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Abstract

Inclusive electron scattering experiments using fixed targets are an important tool for
studying the structure of the nucleons. The electromagnetic structure of the proton,
as encapsulated by its elastic form factors, can be extracted through measurements
of the elastic electron-proton scattering cross-section. The GMp experiment in Hall
A at the Thomas Jefferson National Accelerator Facility (JLab) seeks to measure this
cross-section with high precision up to large momentum transfers. In addition, it
is known that the inelastic structure of the nucleon is modified inside the nucleus.
This modification, known as the EMC effect, can be studied using inclusive electron
Deep Inelastic Scattering (DIS) on a nuclear target. Evidence suggests that the EMC
effect may arise due to nucleon Short Range Correlations (SRC). This thesis describes
studies of the elastic proton form factor measured in the GMp experiment at Hall
A of JLab and studies of the EMC effect in nuclei relative to deuterium using data
collected at the CLAS detector in Hall B at JLab. Furthermore, this works presents
new measurements of SRC pair abundances in nuclei and develops a data-driven SRC-
based phenomenological model of the EMC effect, which can correctly describe the
effect across nuclei.
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Thesis Supervisor: Shalev Gilad
Title: Principal Research Scientist
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Chapter 1

Introduction

Nuclear physics is the study of quark-gluon bound states. As is well known, the atomic

nucleus is composed of these bound states in the form of neutrons and protons, which

are collectively called nucleons. An understanding of the structure of these nucleons

and their mutual interactions is therefore vital for a complete physical description of

the fundamental nature of matter.

Charged leptons, which are point-like particles and interact through the electro-

magnetic force, can be used as probes to study the internal structure of complex

objects like the nucleons. The structure of the probed object can be extracted by

measuring differential scattering cross-sections where only the lepton is detected (i.e.

inclusive scattering). The resolving power of the leptonic probe, as characterized by

the momentum and energy transfer, determines which features of the object are being

studied. This can be seen in figure 1-1: as the energy transfer is increased, finer and

finer underlying aspects of the target are resolved.

If the object under study is a proton, and the momentum transfer is such that

the process is elastic scattering, the measured cross-sections provide knowledge on

the electromagnetic structure of the proton. These charge and magnetic distributions

are encapsulated in momentum space by the proton electromagnetic form factors

[1]. Quasi-elastic (QE) scattering is elastic scattering off a moving nucleon inside

the nucleus [2, 3]. If the leptonic probe is tuned to study quasi-elastic scattering, the

measured cross-sections will provide information on how the nucleons move inside the
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nucleus. If the resolving power is increased even more, the probe becomes sensitive to

the underlying partonic structure of the target [4]. This in known as Deep Inelastic

Scattering (DIS), and the cross-sections here depend on the underlying quark-gluon

dynamics inside the nucleus.

These three reactions are generally studied in separate experiments, but the infor-

mation from all of them is combined to form a consistent picture of the nucleon and

Quantum Chromodynamic (QCD) effects in the nuclear medium. This thesis presents

a study of all three of these reactions using inclusive electron scattering. The results

are used to improve our understanding of nucleon structure and its modification inside

the nucleus.

This chapter will discuss the formalism of electron scattering in the elastic, quasi-

elastic, and Deep Inelastic regimes. It will highlight the most salient features and

results in each case. Section 1.4 in this chapter will discuss the modification of the

nucleon structure inside the nucleus, referred to as the European Muon Collaboration

(EMC ) effect.

Figure 1-1: Top: The total cross-section for electron-nucleon scattering on a free
nucleon as a function of the energy transfer. Bottom: The total cross-section for
various processes in electron-nucleus scattering as a function of energy transfer. This
work focuses on the elastic, QE, and DIS regions.
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1.1 Elastic Electron-Proton Scattering

The cross-section for elastic electron-proton scattering in the Born approximation can

be written in terms of two form factors, which express the electromagentic structure

of the proton [5]. This process is shown in figure 1-2. With the initial proton at rest,

for a given incident electron energy 𝐸, the scattered electron angle 𝜃𝑒 fully defines

the final state. Therefore, the cross-section will be differential with respect to a single

variable, usually chosen to be 𝜃𝑒. The kinematic variables needed to best describe

this process, as well as the other processes discussed later in this chapter, are

𝜈 = 𝐸 − 𝐸 ′ , (1.1)

𝑄2 = −𝑞2 = 4𝐸𝐸 ′ sin2

(︂
𝜃𝑒
2

)︂
, (1.2)

𝑊 =
√︀

(𝑃 + 𝑞)2 =
√︀

𝑀2 + 2𝑀𝜈 −𝑄2 , (1.3)

𝑥𝐵 =
𝑄2

2𝑀𝜈
, (1.4)

𝜏 =
𝑄2

4𝑀2
, (1.5)

𝜖 =

[︂
1 + 2(1 + 𝜏) tan2

(︂
𝜃𝑒
2

)︂]︂−1

, (1.6)

where 𝐸 is the initial electron energy, 𝐸 ′ is the scattered electron energy, 𝜃𝑒 is the

electron scattering angle, and 𝑀 is the mass of the proton. In the above set of

equations 𝜈 is the energy transfer; 𝑄2 is the squared four-momentum transfer; 𝑊 is

the mass of the final state hadronic system, which is equal to 𝑀 for elastic scattering;

𝑥𝐵 is the Björken scaling variable, which is equal to one for elastic scattering; 𝜏 is a

variable used in the definition of 𝜖; and 𝜖 is the longitudinal polarization of the virtual

19



photon.

Figure 1-2: Feynman diagram for elastic electron-proton scattering at lowest order.

Since the electron is a point-like particle, the electron current, 𝑗𝜇, can be written

as

𝑗𝜇 = −𝑒�̄�(𝑘′)𝛾𝜇𝑢(𝑘) , (1.7)

where 𝛾𝜇 represents the simple vertex matrix, and 𝑢(𝑘) and �̄�(𝑘′) are the Dirac spinors

for the incoming and outgoing electrons, respectively. The more complex proton

current, 𝐽𝜇, can be written as

𝐽𝜇 = 𝑒𝑣(𝑝′)Γ𝜇𝑣(𝑝) , (1.8)

where Γ𝜇 represents the proton vertex, and 𝑣(𝑝) and 𝑣(𝑝′) are the Dirac spinors for

the incoming and outgoing protons, respectively.

The scattering amplitude can then be written as

𝑖𝑀 =
−𝑖

𝑞2
[𝑖𝑒𝑣(𝑝′)Γ𝜇𝑣(𝑝)][𝑖𝑒�̄�(𝑘′)𝛾𝜇𝑢(𝑘)] . (1.9)

Under the assumptions of Lorentz covariance, current conservation, and parity

conservation [5] and using some simple identities [6], we can write the spin-averaged

20



cross-section as

𝑑𝜎

𝑑Ω
=

(︂
𝑑𝜎

𝑑Ω

)︂
𝑀𝑜𝑡𝑡

(︂
𝐸 ′

𝐸

)︂
1

1 + 𝜏

(︁
𝐺2

𝐸𝑝(𝑄
2) +

𝜏

𝜖
𝐺2

𝑀𝑝(𝑄
2)
)︁
, (1.10)

where 𝐺𝐸𝑝(𝑄
2) and 𝐺𝑀𝑝(𝑄

2) are the electric and magnetic form factors, respectively.

The Mott cross-section is defined as

(︂
𝑑𝜎

𝑑Ω

)︂
𝑀𝑜𝑡𝑡

=
𝛼2 cos2 𝜃𝑒

2

4𝐸2 sin4 𝜃𝑒
2

, (1.11)

where 𝛼 is the fine-structure constant. The Sachs form factors, 𝐺𝐸𝑝 and 𝐺𝑀𝑝, are

related to the Pauli and Dirac form factors, 𝐹1 and 𝐹2, by

𝐺𝐸𝑝 = 𝐹1 − 𝜏𝐹2

𝐺𝑀𝑝 = 𝐹1 + 𝐹2 .
(1.12)

Since the form factors are only a function of 𝑄2, they can be extracted by measur-

ing the cross-section at multiple 𝜖 points for a given 𝑄2 value. This technique called

the Rosenbluth separation method [7].

Another way of extracting the ratio of the electromagnetic form factors is the recoil

polarization method [8]. In this method, the longitudinal and transverse polarization

components of the final-state proton are measured. The ratio of the form factors is

proportional to the ratio of these two polarization components. As can be seen in

figure 1-3, the form factors extracted by Rosenbluth separation method differ from

those obtained using the recoil polarization method [1]. Several explanations have

been proffered for this discrepancy, with the most likely being an incomplete under-

standing of the hard two-photon radiative correction [1, 6, 9]. The GMp experiment

will extract precision cross-section measurements at high 𝑄2 and low 𝜖, allowing for

a better understanding of two-photon effects.
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Figure 1-3: Ratio of the electric to magnetic proton form factors using the Rosenbluth
technique (blue points) and the recoil polarization technique (red points). Figure
taken from Ref. [6].

1.2 Quasi-elastic Electron-Nucleon Scattering

In the simplest sense, quasi-elastic (QE) electron-nucleon scattering is elastic scat-

tering off a moving nucleon in the nucleus. QE reactions off a nucleus A will give

a final state consisting of the scattered electron, a single separated nucleon, and the

A-1 nucleus (potentially in an excited state).

In the plane-wave impulse approximation (PWIA), the scattering interaction takes

place between a single virtual photon and a single nucleon, with the other nucleons

as spectators to the reaction (figure 1-4) [2, 3]. Under this approximation the (e,e’N)

cross-section can be written as

𝑑6𝜎

𝑑𝜈𝑑Ω𝑒𝑑𝐸𝑝𝑑Ω𝑝

∝ 𝜎𝑒𝑁 × 𝑆(𝑃𝑚, 𝐸𝑚) , (1.13)

where 𝜎𝑒𝑁 is the off-shell electron-nucleon cross-section, 𝑃𝑚 is the missing momen-

tum and 𝐸𝑚 is the missing (i.e. separation) energy. The term 𝑆(𝑃𝑚, 𝐸𝑚) is the

spectral function, and it represents the probability of finding a nucleon with missing

momentum 𝑃𝑚 and missing energy 𝐸𝑚 inside the nucleus.

The momentum distributions of the nucleons inside the nucleus can be probed

using this type of reaction. One interesting feature of the nuclear wave function is the

high-momentum tail, which makes up about 20% of the strength of the wave function
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Figure 1-4: Quasi elastic electron-nucleon scattering in the plane-wave impulse ap-
proximation. The important kinematic variables are listed on the plot. Figure taken
from Ref. [3].

for moderate to heavy nuclei [3]. From double and triple coincidence reactions, we

also know that this tail consists primarily of nucleons in Short Range Correlation

(SRC) pairs. These SRC pairs are nucleons which are dynamically close to each other

in the nucleus and have a large relative but small center-of-mass momentum, where

large and small are with reference to the Fermi momentum. These SRC pairs prefer

deuteron-like configurations, with neutron-proton pairs being much more likely to

form than either proton-proton or neutron-neutron pairs [2, 3]. A cartoon of the

nucleon momentum distribution listing all these features is shown in figure 1-5.

Inclusive scattering can in fact be used to study these SRC pairs. For the PWIA

diagram in figure 1-4, we can write the four-momentum conservation equation as

(𝑞 + 𝑝𝐴 − 𝑝𝐴−1)
2 = 𝑝2𝑓 = 𝑚2

𝑁 . (1.14)

For inclusive scattering, only 𝑞 and 𝑝𝐴 are known in the above equation. However,

using this equation, we can determine the minimum momentum of the struck nucleon

if we know 𝑄2 and 𝑥𝐵 [10]. This momentum is the component of the stuck nucleon’s

initial momentum parallel to �⃗� when the residual A-1 nucleus remains in an unexcited

state.
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Figure 1-5: Cartoon showing the gross features of the momentum-space nuclear wave
function which are discussed in the text. Figure adapted from Ref. [3].

The upshot of this is that the high momentum part of the nuclear wave function

(which consists primarily of SRC pairs) can be probed using inclusive scattering by

going to large enough 𝑄2 and 𝑥𝐵 (figure 1-6). This is the region where the nuclear

wave function is mostly deuteron-like, but with a small number of 𝑝𝑝 and 𝑛𝑛 SRC

pairs. The use of inclusive scattering is in the calculation of the per-nucleon cross-

section ratio for a nucleus A to deuterium in this high initial momentum region. We

call this ratio 𝑎2(𝐴/𝑑), and it tells us the probability of finding a nucleon in the high

momentum region for a nucleus A relative to deuterium.

Figure 1-6: Top: Minimum momentum of the struck nucleon in deuterium as a
function of 𝑥𝐵 for several 𝑄2 values. Bottom: Minimum momentum of the struck
nucleon for various nuclei at 𝑄2 = 2.0 𝐺𝑒𝑉 2. Figure taken from Ref. [10].
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The main interest of this work is nucleon structure and how that structure is

modified inside the nucleus. Section 1.4.2 will discuss how this nucleon structure

modification may be related to SRC.

1.3 Deep Inelastic Electron Scattering

As the amount energy transferred to the target by the charged lepton is increased,

the nucleon can be excited into a resonance state. As the resolving power of the

leptonic probe is increased even further, the inclusive scattering cross-section becomes

sensitive to the details of the quarks and gluons inside the nucleon. Here the lepton

is scattering from the point-like quarks inside the nucleon in a process called Deep

Inelastic Scattering (DIS). DIS provided the iron-clad proof that the nucleons do

indeed have a partonic sub-structure.

For inclusive inelastic scattering (either in the resonance or DIS region), the struck

nucleon will be left in a final state with a total mass (𝑊 ) greater than the nucleon

mass. This process is shown in the Born approximation in figure 1-7. Using the

same assumptions as in section 1.1, the inelastic electron-proton inclusive scattering

cross-section can be written as [4, 11]

𝑑2𝜎

𝑑Ω𝑑𝐸 ′ =
4𝛼2𝐸 ′2

𝑄4

[︂
2
𝐹1(𝑥𝐵, 𝑄

2)

𝑀
sin2 𝜃𝑒

2
+

𝐹2(𝑥𝐵, 𝑄
2)

𝜈
cos2

𝜃𝑒
2

]︂
, (1.15)

where 𝐹1 and 𝐹2 are the two structure functions. In this case, unlike in equation 1.10

for elastic scattering, the cross-section and structure functions and differential with

respect to both the scattered electrons’s angle and energy. In fact, the elastic-electron

proton scattering cross-section is equivalent to the above equation with 𝑥𝐵 = 1 and

a delta-function relating 𝐸 ′ and 𝜃𝑒.

The interest of this thesis is DIS, where the virtual photon interacts with the

point-like quarks inside the nucleon. One important consequence of this picture is

that as the energy and momentum transfer increase, the structure functions, 𝐹1 and

𝐹2, become only logarithmically dependent on 𝑄2. This evolution of 𝐹1 and 𝐹2

from functions of two variables to functions of 𝑥𝐵 only is called Björken Scaling.
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Experimental confirmation of this aspect of DIS is shown in figure 1-8.

Björken Scaling can be qualitatively understood as follows. When the four-

momentum transfer is high enough, the time scale of the photon-quark interaction

is short compared to that of the interactions between the partons themselves, and

the quarks can be regarded as nearly free particles inside the nucleon. So in DIS the

leptonic probe is elastically scattering off a quark. For elastic scattering where the

two particles’ incident energies are known, the kinematics and the cross-section are

fully determined by the scattering angle of one of the particles. For lepton-quark scat-

tering, the incident quark has a momentum distribution. So the energy distribution

of the scattered lepton at a given scattering angle depends on the quark momentum

distribution inside the nucleon [11]. In this picture, 𝑥𝐵 represents the fraction of the

nucleon’s momentum carried by the struck quark in the infinite momentum frame.

Figure 1-7: Inelastic scattering of an electron and proton at lowest order. The final
hadronic state, X, is undetermined in inclusive scattering and will have a mass greater
than the proton mass.

In this model, we can then proceed to write the structure functions as

𝐹1(𝑥𝐵) =
1

2

∑︁
𝑖

𝑒2𝑖 [𝑞𝑖(𝑥𝐵) + 𝑞𝑖(𝑥𝐵)] , (1.16)
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Figure 1-8: Limited 𝑄2 dependence of the inelastic inclusive 𝐹2 structure function in
the DIS regime. This feature is called Björken scaling. Figure taken from Ref. [12].

𝐹2(𝑥𝐵) =
∑︁
𝑖

𝑒2𝑖 𝑥𝐵 [𝑞𝑖(𝑥𝐵) + 𝑞𝑖(𝑥𝐵)] , (1.17)

where the sum is over all quark flavors, 𝑒2𝑖 is the charge of the quark, and 𝑞(𝑥𝐵) and

𝑞(𝑥𝐵) represent the quark and anti-quark momentum distribution functions, respec-

tively. For a given quark flavor, the distribution function, 𝑞(𝑥𝐵), are the combination

of the valence-quark distribution function and the sea-quark distribution function. In

this model, the structure functions are related by the Callan-Gross equation [12]

𝐹2(𝑥𝐵) = 2𝑥𝐵𝐹1(𝑥𝐵) . (1.18)
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We will discuss one other item that is needed for the description of the EMC effect

in the next section. The cross-section in equation 1.15 can be written as

𝑑2𝜎

𝑑Ω𝑑𝐸 ′ = Γ
[︀
𝜎𝑇 (𝑥𝐵, 𝑄

2) + 𝜖 𝜎𝐿(𝑥𝐵, 𝑄
2)
]︀
, (1.19)

where Γ is the virtual photon flux, and 𝜎𝑇 (𝐿) is transverse (longitudinal) cross-section.

The ratio, 𝑅, of these cross-section components can be related to the structure func-

tions as

𝑅 =
𝜎𝐿

𝜎𝑇

=

(︂
1 +

𝜈2

𝑄2

)︂
𝑀

𝜈

𝐹2

𝐹1

− 1 . (1.20)

Rearranging this equation gives

𝜈

𝑀

𝐹1

𝐹2

=
1 + 𝜈2

𝑄2

𝑅 + 1
. (1.21)

1.4 The EMC Effect

Now that we have described the formalism of DIS and how it can be used to probe

the inelastic structure of the nucleon, we will consider how that structure is modified

inside the nucleus. The nucleons inside the nucleus are bound by several MeVs, while

the nucleons themselves have masses of about a GeV that stem primarily from the

interactions of the constituent partons (quarks and gluons). On account of this ‘scale

separation’, it was both surprising and intriguing when evidence was discovered that

the inelastic structure of the nucleons is indeed modified in the nuclear medium [13].

This evidence, called the European Muon Collaboration (EMC ) effect in honor of

the discoverers, has been under experimental and theoretical study for approximately

35 years, and there is still no consensus on the QCD-driven quark-gluon dynamics

underlying the effect.

We will begin by considering the inclusive scattering cross-section for a charged

lepton on a nucleus A. The differential cross-section per-nucleon for a nucleus A will
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be

𝜎𝐴/𝐴 =
4𝛼2𝐸 ′2

𝑄4

[︂
2
𝐹𝐴
1 (𝑥𝐵, 𝑄

2)

𝑀
sin2 𝜃𝑒

2
+

𝐹𝐴
2 (𝑥𝐵, 𝑄

2)

𝜈
cos2

𝜃𝑒
2

]︂⧸︂
𝐴 , (1.22)

where 𝜎𝐴 is the doubly-differential cross-section, and 𝐹𝐴
1 and 𝐹𝐴

2 are the inelastic

structure functions for the nucleus. (Note that the definition of 𝐹𝐴
1(2) used here is

equivalent to the 𝐴 · 𝐹𝐴
1(2) in some other works.)

Therefore, the ratio of the per-nucleon cross-sections for nuclei 𝐴1 and 𝐴2 is

(𝜎𝐴1/𝐴1)

(𝜎𝐴2/𝐴2)
=

𝐴2

𝐴1

𝐹𝐴1
2

𝐹𝐴2
2

[︁
1 + 2 𝜈

𝑀

𝐹
𝐴1
1

𝐹
𝐴1
2

tan2 𝜃𝑒
2

]︁
[︁
1 + 2 𝜈

𝑀

𝐹
𝐴2
1

𝐹
𝐴2
2

tan2 𝜃𝑒
2

]︁ . (1.23)

If the ratio of the longitudinal to transverse cross-section (equation 1.20) is inde-

pendent of A, then, from equation 1.21, the cross-section ratio reduces to the ratio of

the structure functions:
(𝜎𝐴1/𝐴1)

(𝜎𝐴2/𝐴2)
=

(︀
𝐹𝐴1
2 /𝐴1

)︀(︀
𝐹𝐴2
2 /𝐴2

)︀ . (1.24)

Measurements have been made of 𝑅 for some nuclei, and the results show that 𝑅

is independent of the nucleus to the several percent level [4, 13]. So the cross-section

ratio of two nuclei can be considered equivalent to their structure function ratio.

1.4.1 Observation of the Effect

The original EMC measurement was conducted at CERN using a muon beam and an

iron and deuterium target [13]. The initial purpose of the experiment was to study

lepton-nucleon scattering at very high beam energies. Due to the low muon beam

intensity, an iron target was used to boost the event rate [4, 11]. After accounting for

known nuclear physics effects, such as the Fermi motion of the nucleons and neutron

excess [14], the collaboration expected to find structure function ratios (cross-section

ratios) equal to unity. Their results are shown in figure 1-9. As can be seen in

the figure, although the nuclear physics considerations can explain part of the effect,

the entire EMC effect can not be explained without either modifying the internal
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structure of the nucleons or including multi-nucleon effects.

Figure 1-9: Final published result for the original EMC effect measurement on iron
and deuterium. The figure is taken from Ref. [15]. It differs a bit from the original
result in Ref. [13], primarily due to a re-normalization of the ratio. The solid curve
shows a prediction if only nuclear effects are included.

The EMC collaboration then made more detailed studies on the cross-section

ratio of muon scattering off carbon, copper, and tin relative to deuterium [16]. They

found that the cross-section ratio was less than unity for 𝑥𝐵 < 0.09 and that the ratio

between 0.09 < 𝑥𝐵 < 0.2 was greater than unity (but the enhancement was reduced

from the original measurement). The features in this region can be explained by

shadowing and anti-shadowing. They once again found the cross-section to decrease

linearly in the EMC region between 0.3 < 𝑥𝐵 < 0.7.

Additional measurements of the EMC effect, which confirmed the original result,

were performed by the BCDMS collaboration [17] and at the Thomas Jefferson Na-

tional Accelerator Facility (JLab) on light nuclei [18].

The most systematic studies were performed at SLAC [19]. The SLAC experiment

made EMC effect measurements using an electron beam on 4He, Be, C, Al, Ca, Fe,

Ag, and Au relative to deuterium in the range 0.1 < 𝑥𝐵 < 0.9. This experiment

confirmed that the effect was universal (i.e. the shape of the ratio was the same for
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all nuclei). It also showed that the magnitude of the effect (which is best characterized

by the slope of the ratio in the EMC region 0.3 < 𝑥𝐵 < 0.7) depends on the nucleus.

In addition, the SLAC data was collected in the 𝑄2 range 2 𝐺𝑒𝑉 2 < 𝑄2 < 12 𝐺𝑒𝑉 2,

and the experiment found no 𝑄2 dependence to the EMC effect.

One question that can be considered is why EMC effect measurements are per-

formed relative to deuterium as opposed to hydrogen. The reason for this is that el-

ementary DIS lepton-proton and lepton-neutron cross-sections are very different. So

when comparing the cross-section of a nucleus A to hydrogen, most of the difference

will be due to the difference in the lepton-proton and lepton-neutron cross-sections.

When comparing a non-isoscaler nucleus A to deuterium, the correction to the ratio

due to unequal numbers of protons and neutrons in a nucleus A is on the order of a

few percent. Therefore the deuteron, which is a loosely bound state of a proton and

a neutron, is used for all EMC effect measurements. In the EMC region, corrections

due to binding and nucleon motion for the deuteron are smaller than 3% [13].

