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We address the propagation and hadronization of a struck quark by studying the gauge invari-
ance of the color-averaged cut quark propagator, and by relating this to the single inclusive quark
fragmentation correlator by means of new sum rules. Using suitable Wilson lines, we provide a
gauge-invariant definition for the mass of the color-averaged dressed quark and decompose this into
the sum of a current and an interaction-dependent component. The latter, which we argue is an or-
der parameter for dynamical chiral symmetry breaking, also appears in the sum rule for the twist-3
Ẽ fragmentation function, providing a specific experimental way to probe the dynamical generation
of mass in Quantum Chromo Dynamics.

Introduction. One of the crucial properties of the
strong force is confinement, namely the fact that par-
tons cannot exist as free particles outside of hadrons.
As a consequence, any individual parton struck in a
high-energy scattering process and freed from its parent
hadron must transform into at least one hadron. Dur-
ing this hadronization process, the colored and typically
nearly massless parton interacts with the surrounding
matter and the vacuum to produce massive and color-
less hadrons. Hadronization is thus tightly connected to
the dynamical generation of the mass, the spin, and the
size of hadrons, but the details of the quark-to-hadron
transition are still unknown. Unraveling hadronization
dynamics is not only of fundamental importance to un-
derstand the nature of visible matter, but also to tackle
hadron tomography studies at current and future facil-
ities, such as the 12 GeV upgrade at Jefferson Lab [1]
and a future US-based Electron-Ion Collider [2], where
measuring the transverse momentum of one final state
hadron is crucial to provide a handle into the transverse
motion of quarks and gluons in the hadron target [3–10].

In this letter, we address the propagation and
hadronization of a struck quark by studying the gauge
invariance properties of the “inclusive jet correlator” de-
fined in Ref. [11–14], i.e., the color-averaged cut quark
propagator supplemented by suitable Wilson lines, and
by relating this by means of sum rules to the fragmen-
tation correlator [15] utilized in perturbative Quantum
Chromo Dynamics (QCD) to describe the semi-inclusive
transition of a quark into a single hadron.

In particular, through the Dirac decomposition of the
jet correlator, we provide a gauge-invariant definition
of the jet mass Mj that was previously introduced in
Ref. [14]. In this letter, we elucidate for the first time its
nature and properties, recognizing that Mj can be de-
composed into the sum of the current quark mass and of
an interaction-dependent “correlation mass”. Thus the

jet correlator can also be interpreted as a color-averaged
propagator for a dressed quark.

We find that the jet mass and the correlation mass are
experimentally accessible through sum rules for the un-
polarized collinear twist-3 E and Ẽ fragmentation func-
tions (FFs). A similar sum rule for the D̃⊥ FF also sup-
plies information on the average transverse momentum
of the produced hadrons. These sum rules encode in a
quantitative and rigorous way the intimate connection
between hadronization and the dynamical generation of
mass and momentum, providing one with a novel way
to quantify the quark dressing process, the dynamical
breaking of the chiral symmetry, and the nature of the
QCD vacuum.

The inclusive jet correlator. Let us consider the
unintegrated color-averaged gauge-invariant cut propa-
gator for a quark of momentum k:

Ξij(k;w) = Disc

∫
d4ξ

(2π)4
eik·ξ

× Trc
Nc
〈Ω|T W1ψi(ξ)ψj(0)W2|Ω〉 , (1)

where |Ω〉 is the interacting QCD vacuum, and, for sim-
plicity, we omitted the flavor index of the quark field
ψ.

Gauge invariance is implemented via the Wilson lines
W1 ≡ W1(∞, ξ;w) and W2 ≡ W2(0,∞;w), and the
time-ordering operator T exchanges, when needed, the
ψ and ψ̄ fields as well as the ending point ξ of the Wil-
son line W1 and the starting point 0 of W2. We consider
Wilson lines with displacements in the w = n+ longitu-
dinal direction defined by a light-like vector n+, followed
by a displacement in the plane transverse to this and to
another light-like vector n− with n+ · n− = 1 [15]. For
sake of brevity, we will henceforth omit any explicit de-
pendence on w.
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In this letter, we will study the cut propagator Ξ as an
object of intrinsic theoretical interest in a formal twist
expansion in powers of 1/k−. This can be justified in
scattering processes with a hard scale, such as the 4-
momentum transfer Q in deep inelastic scattering. In
such processes, the n± vectors are determined by the ini-
tial or final state momenta, and k− ∝ Q � kT � k+.
Our considerations will be, however, process indepen-
dent.

