16 1.00010 1.00052 -0.00042

N17 1.00015 1.00107 -0.00092

N18 0.99883 1.00632 -0.00750

N19 0.99885 1.00511 -0.00626

N20 0.99865 1.00435 -0.00570

N21 1.00001 0.99919 0.00081

N22 0.99949 0.99870 0.00079

N23 1.00014 0.99990 0.00024

N24 0.99936 0.99829 0.00107

N25 0.99875 1.00567 -0.00692

N26 0.99902 1.00690 -0.00789

N27 1.00059 1.00003 0.00056

N28 0.99961 1.00004 -0.00042

N29 0.99839 1.00596 -0.00757

N30 1.00040 0.99895 0.00144

N31 0.99869 1.00507 -0.00639

rameters that prompted this work and thanks to the
many useful comments and suggestions from David
Meekins. This work was supported by the U.S. Depart-
ment of Energy contract DE-AC05-06OR23177 under
which Jefferson Science Associates operates the Thomas
Jefferson National Accelerator Facility.
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