1.4.2 Current Hypotheses

We will briefly discuss current theoretical hypotheses used to model the EMC effect.

Additional details can be found in Refs. [3, 4, 14, 16].

The most conventional way to try to explain the EMC results is by using models

based on single nucleons, including the effects of nuclear binding and Fermi motion

[20, 21]. The average off-shell nucleon in a nucleus has a separation energy 𝜖𝑠 and

momentum 𝑝 related by

𝜖𝑠 +
𝑝 2

2𝑀
≈ −16 𝑀𝑒𝑉 . (1.25)

The nucleon’s four momentum is now (𝑀 +𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦+𝜖𝑠, 𝑝), and we define

the variable 𝑥𝐴 as

𝑥𝐴 =
𝐴𝑀

𝑀𝐴

· 𝑥𝐵 , (1.26)

where M is the nucleon mass, M𝐴 is the mass of the nucleus, A is the mass number

of the nucleus and 𝑥𝐵 is the standard Björken-x variable. 𝑥𝐴 represents 𝑥𝐵 corrected
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for the average nucleon binding energy.

In the nucleon-only models, the structure function per-nucleon for a nucleus A is

written as

𝐹𝐴
2 (𝑥𝐴)/𝐴 =

∫︁ 𝐴

𝑥𝐴

𝑑𝑦𝑓𝑁(𝑦)𝐹𝑁
2 (𝑥𝐴/𝑦) , (1.27)

where 𝑦 is the fraction of the nuclear momentum carried by a single nucleon divided

by the number of nucleons, 𝑓𝑁(𝑦) is the corresponding probability distribution for

the struck nucleon, and 𝐹𝑁
2 is the free average nucleon structure function. For non-

interacting, stationary nucleons, 𝑓𝑁(𝑦) is a delta function peaked at 𝑦 = 1. Fermi

motion causes the distribution to have a non-zero width; defining 𝜖 = −𝜖𝑠/𝑀 , binding

effects shift the peak to 𝑦 = 1 − 𝜖.

If the width of 𝑓𝑁(𝑦) is ignored, equation 1.27 can be simplified as

𝐹𝐴
2 (𝑥𝐴)/𝐴 ≈ 𝐹𝑁

2

(︂
𝑥𝐴

1 − 𝜖

)︂
. (1.28)

This equation indicates that the structure function in a nucleus is equivalent to the

free nucleon structure function evaluated at a slightly higher 𝑥𝐴 value. As can be

seen in figure 1-8, the nucleon structure function falls with increasing 𝑥𝐵 in the EMC

region. A value of 𝜖 = 0.04 is sufficient to explain the effect [22].

However, shifting the peak of the 𝑓𝑁(𝑦) violates momentum sum rules [3] since it

implies that ∫︁
𝑑𝑦 𝑦𝑓𝑁(𝑦) = 1 − 𝜖. (1.29)

In addition, relativistic corrections significantly reduce the strength of nuclear binding

effects [22]. So, single-nucleon models can not explain the EMC effect.

The nuclear binding models can be combined with models based on the enhance-

ment of the pion field associated with the nucleon-nucleon interaction in the nucleus

[23]. In this case, the momentum suppression in equation 1.29 is compensated for

by pions. These combined models can account for the EMC effect if the nuclear

pions carry about 4% of the nuclear momentum [3]. This would lead to an enhance-

ment of the sea, which would be observable in Drell-Yan experiments. But such an
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enhancement was not seen in the Drell-Yan results [24].

It is now generally believed [3] that the conventional nuclear effects described

above can explain part of the EMC effect up to 𝑥𝐵 ≈ 0.5 but not at higher values [14].

This means that a complete explanation of the effect requires either multi-nucleon

effects or modification of the nucleon structure function inside the nuclear medium.

Since the structure function encapsulates the momentum distributions of the quarks,

the reduction in the structure function of a nucleus A relative to deuterium suggests

that the valence quarks in the nucleus have less momentum than in the free nucleon

[4]. Based on the uncertainty principle, this suggests that the quarks are confined

to a larger volume in the nucleus compared to a free nucleon. Some viable current

mean-field, static modification models are based on this idea [25, 26, 27].

One intriguing recent result is the observed linear correlation between the strength

(i.e. slope) of the EMC effect and the SRC pair fraction probability, 𝑎2(𝐴/𝑑) [28, 29].

This correlation is shown in figure 1-10. If the EMC effect is related to nucleon

SRCs, this suggests that any complete model of effect needs to include momentum-

dependent, dynamic modification that goes beyond the mean-field.

One approach to the EMC that includes SRCs is discussed in Ref. [3]. Both the

QE and the DIS reactions on a nuclear target have a virtual photon interacting with a

nucleon initially moving with four-momentum p (figure 1-4). We define the virtuality

of the nucleon, 𝑣, as

𝑣 ≡ 𝑝2 −𝑀2 . (1.30)

In the non-relativistic case, this reduces to

𝑣 ≈ −2𝑀

(︂
𝑝 2

2𝑀𝑟

+ 𝐸𝑚

)︂
, (1.31)

where 𝑀𝑟 = 𝑀(𝐴− 1)/𝐴. Writing the Schrödinger equation as

𝑝 2

2𝑀𝑟

+ 𝑈 = −𝐸𝑚 , (1.32)

where U represents the nuclear interaction - both the binding and the nucleon modi-
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fication. Combining equations 1.31 and 1.32, we get

𝑈 =
𝑣

2𝑀𝑟

. (1.33)

This means that the interaction U is proportional to the virtuality, with SRCs

being the dominant contribution to the average nucleon virtuality. So a model of the

EMC effect dominated by nucleon SRCs needs to show that the nucleon modification

increases as the magnitude of U increases.

The nucleon can be modelled as a superposition of a "blob-like" component and a

"point-like" component. The blob-like component is a nucleon-sized component and

the point-like component is a small-sized three-quark system. Because of its small size,

the point-like configuration is responsible for the high 𝑥𝐵 nucleon structure function

behavior in the EMC region. So the point-like component should be suppressed in

the nucleus.

The nucleon state in the nuclear medium can be as

|𝑁⟩𝑀 = |𝑁⟩ + (𝜖𝑚 − 𝜖𝑓 )|𝑁⋆⟩ . (1.34)

In the above equation, |𝑁⟩ is the free-nucleon state that comes primarily from the

blob-like component, while |𝑁⋆⟩ is primarily point-like. 𝜖𝑓 represents the relative

strength of the point-like component in the free nucleon, and 𝜖𝑚 represents the rela-

tive strength of the point-like component when the nucleon is placed in the nuclear

medium. If the nuclear interaction is represented by U, 𝜖𝑚 and 𝜖𝑓 are related by

𝜖𝑚 = 𝜖𝑓
𝐶0

𝐶0 − |𝑈 | , (1.35)

where 𝐶0 is a constant. As |𝑈 | increases, 𝜖𝑚 will be suppressed compared to 𝜖𝑓 .
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Figure 1-10: Observed linear correlation between the strength of the EMC effect (as
characterized by the slope) and the SRC pair fraction probability (𝑎2(𝐴/𝑑)). This
figure comes from Ref. [29].

1.5 This Work

This thesis presents experimental studies conducted at JLab on inclusive elastic scat-

tering, QE scattering, and DIS. This thesis will present new DIS measurements of

the EMC effect and QE measurements of SRC pair fraction probabilities conducted

at Hall B at JLab. These measurements will be discussed in chapter 2. The DIS and

QE measurements will be used to create a data-driven phenomenological model that

presents a quantitative connection between the EMC effect and nucleon SRCs. In

addition, chapter 3 will discuss an elastic electron-proton scattering experiment, the

GMp experiment [30], that was performed in Hall A of JLab.
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Chapter 2

Studying Bound Nucleon Stucture

and SRCs with CLAS

We will now turn to a discussion of our cross-section ratio measurements in CLAS

[31]. This analysis was performed as part of the CLAS Data-Mining initiative [32]

on data taken during the EG2c experiment. The EG2c experiment took place in

2004 using an electron beam with a nominal beam energy of 5.014 GeV [33, 34]. The

experiment used a specially designed target cell consisting of a 2 cm long cryogenic

cell (filled with either liquid deuterium or liquid hydrogen) as well as a solid target

located approximately 5 cm downstream [35]. A mechanical lever arm allowed one of

the six solid target foils (12𝐶, thick or thin 27𝐴𝑙, 56𝐹𝑒, 118𝑆𝑛, or 208𝑃𝑏) to be remotely

placed into the beamline at a time.

The EG2c experiment operated with an open electron trigger design. This makes

it possible to re-analyse the data, looking for physics not considered at the time the

experiment was conducted. In this analysis, we present per-nucleon inclusive cross-

section ratios for carbon, aluminum, iron, and lead to deuterium for both the Deep

Inelastic Scattering (DIS) region and for high 𝑥𝐵 Quasi-Elastic (QE) scattering. We

use this data to extract EMC slopes and 𝑎2(𝐴/𝑑) values.
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2.1 Experimental Setup

Continuous Electron Beam Accelerator Facility

The Continuous Electron Beam Accelerator Facility (CEBAF) at JLab provides con-

tinuous wave GeV electron beams for simultaneous use in multiple experimental halls

[36]. Between the years 2000 and 2012, CEBAF operated with a maximum electron

beam energy of approximately 6 GeV. At the beginning of 2009, construction began

on the 12 GeV upgrade of the accelerator.

A schematic of the accelerator is shown in figure 2-1 following the 12 GeV upgrade.

The beam is produced at the injector using a photocathode, and then accelerated

using two anti-parallel superconducting linacs. The beam can be be recirculated up

to four additional times prior to being sent to an experimental hall.

Figure 2-1: Schematic of the CEBAF site at Jefferson Lab after the 12 GeV upgrade.
The parts of the accelerator site that were modified during the upgrade are highlighted
in the figure.
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The CLAS detector in Hall B at JLab

The CLAS detector was the primary detector used in Hall B during the 6 GeV CEBAF

era [31]. The detector is a nearly 4𝜋 detector, which makes it ideal for studying multi-

particle final states. It can detect charged particles with scattering angles between 8𝑜

and 140𝑜. Neutral particles can be detected between 8𝑜 and 75𝑜.

A schematic of the CLAS detector can be seen in figure 2-2. The beam enters

from the left side in the figure, with the target placed somewhere near the center of

the detector. The detector consists of six identical sectors. The main magnet consists

of six superconducting coils which produce a toroidal magnetic field which is mostly

constant in the azimuthal direction. A set of 3 drift chambers is used to determine

the momentum, angles, and reaction vertices for charged particles. Scintillator pad-

dles are used for time-of-flight measurements and occasionally for triggering. A gas

cherenkov detector and electromagnetic calorimeter are used to perform particle iden-

tification for certain particles. A large-angle calorimeter is also present in 2 of the

sectors.

Figure 2-2: Schematic of the CLAS detector.

Although mostly used for exclusive and semi-inclusive studies, the CLAS detector

can also be used to study inclusive electron scattering. For the data under study here,

the EG2c data, an open electron trigger was used, allowing for inclusive cross-section
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ratio measurements. The gas cherenkov and electromagnetic calorimeter were both in

the trigger during the EG2 experiment, and they are limited to the forward direction.

So electrons can be detected up to scattering angles of approximately 55𝑜.

Target for the EG2 Experiment

The EG2c experiment used a specially-designed target cell capable of placing two

targets simultaneously in the beam-line [35]. This allowed for a good control of many

systematic uncertainties in the extraction of inclusive cross-section ratios. The first

target the beam interacts with is the cryogenic target cell (which was filled with

either liquid hydrogen or liquid deuterium). This cell had a length of 2 cm [37]. The

beam would then strike the solid target. The available solid targets (all in natural

abundances) were as follows: carbon, thin-aluminum, thick-aluminum, iron, tin, and

lead. A picture of the target holder is shown in figure 2-3. Table 2.1 lists each target

along with its respective thickness.

For this analysis, we make use of the carbon, thick-aluminum, iron, and lead

targets. Only a small amount of data was collected for the thin-aluminum and tin

targets. In addition, we found that the tin target was not fully inserted into the

beamline when data was collected from it.

Target Thickness [mm] Areal Density [g/cm2]
Cryotarget 20 0.324

Carbon 1.72 0.300
Thin-Aluminum 1.5 × 10−3 ≈ 0.0
Thick-Aluminum 0.58 0.1566

Iron 0.4 0.315
Tin 0.31 0.228
Lead 0.14 0.159

Table 2.1: Lengths and areal densities of all EG2 targets along the beam direction.
The density of the carbon target was remeasured after the experiment and found to
have a slightly different value than the value given in Ref. [35]. This new value is
consistent with the measured relative electron yields [38].
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Figure 2-3: Photo of the EG2 target holder. The locations of the cryogenic target
and solid target are stated on the figure.

2.2 Electron Identification and Reconstruction

Electron Particle Identification

For the EG2c dataset, calibrations were performed shortly after the data was col-

lected. These calibrations convert the raw detector hits and signals for each par-

ticle candidate into usable quantities like momentum and energy deposited in the

calorimeter [39]. So our work begins with selecting the good electrons out of the set

of triggering events. In this analysis, we use the same electron particle identification

(PID) cuts for both the DIS and QE regions. This is justified because these exact

same cuts were used successfully for an EG2c DIS analysis [39] and an EG2c QE

analysis at high 𝑥𝐵 [40].

We will give a brief overview of the applied cuts. Electrons candidates are required

to meet the following criteria: they must be the particle that triggered the detector;

they must leave a negatively charged track in the drift chamber; and they must have

corresponding hits in the scintillator, cherenkov, and calorimeter detectors.

To determine whether an electron candidate is in fact a good electron (and not,
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for example, a negative pion), we apply several cuts. First, as shown in figure 2-4,

a minimum number of photoelectrons is required in the cherenkov counter. Second,

the hit location in the calorimeter can not be too close to the detector edge (figures

2-5a and 2-5b). Third, a minimum energy deposition is required in both the inner

and the outer layers of the calorimeter (figure 2-6). Finally, a correlation must be

observed between the amount of energy deposited in each layer of the calorimeter and

the momentum of the particle as determined by the drift chamber (figures 2-7 and

2-8).
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Figure 2-4: Number of photoelectrons deposited in the cherenkov counter for electron
candidates. We require that the candidate particles produce at least 2.5 photoelec-
trons to be considered good electrons.

Electron Vertex Corrections

Since multiple targets were present in the beamline for much of the EG2c run period, it

is important to correctly reconstruct the reaction vertex. During the experiment, the

incident beam was transversely offset from the ideal beamline by approximately 2-3

mm. Since the targets’ transverse thickness is larger than this offset, the only effect of

the offset is that the CLAS software will reconstruct the reaction vertex incorrectly.

(This offset will not affect the reconstructed momentum vectors.) As discussed in

Ref. [41], the vertex is incorrectly reconstructed in a known way, allowing for an easy

correction. The reconstructed electron vertex for a carbon-deuterium run is shown in

figure 2-9. The carbon foil should be located at -25 cm, but a clear sector-to-sector
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Figure 2-5: Electron candidate hit locations in the electromagnetic calorimeter. The
coordinate systems shown are defined relative to the CLAS detector. We apply the
following cuts: 𝐸𝐶𝑈 > 40 𝑐𝑚, 𝐸𝐶𝑉 < 360 𝑐𝑚, and 𝐸𝐶𝑊 < 395 𝑐𝑚. (a) Electromag-
netic Calorimeter U, V, and W hit locations. (b) Electromagnetic Calorimeter X vs.
Y hit locations. The green events are the electron candidate events which pass the
𝐸𝐶𝑈 , 𝐸𝐶𝑉 , and 𝐸𝐶𝑊 cuts.

dependence is observed. In order to correct this, we follow the procedure in Ref. [41].

That is, we look at the reconstructed carbon foil vertex (𝑍𝑚𝑒𝑎𝑠) as a function of the

azimuthal angle for a specific polar angle. Then we fit this dependence using the

appropriate function (figure 2-10):

𝑍𝐹𝑖𝑡(𝜑, 𝜃) = 𝑍0 − 𝑏 · cos(𝜑− 𝜑0)/ tan 𝜃 , (2.1)

where 𝑍0, 𝑏, and 𝜑0 are the fit parameters, and 𝜃 and 𝜑 are the electron polar and

azimuthal angle, respectively.

Although this fit describes the general features of the incorrect vertex reconstruc-

tion, there is still an issue within each sector. Our hypothesis is that this has to do

with the polar angle being not perfectly reconstructed (as described in section 2.3).

In any event, we developed the following ad-hoc procedure to correct the residuals.

Noting that the true foil position is at -25 cm relative to the hall center, we can take

into account our previous fit and define the corrected electron vertex as

𝑍𝑐𝑜𝑟𝑟 = (𝑍𝑚𝑒𝑎𝑠 − 𝑍𝐹𝑖𝑡 − 25) × 𝑓(𝜑) × 𝑔(𝜃) , (2.2)
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Figure 2-6: Energy deposited in the two layer of the electromagnetic calorimeter. We
require the energy deposited in the inner layer to be greater than 0.05 GeV and the
energy deposited in the outer layer to be greater than 0.01 GeV.

where 𝑓(𝜑) and 𝑔(𝜃) are low (3𝑟𝑑) order polynomials. This type of extraction is used

in various momentum correction procedures at CLAS [42]. To determine 𝑓(𝜑) and

𝑔(𝜃), we substitute the true foil vertex into the left side of equation 2.2 to get

−25

𝑍𝑚𝑒𝑎𝑠 − 𝑍𝐹𝑖𝑡 − 25
= 𝑓(𝜑) × 𝑔(𝜃) (2.3)

First 𝑓(𝜑) is determined, as shown in figure 2-11a; then, for every event, 𝑔(𝜃) is

solved for in equation 2.3. This is plotted and fit as a function of 𝜃, as shown in figure

2-11b.

The corrected electron vertex is used for the remainder of the analysis. It is plotted

in figures 2-12 and 2-13.

Electron Fiducial Cuts

The electron fiducial cut is used to remove events from regions where the detection

efficiency and acceptance is rapidly changing. The basic idea is to look for the range

of azimuthal angles at a given polar which give a stable electron yield. A continuous

parametrization as a function of polar angle can then be developed.

In this analysis, we use the electron fiducial cuts previously developed for EG2c

[39, 40]. In figure 2-14a, we plot the scattered electron polar vs. azimuthal angle

from the deuterium target prior to the fiducial cuts; in figure 2-14b, we plot the same
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Figure 2-7: (a) Momentum-normalized energy deposited in each layer of the elec-
tromagnetic calorimeter for electron candidates after applying the cuts described in
figures 2-4 - 2-6. (b) Momentum-normalized energy deposited in each layer of the elec-
tromagnetic calorimeter after requiring a correlation between the energy deposition
and the momentum.

quantities after applying the fiducial cuts.
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Figure 2-8: Total momentum and sampling-fraction normalized energy deposition in
the calorimeter as a function of momentum after applying all electron PID cuts. The
sampling fraction 𝜇 is equal to 0.271.
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Figure 2-9: Reconstructed electron vertex for a carbon-deuterium run.
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Figure 2-10: Sinusoidal fit to the carbon foil data. The data is fit at a fixed polar
angle. We refer to the results of this fit in equations 2.2 and 2.3.
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Figure 2-11: (a) Determination of 𝑓(𝜑) for each sector. The functions are 3𝑟𝑑 degree
polynomials. (b) Determination of 𝑔(𝜃) for each sector. The functions are 3𝑟𝑑 degree
polynomials.
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Figure 2-12: Reconstructed electron vertex after applying the corrections detailed in
the text.
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Figure 2-13: (a) Corrected electron vertex vs. 𝜑. (b) Corrected electron vertex vs. 𝜃.

47



 [deg]φ
0 100 200 300

 [d
eg

]
θ

0

20

40

60

80

(a) Before fiducial cuts.
 [deg]φ

0 100 200 300

 [d
eg

]
θ

0

20

40

60

80

(b) After fiducial cuts.

Figure 2-14: Scattered electron 𝜃 vs. 𝜑 for a portion of the data collected on the
deuterium target.
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2.3 Kinematic Corrections

There exist several potential imperfections which can cause the incorrect reconstruc-

tion of particles’ momentum vectors. Incomplete knowledge of the torus magnetic

field distribution will affect the reconstruction of the momentum. Misalignment of

the drift chambers, wire sag, limited knowledge of wire feed-through locations, etc.

can affect both the reconstructed angles and momentum. The originally developed

empirical momentum corrections assumed the angles to be reconstructed correctly

and used e-p elastic scattering to correct the electron momentum [42]. After addi-

tional studies [43] found that the angles may not be reconstructed perfectly, more

complex correction schemes were developed incorporating all the effects described

above [44, 45].

Here we first correct the beam energy using information obtained from the Hall A

arc. Then we correct the electron and proton polar angles using e-p elastic scattering,

based on the technique used in Ref. [46]. For DIS events, we use radiative elastic

events from the hydrogen target to correct the magnitude of the electron momentum

[47]. Finally, for QE events, we estimate the magnitude of the momentum correction

by using the deuterium target. No fiducial cuts are applied in this section so that the

fits can cover a larger range.

2.3.1 Proton Identification and Reconstruction

Proton Particle Identification

Even though we are making an inclusive electron scattering cross-section ratio mea-

surement, we use protons for the kinematic corrections discussed in this section. We

therefore need to correctly reconstruct proton events prior to performing these cor-

rections.

The procedure to reconstruct protons is identical to the one used for a prior EG2c

analysis [40]. For positive particles, we can determine the momentum of the particle in

the drift chamber; for a given momentum, we can calculate the time when a proton

should arrive at the scintillator counters. If the particle arrives at the scintillator
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at the calculated time, it is most likely a proton. We create a quantity called the

corrected time-of-flight for the proton defined as

𝑇𝑂𝐹𝑐𝑜𝑟𝑟 = 𝑇 𝑃
𝑆𝐶 − 𝑆.𝑇.− 𝑇 𝑃

𝐶𝑎𝑙𝑐 , (2.4)

where 𝑇 𝑃
𝑆𝐶 is the measured time of the proton candidate hitting the scintillator,

𝑆.𝑇. is the event start time calculated using the scattered electron, and 𝑇 𝑃
𝐶𝑎𝑙𝑐 is the

calculated time-of-flight from the vertex to the scintillator for a given path-length and

momentum assuming the particle is a proton. In figure 2-15a, we plot this corrected

time-of-flight for all positive particles. Based on equation 2.4, the protons should

have a corrected time-of-flight equal to zero.

In order to select protons, the data is binned in momentum. For every momentum

bin, a Gaussian fit is performed and the standard deviation is determined. Then

events within ±2𝜎 are kept, using a continuous parametrization as a function of

momentum. The cut parameters are taken from the previous EG2c analysis [40].

The events remaining after the proton PID cuts are shown in figure 2-15b. Figure 2-

16 shows the reconstructed mass for all positive particles before and after the proton

PID cuts.
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Figure 2-15: Corrected time-of-flight vs. momentum. The z-axes are in log scale. (a)
All positive particles from the iron target. (b) Events that pass the proton PID cuts.
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Figure 2-16: Reconstructed mass vs. momentum. The z-axes are in log scale. (a) All
positive particles from the iron target. (b) Events that pass the proton PID cuts.

Proton Vertex Corrections

The proton vertex corrections are done in exactly the same way as the electron vertex

corrections described above. Figure 2-17a shows the reconstructed proton vertex

before the corrections, and figure 2-17b shows the reconstructed proton vertex after

the corrections.