By taking the discontinuity (Disc) of the propagator –
or its cut, in diagrammatic terms – Eq.(1) can be inter-
preted as a gauge-invariant inclusive quark-to-jet am-
plitude squared, or “inclusive jet correlator” in short,
in which all the quark hadronization products cross the
cut and are on-shell [11–14, 16]. The adjective “inclu-
sive” is to stress that none of the jet’s constituents is
actually measured, hence the absence of an axis and ra-
dius in Eq. (1), contrary to semi-inclusive definitions of
jets [17–22].

The color averaging of the initial-state quark, im-
plemented as Trc[. . . ]/Nc in Eq. (1), arises naturally
in QCD factorization theorems and in the definition of
the fragmentation correlator, to which the cut quark
propagator Ξ is connected through the sum rules we
will prove later. In our analysis, color-averaging plays
a crucial role, technically, as it enables a spectral
decomposition of the cut propagator Ξ. At the con-
ceptual level, it implements the color neutralization
that has to take place in order for all the states
propagating through the cut to be on-shell hadrons, as
confinement dictates for a physical process. Therefore,
Eq. (1) can also be interpreted as a color-averaged (or
color-screened) version of the gauge-invariant Feynman
propagator for a dressed quark with four-momentum k.

Spectral decomposition. The cut propagator Ξ can
be given a spectral representation by rewriting Eq. (1)

as a convolution of a quark bilinear S̃ and the Fourier
transform W̃ of a Wilson line:

Ξij(k) = Disc

∫
d4p

Trc
Nc
〈Ω|S̃ij(p)W̃ (k − p)|Ω〉 , (2)

where

S̃ij(p) =

∫
d4ξ

(2π)4
eiξ·p T ψi(ξ)ψj(0) , (3)

W̃ (k − p) =

∫
d4ξ

(2π)4
eiξ·(k−p) T W (0, ξ) . (4)

In Eq. (3), the operator T acts as an ordinary time-
ordering operator, while in Eq. (4) it acts only on the
endpoints of the path for the Wilson line, orienting this
from 0 to ξ or vice versa.

The quark operator S̃ can furthermore be decom-
posed in Dirac space assuming invariance under Lorentz

and parity transformations:

S̃ij(p) = ŝ3(p2)/pij +
√
p2ŝ1(p2)Iij , (5)

where we refer to ŝ1,3 as “spectral operators”. In princi-
ple, when working in an axial v ·A = 0 gauge, we should
also add a structure proportional to /v to the right hand
side of Eq. (5) [25]. However, in our explicit calcula-
tions we adopt the light-cone gauge, v = n+, and this
additional gauge-fixing term would only contribute at
twist-4 level, which is not relevant to the matter dis-
cussed in this letter.

We can obtain a connection with the usual Källen-
Lehman spectral representation of the (gauge-variant)
quark propagator [13, 23, 24] by noticing that the
quark’s Feynman propagator in momentum space is
given by the expectation value of S̃ on the interacting
vacuum. It is then possible to write

Trc
Nc
〈Ω|S̃(p)|Ω〉 =

∫ +∞

−∞

dµ2

(2π)4

i

p2 − µ2 + iε

×
{
/p ρ3(µ2) +

√
p2 ρ1(µ2)

}
θ(µ2) . (6)

Using the operator decomposition for S̃ given in Eq. (5)
and the Cutkosky rule [26, 27], we can then connect
the spectral operators ŝ1,3 to the chiral-odd and -even
Källen-Lehman spectral functions ρ1,3:

(2π)3 Disc
Trc
Nc
〈Ω|ŝ1,3(p2)|Ω〉 = ρ1,3(p2) θ(p2) θ(p−) .

(7)
The TMD inclusive jet correlator. It is useful to

consider the cut quark propagator integrated over the
plus component of the partonic momentum [14],

Jij(k
−,kT ) ≡ 1

2

∫
dk+ Ξij(k) , (8)

where the time ordering is now trivial since ξ− = 0
[28, 29]. As explained later, this integrated correlator
is also of interest for the derivation of sum rules for
fragmentation functions.