 [cm]meas
p

Z
35− 30− 25− 20−0

0.02

0.04

0.06
Sector 1
Sector 2
Sector 3
Sector 4
Sector 5
Sector 6

(a)
 [cm]Corr

p
Z

35− 30− 25− 20−0

0.02

0.04

0.06
Sector 1
Sector 2
Sector 3
Sector 4
Sector 5
Sector 6

(b)

Figure 2-17: (a) Proton reconstructed vertex before vertex corrections for carbon-
deuterium data. The curves are arbitrarily normalized to the same integral. (b)
Proton reconstructed vertex after vertex corrections for carbon-deuterium data. The
curves are arbitrarily normalized to the same integral.

When performing the kinematic corrections we do not cut directly on the corrected

proton vertex to select the relevant target; rather we cut on the corrected electron
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vertex and the difference between the corrected electron and proton vertices (figure

2-18).
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Figure 2-18: Proton corrected vertex minus electron corrected vertex. For the kine-
matic corrections described here, the absolute value of the vertex difference is required
to be less than 2 cm.

Proton Ionization Energy Loss Corrections

Using the CLAS monte-carlo simulation (GSIM ), we can calculate the proton ion-

ization energy loss correction. In figure 2-19, we plot the true proton energy minus

the reconstructed proton energy vs. the reconstructed proton momentum. From this,

we develop a continuous parametrization for the energy loss correction as a function

of momentum. It was found that the same correction can be used for the liquid

deuterium and the liquid hydrogen targets.

2.3.2 Electron Beam Energy

For the EG2c run period, the set electron beam energy was 5.014 GeV. However, it is

known that the set energy during 6 GeV CEBAF running was not equal to the true

energy [48]. Since Hall A was in operation during the same time, the beam energy

can be determined using the Hall A arc measurements. Hall A ran at both 2𝑛𝑑 pass

and 4𝑡ℎ pass during this time. They measured the following beam energies:

𝐼𝑛𝑗𝑒𝑐𝑡𝑜𝑟 + 4 × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 = 4019.5 𝑀𝑒𝑉 (𝐻𝑎𝑙𝑙 𝐴 4𝑡ℎ 𝑃𝑎𝑠𝑠)
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Figure 2-19: Proton ionization energy loss corrections as determined by the simu-
lation. The parameters in this plot can be used for both the liquid deuterium and
hydrogen targets.

𝐼𝑛𝑗𝑒𝑐𝑡𝑜𝑟 + 2 × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 = 2039.7 𝑀𝑒𝑉 (𝐻𝑎𝑙𝑙 𝐴 2𝑛𝑑 𝑃𝑎𝑠𝑠)

From this, we can determine what the beam energy in Hall B (operated at 5𝑡ℎ

pass) should be. We calculate the following beam energy:

𝐸𝐺2𝑐𝐸𝑛𝑒𝑟𝑔𝑦 = 5009.4𝑀𝑒𝑉

This is the beam energy we use for the remainder of this analysis. As can be seen

in figure 2-20, for H(e,e’) events, using this energy brings the elastic peak closer to

the proton mass.

2.3.3 Scattering Angle Corrections

To correct the reconstructed polar angles, we apply a procedure similar to that done

in Ref. [46]. We first select events from the hydrogen target where the scattered

electron and one proton were detected. We take events where the invariant mass, W,

reconstructs to within the elastic peak (figure 2-21a). Then we require the detected

electron and proton to be coplanar (figure 2-21b). With these two cuts, we select
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Figure 2-20: Reconstructed invariant mass for H(e,e’) events using the two different
beam energies.

elastic scattering events with potentially some soft photon radiation.
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Figure 2-21: Elastic selection cuts.

Next, for elastic scattering, we can calculate the beam energy using the electron

and proton angles only [43] as

𝐸0 =
𝑀𝑝

1 − cos 𝜃𝑒

(︂
cos 𝜃𝑒 +

sin 𝜃𝑒
tan 𝜃𝑝

− 1

)︂
, (2.5)

where 𝑀𝑝 is the mass of the proton and 𝜃𝑒 and 𝜃𝑝 are the angles of the electron and

proton, respectively. This is the important point - the reconstruction of the beam

energy is done solely from the two angles, so any mis-reconstruction of the beam

energy will have to be because of angular mis-reconstruction. In figures 2-22 and
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2-23, we show the ratios of the true energy to the energy reconstructed from the

angles.
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Figure 2-22: True beam energy divided by the energy determined from the electron
and proton polar angles.
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(a) True beam energy divided by the energy
determined from the electron and proton polar
angles vs. the electron azimuthal angle.

φEnergy Ratio vs. Proton 

 [deg]
p

φ
0 100 200 300

R
at

io

0.98

0.99

1

1.01

1.02

φEnergy Ratio vs. Proton 

(b) True beam energy divided by the energy
determined from the electron and proton polar
angles vs. the proton azimuthal angle.

Figure 2-23: Two-dimensional beam energy reconstructed from angles.

Under certain reasonable assumptions [46], the mis-reconstruction should be the

same for all types of particles. So, for every event, we can find the distance of closest

approach to the electron-proton angle dependency curve for the true energy (figure 2-

24). This will give us two angle correction values for every event, one for the electron

and one for the proton. Since we assume the form of the correction is the same for

both types of particles, the angles lose their individual identities here, and we roll

both into a general polar angle for performing the correction. The general polar angle

is the combined set of both the electron and proton polar angles. That is, for each
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event the general polar angle variable is set twice, to both the electron polar angle

and the proton polar angle.
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Figure 2-24: Relationship between proton and electron scattering angles for elastic
e-p scattering at the true EG2c beam energy (equation 2.5). Every selected e-p event,
will lie off this curve. By determining the point of closest approach, we can extract a
correction to both the electron and proton angles for each event.

In figure 2-25, we show the difference between the measured and calculated general

polar angle vs. the measured general polar angle. Note how there are two groups

of data in this plot, the lower angles coming from the electron and the larger angles

coming from the proton. For every sector, we look at the difference between the

calculated and measured general polar angles vs. 𝜑 (figure 2-26a), and we fit the

difference with a 3𝑟𝑑 order polynomial. After applying this correction to both the

electron and proton reconstructed angles, we see no dependence on 𝜑 (figure 2-26b).

We checked for any dependence on 𝜃 (figure 2-27), and saw very little; so, we made the

correction only a function of 𝜑. In figures 2-28a and 2-28b, we show the reconstructed

energy using the corrected angles.

The correction should be valid for all types of particles. Since we see very little

dependence of the correction on 𝜃, it may also be valid for all polar angles. As we

have events with polar angles between 12 and 55 degrees in the fit, we can at least

say that the fit is valid in this range. For the inclusive (e,e’) analysis performed in

this thesis, the scattered electron’s polar angle is never outside the fit range.
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Figure 2-25: The difference between the measured and calculated general polar angle
vs. the general polar angle.

2.3.4 Momentum Corrections

Momentum Corrections for DIS Events

Now that we have corrected the polar angles, we can use the corrected electron and

proton angles to calculate any quantity for elastic scattering. Part of the analysis in

this thesis, however, takes place in the DIS region. As is well known, many of the

events that reconstruct with large invariant mass (𝑊 ) come from the so-called radia-

tive elastic tail [49]. If we can select H(e,e’p)X events where the electron reconstructs

as a DIS event, but in reality is an elastic event where the incoming electron radiated

a hard photon, we can calculate what the true electron momentum should be as

𝐸𝑓 =
𝐸𝑖

1 + 𝐸𝑖(1 − cos 𝜃𝑒)/𝑀𝑝

, (2.6)

where 𝐸𝑓 is final electron energy, and 𝐸𝑖 is the initial electron energy. Note that 𝐸𝑖 is

not equal to the beam energy here since the initial electron must radiate prior to the

elastic scattering to perform the correction, and 𝐸𝑖 must be calculated from equation

2.5.

To select the required events, we first look at the reconstructed missing mass

when we detect an electron and proton for different invariant mass (𝑊 ) regions. The

missing mass for H(e,e’p)X events is defined as the mass of the undetected particles

(i.e. the mass of X). As can be seen in figure 2-29, the missing mass resolution
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is degraded at large 𝑊 . So, in order to select radiative elastic events where the

initial electron radiated, we first require the electron and the proton to be coplanar

(figure 2-30). From figure 2-30, we estimate the inelastic contribution within the

cut to be approximately 8-10%. In order to reduce this background and remove

events where the scattered (as opposed to the initial) electron radiated, we require

the missing momentum (i.e. the momentum of X) to be along the direction of the

beamline (figure 2-31). Now, assuming elastic scattering after radiation, we calculate

the initial electron momentum and compare that to the sum of the scattered electron

and proton momentum along the beamline (figure 2-32). We require this difference

to be less than 100 MeV/c.

With the events selected, we consider the missing momentum vs. the invariant

mass (figure 2-33). For the events passing all our cuts, we can see the radiative tail

rising at high invariant mass. Then in figure 2-34, we plot the scattered electron

momentum vs. polar angle for the radiative elastic events with large invariant mass.

We can see that these events cover the same area of phase-space as the inelastic

inclusive events.

For every event, we calculate the scattered electron momentum from the corrected

electron and proton angles using equation 2.5. We then define the following momen-

tum correction functions:
𝑃𝑒,𝑐𝑎𝑙𝑐

𝑃𝑒,𝑚𝑒𝑎𝑠

= 𝑓(𝜑) × 𝑔(𝜃) , (2.7)

where 𝑓(𝜑) and 𝑔(𝜃) are once again 3𝑟𝑑 order polynomials; and the justification for

this factorization comes from previous momentum-correction studies [42]. In each

sector, we bin the data in 𝜑 and determine 𝑓(𝜑) (figure 2-35a). Then we divide

equation 2.7 by 𝑓(𝜑) and bin the data in 𝜃 to determine 𝑔(𝜃) (figure 2-35b). After

applying the correction, we observe no dependence of the ratio on 𝜑 and 𝜃 (figures

2-36a and 2-36b). We compare the square of the missing mass before and after the

momentum corrections in figure 2-37.

The last question we consider is whether these corrections can be used for the

solid targets, which were located several cm downstream of the cryotarget. First
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note how in figure 2-35a, the ratio is primarily above unity. This occurs because no

ionization energy loss corrections were applied for the electrons prior to performing

the momentum corrections discussed here. The ionization energy loss correction is

therefore rolled into the momentum correction. By using the CLAS monte-carlo

simulation, GSIM, we were able to determine that the electron ionization energy loss

is equivalent in all the solid and liquid targets. (This is because almost all of the

energy loss occurs in the material surrounding the targets.) So ionization losses can

be included in the general momentum correction. Next, we bin the hydrogen target

as shown in figure 2-38, and look at the correction for the two regions. In figures

2-39a and 2-39b, we see that the corrections look qualitatively similar for the two

bins, even though the centers of the bins differ by about 2 cm. This provides some

justification for using the obtained correction factors for the solid targets.

Momentum Corrections for QE Events

For our analysis of quasi-elastic (QE) scattering, we are interested in events with

𝑥𝐵 > 1, and the hydrogen data obviously does not extend into this part of the phase-

space. In figure 2-40, we plot the missing mass for large 𝑥𝐵 D(e,e’p)X events, and

observe a clear peak at the nucleon mass. For the QE events in that peak, assuming

that the scattered electron angles, the proton angles, and the proton momentum are

reconstructed correctly, we can calculate the scattered electron momentum [50, 51].

We apply conservation of energy and momentum and solve for the final electron

momentum using the following equations:

𝐸𝑒 + 𝑀𝐷 = 𝐸𝑒′ + 𝐸𝑝 + 𝐸𝑛 , (2.8)

𝑝𝑧,𝑒 = 𝑝𝑒′ cos 𝜃𝑒 + 𝑝𝑧,𝑝 + 𝑝𝑧,𝑛 , (2.9)

0 = 𝑝𝑒′ sin 𝜃𝑒 cos𝜑𝑒 + 𝑝𝑥,𝑝 + 𝑝𝑥,𝑛 , (2.10)
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0 = 𝑝𝑒′ sin 𝜃𝑒 sin𝜑𝑒 + 𝑝𝑦,𝑝 + 𝑝𝑦,𝑛 . (2.11)

In the above equations, 𝐸𝑒′ = 𝑝𝑒′ ; 𝑀𝐷 is the mass of the deuteron; and 𝑝𝑝(𝑛) is the

momentum of the proton (neutron) remaining in the final state. In figure 2-41, we

plot the reconstructed electron momentum and the electron momentum calculated

using the above equations for events in the QE peak. The difference between the

calculated and measured momentum for every QE event is then shown in figure 2-42.

By looking at the mean value of the difference in each sector, we see that at most the

electron momentum is incorrectly reconstructed by 20 MeV/c.

Assuming a 4 GeV/c scattered electron, a 20 MeV/c mis-reconstruction will cause

a shift of 0.025 in 𝑥𝐵 at 𝑥𝐵 = 1. At 𝑥𝐵 = 1.5, a 20 MeV/c mis-reconstruction will

cause a shift in 𝑥𝐵 of 0.037. This mis-reconstruction of 𝑥𝐵 can have a small effect

on our final QE cross-section ratios, and will be taken into account in the systematic

uncertainties.
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(b) After Corrections.

Figure 2-26: The difference between the measured and calculated general polar angle
vs. the general azimuthal angle. We fit each sector with a 3𝑟𝑑 order polynomial.
The top plot shows before applying any corrections; the bottom after applying the
determined correction to both the electron and proton angles.
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Figure 2-27: The difference between the measured and calculated general polar angle
vs. the general azimuthal angle after applying the extracted azimuthal correction to
both the electron and proton events. Since we see very little dependence on the polar
angle, we don’t make any fit here.
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Figure 2-28: Beam energy reconstructed from angles after corrections.
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Figure 2-29: Square of the missing mass for H(e,e’p)X events. (a) All events. (b)
Events with invariant mass near the 3-3 resonance. (c) Events with large invariant
mass.
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Figure 2-30: Absolute value of the difference between the electron and proton az-
imuthal angles minus 180 degrees. We require this quantity to deviate from zero by
less than 2𝑜. The background under the peak is reduced by applying additional cuts.
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Figure 2-31: Fraction of the missing momentum in the directions transverse to the
beamline. (a) All H(e,e’p)X events. (b) Selected cut on the missing momentum
direction. Less than 2% of the missing momentum is allowed to be in a direction
transverse to the beamline.
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Figure 2-32: Difference between the initial electron momentum reconstructed from
the electron and proton angles and the sum of the scattered electron and proton
momentum along the beamline. The absolute value of this difference is required to
be less than 100 MeV/c.
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Figure 2-33: Missing momentum vs. invariant mass. (a) All H(e,e’p)X events. (b)
Events passing the electron-proton coplanarity cut. (c) Events passing all three cuts
discussed in the text. These events constitute our sample of radiative elastic events.
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Figure 2-34: Scattered Electron Momentum vs. Polar angle. (a) All H(e,e’)X events.
(b) H(e,e’)X events, with 𝑊 > 2 𝐺𝑒𝑉 . (c) Radiative elastic 𝐻(𝑒, 𝑒′𝑝)𝛾𝑅 events, with
𝑊 > 2 𝐺𝑒𝑉 .
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(a) Ratio of calculated to measured electron momentum vs. 𝜑 for ra-
diative elastic events. The ratios are fit with a 3𝑟𝑑 degree polynomial to
determine 𝑓(𝜑).
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(b) Ratio of calculated to measured electron momentum divided by 𝑓(𝜑)
vs. 𝜃 for radiative elastic events. The ratios are fit with a 3𝑟𝑑 degree
polynomial to determine 𝑔(𝜃).

Figure 2-35: Electron momentum ratios before applying the corrections.

65



 [deg]
e

φ
20− 0 20

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 1Sector 1

 [deg]
e

φ
40 60 80

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 2Sector 2

 [deg]
e

φ
100 120 140

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 3Sector 3

 [deg]
e

φ
160 180 200

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 4Sector 4

 [deg]
e

φ
220 240 260

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 5Sector 5

 [deg]
e

φ
280 300 320

m
ea

s.
/P

ca
lc

.
P

0.98

0.99

1

1.01

1.02

Sector 6Sector 6

(a) Ratio of calculated to measured electron momentum vs. 𝜑 for radia-
tive elastic events after applying the electron momentum corrections.
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(b) Ratio of calculated to measured electron momentum vs. 𝜃 for radia-
tive elastic events after applying the electron momentum corrections.

Figure 2-36: Electron momentum ratios after applying the corrections.
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Figure 2-37: Comparison of the square of the missing mass for radiative elastic events
before and after applying the electron momentum corrections.
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Figure 2-38: Corrected electron hydrogen target vertex for the six sectors. We study
the momentum corrections for the two different regions of the target shown by the
sets of vertical lines.
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(a) Ratio of calculated to measured electron momentum vs. 𝜑 for radia-
tive elastic events with large invariant mass. The data is shown for the
two regions of the hydrogen target selected in figure 2-38.
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(b) Ratio of calculated to measured electron momentum vs. 𝜃 for radia-
tive elastic events with large invariant mass. The data is shown for the
two regions of the hydrogen target selected in figure 2-38.

Figure 2-39: Electron momentum ratios for different hydrogen target regions.
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Figure 2-40: Reconstructed missing mass minus the nucleon mass for D(e,e’p)X large
𝑄2 and large 𝑥𝐵 events. The applied 𝑄2 and 𝑥𝐵 cuts are stated on the plot. We
select QE events using the cut shown in the plot (i.e. the events between the vertical
lines).
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Figure 2-41: Reconstructed (red curve) and calculated (green curve) electron momen-
tum for the D(e,e’p)n events in figure 2-40. The electron momentum is calculated
assuming the scattered electron angles, the final proton angles, and the final proton
momentum are correctly reconstructed.
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Figure 2-42: QE Electron momentum correction estimation.
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2.4 Data Quality and Background Removal

2.4.1 Data Quality

In order to select the set of good runs for the final analysis, we follow the procedure

of the first EG2 analysis [39] and calculate the yield for every run corrected for the

beam charge and live-time. In figure 2-43, we show the normalized inclusive yield

for the deuterium data. We combine all the deuterium data when calculating the

cross-section ratios, with runs having greater than a 4% deviation from the mean

normalized yield excluded from the final analysis. In figures 2-44 and 2-45, we show

the normalized inclusive yields for the solid targets. We again remove runs from the

final analysis which have larger than a 4% deviation from their respective target’s

weighted average yield.
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Figure 2-43: Top: Charge normalized yield from the deuterium target for (e,e’) events
vs. run number. Bottom: Percent deviation from the weighted average yield vs. run
number. The shaded region indicates the runs used. In both plots, the vertical lines
demarcate the beginning or ending or a given solid target run period.

2.4.2 Background Removal

In figure 2-46, we show the reconstructed electron vertex for the entire dataset used

in this analysis. (The tin target was found to be shifted by about 1 cm from the other

solid targets. It is believed that this is due to the tin target not being fully inserted
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Figure 2-44: Top: Charge and target thickness normalized yield for the four solid
targets run concurrently with deuterium for (e,e’) events vs. run number. Bottom:
Percent deviation from the weighted average yield vs. run number. The shaded region
indicates the runs used. In both plots, the vertical lines demarcate the beginning or
ending or a given solid target run period.

into the beamline. For this reason, we do not analyse the tin data in this work.)

In figure 2-47, we show the reconstructed electron vertex in the DIS region and the

large 𝑥𝐵 QE region. The kinematic cuts used to select the DIS and QE regions are

discussed in section 2.5.1.

Background to the CryoTarget

The 2 cm long cryotarget cell consists of aluminum entrance and exit windows which

together are equivalent to 2.5% of the luminosity of the deuterium target [35]. Two

approaches can be used to remove the background events when calculating the cryotar-

get yield: a vertex cut can be applied outside the target cell and then the background

subtracted using the empty target runs bin-by-bin in 𝑥𝐵; or the walls can be removed

by a vertex cut in the center of the liquid target.

For the QE events, there are not enough statistics for a good background subtrac-

tion. So, a 1 cm long cut (i.e. ±0.5 𝑐𝑚) is applied in the middle of the liquid target.

This cut is justified by figure 2-48b. In this figure, the blue points show the yield when

cutting outside the target and subtracting the empty target. Even after subtraction,

the normalized yield is not stable outside the target. The red points show the yield
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Figure 2-45: Top: Charge normalized yield for the thick aluminum target vs. run
number. Bottom: Percent deviation from the weighted average yield vs. run number.
The shaded region indicates the runs used.
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Figure 2-46: Reconstructed corrected electron vertex for all targets. Note that the
thick aluminum target was run with the cryotarget cell empty. The data in the figure
are normalized by the total beam charge collected for a given target combination.

scaled up to the full cryotarget length (i.e. 2 cm) for different cut widths inside the

target. This normalized yield is seen to be stable for all cuts with full width less than

1 cm. However, there is still some background within the 1 cm cut that must be taken

into account. This background is very small for low 𝑥𝐵 values (i.e. 𝑥𝐵 < 1), but can

become significant at larger values (i.e. 𝑥𝐵 > 1.5). The green points in figure 2-48b

show the result when the background under the specified cut is subtracted using the

empty target runs. For the high 𝑥𝐵 range shown, the background represents about

7.5% of the events for all cuts with full width less than 1 cm.
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Figure 2-47: Reconstructed corrected electron vertex for all targets for different kine-
matic regions. The normalization is the same as in figure 2-46.

For the DIS events, we have sufficient statistics to perform a background sub-

traction. In this case, we apply a vertex cut with a full width of 3 cm and subtract

the empty target contribution bin-by-bin in 𝑥𝐵. As can be seen in figure 2-48a, the

normalized yield after the background subtraction is more stable than in the QE

case. We compare the final results to those obtained if we cut inside the target when

placing final uncertainties on the data.
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(a) Normalized electron yield from the deu-
terium target. We apply a cut to select the
DIS region and look at a specific range in 𝑥𝐵 .
The cut stability results are similar for other
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(b) Normalized electron yield from the deu-
terium target. We apply a cut on 𝑄2 here and
look at a specific range in 𝑥𝐵 that is within our
QE region of interest. The cut stability results
are similar for other 𝑥𝐵 ranges.

Figure 2-48: Normalized electron yield from the deuterium target

For the final binning and kinematic cuts selected in sections 2.6.1 and 2.6.2 for

the DIS and QE regions, respectively, we plot the ratio of the weighted (see section

2.5) background to the signal-plus-background in figure 2-49.
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Figure 2-49: Background to the deuterium cryotarget in the two kinematic regions
under study.

Background to the Solid Targets

We determined the background to the solid targets by looking at runs where only the

deuterium cryotarget was present. In figure 2-50a, we show the reconstructed electron

vertex using a DIS cut. The vertex cut used to select the solid target is shown by

the red lines. As can be seen there is some background present where the solid target

would be located. By normalizing on beam charge and live-time, we determined this

background to account for 0.4-0.8% of the yield from the various solid targets run

concurrently with deuterium. (For the thick aluminum target run with the empty

cryotarget cell, the background was about 0.1%).

We performed a similar analysis for the QE events (figure 2-50b). Here we do

not see any background under the solid target, and therefore do not perform any

subtraction.
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originating from the solid target using the ver-
tex cut shown by the red lines; the vertical
green lines are used to select events from the
deuterium target for the QE measurement.

Figure 2-50: Reconstructed electron vertex with no solid target.

75



2.5 Cross-Section Ratio Extraction

Unlike in a small-acceptance spectrometer which measures a cross-section at nearly a

fixed angle and with a small momentum bite, the CLAS detector has a large accep-

tance. We wish to calculate cross-section ratios at fixed 𝑥𝐵 values. The cross-section

is differential with respect to two independent variables (e.g. 𝑑2𝜎
𝑑Ω𝑑𝐸

or 𝑑2𝜎
𝑑𝑥𝑑𝑄2 ). When

we calculate the cross-section ratios at a given 𝑥𝐵, we are integrating over whatever

range in 𝑄2 is kinematically allowed by the beam energy, detector acceptance, and

our cuts. This integration over 𝑄2 is not a problem because the EMC ratios and

𝑎2 values are known to be 𝑄2 independent above a certain threshold [2, 14, 16]. In

addition, we study the effects of changing the kinematic cuts in section 2.6.

The procedure to extract the cross-section ratios is then as follows. The data are

first binned in 𝑥𝐵, and every event in a given 𝑥𝐵 bin is given the following weight:

𝑊𝑒𝑖𝑔ℎ𝑡 =
1

𝑁𝑂𝑅𝑀
× 𝑅𝐶 × 𝐶𝐶 × 𝐼𝑆𝑂

𝐴𝐶𝐶
×𝐵𝐶 , (2.12)

where

𝐴𝐶𝐶 =
𝑁𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄

2
𝑒𝑣𝑒𝑛𝑡)

𝑁𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄2
𝑒𝑣𝑒𝑛𝑡)

,

𝑅𝐶 =
𝜎𝐵𝑜𝑟𝑛(𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄

2
𝑒𝑣𝑒𝑛𝑡)

𝜎𝑅𝑎𝑑(𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄2
𝑒𝑣𝑒𝑛𝑡)

,

𝐶𝐶 =
𝜎𝐵𝑜𝑟𝑛(𝐸,𝐸 ′, 𝜃)

𝜎𝐵𝑜𝑟𝑛(𝐸 + ∆𝐸,𝐸 ′ + ∆𝐸, 𝜃)
×

(︂
𝐸

𝐸 + ∆𝐸

)︂2

@ (𝐸 ′, 𝜃) = (𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄
2
𝑒𝑣𝑒𝑛𝑡) ,

𝐼𝑆𝑂 =

𝐴
2
·
(︁

1 + 𝜎𝑛

𝜎𝑝

)︁
𝑍 + 𝑁 · 𝜎𝑛

𝜎𝑝

@𝑥𝑒𝑣𝑒𝑛𝑡 ,

𝐵𝐶 =
𝜎𝐵𝑜𝑟𝑛(𝑥𝑐𝑒𝑛𝑡𝑒𝑟, 𝑄

2
𝑒𝑣𝑒𝑛𝑡)

𝜎𝐵𝑜𝑟𝑛(𝑥𝑒𝑣𝑒𝑛𝑡, 𝑄2
𝑒𝑣𝑒𝑛𝑡)

.
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In equation 2.12, NORM is the standard luminosity factor, which is equal to the

total number of initial electrons times the target thickness in nucleons per square

centimeters times the system live-time. ACC is the acceptance correction factor,

which will be discussed in section 2.5.3. The term RC is the radiative correction

factor; the radiative corrections are discussed in section 2.5.4. The term CC is the

coulomb correction factor; the coulomb corrections are discussed in section 2.5.5.

The term ISO refers to the isoscalar corrections, which can be applied to the DIS

cross-section ratios; the isoscalar corrections are discussed in section 2.5.6. BC is the

bin-centering correction, and is applied after all other corrections to re-weight the

events with their equivalent value at the center of the bin. We note that the bin-

centering correction is applied using the Born model cross-section as it applied after

the radiative corrections. The effects of the bin-centering correction are discussed in

section 2.5.7.

The integrated cross-section at a specific 𝑥𝐵 value is equal to the sum of the

weights in a given bin. When calculating the cross-section for deuterium, the empty

target contribution is weighted event-by-event in the exact same manner and then

subtracted. So, the per nucleon cross-section ratio for a nucleus A to deuterium is

calculated as follows:

(︂
𝜎(𝐴)/𝐴

𝜎(𝐷)/2

)︂
=

𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝐴

𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝐷 − 𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑

𝐸𝑚𝑝𝑡𝑦

, (2.13)

where 𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝐴 , 𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑

𝐷 , and 𝑌 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝐸𝑚𝑝𝑡𝑦 are the weighted yields of the nuclear target,

the deuterium target, and the empty cryotarget, respectively. (When calculating the

NORM term for the empty runs, the thickness of the deuterium target is used, which is

equivalent to subtracting the contribution from the empty target prior to normalizing

the deuterium yield by its thickness.)

In order to calculate the statistical uncertainty in equation 2.13, the statistical

uncertainties of each of the three yields is correctly propagated. The full uncertainty

is the combination in quadrature of the statistical uncertainty and the point-to-point

and normalization systematic uncertainties.
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2.5.1 Kinematic Selection Cuts

To calculate the inclusive cross-section ratios, we have to select a set of cuts on the

standard kinematic variables (figure 2-51). To do this, we make use of the CLAS

simulation. We uniformly generate electrons in energy and solid angle from the cor-

responding target location. Then, for every generated event, we apply a weight using

our model cross-section described in section 2.5.2 [52]. We generate a grid of our

model cross-section at fixed values of 𝑄2 and 𝑥𝐵. We then radiate the model cross-

section [49] to get a radiated cross-section at each grid point. For every generated

event, we perform a two-dimensional linear interpolation to calculate the radiated

cross-section at the specific 𝑄2 and 𝑥𝐵 value.
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Figure 2-51: Reconstructed 𝑄2 vs. 𝑊 with 𝑥𝐵 contours for (e,e’) events. (a) Deu-
terium target. (b) Iron target.

In figure 2-52a, we show four kinematic variables (𝑄2, 𝑊, 𝑥𝐵, and 𝑦𝐵 = 𝜈
𝐸𝐵𝑒𝑎𝑚

) for

the deuterium data compared to the weighted deuterium DIS simulation. We begin

by applying a cut above the resonance region at 𝑊 > 1.8 𝐺𝑒𝑉 . Using the resultant

distributions (figure 2-52b), we then select a cut on 𝑄2 based on where the data and

reconstructed simulation begin to match well. We apply a cut of 𝑄2 > 1.50 𝐺𝑒𝑉 2

(figure 2-52c). The last kinematic cut we apply is 𝑦𝐵 < 0.85, which is equivalent to

requiring the scattered electron to have a momentum greater than about 750 MeV/c.

After all these cuts are applied, the data and the reconstructed simulation match

quite nicely (figure 2-53). Since the cross-section model can describe the data well,
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we use it for many of the corrections required in this analysis. In section 2.6.1, we

examine the effect of adjusting the kinematic cuts on the DIS cross-section ratios.
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Figure 2-52: Comparison of data and radiated DIS model cross-section. The green
curves are the generated events in the simulation; the red curves are the accepted
and reconstructed events in the simulation; the blue curves are the data from the
deuterium target. The yields are normalized to the same integral, so only the shape
is compared. Clockwise from Top Left: 𝑄2, 𝑊 , 𝑦𝐵, 𝑥𝐵.

For the QE case, we are interested in the range 0.8 < 𝑥𝐵 < 2.0 (primarily in the

plateau region from 1.4 < 𝑥𝐵 < 2.0. As discussed in section 1.2, we need to apply a

cut of 𝑄2 > 1.5 𝐺𝑒𝑉 2 in order to select nucleons with high momentum [2]. In figure

2-54, we compare the radiated QE model cross-section to the data for the carbon

target.

2.5.2 Model Cross-Section

Model cross-sections for both the DIS and QE region are taken from the code IN-

CLUSIVE [52]. These model cross-sections are used to determine the kinematic cuts,
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Figure 2-53: Same as figure 2-52a, except now with a cut of 𝑊 > 1.8 𝐺𝑒𝑉, 𝑄2 >
1.50 𝐺𝑒𝑉 2 & 𝑦𝐵 < 0.85 applied.

for the bin-centering corrections, for the radiative corrections, and for the coulomb

corrections. The DIS (QE) model cross-sections are shown for all targets in figure

2-55 (2-56). As discussed above, the model cross-sections are generated on a two-

dimensional grid, and are linearly interpolated to determine the model cross-section

at any location between the grid points.

2.5.3 Acceptance Corrections

Acceptance corrections are applied using the standard CLAS simulation (which con-

sists of GSIM, GPP, and RECSIS) [39], with the EG2c efficiency maps and calculated

resolutions included. Electrons are generated uniformly in solid angle and energy

from both the liquid and solid target locations. In order to correctly account for

bin-migration effects, the generated events are weighted using the radiated model

cross-sections. The acceptance corrections are calculated in two-dimensional bins.

For the DIS region, the simulated data is binned in 𝑄2 and 𝑊 , because we apply cuts

on these kinematic variables. For the QE region, the simulated data is binned in 𝑄2

and 𝑥𝐵, since only a kinematic cut on 𝑄2 is applied. For every such bin, the ACC

term in equation 2.12 is calculated as
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Figure 2-54: Comparison of carbon data and radiated QE model cross-section. The
green curves are the generated events in the simulation; the red curves are the accepted
and reconstructed events in the simulation; the blue curves are the data from the
carbon target. The yields are normalized to the same area, so only the shape is
compared. We apply a cut here of 𝑄2 > 1.5 𝐺𝑒𝑉 2 & 0.8 < 𝑥𝐵 < 2.0. Left: 𝑄2.
Right: 𝑥𝐵. The inset compares the data and reconstructed simulation at high 𝑥𝐵.

𝐴𝐶𝐶 =
𝑁𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑁𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

, (2.14)

where 𝑁𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 (𝑁𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑) is the number of events reconstructed (generated) in

that two-dimensional bin.

The binning is chosen so that the statistical uncertainty for all bins (except at the

edges of the acceptance) is less than 0.75% for the DIS acceptance (3.0% for the QE

acceptance). In addition, for the DIS region, we made sure that each 𝑥𝐵 bin used

in the final analysis (section 2.6.1) is covered by multiple acceptance bins in both 𝑊

and 𝑄2. In the QE region, the number of 𝑥𝐵 bins used for the acceptance correction

is equivalent to the number used in the final analysis (section 2.6.2).

The extracted DIS acceptance maps for the deuterium and solid (carbon) targets

are shown in figure 2-57; the QE acceptance maps for the deuterium and solid (carbon)

targets are shown in figure 2-58. In the final analysis, we remove events which fall

inside bins with less than 2% acceptance.
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Figure 2-55: DIS model Born cross-sections for the five targets as a function of 𝑥𝐵

for various 𝜃 values.

In figure 2-59, we show the acceptance correction factors for the QE region for

one 𝑄2 bin.

To estimate the overall effect of the acceptance corrections on the cross-section

for each target for the final event selection/binning (sections 2.6.1 and 2.6.2), we

calculate the following quantity: for each bin we take the ratio of the cross-section

with all corrections applied (equation 2.12) to the cross-section with the acceptance

correction weight not applied. These ‘effective’ acceptance correction factors are

shown in figure 2-60.
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Figure 2-56: QE model Born cross-sections for the five targets as a function of 𝑥𝐵 for
various 𝜃 values.

2.5.4 Radiative Corrections

Radiative corrections must be applied to obtain the underlying Born cross-sections

from the measured cross-sections. As described in Ref. [49], an unfolding procedure

can be used to extract the Born cross-section from the measured radiated cross-

section. In our case, this is obviously not practical, and a different procedure has to

be used. Within the code INCLUSIVE [52], the model cross-sections are internally

and externally radiated according the prescription given in Ref. [49]. A correction

factor can then be calculated for any electron scattering angle and energy (or 𝑥𝐵 and
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Figure 2-57: Acceptance correction factors in the DIS region.
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Figure 2-58: Acceptance correction factors in the QE region.

𝑄2). The radiative correction factor is defined as the ratio of the model Born to the

radiated cross-section:

𝑅𝐶 =
𝜎𝐵𝑜𝑟𝑛

𝜎𝑅𝑎𝑑

. (2.15)

In equation 2.12, the Born and radiated cross-sections are evaluated at the mea-

sured 𝑥𝐵 and 𝑄2 values. In figure 2-61 (2-62), we show the radiative correction factors

as a function of 𝑥𝐵 in the DIS (QE) region.

To estimate the overall effect of the radiative corrections on the cross-section for

each target for the final event selection/binning (sections 2.6.1 and 2.6.2), we calculate

the following quantity: for each bin we take the ratio of the cross-section with all
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Figure 2-59: QE Acceptance correction factors for one 𝑄2 bin.

Bx
0.2 0.3 0.4 0.5 0.6

E
ff.

 C
or

re
ct

io
n 

F
ac

to
r

1

1.5

2

2.5

3

Deuterium
Carbon
Aluminum
Iron
Lead

(a) DIS Events.
Bx

1 1.5 2

E
ff.

 C
or

re
ct

io
n 

F
ac

to
r

2

4

6

8

Deuterium
Carbon
Aluminum
Iron
Lead

(b) QE Events.

Figure 2-60: ‘Effective’ acceptance correction factors.

corrections applied (equation 2.12) to the cross-section with the radiative correction

weight not applied. These ratios are shown in figure 2-63, and they qualitatively

agree with the curves shown in figures 2-61 and 2-62. We place uncertainties on the

applied radiative corrections in section 2.6.3.

2.5.5 Coulomb Corrections

The initial (scattered) electron is accelerated (decelerated) by the coulomb field of

the nucleus. This means that the measured beam energy and scattered momentum

are not equivalent to the values at the reaction vertex. In the Effective Momentum

Approximation (EMA) [53] approach, both the initial and final electron’s energies

at the reaction vertex are higher by an amount ∆𝐸 than the measured values. The
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EMA approach has been well validated in the QE region; for the DIS region, recent

work [54] suggests that the EMA approach is also reasonable.

The calculation of ∆𝐸 was don by a previous EG2c analysis [40], and we take the

∆𝐸 values from there. The calculated ∆𝐸 values are shown in table 2.2.

Target ∆𝐸 [𝑀𝑒𝑉 ]
2𝐷 0
12𝐶 2.9
27𝐴𝑙 5.6
56𝐹𝑒 9.4
208𝑃𝑏 20.3

Table 2.2: Coulomb correction ∆𝐸 values calculated using the Effective Momentum
Approximation (EMA).

Once ∆𝐸 is known, we can calculate the coulomb correction factor in equation

2.12 as the ratio of the model cross-section at the unshifted and shifted kinematics

times the focusing factor [53]. That is,

𝐶𝐶 =
𝜎𝐵𝑜𝑟𝑛(𝐸,𝐸 ′, 𝜃)

𝜎𝐵𝑜𝑟𝑛(𝐸 + ∆𝐸,𝐸 ′ + ∆𝐸, 𝜃)
×
(︂

𝐸

𝐸 + ∆𝐸

)︂2

. (2.16)

In equation 2.16, E, E’ and 𝜃 are taken for the measured event. The ratio of the

model cross-section in the equation is used to account for the fact that that we do not

modify the initial and scattered electron energies from their nominal or reconstructed

values. This coulomb correction factor for all targets in the DIS (QE) region is shown

in figure 2-64 (2-65).

To estimate the overall effect of the coulomb corrections on the cross-section for

each target for the final event selection/binning (sections 2.6.1 and 2.6.2), we calculate

the following quantity: for each bin we take the ratio of the cross-section with all

corrections applied (equation 2.12) to the cross-section with the coulomb correction

weight not applied. These ratios are shown in figure 2-66, and they qualitatively

agree with the curves shown in figures 2-64 and 2-65. We place uncertainties on the

applied coulomb corrections in section 2.6.3.
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2.5.6 Isoscalar Corrections for DIS Events

Previous studies of the EMC effect [18, 19] have included an isoscalar correction factor

to account for the unequal number of protons and neutrons in many nuclei. In this

analysis, we present results in section 2.6.1 both with and without this correction

applied.

The isoscalar correction will adjust the measured cross-section per nucleon for an

asymmetric nucleus A to a new value which represents the cross-section per nucleon

for a nucleus A with an equal number of neutrons and protons. This correction factor

is given by

𝐼𝑆𝑂 =

𝐴
2
·
(︁

1 + 𝜎𝑛

𝜎𝑝

)︁
𝑍 + 𝑁 · 𝜎𝑛

𝜎𝑝

(2.17)

In Ref. [19], the free neutron to proton cross-section ratio as a function of 𝑥𝐵

was simply parametrized as 𝜎𝑛

𝜎𝑝
= 1 − 0.8 · 𝑥𝐵. When applying isoscalar corrections

in section 2.6.1, we use the updated parametrization from Refs. [11, 18]. (We also

develop independent corrections using our data-based phenomenological EMC effect

model in section 2.6.4.) Both the JLab Hall C and SLAC parametrizations are shown

in figure 2-67a. In figure 2-67b we show the applied isoscalar correction factors for

the various nuclei in this experiment using the JLab Hall C parametrization.

2.5.7 Bin-Centering Corrections

As stated above, we apply bin-centering corrections using the model Born cross-

sections after all other corrections are applied. In order to estimate the overall effect

of the bin-centering corrections on the cross-section for each target for the final event

selection/binning (sections 2.6.1 and 2.6.2), we calculate the following quantity: for

each bin we take the ratio of the cross-section with all corrections applied (equation

2.12) to the cross-section with the bin-centering correction weight not applied. These

ratios are shown in figure 2-68. In the DIS region, the bin-centering correction drops

for the last bin; this is because the applied kinematic cuts remove events at the
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higher side of the bin. In the QE region, the correction is very different for deuterium

compared to the other targets for 𝑥𝐵 < 1.4. This is most likely due to the relative

enhancement of the deuterium cross-section at 𝑥𝐵 = 1.

It is also possible to perform the bin-centering correction using the radiated cross-

sections prior to applying the other corrections (except the acceptance correction,

which is always applied first). In this case, the radiative, coulomb, and isoscalar cor-

rections are applied at the bin center. We study the effect of changing the order of the

corrections on the final cross-section ratios. We then apply a systematic uncertainty

on the final EMC slopes and 𝑎2 values to account for the difference. We discuss the

uncertainties related to the bin-centering corrections in section 2.6.3.
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Figure 2-61: DIS Radiative correction factors for the five targets as a function of 𝑥𝐵

for various 𝜃 values. The correction factors are shown in the range used for the final
analysis, 0.2 < 𝑥𝐵 < 0.6.
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Figure 2-62: QE Radiative correction factors for the five targets as a function of 𝑥𝐵

for various 𝜃 values.
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Figure 2-63: ‘Effective’ radiative correction factors.
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Figure 2-64: DIS Coulomb correction factors for the five targets as a function of 𝑥𝐵

for various 𝜃 values. The correction factors are shown in the range used for the final
analysis, 0.2 < 𝑥𝐵 < 0.6.
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Figure 2-65: QE Coulomb correction factors for the five targets as a function of 𝑥𝐵

for various 𝜃 values.
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Figure 2-66: ‘Effective’ coulomb correction factors.
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Figure 2-67: Isoscalar corrections.
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Figure 2-68: ‘Effective’ bin-centering correction factors.

93



2.6 Final Results

We present the final cross-section ratio results in both the DIS and QE regions in this

section. The DIS ratios are shown both with and without the application of isoscalar

corrections. The DIS ratios are also shown with various 𝑥𝐵 bin sizes: 0.04, 0.02,

0.0133, and 0.01. The QE ratios are shown using 𝑥𝐵 bins of width 0.0857 and 0.0429.

In section 2.6.4, we present a data-driven phenomenological model of the EMC effect

based on nucleon SRCs. We use both our measured cross-section ratios as well as the

previously published results when performing this phenomenological study.

2.6.1 DIS Cross-Section Ratios and EMC Slopes

The final per-nucleon cross-section ratios are shown in figure 2-69. A kinematic cut

of 𝑄2 > 1.5 𝐺𝑒𝑉 2, 𝑊 > 1.8 𝐺𝑒𝑉 , and 𝑦𝐵 < 0.85 is applied. The data is divided into

𝑥𝐵 bins of width 0.04, with the data covering a range of 0.20-0.60 in 𝑥𝐵. The total

electron yield per bin (i.e. the total number of good electrons reconstructed in each

bin) for each target is shown in table 2.3 and figure 2-70. As can be seen in both

the table and figure, the electron yield is very large in the bins under study, and the

statistical uncertainty is negligible.

We list the measured ratios and the associated uncertainties in table 2.4. We

apply a linear fit to the data from 0.26-0.54 to obtain the EMC slope for each nucleus

in the form of

(︂
𝜎(𝐴)/𝐴

𝜎(𝐷)/2

)︂
𝐼𝑆𝑂

= 𝐴0 + 𝐵0 · 𝑥𝐵 , (2.18)

where 𝐴0 and 𝐵0 are the fit parameters. The magnitude of the slopes (𝐵0) are shown

in table 2.5. In order to determine the stability of our slopes to the kinematic cuts,

we recalculated the slopes and ratios for different cuts on 𝑄2 and 𝑊 . The slopes for

the different kinematic cuts are shown in table 2.6 and figure 2-71; the results are

consistent within the uncertainties.
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Figure 2-69: Measured DIS per-nucleon isoscalar-corrected cross-section ratios to
deuterium for (clockwise from top-left) carbon, aluminum, lead and iron. The error
bars on the individual points are the combined statistical and point-to-point system-
atic uncertainties. The shown published data comes from Refs. [18, 19] and is also
isoscalar-corrected.

Results Without Isoscalar Corrections

In order to study the isospin dependence of the EMC effect and better understand

the connection between the EMC effect and SRC, we also present the results with-

out applying isoscalar corrections. This means that we do not include the ISO term

in equation 2.12. In figure 2-72 and table 2.7, we show the DIS cross-section ratios

without applying isoscalar corrections. The extracted EMC slopes and their accom-

panying uncertainties are shown in table 2.8.

Results Without Isoscalar Corrections and Finer Binning

Due to the large statistics available (table 2.3), we can divide every used bin by a

factor of 2, 3, or 4 without affecting the uncertainty placed on the final ratio. This

will be true as long as we divide the binning used for the acceptance correction by

the same factor, and increase the total statistics used for the acceptance correction

by the same factor. In figure 2-73, we show the results when we increase the points

by a factor of 2, 3, or 4. As in the previous subsection, the results are shown without
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𝑥𝐵
2D Yield 12C Yield 27Al Yield 56Fe Yield 208Pb Yield

0.22 6.2E6 (0.04) 1.3E6 (0.08) 5.1E5 (0.14) 2.7E6 (0.06) 1.0E6 (0.10)
0.26 9.2E6 (0.03) 1.9E6 (0.07) 7.4E5 (0.11) 3.8E6 (0.05) 1.5E6 (0.08)
0.30 9.7E6 (0.03) 2.0E6 (0.07) 7.7E5 (0.11) 3.9E6 (0.05) 1.5E6 (0.08)
0.34 9.2E6 (0.03) 1.9E6 (0.07) 7.3E5 (0.11) 3.6E6 (0.05) 1.3E6 (0.09)
0.38 8.1E6 (0.04) 1.6E6 (0.08) 6.3E5 (0.12) 3.1E6 (0.06) 1.2E6 (0.09)
0.42 5.8E6 (0.04) 1.1E6 (0.09) 4.5E5 (0.15) 2.2E6 (0.07) 8.1E5 (0.11)
0.46 3.6E6 (0.05) 7.2E5 (0.12) 2.8E5 (0.19) 1.4E6 (0.09) 4.9E5 (0.14)
0.50 2.1E6 (0.07) 4.1E5 (0.15) 1.6E5 (0.25) 7.6E5 (0.11) 2.8E5 (0.19)
0.54 1.1E6 (0.09) 2.2E5 (0.22) 8.3E4 (0.35) 1.8E5 (0.24) 1.4E5 (0.27)
0.58 5.0E5 (0.14) 9.7E4 (0.32) 3.8E4 (0.51) 1.8E5 (0.24) 1.4E5 (0.27)

Table 2.3: DIS yield (i.e. number of reconstructed electrons) for the various targets
in each used 𝑥𝐵 bin. The yields are shown after applying all cuts, including kinematic
and vertex cuts. For a given yield, the statistical uncertainty in percent is shown in
parentheses. The deuterium yield is shown with the 3 cm vertex cut, prior to any
background subtraction.

applying isoscalar corrections. Tables 2.9 - 2.11 show the cross-section ratios for these

bin sizes. The extracted EMC slopes are shown in table 2.12 and figure 2-74. The

extracted slopes are consistent within uncertainties for all bin sizes.
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Figure 2-70: DIS yield (i.e. number of reconstructed electrons) for the various targets
in each used 𝑥𝐵 bin. The yields are shown after applying all cuts, including kinematic
and vertex cuts. The deuterium yield is shown with the 3 cm vertex cut, prior to any
background subtraction.
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Figure 2-71: Measured EMC slopes for different kinematic cuts. Isoscalar corrections
were applied to the ratios when extracting the slopes.
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𝑥𝐵

(︁
𝜎(𝐶)/12
𝜎(𝐷)/2

)︁
𝐼𝑆𝑂

(︁
𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

)︁
𝐼𝑆𝑂

(︁
𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

)︁
𝐼𝑆𝑂

(︁
𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

)︁
𝐼𝑆𝑂

Norm. 1.81% Norm. 1.82% Norm. 1.83% Norm. 1.94%
0.22 1.054 ± 0.053 1.005 ± 0.050 1.023 ± 0.051 1.038 ± 0.052
0.26 1.015 ± 0.008 0.993 ± 0.008 1.004 ± 0.008 1.003 ± 0.008
0.30 0.997 ± 0.008 0.985 ± 0.008 0.991 ± 0.008 0.986 ± 0.008
0.34 0.996 ± 0.008 0.986 ± 0.008 0.986 ± 0.008 0.981 ± 0.008
0.38 0.983 ± 0.008 0.971 ± 0.008 0.969 ± 0.008 0.964 ± 0.008
0.42 0.974 ± 0.008 0.963 ± 0.007 0.956 ± 0.008 0.950 ± 0.008
0.46 0.943 ± 0.007 0.934 ± 0.008 0.921 ± 0.007 0.919 ± 0.007
0.50 0.937 ± 0.008 0.927 ± 0.008 0.909 ± 0.007 0.908 ± 0.007
0.54 0.922 ± 0.008 0.899 ± 0.008 0.886 ± 0.007 0.880 ± 0.007
0.58 0.926 ± 0.047 0.929 ± 0.047 0.907 ± 0.045 0.866 ± 0.044

Table 2.4: Measured DIS per-nucleon isoscalar-corrected cross-section ratios for car-
bon, aluminum, iron, and lead to deuterium. The error given for each point is the
combined statistical and point-to-point uncertainty. The normalization uncertainty
for a each ratio is stated at the top of the table.