The Transverse Momentum Dependent (TMD) cor-
relator J can be decomposed in Dirac structures, with
coefficients determined by Dirac projections of Ξ defined
as

J [Γ] ≡ 1

2

∫
dk+Tr

[
Ξ

Γ

2

]
, (9)

where Γ is a generic Dirac matrix and Tr represent the
trace on the Dirac indexes. The structures of interest
for the present discussion are:

α(k−) ≡ J [γ−] =
k−

kiT
J [γi] , (10)

ζ(k−) ≡ k−

Λ
J [I] , (11)
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where Λ is a scale with the dimension of a mass intro-
duced for power counting purposes. The kinematic de-
pendence of the coefficients and all the remaining Dirac
structures will be discussed in detail in Ref. [30]. The in-
tegrated cut quark propagator can then be decomposed
up to terms of O(Λ2/(k−)2) as:

J(k−,kT ) =
1

2
α(k−)

[
γ+ +

/kT
k−

]
+

Λ

2k−
ζ(k−)I (12)

Note that one can explicitly factor a θ(k−) function
out of α and ζ because of four-momentum conservation,
if one assumes that the particles passing the cut all have
physical four-momenta. We can thus rewrite the coeffi-
cient of the chiral-odd Dirac structure as

ζ(k−) =
θ(k−)

2(2π)3Λ
Mj(k

−) , (13)

where Mj is a gauge-invariant mass term, potentially
function of k−, and the chosen normalization will be-
come clear after performing the explicit calculation in
the light-cone gauge.

We calculate ζ in the light-cone gauge A · n+ = 0
starting from the definition (11). Using the convolution
representation (2) and the spectral decomposition (7),
we obtain:

ζ(k−) =
θ(k−)

2(2π)3Λ

{∫ +∞

0

dp2
√
p2ρ lcg1 (p2)

}
, (14)

where the superscript lcg stresses the use of the light-
cone gauge. The gauge-invariant Mj mass has a partic-
ularly simple and k−-independent form in this gauge,
and is completely determined by the first moment of
the spectral function ρ lcg1 :

Mj =

∫ +∞

0

dµ2
√
µ2 ρ lcg1 (µ2) . (15)

The integral at the right hand side is summing over
all the discontinuities of the quark propagator. In the
light-cone gauge, therefore, Mj can be interpreted as the
average mass generated by the chirality flipping compo-
nent of the quark-to-jet amplitude squared (however,
one has to be careful with a probabilistic interpretation
because, in a confined theory, the spectral functions are
not guaranteed to be positive definite.) Choosing an-
other gauge, the right hand side of this equation would
also receive contributions from the Wilson line, and its
physical interpretation would be less immediate. Inter-
pretation aside, we stress that Mj is gauge-invariant,
thanks to the gauge invariance of the operator Ξ in
Eq. (1), and distinct from the average invariant mass
of the fragmented hadrons. We also note that under
renormalization Mj would acquire an additional scale
dependence.

The calculation of the α coefficient follows closely the
strategy applied to ζ. We obtain:

α(k−) =
θ(k−)

2(2π)3

{∫ +∞

0

dp2ρ lcg3 (p2)

}
=

θ(k−)

2(2π)3
, (16)

where we have furthermore used the gauge-independent
normalization property

∫ +∞
0

dsρ3(s) = 1 [24]. Putting
all elements together, up to twist 3 we find

4(2π)3J(k−,kT ) =
{
γ+ +

Mj

k−
I +

/kT
k−

}
θ(k−) . (17)

The jet correlator can thus be directly compared to
the cut quark propagator with current quark mass mq,
but now depends on the non-perturbative dressed quark
mass Mj .

Being related to the trace of the cut propagator, the
mass Mj is intrinsically different from the mass func-
tion which appears in non-perturbative treatments of
the uncut quark propagator [31, 32]. Mj is gauge in-
variant and scale dependent, whereas the mass function
is gauge dependent, but renormalization group invari-
ant. Nonetheless, being a scale that characterizes the
physics of a color-screened dressed quark, it also pro-
vides a window on color confinement.

Remarkably, the gauge-invariant mass Mj is also ex-
perimentally accessible because it contributes explicitly
to the mass sum rules for the twist-3 fragmentation func-
tions E and Ẽ that we shall prove in the following.

Sum rules for single-hadron fragmentation func-
tions. The unintegrated correlator describing the frag-
mentation of a quark into a single unpolarized hadron
is [15, 28, 33–36]:

∆h
ij(k, Ph) =

∑
Sh

∫
d4ξ

(2π)4
eik·ξ (18)

× Trc
Nc
〈Ω|TW1ψi(ξ)a

†
h(PhSh)ah(PhSh)ψj(0)W2|Ω〉 ,

where a†h and ah create and destroy a hadron h with
momentum Ph and spin Sh.

Integrating over the suppressed quark momentum
component k+ [28, 37, 38], one defines the TMD quark-
to-single-hadron fragmentation correlator:

∆h
ij(z,Ph⊥) =

∫
dk+

2z
Disc [∆h

ij(k, Ph)]k−=P−
h /z

, (19)

where, in the parton frame, kT = 0 and Ph⊥ is
the hadronic transverse momentum relative to the
quark [36, 39]. The parametrization of this correlator
in terms of TMD FFs is known up to twist 3 [15, 33].
Here we are only interested in

∆h
ij(z,Ph⊥) =

γ+

2
Dh

1 +
Mh

2P−h
Eh +

Ph⊥

2zP−h
D⊥h , (20)
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where Dh
1 is the unpolarized twist-2 TMD FF and Eh

and D⊥h are the unpolarized twist-3 TMD FFs.
We can now derive a master four-momentum sum rule

for unintegrated correlators, from which we can later de-
rive sum rules for specific fragmentation functions. Re-
lying on the commutation properties of the momentum
operator associated to the vector Pµh [40],

P̂ µ =
∑
h,Sh

∫
dP−h d

2Ph⊥

2P−h (2π)3
Pµh â

†
h(Ph, Sh)âh(Ph, Sh) ,

(21)
and integrating Eq. (18) by parts with vanishing bound-
ary conditions for the fields, we obtain:∑
h

∫
d4Ph
(2π)3

δ(P 2
h −M2

h)Pµh ∆h(k, Ph) = kµ Ξuncut(k) .

(22)
A detailed proof will be presented in Ref. [30].

We can obtain sum rules for the fragmentation func-
tions by integrating in the parton frame over the
suppressed momentum components on both sides of
Eq. (22), which implies calculating a discontinuity [28,
37, 38], and using suitable Dirac projections of the re-
sult. Since the sum over the hadron spin Sh is funda-
mental in the manipulations involving the momentum
operator (21) [40], we can only obtain sum rules for
FFs involving unpolarized hadrons. In particular, for
Γ = {γ− , I , γi}, and suitably choosing µ = − or µ = i,
we obtain:

[ Γ = γ− ]
∑
h,Sh

∫
dzz Dh

1 (z) = 1 , (23)

[ Γ = I ]
∑
h,Sh

∫
dzMhE

h(z) = Mj , (24)

[ Γ = γi ]
∑
h,Sh

∫
dzM2

hD
⊥(1)h(z) = 0 . (25)

The full set of sum rules for FFs up to twist 3 will
be presented in Ref. [30], with preliminary results
already discussed at various conferences [41]. Note
that we identified the integrated TMD FFs f =
Dh

1 , E
h with their collinear counterpart, i.e., f(z) ≡∫

d2Ph⊥f(z, P 2
h⊥). While this is correct only when

considering bare distributions, the sum rules hold true
also in the renormalized case [39, 42]. Furthermore,
we define the first moment of any FF f as f (1)(z) =∫
d2Ph⊥[P 2

h⊥/(2z
2M2

h)]f(z, P 2
h⊥) [36].

Eq. (23) is the well-known momentum sum rule for
the unpolarized twist-2 FF [42]. The sum rule (24) was
first introduced in Ref. [14], but it is proven here for
the first time in field theory. It generalizes the sum
rule proposed in Ref. [43], which however neglected the
non-perturbative component of the dressed quark mass.

We refer to Eq. (24) as the “mass sum rule” because of
its physical interpretation: the non-perturbative color-
screened dressed quark mass Mj corresponds to the av-
erage of all the possible masses of the particles pro-
duced in the hadronization of the quark, weighted by
the chiral-odd collinear twist-3 fragmentation function
Eh(z). The sum rule (25) is new and its implications
will be discussed in the following.

Twist-three fragmentation and the dynamical
component of the jet mass. Let us now consider
the equations of motion relations discussed in Ref. [15],
that relate the twist-2 and the twist-3 fragmentation
functions. In particular, we need

Eh = Ẽh + z
mq

Mh
Dh

1 , D⊥h = D̃⊥h + zDh
1 , (26)

where the functions with a tilde are related to the
parametrization of the dynamical twist-3 quark-gluon-
quark correlator of type ∆̃α

A [15] and mq is the current
quark mass.