Target Measured 𝜒2/Ndf Fit Norm. Z Cut Acc. Corr. Or. Published
|𝑆𝑙𝑜𝑝𝑒| Err. Err. Err. Err. Err. |𝑆𝑙𝑜𝑝𝑒|

12𝐶 0.335 ± 0.032 4.9/6 0.030 0.006 0.004 0.0025 0.0075 0.292 ± 0.023
27𝐴𝑙 0.330 ± 0.033 9.8/6 0.031 0.006 0.0035 0.003 0.008 -
56𝐹𝑒 0.435 ± 0.032 7.2/6 0.029 0.008 0.003 0.003 0.0105 0.388 ± 0.032
208𝑃𝑏 0.436 ± 0.031 5.8/6 0.029 0.008 0.003 0.0025 0.0035 -

Table 2.5: Measured EMC slopes from the fit in figure 2-69. The uncertainties shown on the extracted slopes
are the combination in quadrature of the fit uncertainties, the normalization uncertainties, and half the values
shown in table 2.20, table 2.21, and table 2.23. Published values are taken from Ref. [29]. All slopes come
from fitting isoscalar-corrected cross-section ratios.
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Applied 𝑄2, Fit C/D Al/D Fe/D Pb/D
𝑊 Cut Range |𝑆𝑙𝑜𝑝𝑒| |𝑆𝑙𝑜𝑝𝑒| |𝑆𝑙𝑜𝑝𝑒| |𝑆𝑙𝑜𝑝𝑒|

𝑄2 > 1.5𝐺𝑒𝑉 2 0.26-0.54 0.335 ± 0.030 0.331 ± 0.030 0.432 ± 0.029 0.434 ± 0.029
𝑊 > 1.8𝐺𝑒𝑉
𝑄2 > 1.5𝐺𝑒𝑉 2 0.26-0.50 0.334 ± 0.037 0.317 ± 0.038 0.382 ± 0.036 0.422 ± 0.037
𝑊 > 2.0𝐺𝑒𝑉
𝑄2 > 1.75𝐺𝑒𝑉 2 0.30-0.54 0.348 ± 0.036 0.343 ± 0.037 0.449 ± 0.035 0.442 ± 0.036
𝑊 > 1.8𝐺𝑒𝑉
𝑄2 > 2.0𝐺𝑒𝑉 2 0.30-0.54 0.360 ± 0.036 0.302 ± 0.037 0.441 ± 0.035 0.422 ± 0.036
𝑊 > 1.8𝐺𝑒𝑉
𝑄2 > 2.5𝐺𝑒𝑉 2 0.38-0.54 0.377 ± 0.063 0.461 ± 0.061 0.501 ± 0.061 0.515 ± 0.062
𝑊 > 1.8𝐺𝑒𝑉

Table 2.6: Measured EMC slopes for different kinematic cuts. The uncertainties shown in this table
are the fit uncertainties only. Isoscalar corrections were applied to the ratios when extracting the
slopes.

Bx
0.2 0.3 0.4 0.5 0.6

/2
)

Dσ
/A

)/
(

Aσ(

0.8

0.9

1

1.1

This Work

Published Data (SLAC)

Published Data (JLab)

D (Norm. 1.81%)2C to 12

Bx
0.2 0.3 0.4 0.5 0.6

/2
)

Dσ
/A

)/
(

Aσ(

0.8

0.9

1

1.1 D (Norm. 1.82%)2Al to 27

Bx
0.2 0.3 0.4 0.5 0.6

/2
)

Dσ
/A

)/
(

Aσ(

0.8

0.9

1

1.1 D (Norm. 1.83%)2Fe to 
56

Bx
0.2 0.3 0.4 0.5 0.6

/2
)

Dσ
/A

)/
(

Aσ(

0.8

0.9

1

1.1 D (Norm. 1.94%)2Pb to 
208

Figure 2-72: DIS cross-section ratios without applying isoscalar corrections. The
carbon results are the same as before, but the results for the other nuclei are affected
by the change. We also remove the isoscalar corrections for the published aluminum
and iron data.
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𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.81% Norm. 1.82% Norm. 1.83% Norm. 1.94%
0.22 1.054 ± 0.053 1.001 ± 0.050 1.017 ± 0.051 1.016 ± 0.051
0.26 1.015 ± 0.008 0.989 ± 0.008 0.996 ± 0.008 0.979 ± 0.008
0.30 0.997 ± 0.008 0.981 ± 0.008 0.982 ± 0.008 0.958 ± 0.008
0.34 0.996 ± 0.008 0.980 ± 0.008 0.975 ± 0.008 0.949 ± 0.007
0.38 0.983 ± 0.008 0.964 ± 0.008 0.956 ± 0.007 0.928 ± 0.007
0.42 0.974 ± 0.008 0.957 ± 0.008 0.942 ± 0.007 0.910 ± 0.007
0.46 0.943 ± 0.007 0.926 ± 0.007 0.907 ± 0.007 0.9876 ± 0.007
0.50 0.937 ± 0.008 0.918 ± 0.008 0.893 ± 0.007 0.860 ± 0.007
0.54 0.922 ± 0.008 0.890 ± 0.008 0.869 ± 0.007 0.830 ± 0.007
0.58 0.926 ± 0.047 0.919 ± 0.046 0.888 ± 0.045 0.812 ± 0.041

Table 2.7: Measured DIS per-nucleon cross-section ratios for carbon, aluminum, iron,
and lead to deuterium. The error given for each point is the combined statistical and
point-to-point uncertainty. The normalization uncertainty for each ratio is stated at
the top of the table. The ratios shown here are the results without applying isoscalar
corrections.

Target Measured Slope 𝜒2/Ndf Fit Err.
12𝐶 0.335 ± 0.032 4.9/6 0.030
27𝐴𝑙 0.349 ± 0.032 9.8/6 0.030
56𝐹𝑒 0.465 ± 0.032 7.2/6 0.029
208𝑃𝑏 0.529 ± 0.030 5.9/6 0.028

Table 2.8: Measured EMC slopes from the fit in figure 2-72. No isoscalar corrections
were applied to the ratios being fit. The uncertainties shown on the extracted slopes
are the combination in quadrature of the fit uncertainties, the normalization uncer-
tainties, and half the values shown in table 2.20, table 2.21, and table 2.23. The fit
uncertainty alone is also shown.
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(a) DIS cross-section ratios with original binning.
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(b) DIS cross-section ratios with x2 binning.
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(c) DIS cross-section ratios with x3 binning.
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(d) DIS cross-section ratios with x4 binning.

Figure 2-73: Original binning and re-binned DIS cross-section ratios with no isoscalar
corrections applied. Isoscalar corrections have also been removed from the published
data.
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Figure 2-74: Measured EMC slopes from the fits in figure 2-73 vs. the bin size for
all nuclei. No isoscalar corrections are applied to the ratios being fit. The slopes are
independent of binning within uncertainties.

101



𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.81% Norm. 1.82% Norm. 1.83% Norm. 1.94%
0.220 1.054 ± 0.053 1.001 ± 0.050 1.017 ± 0.051 1.016 ± 0.051
0.250 1.026 ± 0.008 0.996 ± 0.008 1.005 ± 0.008 0.992 ± 0.008
0.270 1.020 ± 0.008 0.998 ± 0.008 1.004 ± 0.008 0.983 ± 0.008
0.290 1.006 ± 0.008 0.992 ± 0.008 0.992 ± 0.008 0.971 ± 0.008
0.310 0.999 ± 0.008 0.981 ± 0.008 0.982 ± 0.008 0.958 ± 0.008
0.330 1.003 ± 0.008 0.988 ± 0.008 0.984 ± 0.008 0.957 ± 0.008
0.350 1.002 ± 0.008 0.985 ± 0.008 0.979 ± 0.008 0.954 ± 0.008
0.370 0.991 ± 0.008 0.971 ± 0.008 0.966 ± 0.008 0.940 ± 0.007
0.390 0.987 ± 0.008 0.970 ± 0.008 0.959 ± 0.008 0.928 ± 0.007
0.410 0.985 ± 0.008 0.967 ± 0.008 0.953 ± 0.008 0.924 ± 0.007
0.430 0.975 ± 0.008 0.958 ± 0.008 0.945 ± 0.007 0.909 ± 0.007
0.450 0.949 ± 0.008 0.934 ± 0.008 0.916 ± 0.007 0.886 ± 0.007
0.470 0.959 ± 0.008 0.941 ± 0.008 0.920 ± 0.007 0.887 ± 0.007
0.490 0.938 ± 0.008 0.923 ± 0.008 0.897 ± 0.007 0.866 ± 0.007
0.510 0.950 ± 0.008 0.926 ± 0.008 0.902 ± 0.007 0.866 ± 0.007
0.530 0.941 ± 0.008 0.908 ± 0.008 0.887 ± 0.007 0.850 ± 0.007
0.550 0.913 ± 0.019 0.882 ± 0.018 0.861 ± 0.017 0.819 ± 0.017
0.580 0.926 ± 0.047 0.919 ± 0.046 0.888 ± 0.045 0.812 ± 0.041

Table 2.9: Measured DIS per-nucleon cross-section ratios for carbon, aluminum, iron,
and lead to deuterium. All the original points (except for the first and last) have
been divided into 2. The error given for each point is the combined statistical and
point-to-point uncertainty. A larger point-to-point uncertainty of 2% is placed on
the ratio at 𝑥𝐵 of 0.55 due to worse statistical precision on the acceptance correction
for that bin. The normalization uncertainty for each ratio is stated at the top of the
table. The results are shown without applying isoscalar corrections.
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𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.81% Norm. 1.82% Norm. 1.83% Norm. 1.94%
0.220 1.054 ± 0.053 1.001 ± 0.050 1.017 ± 0.051 1.016 ± 0.051
0.247 1.032 ± 0.008 1.002 ± 0.008 1.010 ± 0.008 0.999 ± 0.008
0.260 1.022 ± 0.008 0.995 ± 0.008 1.005 ± 0.008 0.988 ± 0.008
0.273 1.018 ± 0.008 0.998 ± 0.008 1.003 ± 0.008 0.982 ± 0.008
0.287 1.009 ± 0.008 0.996 ± 0.008 0.995 ± 0.008 0.975 ± 0.008
0.300 1.005 ± 0.008 0.993 ± 0.008 0.990 ± 0.008 0.967 ± 0.008
0.313 1.008 ± 0.008 0.989 ± 0.008 0.991 ± 0.008 0.964 ± 0.008
0.327 1.009 ± 0.008 0.994 ± 0.008 0.990 ± 0.008 0.964 ± 0.008
0.340 1.005 ± 0.008 0.990 ± 0.008 0.983 ± 0.008 0.958 ± 0.008
0.353 0.994 ± 0.008 0.973 ± 0.008 0.968 ± 0.008 0.945 ± 0.008
0.367 0.989 ± 0.008 0.970 ± 0.008 0.963 ± 0.008 0.937 ± 0.008
0.380 0.985 ± 0.008 0.967 ± 0.008 0.959 ± 0.008 0.931 ± 0.007
0.393 0.976 ± 0.008 0.959 ± 0.008 0.948 ± 0.008 0.919 ± 0.007
0.407 0.991 ± 0.008 0.974 ± 0.008 0.958 ± 0.008 0.931 ± 0.008
0.420 0.980 ± 0.008 0.964 ± 0.008 0.949 ± 0.008 0.914 ± 0.007
0.433 0.959 ± 0.008 0.942 ± 0.008 0.928 ± 0.007 0.896 ± 0.007
0.447 0.957 ± 0.008 0.943 ± 0.008 0.924 ± 0.007 0.896 ± 0.007
0.460 0.950 ± 0.008 0.932 ± 0.008 0.914 ± 0.007 0.880 ± 0.007
0.473 0.956 ± 0.008 0.940 ± 0.008 0.918 ± 0.007 0.886 ± 0.007
0.487 0.940 ± 0.008 0.920 ± 0.008 0.901 ± 0.007 0.872 ± 0.007
0.500 0.939 ± 0.008 0.925 ± 0.008 0.892 ± 0.007 0.861 ± 0.007
0.513 0.948 ± 0.008 0.924 ± 0.009 0.901 ± 0.007 0.861 ± 0.008
0.527 0.936 ± 0.008 0.901 ± 0.009 0.880 ± 0.007 0.843 ± 0.008
0.540 0.931 ± 0.008 0.905 ± 0.009 0.874 ± 0.007 0.839 ± 0.008
0.553 0.906 ± 0.019 0.873 ± 0.019 0.856 ± 0.017 0.812 ± 0.017
0.580 0.926 ± 0.047 0.919 ± 0.046 0.888 ± 0.045 0.812 ± 0.041

Table 2.10: Measured DIS per-nucleon cross-section ratios for carbon, aluminum,
iron, and lead to deuterium. All the original points (except for the first and last)
have been divided into 3. The error given for each point is the combined statistical
and point-to-point uncertainty. A larger point-to-point uncertainty of 2% is placed on
the ratio at 𝑥𝐵 of 0.553 due to worse statistical precision on the acceptance correction
for that bin. The normalization uncertainty for each ratio is stated at the top of the
table. The results are shown without applying isoscalar corrections.
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𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.81% Norm. 1.82% Norm. 1.83% Norm. 1.94%
0.220 1.054 ± 0.053 1.001 ± 0.050 1.017 ± 0.051 1.016 ± 0.051
0.245 1.038 ± 0.008 1.009 ± 0.008 1.016 ± 0.008 1.006 ± 0.008
0.255 1.027 ± 0.008 0.996 ± 0.008 1.007 ± 0.008 0.992 ± 0.008
0.265 1.021 ± 0.008 0.997 ± 0.008 1.007 ± 0.008 0.985 ± 0.008
0.275 1.019 ± 0.008 0.999 ± 0.008 1.003 ± 0.008 0.984 ± 0.008
0.285 1.011 ± 0.008 0.997 ± 0.008 0.998 ± 0.008 0.978 ± 0.008
0.295 1.009 ± 0.008 0.996 ± 0.008 0.994 ± 0.008 0.973 ± 0.008
0.305 1.008 ± 0.008 0.994 ± 0.008 0.993 ± 0.008 0.968 ± 0.008
0.315 1.008 ± 0.008 0.989 ± 0.008 0.990 ± 0.008 0.964 ± 0.008
0.325 1.008 ± 0.008 0.991 ± 0.008 0.989 ± 0.008 0.964 ± 0.008
0.335 1.002 ± 0.008 0.990 ± 0.008 0.982 ± 0.008 0.956 ± 0.008
0.345 0.991 ± 0.008 0.970 ± 0.008 0.966 ± 0.008 0.943 ± 0.008
0.355 0.998 ± 0.008 0.980 ± 0.008 0.973 ± 0.008 0.950 ± 0.008
0.365 0.991 ± 0.008 0.972 ± 0.008 0.966 ± 0.008 0.941 ± 0.008
0.375 0.978 ± 0.008 0.959 ± 0.008 0.953 ± 0.008 0.927 ± 0.008
0.385 0.981 ± 0.008 0.967 ± 0.008 0.955 ± 0.008 0.924 ± 0.007
0.395 0.978 ± 0.008 0.960 ± 0.008 0.949 ± 0.008 0.921 ± 0.007
0.405 0.996 ± 0.008 0.977 ± 0.008 0.961 ± 0.008 0.935 ± 0.008
0.415 0.980 ± 0.008 0.965 ± 0.008 0.949 ± 0.008 0.919 ± 0.008
0.425 0.980 ± 0.008 0.964 ± 0.008 0.947 ± 0.008 0.911 ± 0.007
0.435 0.955 ± 0.008 0.936 ± 0.008 0.927 ± 0.007 0.892 ± 0.007
0.445 0.958 ± 0.008 0.946 ± 0.008 0.926 ± 0.007 0.897 ± 0.007
0.455 0.953 ± 0.008 0.936 ± 0.008 0.918 ± 0.007 0.888 ± 0.007
0.465 0.954 ± 0.008 0.938 ± 0.008 0.917 ± 0.007 0.885 ± 0.007
0.475 0.957 ± 0.008 0.939 ± 0.008 0.919 ± 0.007 0.885 ± 0.008
0.485 0.938 ± 0.008 0.917 ± 0.008 0.900 ± 0.007 0.871 ± 0.008
0.495 0.947 ± 0.008 0.937 ± 0.009 0.902 ± 0.007 0.869 ± 0.008
0.505 0.936 ± 0.008 0.915 ± 0.009 0.889 ± 0.007 0.858 ± 0.008
0.515 0.956 ± 0.008 0.929 ± 0.009 0.907 ± 0.008 0.868 ± 0.008
0.525 0.941 ± 0.008 0.908 ± 0.009 0.889 ± 0.008 0.850 ± 0.008
0.535 0.932 ± 0.009 0.902 ± 0.010 0.875 ± 0.008 0.837 ± 0.008
0.545 0.924 ± 0.010 0.899 ± 0.011 0.865 ± 0.009 0.833 ± 0.010
0.555 0.908 ± 0.019 0.868 ± 0.019 0.858 ± 0.018 0.811 ± 0.017
0.580 0.926 ± 0.047 0.919 ± 0.046 0.888 ± 0.045 0.812 ± 0.041

Table 2.11: Measured DIS per-nucleon cross-section ratios for carbon, aluminum,
iron, and lead to deuterium. All the original points (except for the first and last)
have been divided into 4. The error given for each point is the combined statistical
and point-to-point uncertainty. A larger point-to-point uncertainty of 1(2)% is placed
on the ratio at 𝑥𝐵 of 0.545(0.555) due to worse statistical precision on the acceptance
correction for that bin. The normalization uncertainty for each ratio is stated at the
top of the table. The results are shown without applying isoscalar corrections.

Target Slope: Original Binning Slope: x2 Binning Slope: x3 Binning Slope: x4 Binning
12𝐶 0.335 ± 0.032 0.317 ± 0.026 0.340 ± 0.022 0.337 ± 0.020
27𝐴𝑙 0.349 ± 0.032 0.323 ± 0.026 0.347 ± 0.022 0.341 ± 0.020
56𝐹𝑒 0.465 ± 0.032 0.445 ± 0.026 0.472 ± 0.022 0.470 ± 0.021
208𝑃𝑏 0.529 ± 0.030 0.513 ± 0.024 0.539 ± 0.020 0.535 ± 0.019

Table 2.12: Measured EMC slopes from the fits in figure 2-73 for all bin sizes. No isoscalar corrections
are applied to the ratios being fit. The uncertainties shown on the extracted slopes are the combination
in quadrature of the fit uncertainties, the normalization uncertainties, and half the values shown in table
2.20, table 2.21, and table 2.23.
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2.6.2 QE Cross-Section Ratios and 𝑎2 Values

The final per-nucleon cross-section ratios are shown in figure 2-75. The data is divided

into 14 equally sized bins in 𝑥𝐵 in the range 0.8-2.0. We apply a kinematic cut of

𝑄2 > 1.5 𝐺𝑒𝑉 2. The total electron yield per bin for each target is shown in table 2.13

and figure 2-76. A table with the measured ratios and the associated uncertainties is

shown in table 2.14. We take a weighted average of the ratios from 1.529-1.871 for

each nucleus to extract the 𝑎2 values; these measured 𝑎2 values are shown in table

2.15.
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Figure 2-75: Final QE cross-section ratios to deuterium for (clockwise from top-left)
carbon, aluminum, lead and iron. The error bars on the individual points are the
combined statistical and point-to-point systematic uncertainties. The published data
shown in the figure comes from Ref. [55].

Results With Finer Binning

In order to better characterize the scaling region, we also extract the QE ratios when

we divide all bins except for the last three by a factor of 2. In order to keep the point-

to-point systematics the same and account for bin migration correctly, we divide the

𝑥𝐵 binning used for the acceptance correction by the same factor, and increase the

total statistics used for the acceptance correction by the same factor. In figure 2-77
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𝑥𝐵
2D Yield 12C Yield 27Al Yield 56Fe Yield 208Pb Yield

0.843 6.4E5 (0.12) 2.9E5 (0.18) 1.1E5 (0.29) 5.2E5 (0.14) 1.8E5 (0.23)
0.929 6.1E5 (0.13) 1.9E5 (0.23) 7.4E4 (0.37) 3.3E5 (0.17) 1.2E5 (0.29)
1.014 5.1E5 (0.14) 1.2E5 (0.28) 4.7E4 (0.46) 2.1E5 (0.22) 7.4E4 (0.37)
1.100 1.9E5 (0.23) 7.5E4 (0.36) 3.0E4 (0.58) 1.3E5 (0.28) 4.5E4 (0.47)
1.186 6.2E4 (0.40) 4.4E4 (0.48) 1.8E4 (0.74) 7.7E4 (0.36) 2.7E4 (0.61)
1.271 2.3E4 (0.65) 2.4E4 (0.64) 1.0E4 (0.99) 4.3E4 (0.48) 1.5E4 (0.81)
1.357 1.0E4 (0.99) 1.4E4 (0.86) 5643 (1.33) 2.4E4 (0.64) 8894 (1.06)
1.443 5017 (1.42) 7761 (1.14) 3227 (1.76) 1.4E4 (0.84) 5205 (1.39)
1.529 2848 (1.87) 4514 (1.49) 1992 (2.24) 8467 (1.09) 3177 (1.77)
1.614 1637 (2.47) 2804 (1.89) 1202 (2.88) 5307 (1.37) 2031 (1.77)
1.700 1036 (3.11) 1756 (2.39) 780 (3.58) 3420 (1.71) 1206 (2.88)
1.786 658 (3.89) 1186 (2.90) 483 (4.55) 2193 (2.14) 880 (3.37)
1.871 451 (4.70) 790 (3.56) 310 (5.68) 1497 (2.59) 591 (4.11)
1.957 293 (5.84) 572 (4.18) 251 (6.31) 1065 (3.06) 403 (4.98)

Table 2.13: QE yield (i.e. number of reconstructed electrons) for the various targets
in each used 𝑥𝐵 bin. The yields are shown after applying all cuts, including kinematic
and vertex cuts. For a given yield, the statistical uncertainty in percent is shown in
parentheses. The deuterium yield is shown with the 1 cm vertex cut, prior to any
background subtraction.

and table 2.16, we show the results when we increase the points by a factor of 2. The

extracted 𝑎2 values are shown in table 2.17 and can be seen to be consistent with

those extracted from the original binning.
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Figure 2-76: QE yield (i.e. number of reconstructed electrons) for the various targets
in each used 𝑥𝐵 bin. The yields are shown after applying all cuts, including kinematic
and vertex cuts. The deuterium yield is shown with the 1 cm vertex cut, prior to any
background subtraction.

𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.82% Norm. 1.85% Norm. 1.95% Norm. 2.18%
0.843 1.023 ± 0.014 0.991 ± 0.014 0.972 ± 0.013 0.918 ± 0.012
0.929 0.601 ± 0.009 0.575 ± 0.008 0.558 ± 0.008 0.521 ± 0.007
1.014 0.629 ± 0.009 0.611 ± 0.009 0.591 ± 0.008 0.544 ± 0.008
1.100 1.191 ± 0.017 1.213 ± 0.018 1.167 ± 0.016 1.100 ± 0.015
1.186 2.003 ± 0.030 2.080 ± 0.034 2.023 ± 0.030 1.890 ± 0.029
1.271 3.030 ± 0.051 3.066 ± 0.058 2.896 ± 0.047 2.733 ± 0.049
1.357 3.892 ± 0.079 4.053 ± 0.093 3.869 ± 0.074 3.860 ± 0.082
1.443 4.503 ± 0.114 4.738 ± 0.138 4.735 ± 0.113 4.745 ± 0.126
1.529 4.365 ± 0.143 4.778 ± 0.178 4.632 ± 0.143 4.746 ± 0.162
1.614 4.339 ± 0.175 4.711 ± 0.218 4.642 ± 0.176 4.750 ± 0.200
1.700 4.651 ± 0.232 5.232 ± 0.301 5.146 ± 0.241 4.881 ± 0.258
1.786 4.951 ± 0.340 5.088 ± 0.398 5.245 ± 0.342 5.705 ± 0.405
1.871 5.107 ± 0.395 4.931 ± 0.453 5.553 ± 0.403 5.942 ± 0.481
1.957 5.527 ± 1.019 6.645 ± 1.130 5.477 ± 0.992 4.711 ± 0.893

Table 2.14: Measured QE per-nucleon cross-section ratios for carbon, aluminum, iron,
and lead to deuterium. The error given for each point is the combined statistical and
point-to-point uncertainty. The normalization uncertainty for a each ratio is stated
at the top of the table.
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Target Measured 𝜒2/Ndf Fit Norm. Acc. Corr. Or. Published
𝑎2 Err. Err. Err. Err. |𝑎2|

12𝐶 4.49 ± 0.17 6.3/4 0.09 0.08 0.095 0.075 4.75 ± 0.16
27𝐴𝑙 4.86 ± 0.19 2.6/4 0.12 0.09 0.10 0.07 -
56𝐹𝑒 4.81 ± 0.23 9.4/4 0.09 0.09 0.155 0.105 -
208𝑃𝑏 4.89 ± 0.20 10.1/4 0.11 0.11 0.11 0.08 -

Table 2.15: Measured 𝑎2 values from the fit in figure 2-75. The uncertainties shown on the extracted 𝑎2
values are the combination in quadrature of the fit uncertainties, the normalization uncertainties, and half
the values shown in tables 2.22 and 2.24. Published values are taken from Ref. [29].
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Figure 2-77: Final QE cross-section ratios to deuterium for (clockwise from top-left)
carbon, aluminum, lead and iron. The error bars on the individual points are the com-
bined statistical and point-to-point systematic uncertainties. The shown published
data comes from Ref. [55]. The results shown here are equivalent to the original data
with each point divided into two (except for the 3 points at highest 𝑥𝐵).
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𝑥𝐵
𝜎(𝐶)/12
𝜎(𝐷)/2

𝜎(𝐴𝑙)/27
𝜎(𝐷)/2

𝜎(𝐹𝑒)/56
𝜎(𝐷)/2

𝜎(𝑃𝑏)/208
𝜎(𝐷)/2

Norm. 1.82% Norm. 1.85% Norm. 1.95% Norm. 2.18%
0.821 1.335 ± 0.018 1.304 ± 0.018 1.278 ± 0.017 1.221 ± 0.017
0.864 1.140 ± 0.016 1.114 ± 0.016 1.087 ± 0.015 1.018 ± 0.014
0.907 0.777 ± 0.011 0.747 ± 0.011 0.727 ± 0.010 0.677 ± 0.010
0.950 0.557 ± 0.008 0.531 ± 0.008 0.517 ± 0.007 0.484 ± 0.007
0.992 0.509 ± 0.007 0.487 ± 0.007 0.474 ± 0.007 0.436 ± 0.006
1.036 0.660 ± 0.009 0.635 ± 0.010 0.610 ± 0.009 0.561 ± 0.008
1.079 0.928 ± 0.014 0.937 ± 0.015 0.885 ± 0.013 0.825 ± 0.013
1.121 1.278 ± 0.019 1.267 ± 0.021 1.224 ± 0.018 1.145 ± 0.018
1.164 1.686 ± 0.027 1.739 ± 0.031 1.704 ± 0.026 1.576 ± 0.026
1.207 2.152 ± 0.037 2.245 ± 0.044 2.145 ± 0.035 2.013 ± 0.037
1.250 2.651 ± 0.050 2.746 ± 0.059 2.613 ± 0.047 2.495 ± 0.050
1.293 3.128 ± 0.066 3.195 ± 0.079 3.067 ± 0.061 2.926 ± 0.066
1.336 3.604 ± 0.085 3.738 ± 0.103 3.552 ± 0.079 3.532 ± 0.089
1.379 4.002 ± 0.109 4.144 ± 0.133 3.992 ± 0.102 3.963 ± 0.115
1.421 4.362 ± 0.136 4.690 ± 0.171 4.544 ± 0.133 4.428 ± 0.147
1.464 4.634 ± 0.164 4.869 ± 0.203 4.920 ± 0.163 4.872 ± 0.184
1.507 4.209 ± 0.169 4.529 ± 0.212 4.490 ± 0.169 4.563 ± 0.194
1.550 4.501 ± 0.228 5.062 ± 0.288 4.684 ± 0.225 4.765 ± 0.252
1.593 4.289 ± 0.226 4.828 ± 0.291 4.590 ± 0.227 4.634 ± 0.256
1.636 4.368 ± 0.251 4.525 ± 0.307 4.701 ± 0.252 4.883 ± 0.294
1.679 4.610 ± 0.301 5.408 ± 0.406 5.088 ± 0.310 4.847 ± 0.337
1.721 4.644 ± 0.348 4.978 ± 0.431 5.188 ± 0.363 4.924 ± 0.389
1.786 4.951 ± 0.340 5.088 ± 0.398 5.245 ± 0.342 5.705 ± 0.405
1.871 5.107 ± 0.395 4.931 ± 0.453 5.553 ± 0.403 5.942 ± 0.481
1.957 5.527 ± 1.019 6.645 ± 1.303 5.477 ± 0.992 4.711 ± 0.893

Table 2.16: Measured QE per-nucleon cross-section ratios for carbon, aluminum, iron,
and lead to deuterium for the binning shown in figure 2-77. The error given for each
point is the combined statistical and point-to-point uncertainty. The normalization
uncertainty for each ratio is stated at the top of the table.

Target Measured Slope 𝜒2/Ndf Fit Err.
12𝐶 4.49 ± 0.17 9.2/8 0.079
27𝐴𝑙 4.83 ± 0.18 6.3/8 0.098
56𝐹𝑒 4.80 ± 0.22 12.4/8 0.079
208𝑃𝑏 4.84 ± 0.20 12.7/8 0.090

Table 2.17: Measured 𝑎2 values from the fits in figure 2-77. The uncertainties shown
on the extracted 𝑎2 values are the combination in quadrature of the fit uncertainties,
the normalization uncertainties, and half the values shown in tables 2.22 and 2.24.
The fit uncertainty alone is also shown.
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2.6.3 Systematic Uncertainties

The systematic uncertainties are divided into two groups: the point-to-point uncer-

tainties are uncorrelated between different bins and are treated in the same manner

as the statistical uncertainties; the normalization uncertainties affect the overall scale

but do not vary between kinematic points.

In table 2.18 (2.19), the sources of systematic uncertainties and their effect on the

final per-nucleon cross-section ratios are shown for DIS (QE) events. These uncer-

tainties are discussed in some detail in the following subsections.

Source Point-to-Point (%) Normalization (%)
Beam Charge/ - 1.0

Time-Dependent Instabilities
Target Thickness and Cuts - 1.42-1.58

Acceptance Corrections 0.6 (5) -
Radiative Corrections - 0.5
Coulomb Corrections - 0.1

Bin-Centering Corrections 0.5 -
Total 0.78 1.81-1.94

Table 2.18: Sources of systematic uncertainties on the final DIS ratios, and their rela-
tive contributions. For the acceptance uncertainty, the value listed in the parenthesis
is for the first and last 𝑥𝐵 bins.

Source Point-to-Point (%) Normalization (%)
Beam Charge/ - 1.0

Time-Dependent Instabilities
Target Thickness and Cuts - 1.42-1.58

Acceptance Corrections 1.2 (2.5, 10) -
Radiative Corrections - 0.5
Coulomb Corrections - 0.2-1.0

Bin-Centering Corrections 0.5 -
Kinematic Corrections 0.3 -

Total 1.33 1.82-2.18

Table 2.19: Sources of systematic uncertainties on the final QE ratios, and their rela-
tive contributions. For the acceptance uncertainty, the values listed in the parenthesis
are for the last two 𝑥𝐵 bins, respectively.
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Beam Charge and Time-Dependent Instabilities

Since we combine all the deuterium runs when calculating the cross-section ratios, we

are sensitive to changes in the beam charge monitoring devices, fluctuations in the

cryotarget, and changes to the CLAS detector components over the run period. Since

this uncertainty will affect all points in the same way, it is a normalization uncertainty.

The simplest way to estimate this uncertainty is by looking at the systematic changes

in the normalized yield for the deuterium target in figure 2-43.

We make a histogram of the percent deviation of the normalized yield for every

run from the mean weighted yield for all runs (figure 2-78). The fitted width of the

main peak in this plot is approximately 0.65%. In addition, the standard deviation

of the distribution for all the runs used in the final analysis is 1.2%. So, we choose to

place a final uncertainty of 1% on the ratio.

Deviation [%]
20− 10− 0 10 20

0

50

100

Figure 2-78: Percent deviation from the mean of the charge normalized deuterium
yield for every run. We find that the width of the main peak is approximately 0.65%.
The standard deviation of the distribution for all the runs used in the final analysis
is 1.2%.

Target Thickness and Vertex Cuts

We place a normalization uncertainty on our measured ratios due to the target thick-

nesses and software vertex cuts.

The uncertainty in the EG2c cryotarget thickness has been estimated to be 1.0%

[56]. The thicknesses of the solid targets were measured to about the 1 micron level

[35]. This translates to a relative uncertainty of 0.1-0.7%.
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For the solid targets, since we apply a vertex cut much larger than the solid target

reconstruction resolution, there is no significant cut uncertainty.

For the cryotarget, in the DIS case we apply a vertex cut with a full width of 3 cm.

We then vary this cut by 0.25 cm and look at the change in the windows-subtracted

yield in each 𝑥𝐵 bin. We find that the yield always increases with a wider cut for

all bins. The maximum change in the yield is 1.0%. In addition, we note that if

we calculate the cross-section ratios using the 1 cm cut inside the deuterium, all the

ratios increase by about 1.5%. We therefore take 1.0% as our ±1𝜎 normalization

uncertainty.

We study the effect of using the 1 cm cut for the DIS events on the measured EMC

slopes, and we include this effect in the uncertainty on the slopes. The cross-section

ratios with the 1 cm cut are shown in figure 2-79. The difference between the slopes

using the 3 cm cut compared to the 1 cm cut is shown in table 2.20.
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Figure 2-79: Measured DIS per-nucleon cross-section ratios to deuterium for (clock-
wise from top-left) carbon, aluminum, lead and iron. The deuterium data is extracted
using a vertex cut with a full width of 1 cm. Note how all the ratios shift up by about
1.5% compared to those in figure 2-69. The error bars on the individual points are the
combined statistical and point-to-point systematic uncertainties. The data is shown
here with the original binning and the application of isoscalar corrections. The pub-
lished data comes from Refs. [18, 19].

In the QE case, we apply a cut of 1 cm in the center of the target. The main
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Target |∆𝑆𝑙𝑜𝑝𝑒|
12𝐶 0.008
27𝐴𝑙 0.007
56𝐹𝑒 0.006
208𝑃𝑏 0.006

Table 2.20: The differences in the measured EMC slopes using a 1 cm cryotarget
vertex cut compared to a 3 cm cut.

question here concerns the reconstruction ‘optics’ (i.e. is the 2 cm long cryo-target

really reconstructed to the correct length?). To test this, we look at the reconstructed

window locations for the empty target runs (figure 2-46) and compare to the ideal

target length. We make Gaussian fits to the two target foils for the empty target runs,

and calculate the deviation of the difference in the fit means from the ideal target

length. We repeat this fit several times with different ranges around the peaks, and

monitor how well the peaks are fitted. In figure 2-80, we show the percent deviation

from the ideal target length vs. the used fit range around each peak. We do not see

any region where the deviation is constant. Thus we only consider the points where

both fits’ calculated 𝜒2 are reasonable, indicating that using a Gaussian fit is valid.

Given the spread of the points in this range, we place a conservative uncertainty of

1% on our 1 cm cut.

For the effect on the cross-section ratios, we combine the cryotarget thickness

uncertainty, the solid-target thickness uncertainty, and the vertex cut uncertainties.

This gives a normalization uncertainty of 1.42-1.58% in both the DIS and QE regions.

Acceptance Corrections and Bin Migration

We place a point-to-point uncertainty based on the statistical uncertainty on the

extracted acceptance correction factors. As noted in section 2.5.3, we limited the

uncertainty in the acceptance correction factor to 0.75% (3.0%) in the DIS (QE)

region in each two-dimensional bin. When summing the data into a one-dimensional

function of 𝑥𝐵, this uncertainty will be decreased by the square-root of the number of

bins in the sum due to our use of a uniform monte-carlo generator. In the DIS (QE)
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Figure 2-80: Percent deviation of the target length determined by the fit from the
assumed cryotarget length vs. Gaussian fit range around the peak.

region, for each 𝑥𝐵 point, we have about 9 (16) acceptance bins. This allows us to

place an uncertainty of 0.25% (0.75%) on the DIS (QE) region. (The uncertainties

are higher near the edges of the acceptance.) Since the acceptance correction factors

are applied to the deuterium and solid target separately, the effect on the cross-

section ratios is 0.35% (1.06%) for the DIS (QE) region. In addition, we place a 0.5%

uncertainty on the acceptance due to imperfections in the detector simulation.

It is also important to consider the effects of bin migration. In figure 2-81, we

show the resolution on 𝑥𝐵 for events generated in different 𝑥𝐵 ranges. The plots cover

the lower range of the QE analysis region. As can be seen, the resolution becomes

worse with increasing 𝑥𝐵. This trend continues to larger 𝑥𝐵 values and down to the

DIS region. In the DIS case, the resolution is better than our initially chosen bin

size of 0.04, and the cross-sections do not vary as rapidly with 𝑥𝐵 (figure 2-55). The

resolution becomes similar to the bin size when we calculate the ratios using smaller

bins. In the QE region, however, the cross-sections fall quickly with increasing 𝑥𝐵

(figure 2-56), and the 𝑥𝐵 resolution degrades.

We correct for bin migration effects by using our model cross-sections when ap-

plying the acceptance corrections. Then we consider the question of how much would

bin migration have affected the final ratios if no correction were applied. We study

this by performing the acceptance corrections using the uniform generator without

weighting the events with the cross-section model. The difference in the measured
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EMC slopes and 𝑎2 values when using the two types of acceptance maps are shown

in tables 2.21 and 2.22, respectively. We include this difference when determining the

final uncertainties on the EMC slopes and 𝑎2 values.
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Figure 2-81: Resolutions for 𝑥𝐵 determined from the CLAS simulation in the 𝑥𝐵

range 0.8-1.4 for bins of size 0.1.

Target |∆𝑆𝑙𝑜𝑝𝑒|
12𝐶 0.005
27𝐴𝑙 0.006
56𝐹𝑒 0.006
208𝑃𝑏 0.005

Table 2.21: The differences in the measured EMC slopes using the unweighted com-
pared to the weighted acceptance maps.

Radiative, Coulomb, and Bin-Centering Corrections

Point-to-point uncertainties due to the radiative corrections can arise due to detector

resolution and bin migration. We study this effect using the simulation. In figure 2-82

(2-83), we show the generated and reconstructed weighted simulation in the DIS (QE)

region after applying acceptance corrections to the reconstructed events. Then we

consider the average radiative correction in each bin using both the generated events
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Target |∆𝑎2|
12𝐶 0.19
27𝐴𝑙 0.20
56𝐹𝑒 0.31
208𝑃𝑏 0.22

Table 2.22: The differences in the measured 𝑎2 values using the unweighted compared
to the weighted acceptance maps.

(i.e. the true correction) and the acceptance-corrected reconstructed events (i.e. the

used correction). We take the ratio of the true correction to the used correction to

determine the size of the resolution effect (figures 2-84 and 2-85). We see that the

effect cancels in the final cross-section ratio. Point-to-point uncertainties not due

to the resolution are also expected to cancel in the ratio [19]. The normalization

uncertainty on the cross-section ratios due to radiative corrections is estimated to be

0.5% [18, 19].
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Figure 2-82: DIS weighted simulation: generated and acceptance-corrected recon-
structed events.

The coulomb corrections range from 0-5% for the DIS region and from 0-15% for

the QE region. There is a 10% uncertainty in the coulomb potential [53]. To study

the effect of this uncertainty on ∆𝐸 on the coulomb correction factors, we recalculate

the factors with ∆𝐸 changed by 10% [57]. For the DIS region, this changes the

coulomb correction factor by a maximum of only 0.1%. For the QE region, the factor

changes by a maximum of 0.2% for carbon, 0.4% for aluminum, 0.7% for iron, and
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Figure 2-83: QE weighted simulation: generated and acceptance-corrected recon-
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Figure 2-84: DIS ratio of true to used average radiative correction.

1.0% for lead. Although there is some 𝑥𝐵 dependence to the amount the correction

factor changes, the changes are correlated. So, we choose to conservatively use the

maximum change for each target as a normalization uncertainty.

The uncertainty due to the bin-centering correction will depend on the bin size

chosen. Our original binning was similar to the previously published results [57,

58]. Following these results, we place a 0.5% point-to-point uncertainty on the bin-

centering correction factor. When we divide our original bins into smaller bins, we

conservatively choose to keep the same uncertainty.

As discussed in section 2.5.7, it is also possible to apply the bin-centering correc-

tions prior to some to the other corrections. The differences in the measured EMC
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Figure 2-85: QE ratio of true to used average radiative correction.

slopes and 𝑎2 values when applying the corrections in a different order are shown in

tables 2.23 and 2.24, respectively.

Target |∆𝑆𝑙𝑜𝑝𝑒|
12𝐶 0.015
27𝐴𝑙 0.016
56𝐹𝑒 0.021
208𝑃𝑏 0.007

Table 2.23: The differences in the measured EMC slopes after changing the order of
the corrections.

Target |∆𝑎2|
12𝐶 0.15
27𝐴𝑙 0.14
56𝐹𝑒 0.21
208𝑃𝑏 0.16

Table 2.24: The differences in the measured 𝑎2 values after changing the order of the
corrections.

Kinematic Corrections

For the QE case, we estimated the maximum amount that the electron momentum

may be reconstructed incorrectly in section 2.3.4. To check the effect of this potential

mis-reconstruction on the cross-section ratios, we look at how much every measured
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cross-section ratio changes if we shift the momentum by 20 MeV/c. We find that the

ratio changes between 0.2-0.3%. So, we place a point-to-point uncertainty of 0.3% on

all bins.

We applied momentum corrections to the scattered electron for the DIS region.

These corrections are on the order of 0.5%, and we do not place any uncertainty on

this correction.

Polar angle corrections are on the order of 0.2%, and are applied to both the DIS

and QE analyses. We also do not place any uncertainty on this correction.
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2.6.4 The EMC Effect and Short Range Correlations

As discussed in chapter 1, the slope of the EMC effect is known to linearly correlate

with 𝑎2 [28, 29]. Based on this correlation and the isospin dependence of nucleon

SRCs, we model the EMC effect as being due entirely to the modification of np-SRC

pairs. We can then write the structure function of a nucleus A, 𝐹𝐴
2 (𝑥𝐵, 𝑄

2), as

𝐹𝐴
2 = (𝑍 − 𝑛𝐴

𝑆𝑅𝐶)𝐹 𝑝
2 + (𝑁 − 𝑛𝐴

𝑆𝑅𝐶)𝐹 𝑛
2 + 𝑛𝐴

𝑆𝑅𝐶(𝐹 𝑝*
2 + 𝐹 𝑛*

2 )

= 𝑍𝐹 𝑝
2 + 𝑁𝐹 𝑛

2 + 𝑛𝐴
𝑆𝑅𝐶(∆𝐹 𝑝

2 + ∆𝐹 𝑛
2 ) ,

(2.19)

where 𝑛𝐴
𝑆𝑅𝐶 is the number of np-SRC pairs in a nucleus A, 𝐹

𝑝(𝑛)
2 (𝑥𝐵, 𝑄

2) is the

free proton (neutron) structure function, and 𝐹
𝑝*(𝑛*)
2 (𝑥𝐵, 𝑄

2) is the modified proton

(neutron) structure function. In the above equation, ∆𝐹 𝑝
2 = 𝐹 𝑝*

2 − 𝐹 𝑝
2 and ∆𝐹 𝑛

2 =

𝐹 𝑛*
2 − 𝐹 𝑛

2 . (Note that the definition of 𝐹𝐴
2 used here is equivalent to 𝐴 · 𝐹𝐴

2 in some

other works.)

In the model quantified in equation 2.19, the term 𝐹 𝑝*
2 +𝐹 𝑛*

2 is nucleus independent

(i.e. universal). The question is then whether we can consistently describe the EMC

effect for all nuclei using this model.

We can first apply equation 2.19 to deuterium as

𝐹 𝑑
2 = 𝐹 𝑝

2 + 𝐹 𝑛
2 + 𝑛𝑑

𝑆𝑅𝐶(∆𝐹 𝑝
2 + ∆𝐹 𝑛

2 ) , (2.20)

and form EMC ratios (
𝐹𝐴
2 /𝐴

𝐹 𝑑
2 /2

). Since the free neutron structure function is not well

constrained, we can use this equation to solve for 𝐹 𝑛
2 . In our model, the EMC ratios

are then written as

𝐹𝐴
2 /𝐴

𝐹 𝑑
2 /2

= (𝑎2 − 2
𝑁

𝐴
)(𝑛𝑑

𝑆𝑅𝐶

∆𝐹 𝑝
2 + ∆𝐹 𝑛

2

𝐹 𝑑
2

) + 2 · 𝑍 −𝑁

𝑍 + 𝑁
· 𝐹

𝑝
2

𝐹 𝑑
2

+ 2
𝑁

𝐴
, (2.21)

with 𝑎2 =
𝑛𝐴
𝑆𝑅𝐶/𝐴

𝑛𝑑
𝑆𝑅𝐶/2

. Notice in this equation, the nucleus-independent quantity is

𝑛𝑑
𝑆𝑅𝐶

Δ𝐹 𝑝
2 +Δ𝐹𝑛

2

𝐹 𝑑
2

.