Within the “Wandzura-Wilczek (WW) approxima-
tion” [44], namely assuming that the Ẽ, D̃⊥ FFs are
negligible compared to the quark-quark FFs without the
tilde, Mj reduces to the current quark mass, as can be

seen by setting Ẽ = 0 in Eq. (26) and using the sum
rules (23) and (24). This suggests a decomposition of
Mj into the sum of the current quark mass and of an
interaction-dependent (or dynamical) mass mcorr

q gener-
ated by quark-gluon-quark correlations, which we name
“correlation mass”:

Mj = mq +mcorr
q . (27)

In analogy with the generation of the quark mass in-
duced by dynamical chiral symmetry breaking [31, 32],
we expect mcorr

q = O(ΛCQD). For light quarks, there-
fore, Mj might be substantially larger than the current
quark mass mq. Combining the sum rules (23) and (24)
with Eq. (26) and (27) we obtain:∑

hSh

∫
dzMhẼ

h(z) = mcorr
q , (28)

and one clearly sees that mcorr
q is generated by the

interaction-dependent quark-gluon-quark correlations
encoded in the Ẽ function. Thus, Eq. (28) generalizes
the sum rule

∫
dzẼ = 0 discussed in Ref. [15] to the

non-perturbative case.
The correlation mass vanishes when neglecting quark-

gluon-quark correlations, as in the already discussed
WW approximation. However, when interactions are
considered, the spectral representation (15) shows that
mcorr
q and Mj receive contributions from all possible

propagating hadronic states, including baryons. As a
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consequence, contrary to mq, we expect that mcorr
q and

Mj do not vanish even in the chiral limit. Therefore,
they can also be considered order parameters for dynam-
ical chiral symmetry breaking and are moreover exper-
imentally accessible, at least in principle, via the mass
sum rule for the E and Ẽ FFs.

Finally, combining the sum rules (23) and (25) with
the D-type equation of motion in Eq. (26), we obtain:∑
hSh

∫
dzM2

hD̃
⊥ (1)h(z) = −

∑
hSh

∫
dzzM2

hD
(1)h
1 (z)

≡ −1

2
〈P 2

h⊥/z〉 . (29)

This new sum rule provides an experimental way of ac-
cessing the average squared transverse momentum ac-
quired by unpolarized hadrons fragmenting off an unpo-
larized quark, and probes the dynamical nature of the
hadronization process in analogy with the way the sum
rule for Ẽ probes dynamical chiral symmetry breaking.
Indeed, the transverse momentum acquired during the
hadronization is generated by the quark-gluon-quark
correlations and would vanish in the absence of these, as
it can be directly checked assuming the WW approxima-
tion. Similar sum rules involving transversely polarized
quarks or hadrons have been discussed in Refs. [36, 45].

Summary and outlook. With the jet massMj defined
in Eqs. (11) and (13), we have for the first time proposed
a gauge-invariant definition of a color-screened dressed
quark mass, which is furthermore experimentally acces-
sible by using the sum rules (24) and (28) for twist-3
collinear FFs. In perturbation theory, Mj is propor-
tional to the current quark mass, but in the full theory
it remains non-zero also in the chiral limit. Therefore
we also recognize Mj as an order parameter for dynam-
ical chiral symmetry breaking. This provides a novel,
rigorous connection between hadronization and the dy-
namical generation of mass in QCD.

The dynamical component of the jet mass, quantified
by the correlation mass mcorr

q in Eq. (27), is generated

by the quark-gluon-quark correlations encoded in the Ẽ
fragmentation function. The Ẽ FF, and thus the sum
rule (28) connecting this to mcorr

q , can be experimen-
tally accessed by looking at chiral odd observables at
twist-3 level and higher in semi-inclusive hadron produc-
tion in polarized electron-hadron scattering, electron-
positron annihilation, and hadronic collisions. As pro-
posed in Ref. [14, 41], the correlation mass itself may
also directly contribute to the inclusive DIS g2 struc-
ture function at large Bjorken x, and to an analogous
asymmetry in electron-positron induced dihadron pro-
duction. More generally, in scattering processes, the jet
mass Mj (rigorously defined as the trace of the gauge-
invariant cut quark propagator) appears to play a sim-

ilar phenomenological role to that of the constituent
mass in quark models.

With the sum rule (29) we have also proven that the
transverse momentum acquired during the hadroniza-
tion process is a fully dynamical quantity, namely it is
generated by the quark-gluon-quark correlations and it
vanishes in the absence of these. This sum rule can
be, in principle, experimentally accessed at twist-2 level
through the TMD FF Dh

1 , about which limited infor-
mation is so far available [8, 46–48].

Finally, we note that the master sum rule (22) and the
calculational techniques we have introduced have a gen-
eral applicability. In particular, we expect the convolu-
tion and the spectral representation of the quark correla-
tor to be also applicable to the study of the gauge invari-
ance of other correlators, for example the recently in-
troduced virtuality-dependent parton distributions [49]
that play an important role in the direct lattice QCD
calculation of PDFs in momentum space [50, 51]. More-
over, our methods are not limited to staple-like Wilson
lines, making their domain of applicability potentially
wide.
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