Because we eliminated 𝐹 𝑛
2 when calculating the EMC ratio in equation 2.21, we are
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left with a term that depends on 𝐹 𝑝
2

𝐹 𝑑
2
. This quantity has almost no 𝑄2 dependence (like

the EMC effect) and is well-constrained as a function of 𝑥𝐵 [59]. We can parametrize

the data from Ref. [59] using a 3𝑟𝑑 order polynomial (figure 2-86). For every nucleus

and 𝑥𝐵 point for which there is an EMC measurement, we can now extract the

quantity 𝑛𝑑
𝑆𝑅𝐶

Δ𝐹 𝑝
2 +Δ𝐹𝑛

2

𝐹 𝑑
2

as

𝑛𝑑
𝑆𝑅𝐶

∆𝐹 𝑝
2 + ∆𝐹 𝑛

2

𝐹 𝑑
2

=

𝐹𝐴
2

𝐹 𝑑
2
− (𝑍 −𝑁)

𝐹 𝑝
2

𝐹 𝑑
2
−𝑁

(𝐴/2)𝑎2 −𝑁
. (2.22)

In figure 2-87, we plot both the measured EMC ratios and the quantity calculated

using equation 2.22. As can be seen in the figure, the quantity 𝑛𝑑
𝑆𝑅𝐶

Δ𝐹 𝑝
2 +Δ𝐹𝑛

2

𝐹 𝑑
2

is

indeed universal (i.e. nucleus independent). We quantify the universality in figure

2-88, where we show the slopes of both the measured EMC ratios and our universal

modification function.
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Figure 2-86: Ratio of proton to deuteron structure function. The points are taken
from Ref. [59]. For this work we use the continuous parametrization shown in the
figure.

To gain further insight into the EMC -SRC relationship, we calculate two addi-

tional quantities, the per-neutron and per-proton cross-section ratios:
(︁

𝜎(𝐴)/𝑁
𝜎(𝐷)/1

)︁
and(︁

𝜎(𝐴)/𝑍
𝜎(𝐷)/1

)︁
. This allows us to calculate the per-neutron and per-proton EMC slopes

and 𝑎2 values as
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𝑅𝑛
𝐸𝑀𝐶 = 𝑅𝐴

𝐸𝑀𝐶 × 𝐴/𝑁 × 1/2 ,

𝑅𝑝
𝐸𝑀𝐶 = 𝑅𝐴

𝐸𝑀𝐶 × 𝐴/𝑍 × 1/2 ,

𝑎𝑛2 = 𝑎𝐴2 × 𝐴/𝑁 × 1/2 ,

𝑎𝑝2 = 𝑎𝐴2 × 𝐴/𝑍 × 1/2 .

(2.23)

In the above equation 𝑅
𝐴(𝑛,𝑝)
𝐸𝑀𝐶 represents the per-nucleon (neutron, proton) EMC

slope, and 𝑎
𝐴(𝑛,𝑝)
2 represents the per-nucleon (neutron, proton) SRC scaling coefficient.
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Our model makes the following prediction for the per-neutron EMC ratios:

𝐹𝐴
2 /𝑁

𝐹 𝑑
2 /1

= (𝑎𝑛2 − 1)(𝑛𝑑
𝑆𝑅𝐶

∆𝐹 𝑝
2 + ∆𝐹 𝑛

2

𝐹 𝑑
2

) + (
𝑍

𝑁
− 1) · 𝐹

𝑝
2

𝐹 𝑑
2

+ 1 , (2.24)

and for the per-proton ratios:

𝐹𝐴
2 /𝑍

𝐹 𝑑
2 /1

= (𝑎𝑝2 −
𝑁

𝑍
)(𝑛𝑑

𝑆𝑅𝐶

∆𝐹 𝑝
2 + ∆𝐹 𝑛

2

𝐹 𝑑
2

) + (
𝑍

𝑁
− 1) · 𝐹

𝑝
2

𝐹 𝑑
2

+
𝑁

𝑍
. (2.25)

These equations make predictions for the per-neutron and per-proton EMC slopes

as a function of the per-neutron and per-proton 𝑎2 values, respectively. In figure 2-89,

we plot the per-neutron (proton) EMC slope vs. the per-neutron (proton) 𝑎2. We do

this for the measured data and compare the results to our model’s predictions. For

example, the dashed curves in the plots show our model’s predictions for nuclei with

N = Z. We also show what our model predicts for nuclei with Z = 2N (e.g. 3𝐻𝑒) and

for nuclei with N > Z. The model predictions are in agreement with the data.

The reason we calculate these per-neutron and per-proton quantities is because

an SRC-based EMC effect should show saturation for the neutrons and continued

growth for the protons [61]. The per-neutron and per-proton quantities allow us to

see whether there is this saturation and growth behavior.

In order to check for this behavior, it is useful to apply isoscalar corrections to

the EMC data. We can use the extracted universal modification function along with

equation 2.20 to make a calculation of 𝐹 𝑛
2 /𝐹

𝑝
2 . This calculation is shown in figure

2-90. We can then apply isoscalar corrections to the data in a model-consistent way

(figure 2-91). In figure 2-92, we show the EMC -SRC correlation plot after applying

isoscalar corrections to the EMC data using the parametrization extracted from our

model.

As can be seen in figure 2-92, the per-neutron EMC effect saturates beginning at

carbon, while the per-proton effect continues to grow all the way up to lead. This

saturation and growth is consistent with a SRC-based EMC effect as well as the

expectation of our model.
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Figure 2-89: Left (Right): Per-neutron (proton) EMC slope vs. the per-neutron (pro-
ton) 𝑎2. The square data points are extracted from the cross-section ratio measure-
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published data. The EMC slopes are extracted without applying isoscalar correc-
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only occupied by the per-proton quantities.
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Figure 2-91: Left: Prediction of our model for the per-neutron EMC slopes after
applying isoscalar corrections. Right: Prediction of our model for the per-proton
EMC slopes after applying isoscalar corrections.
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Figure 2-92: Per-neutron (proton) EMC slope vs. the per-neutron (proton) 𝑎2. The
square data points are extracted from the cross-section ratio measurements performed
in this thesis; the circular data points are extracted from previously published data.
The EMC slopes are extracted from isoscalar-corrected DIS ratios. The dashed curves
show our model’s predictions for isoscalar nuclei. The shaded triangle in the top right
corner of each panel shows the area of the plots only occupied by the per-proton
quantities.
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Chapter 3

Measuring the Elastic ep

Cross-Section in Hall A at JLab

The GMp experiment [30] was performed in Hall A at JLab during the spring and fall

of 2016. It was the first experiment completed in Hall A after the 12 GeV CEBAF

upgrade. The data collected by the GMp experiment during the spring and fall 2016

run periods is shown in figure 3-1. The values of 𝐺𝑀𝑝 shown for the red, green, and

blue points are arbitrary; the points are used to show the 𝑄2 value and the error bar

for each measured cross-section. For the majority of kinematic points, the statistical

uncertainty is less than 1%. The total systematic uncertainty (point-to-point and

normalization) is expected to be approximately 2%.

In order to extract elastic cross-sections and the form factors, the experiment

needs to reconstruct for every event the detected particle’s type, reaction vertex, and

momentum vector. The experiment also needs to know the efficiencies of the various

detector and data-acquisition components in order to make a precise measurement.

This chapter will discuss the experimental setup and the calibrations used to correctly

reconstruct the events. We will also briefly discuss how a cross-section is calculated for

a small-acceptance spectrometer once the events are correctly reconstructed. Then

the chapter will discuss the detailed efficiency studies which we conducted for the

GMp experiment. Lastly, we will present preliminary cross-section results for the

high 𝑄2 data.
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Figure 3-1: The data collected during the Spring and Fall 2016 run periods. Unlike
for the shown published data, for the GMp data the form factor value displayed is
arbitrary. Figure taken from Ref. [63].

3.1 Experimental Setup

Hall A at JLab

The High-Resolution Spectrometers

Hall A has two spectrometers, the right arm (RHRS) and the left arm (LHRS) [64].

These arms are almost identical in architecture and operation, and they function

independently of one another. The spectrometers are of a Quadrupole-Quadrupole-

Dipole-Quadrupole design. Due to the spectrometers’ optics design and large momen-

tum dispersion, the spectrometers have an excellent momentum resolution of 10−4.

Particles which pass through the HRSs are detected and have their trajectories

reconstructed using standard detector packages. A picture and schematic of the new

RHRS detector stack is shown in figure 3-2. Particles pass through the detector stack

in the direction shown by the arrow in the figure. Each spectrometer contains two

scintillator detectors: the S0 scintillator and the S2m scintillator. The S0 scintillator

consists of a single paddle with a photo-multiplier tube (PMT) located at both the top
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and bottom of the detector (the X direction in the spectrometer transport coordinate

system). The S2m scintillator consists of 16 paddles with a PMT a located at both the

left and the right (the Y direction in the spectrometer transport coordinate system)

of each paddle. The signals from these scintillators in coincidence are used to form

a fast trigger. There are three chambers for tracking (two vertical drift chambers,

collectively called the VDC, and a straw chamber). These tracking detectors are used

to reconstruct the physics quantities at the reaction vertex. Lastly, the gas cherenkov

detector and a lead-glass calorimeter are used for particle identification.

(a) (b)

Figure 3-2: Left: Photo of RHRS detector stack after upgrade (but prior to removal
of old S1 detector). Right: Schematic of the RHRS detector stack. The package for
the LHRS is similar; however, the calorimeter blocks are arranged differently.

Target System for the GMp Experiment

During the experiment, multiple targets were placed on a target ladder inside a vac-

uum scattering chamber. The ladder was remotely controlled from the Hall A count-

ing house, which allowed for a given target to be placed in the beam path. A picture

of a portion of the target ladder during the Fall 2016 run period is shown in figure

3-3. This figure shows Loop 1 (a 4 cm long cryotarget cell), Loops 2 and 3 (both 15

cm long cryotarget cells), the 4 cm long aluminum dummy target, and the multi-foil

carbon target.
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During the fall of 2016, loop 2 was filled with liquid hydrogen (LH2) for the

production running. It operated at a temperature of 19 K, a pressure of 25 psi, and a

density of 0.0732 g/ml. A 15 cm long aluminum dummy target (not shown in figure

3-3) was used to perform background subtractions. The other targets, including the

single-foil carbon target, the multi-foil carbon target, and the carbon-hole target,

were used to perform various calibrations and stability tests.

Figure 3-3: Picture of a portion of the Hall A target cryotarget system used during
the Fall 2016 GMp experiment.

3.2 Cross-Section Extraction

Prior to extracting absolute cross-sections, several types of calibrations need to be

performed for an inclusive scattering experiment like GMp. The first kind are calibra-

tions related to identifying the type of particle. These calibrations include converting

the raw ADC signals of the gas cherenkov PMTs into the number of detected pho-

toelectrons, converting the raw ADC signals of the electromagnetic calorimeter into

energy deposition, and converting the raw TDC signals of the scintillators into rela-

tive times. These calibrations were performed immediately after data-taking and are

described elsewhere [65]. In section 3.3, we will use the calibrated quantities when

calculating the various efficiencies.
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The next class of calibrations are related to calculating the total luminosity of the

electron beam and target. The beam-current monitors (BCMs) have to be calibrated

relative to a Parametric Current Transformer called an Unser [64], and the change in

the target density with current has to be studied. Special runs were taken during the

experiment in order to perform these calibrations, allowing for the calibrations to be

performed during the data taking.

Lastly, calibrations need to be performed in order to correctly reconstruct the

quantities at the reaction vertex. These calibrations are called the optics calibrations

and are discussed in Ref. [6]. The coordinate system for describing aspects of the

data such as acceptance and the magnetic transport through the spectrometer is

called the transport coordinate system. This coordiante system is discussed in detail

in Ref. [64]. In figure 3-4, we show a diagram of the transport coordinate system at

the target in the horizontal plane and its relationship to the lab coordinate system.

Figure 3-4: Diagram showing a top view of the transport and lab coordinate systems
in Hall A.

Once all the calibrations are performed, the cross-section can be calculated from

the measured electron yield as
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𝑑𝜎

𝑑Ω
=

∫︁
𝑑𝐸 ′𝑁𝑑𝑒𝑡(𝐸

′, 𝜃) −𝑁𝐵𝐺(𝐸 ′, 𝜃)

ℒ · 𝜖𝑒𝑓𝑓 · 𝐿𝑇 · ∆Ω𝑒𝑓𝑓

·𝑅𝐶 (3.1)

In the above equation, 𝑁𝑑𝑒𝑡 is the number of scattered elastic events detected;

𝑁𝑏𝑔 is the number of events from background processes; ℒ is the integrated luminos-

ity; 𝜖𝑒𝑓𝑓 is the efficiency correction, composed of the trigger efficiency, the particle

identification efficiency, and the tracking efficiency; 𝐿𝑇 is the live-time; ∆Ω𝑒𝑓𝑓 is the

effective solid angle, which characterizes the spectrometer acceptance; and 𝑅𝐶 is the

radiative correction factor. The integral is performed in 𝐸 ′ over the elastic peak. The

integral should be wide enough to not be sensitive to resolution effects, but needs to

be cut off below the pion production threshold.

3.3 Efficiency Studies for the GMp Experiment

Total Scintillator Efficiency

The scintillator efficiency, 𝜖𝑆0(𝑆2𝑚), is defined as 𝑁𝑔𝑜𝑜𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
, where 𝑁𝑡𝑜𝑡𝑎𝑙 is a sample of

clean electron events with S0 (S2m) not in the trigger and 𝑁𝑔𝑜𝑜𝑑 is the number of

these events that contain above-threshold signals within a wide time window in both

PMTs of a S0 (S2m) paddle. (Since the discriminated signals are sent to multi-hit

TDCs, only the hit closest to the main timing peak is kept for analysis.) The total

scintillator efficiency is defined as the result of 𝜖𝑆0 × 𝜖𝑆2𝑚.

For the GMp experiment, the main trigger (T1) was a coincidence of S0 and S2m

[66]. So, the evaluation of the scintillator efficiencies is necessary to determine the

main trigger efficiency. In order to accomplish this, two other triggers, T2 and T3,

were always enabled. T2 (T3) is a coincidence of S0 (S2m) and the Gas Cherenkov

detector, and events of this type can be used to evaluate the efficiency of S2m (S0).

S0 Scintillator Efficiency (𝜖𝑆0)

A T3 event sample is used to evaluate the S0 efficiency. Since the S0 detector is

smaller than the T3 detectors and located in front of these detectors, the event sample

132



consists of two categories. In the first category are the events which missed the S0

detector, and they will not be considered for efficiency calculations. In the second

category are the events which fell inside the scintillator boundaries and should give

signals with large amplitude in both S0 PMTs. The procedure for the S0 scintillator

efficiency calculation has the following steps:

∙ A cut is applied to the particle identification (PID) and tracking detectors to

select good electrons. The gas cherenkov vs. calorimeter response is shown

in figure 3-5 for one kinematic setting. The tracking and PID cuts applied

here are: one track in the VDC, greater than 5 photoelectrons (𝑁𝑝𝑒) in the gas

cherenkov counter, and a total momentum-normalized energy deposition (𝐸
𝑝
) in

the calorimeter of at least 0.6 (0.7) for the LHRS (RHRS).

∙ As mentioned above, only events that should fire the S0 scintillator are included

in the efficiency calculation. To select these events, the track is projected to

the S0 detector plane as shown in figure 3-6a. Then only events which project

inside the boundary of the detector are included for the efficiency study. (Of

course, if the track projection is to be used in this manner, it is necessary for

the position of the S0 detector relative to the VDC to be well known [67].)

For GMp production data, an additional cut is used to select a clean sample of

elastic electrons by a cut on the invariant mass as shown in figure 3-6b.

The S0 efficiency was calculated for every production run. The efficiency was

found to be stable within every individual kinematic. In addition, an inelastic run

which gave reasonably uniform illumination across the focal plane was used to test

the efficiency across the entire S0 detector (i.e. in different bins of the track X and Y

projection). As shown in figures 3-7 and 3-8, the efficiency is stable across the entire

S0 detector. So, a single efficiency was extracted for each kinematic; these efficiencies

are shown in table 3.1.
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Figure 3-5: Number of photoelectrons produced in the gas cherenkov vs. total
momentum-normalized energy deposited in the calorimeter for GMp kinematic k3-6.
Good electrons are selected by the cut described in the text.

S2m Scintillator Efficiency (𝜖𝑆2𝑚)

A T2 event sample is used to evaluate the S2m efficiency. The S2m scintillator is

located behind the S0 and the gas cherenkov detectors, but in front of the lead-glass

calorimeter. Therefore, for events that have a T2 trigger (S0 and gas cherenkov)

and large energy deposited in the calorimeter, S2m is expected to fire as well. The

procedure to calculate the S2m efficiency is as follows:

∙ The same tracking and PID cuts as described for the S0 efficiency are used to

select a clean sample of electrons.

∙ Only events where the track projects inside the S2m detector are used for the

efficiency calculation, as shown in figure 3-9a. For GMp production data, an

additional cut is used to select a clean sample of elastic electrons by a cut on

the invariant mass as shown in figure 3-9b.

The S2m efficiency was calculated for every production run. The efficiency was

found to be stable within every individual kinematic. In addition, an inelastic run

which gave reasonably uniform illumination across the focal plane was used to test

the efficiency for every S2m paddle. Since the location of the S2m detector is well

known, the paddle that should fire for a given event is also known (based on the track

projection). Therefore the efficiency of every individual paddle can be calculated.
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Figure 3-6: (a) Good electron projection to the S0 scintillator for kinematic k3-9.
The red lines indicate the S0 detector edges. (b) Additional cut on the invariant
mass (𝑊 ) used to select a clean elastic electron sample (0.87𝐺𝑒𝑉

𝑐2
< 𝑊 < 1.04𝐺𝑒𝑉

𝑐2
for

kinematic k3-9).

The efficiency as a function of paddle number is shown in figure 3-10, after removing

events with large multiple scattering between the VDC detector and S2m detector.

Since the calculated efficiency is stable for all the paddles (except at the edge of the

acceptance), a single efficiency was extracted for each kinematic. These efficiencies

are shown in table 3.1.

Trigger Efficiency

The main trigger for the GMp experiment, T1, consists of a coincidence between

the two scintillator detectors (S0 and S2m). There are two procedures that can be

used to calculate the trigger efficiency. In the first procedure, we can use a sample

of electron events that fired either trigger T2 or T3 or both (call this sample 𝑁𝑇 ).

Then, for this event sample, we can determine the number of events where trigger T1

is present (𝑁𝑇1). If all pre-scale factors are set equal to one (as they were for GMp

production data), the trigger efficiency is equal to 𝑁𝑇1

𝑁𝑇
. In the second procedure, one

can calculate the trigger efficiency from the individual scintillator efficiencies as the

product of the S0 efficiency and S2m efficiency. The trigger efficiency determined

from both methods was found to be consistent. In table 3.2, the trigger efficiency for

all kinematics is shown using the second method.
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Figure 3-7: Two-Dimensional S0 efficiency in bins of track projection. A LHRS
inelastic run is used here. The efficiency is stable across the entire detector area.

Uncertainties and Cross-Talk Check

In addition to the standard binomial uncertainty, several other factors affect the

determination of the efficiency. For the individual scintillator efficiencies, the timing

windows used and the knowledge of the exact positions of the scintillators relative

to the VDC can have an effect. The effect on the efficiencies of changing the timing

window around the main TDC peak from a very wide cut to a cut with a full-width

of 200 ns is at most 5 × 10−4. The effect on the efficiencies of changing the assumed

distance of the scintillators from the VDC by 0.5 cm is about 1 × 10−3 for S0 and

5×10−4 for S2m. The individual scintillator efficiencies, along with the accompanying

uncertainties, are shown in table 3.1. For the trigger T1 efficiency, in addition to the

propagation of the individual scintillator uncertainties, we looked at the difference

between extracting the efficiency using the two methods mentioned above. We place

an uncertainty on the T1 efficiency of 1 × 10−4 on this. The trigger 1 efficiencies,

along with the accompanying uncertainties, are shown in table 3.2.

Lastly, we looked into the question of cross-talk artificially enhancing the trigger

T1 efficiency. Since all the triggers are formed by coincidences in a Majority Logic

Unit (MLU), an independent method was developed to make sure that no artificial T1
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Figure 3-8: One-Dimensional projections of the plot in figure 3-7. Left: Efficiency vs.
Track X projection. Right: Efficiency vs. Track Y projection.

signals were generated in the MLU. For every T1 event, we determined whether both

S0 and S2m had signals in the TDCs for their individual channels. For all kinematics,

we found that fewer than 1 in 100,000 T1 events lacked an S0 or S2m signal. So, we

conclude that there was no issue with trigger cross-talk during data taking. The

fact that the trigger efficiency is the same using the two methods described above

demonstrates this as well.
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Figure 3-9: (a) Good electron projection to the S2m scintillator for kinematic k3-7.
The red lines indicate the S2m detector edges. (b) Left: Additional cut used to select
a clean electron sample of interest in the elastic peak for k3-7. Right: Number of
S2m paddles with left + right coincidence after applying all cuts. The small number
of events where more than 2 paddles fire are due to the wide time window used to
determine whether a PMT hit occurred.
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Figure 3-10: S2m Efficiency vs. paddle number. An inelastic run is used here. As
stated on the plot, a procedure was developed to limit the effects of multiple scattering
by requiring no signal on adjacent paddles.
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Kinematic Spectrometer 𝜖𝑆0 𝜖𝑆2𝑚
k1-0.4 LHRS 0.999 (1.1 × 10−3) 0.999 (7 × 10−4)
k1-1.5 LHRS 0.999 (1.1 × 10−3) 0.999 (7 × 10−4)
k1-1.8 RHRS 0.995 (1.1 × 10−3) 0.999 (7 × 10−4)
k1-1.9 RHRS 0.998 (1.1 × 10−3) 0.999 (7 × 10−4)
k3-4 LHRS 0.998 (1.1 × 10−3) 0.999 (7 × 10−4)
k3-6 LHRS 0.999 (1.1 × 10−3) 0.999 (7 × 10−4)
k3-7 LHRS 0.999 (1.1 × 10−3) 0.999 (7 × 10−4)
k3-8 LHRS 0.999 (1.1 × 10−3) 1.000 (7 × 10−4)
k4-9 LHRS 0.998 (1.1 × 10−3) 0.999 (7 × 10−4)
k4-10 LHRS 0.998 (1.1 × 10−3) 0.999 (7 × 10−4)
k4-11 LHRS 0.999 (1.1 × 10−3) 0.999 (7 × 10−4)
k3-9 RHRS 0.996 (1.3 × 10−3) 0.999 (7 × 10−4)
k4-12 RHRS 0.995 (1.3 × 10−3) 0.999 (7 × 10−4)

Table 3.1: S0 and S2m efficiencies for all Fall 2016 GMp kinematics. The relative
(i.e. fractional) total uncertainty for each efficiency is shown in parenthesis. The
total uncertainty for each efficiency is the binomial uncertainty combined with the
uncertainties discussed in the text. Each kinematic is named based on the beam
energy (pass number) and the central 𝑄2 value.

Kinematic Spectrometer 𝜖𝑇1

k1-0.4 LHRS 0.998 (1.3 × 10−3)
k1-1.5 LHRS 0.998 (1.3 × 10−3)
k1-1.8 RHRS 0.994 (1.3 × 10−3)
k1-1.9 RHRS 0.997 (1.3 × 10−3)
k3-4 LHRS 0.997 (1.3 × 10−3)
k3-6 LHRS 0.998 (1.3 × 10−3)
k3-7 LHRS 0.998 (1.3 × 10−3)
k3-8 LHRS 0.999 (1.3 × 10−3)
k4-9 LHRS 0.997 (1.3 × 10−3)
k4-10 LHRS 0.997 (1.3 × 10−3)
k4-11 LHRS 0.998 (1.3 × 10−3)
k3-9 RHRS 0.995 (1.5 × 10−3)
k4-12 RHRS 0.994 (1.5 × 10−3)

Table 3.2: Trigger 1 efficiencies calculated as the product of S0 and S2m efficiencies
for all Fall 2016 GMp kinematics. The relative (i.e. fractional) total uncertainty for
each efficiency is shown in parenthesis. The total uncertainty for each efficiency is the
binomial uncertainty combined with the uncertainties discussed in the text. There
are two methods that can be used to extract the trigger efficiency; as discussed in the
text, we apply an uncertainty to account for this.
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Particle Identification Efficiency

In many experiments, including the GMp experiment, the main trigger collects par-

ticles other than those needed for the measurement. In experiments where electrons

are desired, the background particles are primarily pions and cosmic rays. To remove

these background events and preserve the electrons, software cuts are applied based

on the number of photoelectrons in the gas cherenkov detector and the momentum-

normalized energy deposited in the calorimeter. A correction has to be made based

on the number of electrons which fail the final particle identification (PID) cuts and

the number of pions which pass those same cuts. (The success of all the final cuts,

including tracking and timing cuts, in removing cosmic events is discussed in section

3.3).

The question then is what are the best quantities to extract to make this correc-

tion. We want to determine the total number of electrons, 𝑁 𝑡
𝑒; but what we measure

before the PID cuts is 𝑁 𝑡 = 𝑁 𝑡
𝑒 + 𝑁 𝑡

𝜋, where 𝑁 𝑡 is the total number of measured

events and 𝑁 𝑡
𝑒 (𝜋) is the total number of electrons (pions); after the PID cuts, we have

𝑁 𝑓 = 𝑁 𝑓
𝑒 + 𝑁 𝑓

𝜋 , where 𝑁 𝑓 is the total number of final events and 𝑁 𝑓
𝑒 (𝜋) is the final

number of electrons (pions). We can determine the electron cut efficiency for the gas

cherenkov (calorimeter) by selecting a sample of clean electrons in the calorimeter

(gas cherenkov), and then looking at the response of the gas cherenkov (calorimeter)

for that sample. We can determine the pion rejection efficiencies (i.e. the fraction

that fail to pass all PID cuts) in a similar manner. Once we know the total electron

efficiency (𝜖𝑒) and the total pion rejection efficiency (𝜖𝜋)1, we can relate the yields

before and after the PID cuts as 𝑁 𝑓
𝑒 = 𝜖𝑒 × 𝑁 𝑡

𝑒 and 𝑁 𝑓
𝜋 = (1 − 𝜖𝜋) × 𝑁 𝑡

𝜋. Since we

know 𝑁 𝑡, 𝑁 𝑓 , 𝜖𝑒 & 𝜖𝜋, we can solve for 𝑁 𝑡
𝑒, 𝑁

𝑡
𝜋, 𝑁

𝑓
𝑒 &𝑁 𝑓

𝜋 .

However, if we write 𝑁 𝑓 = 𝑁 𝑓
𝑒 + 𝑁 𝑓

𝜋 as

𝑁 𝑓 = 𝑁 𝑓
𝑒 · (1 +

𝑁 𝑓
𝜋

𝑁 𝑓
𝑒

) , (3.2)

1Some prefer to define a pion suppression faction instead of a pion rejection efficiency; both
quantities contain the same information. De gustibus non est disputandum.
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and the final pion-to-electron ratio,𝑁
𝑓
𝜋

𝑁𝑓
𝑒
, as

(︀
𝜋
𝑒

)︀
𝑓
, we can solve for 𝑁 𝑡

𝑒 as

𝑁 𝑡
𝑒 =

𝑁 𝑓
𝑒

𝜖𝑒 · (1 +
(︀
𝜋
𝑒

)︀
𝑓
)
. (3.3)

So, for each run we need to determine 𝜖𝑒 and
(︀
𝜋
𝑒

)︀
𝑓

in order to correct for the PID

cut efficiency.

Event Categorization

In addition to the background cosmic and pion events, we found a set of events which

gave a large signal in the gas cherenkov detector and no signal in the calorimeter.

These events were rare compared to good events during runs with high rates, but

became quite prominent at high-pass GMp production settings. The events are easily

removed with a standard calorimeter cut; but since they have a large signal in the

gas cherenkov, these events will artificially reduce the calorimeter efficiency that we

extract using the standard method. So, prior to performing PID cut efficiency studies,

we tried to better understand these events and suppress them without using the PID

detectors.

In figure 3-11, we plot the number of photoelectrons in the gas cherenkov detector

vs. the momentum-normalized total energy deposited in the calorimeter for GMp

kinematic k3-7 on the LHRS. The plot is for all events with the standard trigger

and a single cluster present in all 4 VDC planes. As shown on the plot, we divide

the events into four categories: events with a large response in both detectors (red

box), events with a large response in the cherenkov but no response in the calorimeter

(green box), events with no response in the either detector (black box), and events

with no response in the cherenkov but a small response in the calorimeter (blue box).

For these four categories of events, we then show in figure 3-12 the beta spectrum

as determined from the track and scintillator timing information. As can be seen in

the plot, the red and green events have similar spectra with the events peaked at beta

equal to one. This, combined with the large cherenkov response, seems to indicate

that the green events are actually electrons; the question is whether they are missing
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Figure 3-11: Number of photoelectrons in the gas cherenkov vs. momentum-
normlalized energy deposition in the calorimeter for GMp kinematic k3-7. The mean-
ing of the various rectangles are discussed in the text.

the calorimeter or are low-energy events produced somewhere upstream of the VDC.

In the same plot, we see that the black and blue events have peaks at both positive

and negative beta. The events at negative beta are cosmic events, and we cut them

out by requiring 𝛽 > 0.2. The remaining blue events are most likely negative pions

originating from the target, while it is unclear what constitutes the black events.

Beta
2− 1− 0 1 2

1

10

210

310

410

Figure 3-12: Beta (𝛽) spectra calculated from the scintillator times and VDC track
for the four types of events shown in figure 3-11. We apply a cut of 𝛽 > 0.2 for all
additional results shown in this subsection.

To test some of the conjectures in the above paragraph, we consider several ad-
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ditional spectra. First, in figure 3-13 we plot the reconstructed target quantities for

the four types of events. As can be seen, the red events fall within the spectrometer

acceptance, as expected for good electrons. A large fraction of the blue events origi-

nate from the aluminium windows of the 15 cm long hydrogen target, suggesting that

these events are indeed pions. The green and the black events do not seem to track

back solely to the target, which may indicate that these events do not pass through

the entire spectrometer and thus are not being correctly reconstructed. These events

could conceivably originate from the beam line and in-scatter into the spectrometer

detector hut. However, from beam halo studies, we know that the beam is not scrap-

ping the beam line; so the events more likely either originate from some aperture

inside the spectrometer upstream of the detector hut (or, as mentioned above, are

missing the calorimeter).
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Figure 3-13: Reconstructed quantities in the spectrometer coordinate system for the
four types of events shown in figure 3-11. Clockwise from the top left: reconstructed
vertex (𝑧𝑟𝑒𝑎𝑐𝑡), reconstructed out-of-plane angle (𝜃𝑡𝑔), reconstructed fraction momen-
tum deviation (𝛿𝑝), and reconstructed in-plane angle (𝜑𝑡𝑔).

We can check if those events with high cherenkov response and no signal in the

calorimeter are simply missing the detector. We do this by projecting the VDC track

to the known position of the calorimeter. In figure 3-14, we show the events projected

to the first layer of the calorimeter. The physical size of the calorimeter is shown by
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the purple box. As can be seen, the bulk of the green events fall within the calorimeter

detector. So, in addition to the strange target reconstruction, there is no reason to

think the green events are actually good electrons that track outside the calorimeter.
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Figure 3-14: Track from VDC projected to calorimeter layer 1 for the four types of
events shown in figure 3-11. The physical size of the calorimeter is shown by the
purple box.

Next, we attempted to determine the origin of these background events. In figure

3-15, we plot the events at the VDC U1 plane. The green events consist of two bands

close to the edge of the VDC in the non-dispersive direction. Although all the events

are within the VDC active area, their proximity to the edge may indicate that these

events are produced by an aperture somewhere near the VDC. We checked this by

projecting the events forward to the second VDC plane, as well as backwards to the

vacuum exit window, the end-of-bellows aperture, and the Q3 exit. Although for

many of these projections some of the green events were outside the aperture, many

events were situated inside the aperture. So while it was not entirely clear from where

the green events originate, it is possible that the events are low-energy electrons that

are produced when a high-energy particle hits an aperture near the VDC.

While it seems that no cut besides the calorimeter energy deposition can cleanly

remove the background events, we can apply several cuts to significantly reduce their
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Figure 3-15: Track at VDC U1 plane for the four types of events shown in figure 3-11.
The physical size of the VDC is shown by the purple box.

presence. In figure 3-16, we show the deviation of track projection from the center of

the struck S2m paddle; requiring this deviation to be small will reduce the background

events relative to the electron and pion events under study. Likewise, in figure 3-17,

we show the deviation of the track projection from the energy-weighted hit position

in the calorimeter. In figure 3-18, we show the reconstructed invariant mass. As

can be seen, only the good electron sample shows an elastic peak. Since the GMp

experiment is interested in elastic scattering, it is appropriate to apply a cut around

the elastic peak when studying the PID efficiency.

Extraction of 𝜖𝑒 and
(︀
𝜋
𝑒

)︀
𝑓

For the calculation of the electron efficiency and pion rejection efficiency, we begin by

applying the following cuts:

1. Trigger 1 is present for the event.

2. Only 1 cluster is present in all 4 VDC planes.

3. The track beta is between 0.3 and 2.0. See figure 3-12.
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Figure 3-16: Left: VDC track quality as determined from a fit of the clusters in all the
VDC planes. We don’t apply any cuts on this variable for the PID efficiency study.
Right: VDC track projection deviation (in the dispersive plane) from hit S2m paddle
center for the four types of events shown in figure 3-11. The individual S2m paddles
have a full-width of 14 cm. The ‘good’ electron sample (red) distribution is flat from
-0.7 cm to +0.7 cm, and then falls sharply. The pion distribution (blue) is also flat
from -0.7 cm to +0.7 cm, but it has a larger fraction of events in the tails. The green
events, however, show much less structure, which means that they experience a large
amount of multiple scattering between the VDC and S2m. The is additional evidence
that these events are low-energy particles.

4. The following ’sanity’ cuts are applied on the acceptance (figure 3-13):

∙ The reconstructed out-of-plane angle is between -100 mrad and +100 mrad.

∙ The reconstructed in-plane angle is between -50 mrad and +50 mrad.

∙ The reconstructed momentum deviation is between -5.5% and +5.5%.

∙ The reconstructed reaction vertex is between -10 cm and +10 cm (-6.5

cm and +6.5 cm when calculating the electron efficiency). The hydrogen

cryo-target is 15 cm long, and while many of the pion events originate from

the cell windows, very few of the electrons do. So when calculating the

electron efficiency, we remove the windows with a vertex cut to obtain a

cleaner electron sample.

5. The absolute value of the S2m track deviation is less than 0.09 m. See figure

146



Deviation [m]
0.5− 0 0.5

1

10

210

3
10

410

Track X Deviation: Layer 1Track X Deviation: Layer 1

Deviation [m]
0.5− 0 0.5

1

10

210

3
10

Track Y Deviation: Layer 1Track Y Deviation: Layer 1

Deviation [m]
0.5− 0 0.5

1

10

210

3
10

410

Track X Deviation: Layer 2Track X Deviation: Layer 2

Deviation [m]
0.5− 0 0.5

1

10

210

3
10

Track Y Deviation: Layer 2Track Y Deviation: Layer 2

Figure 3-17: The VDC track projection deviation from the energy-weighted hit posi-
tion in the calorimeter for both calorimeter layers and directions. The distributions
are shown for the four types of events in figure 3-11. Since the green and black events
have essentially no response in the calorimeter, the energy-weighted position for these
events is just pedestal noise.

3-16.

6. The reconstructed invariant mass is between 0.8 𝐺𝑒𝑉/𝑐2 and 1.1 𝐺𝑒𝑉/𝑐2. See

figure 3-18.

We should note that some of these cuts (e.g. the S2m track deviation cut) may

not necessarily be used during the final cross-section extraction. They are used here

in order to select the cleanest possible sample of electrons (and pions). Since the

applied cuts remove electrons and pions with different probabilities, the initial pion-

to-electron ratio that we extract here depends somewhat on the cuts used. However,

as we show, the final pion-to-electron ratio is very small for all kinematics; and the

effect of small changes to the initial sample on the final contamination are negligible.

(In addition, since many of the pion events originate from the target windows, there

is probably some vertex dependence to the pion contamination which we ignore.)

For each kinematic, we first extract the software-cut-dependent electron efficiency

and pion rejection efficiency for the gas cherenkov detector. We do this by selecting a
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Figure 3-18: Reconstructed invariant mass (𝑊 ) assuming electron scattering for the
four types of events shown in figure 3-11. Only the ‘good’ electron (red) events display
the elastic peak, as expected.

clean sample of both electrons and pions based on the response in the calorimeter. In

figure 3-19, we show the momentum-normalized energy deposition in each calorimeter

layer for GMp kinematic k3-7. The selected electrons are the events contained within

the red lines, while the selected pions are those within the blue lines. In the bottom

left corner of the plot, one can see a small number of events which correspond to the

‘low-energy’ background discussed in the previous sub-section.

For the selected electron and pion samples, we plot the number of photoelectrons

detected in the gas cherenkov in figure 3-20a. Then for each possible software cut on

the number of collected photoelectrons, we calculate the electron efficiency and pion

rejection efficiency (figure 3-20b). The electron efficiency is simply the fraction of the

events above a given cut; the pion rejection efficiency is the fraction of events below

the cut.

We repeat the process to calculate the electron efficiency and pion rejection ef-

ficiency for the calorimeter. We select a sample of electrons and pions in the gas

cherenkov (figure 3-21), and consider their response in the calorimeter (figure 3-22a)

for GMp kinematic k3-7. However, as can be seen, both the electron and pion sam-

ples are contaminated by the ‘low-energy’ background discussed in the previous sub-

section. To remove this background, we first isolate these events and then study the

calorimeter response. The way that we isolate the ‘low-energy’ background events is

by requiring both a large cherenkov response and a large S2m track deviation. That
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Figure 3-19: Electron and pion sample selection in the calorimeter for studying the
gas cherenkov efficiency. The horizontal (vertical) axis in the momentum-normalized
energy deposited in calorimeter layer 1 (2). The events contained within the red lines
are the electrons; those contained within the blue lines are the pions. The events
displayed on the plot pass the cuts listed at the beginning of this subsection. In
addition, when selecting the event samples to study the gas cherenkov efficiency, we
require the energy-weighted hit position in the calorimeter to be close to the track
projection (see figure 3-17). The data shown here are for GMp kinematic k3-7.

is, we are essentially trying to isolate the green events in figure 3-16, for example.

After selecting these events, we then plot the calorimeter momentum-normalized en-

ergy deposition (E/p) for GMp kinematic k3-7 in figure 3-22b. As can be seen, nearly

all the events have E/p < 0.3. Based on this information, as well as the electron

and pion peaks at lower E/p in figure 3-22a, we choose to use only events above a

certain minimum E/p when calculating the calorimeter efficiencies. When calculating

the electron efficiency, we require the electron event sample to have E/p > 0.3; when

calculating the pion rejection efficiency, we require the pion event sample to have E/p

> 0.05.

Since there are two layers in the calorimeter, we apply a software cut on both the

total energy deposited in the calorimeter and on the energy deposited in layer 1 of

the calorimeter. (The motivation for requiring a minimum energy to be deposited in

layer 1 of the calorimeter comes from the vertical tail that can be seen in figure 3-19).

In figures 3-23a and 3-23b we show grids for the calorimeter electron efficiency and

pion rejection efficiency, respectively.
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Figure 3-20: (a) Number of photoelectrons collected in the gas cherenkov detector for
the electron (red) and pion (blue) samples selected in figure 3-19. (b) Electron and
pion gas cherenkov cut efficiencies for the samples selected in figure 3-19. The error
bands shown are calculated assuming standard binomial uncertainties.

Similarly to what was done for the S0 and S2m scintillators, we checked for any

dependence to the extracted efficiencies across the gas cherenkov and calorimeter

detector planes. We did this by projecting the track to the given detector under

study and looking for any dependence to the efficiency. For both the gas cherenkov

and the calorimeter, the electron detection efficiency and pion rejection efficiency

showed no position dependence.

The total electron efficiency is calculated from the individual cherenkov and calorime-

ter electron efficiencies as 𝜖𝑒 = 𝜖𝑐𝑒𝑟,𝑒 × 𝜖𝑐𝑎𝑙,𝑒. The total pion rejection efficiency is

calculated from the individual cherenkov and calorimeter pion rejection efficiencies

as 𝜖𝜋 = 1 − (1 − 𝜖𝑐𝑒𝑟,𝜋) × (1 − 𝜖𝑐𝑎𝑙,𝜋). In table 3.3, we show the final total electron

detection efficiencies, the total pion rejection efficiencies, the initial pion-to-electron

ratios, and the final pion-to-electron ratios for the following set of PID cuts:

𝑁𝑝𝑒 > 4,

(︂
𝐸

𝑃

)︂
𝑇𝑜𝑡𝑎𝑙

> 0.7,

(︂
𝐸

𝑃

)︂
𝐿𝑎𝑦𝑒𝑟1

> 0.08 .

We calculate a standard binomial statistical uncertainty for each measured effi-

ciency. In addition, we consider two additional potential sources of error. First, when

selecting samples of either electrons or pions in a given detector, we assume that those
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Figure 3-21: Electron and pion sample selection in the gas cherenkov for studying
the calorimeter efficiency. Events with greater than 15 photoelectrons constitute the
electron sample; those with less than 1 photoelectron constitute the pion sample. The
events displayed on the plot pass the cuts listed at the beginning of this subsection.
The data shown here are for GMp kinematic k3-7.

samples are completely ’clean’ (i.e. that they only contain the particle under study).

This is of course not necessarily true, and we can study the effect of contamination

in the samples by varying the sample-selection cuts. Second, we make the (quite

justified) assumption that all the good electron events have E/p > 0.3, while all the

‘low-energy’ background events have E/p < 0.3. We study the effect of changing this

E/p threshold by a reasonable amount on the calorimeter efficiencies, and apply an

uncertainty on this. The relative total uncertainties on the electron efficiencies and

pion rejection efficiencies are shown in table 3.4.

As can be seen in table 3.3, the final pion-to-electron ratios are very small. These

ratios are determined by the cut efficiencies and by the initial pion-to-electron ratio.

The relative uncertainty on the final pion-to-electron ratio is also shown in table 3.4

for each kinematic.

Finally, we consider an alternative method for determining the PID cut efficiencies

and rates of pion contamination. If one could determine functional forms for the

electron, pion, and ‘low-energy’ background distributions in the gas cherenkov and

calorimeter, all the efficiencies and pion-to-electron ratios can be easily extracted.

The way to determine these spectra for a given detector would be to once again

select a sample of the particle under study in the other detector. Then the resulting

151



 / ptotE
0 0.5 1 1.5

1

10

210

310

(a)
 / ptotE

0 0.5 1 1.5

1

10

210

310

(b)

Figure 3-22: (a) Total momentum-normalized energy deposited in the calorimeter for
the electron (red) and pion (blue) samples selected in figure 3-21. As can be seen,
there are clearly some events in both samples that correspond to the ‘low-energy’
background discussed in the last subsection. Since these events should not be included
when calculating the calorimeter efficiencies, we only consider events above a certain
threshold. More details are given in the text. (b) Total momentum-normalized energy
deposited in the calorimeter for ‘low-energy’ background events selected by requiring
a large cherenkov response and a significant amount of multiple scattering between
the VDC and S2m. This plot shows us that very few of the ‘low-energy’ events have
E/p greater than 0.3. As can be seen in (a), good electron events have E/p peaked at 1
with a small tail going to lower E/p. This means that we can remove the ‘low-energy’
contamination by requiring E/p >0.3.

spectrum can be fit with an appropriate functional form. For example, one would fit

the electron and pion spectra in figure 3-20a and then extract the efficiency for any

cut. To determine the pion-to-electron ratios, one would simply scale the amplitude

of the each spectrum to match the true distribution.

We attempted this fitting method, but we ran into several difficulties. We were

able to fit the cherenkov spectra quite well, and the uncertainties on the extracted

parameters gave uncertainties comparable to what we achieved with our cut method.

For the calorimeter, however, we had to fit the good electron events and the ‘low-

energy‘ background simultaneously (see figure 3-22a). This led to a dependence of

the extracted electron efficiency on the functional form that we chose for both the

electrons and the background. So we decided that the preferable method is the one

discussed in detail in this section.
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Figure 3-23: (a) Grid showing calorimeter electron detection efficiencies for various
cuts on the total energy deposited in the calorimeter and the energy deposited in layer
1. The results are shown for GMp kinematic k3-7. (b) Grid showing calorimeter pion
rejection efficiencies for various cuts on the total energy deposited in the calorimeter
and the energy deposited in layer 1. The results are shown for GMp kinematic k3-7.

Other Cut Efficiencies

Besides the standard PID cuts discussed in the previous subsection, an analysis may

choose to apply other software cuts which require an efficiency correction. (Of course,

not all software cuts require an efficiency correction. An applied cut on the recon-

structed in-plane and out-of-plane angles at the target, for example, simply defines

the solid angle.) For example, in the GMp experiment, it is likely that the final

cross-section analysis will use a cut on the time difference between the S0 and S2m

scintillators (i.e. a beta cut) to remove any remaining cosmic events. To study the

efficiency of any chosen cut on the track beta, we once again begin by selecting a good

sample of electron events. That is, we select events with a good trigger, a good track

in the VDC, and good responses in both PID detectors. The track beta for events

passing this sample-selection cut for GMp kinematic k3-7 is shown in figure 3-24. For

a selected software cut on the track beta of greater than 0.2, we show the efficiencies

for all Fall 2016 GMp kinematics in table 3.5.
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Kinematic Spectrometer 𝜖𝑒 𝜖𝜋
(︀
𝜋
𝑒

)︀
𝑖

(︀
𝜋
𝑒

)︀
𝑓

k1-0.4 LHRS 0.995 0.977 7.4 × 10−4 1.7 × 10−5

k1-1.5 LHRS 0.995 0.999 9.3 × 10−4 5.7 × 10−6

k1-1.8 RHRS 0.992 0.999 0.025 2.9 × 10−6

k1-1.9 RHRS 0.991 0.999 0.020 2.8 × 10−6

k3-4 LHRS 0.992 0.999 8.7 × 10−3 2.8 × 10−6

k3-6 LHRS 0.993 0.999 0.057 2.3 × 10−5

k3-7 LHRS 0.993 0.999 0.25 4.0 × 10−5

k3-8 LHRS 0.994 0.999 1.07 1.8 × 10−4

k4-9 LHRS 0.991 0.999 0.20 7.6 × 10−5

k4-10 LHRS 0.992 0.999 0.55 2.3 × 10−4

k4-11 LHRS 0.992 0.999 2.91 6.6 × 10−4

k3-9 RHRS 0.984 0.999 7.28 4.2 × 10−4

k4-12 RHRS 0.984 0.999 10.42 8.4 × 10−4

Table 3.3: Particle identification (PID) cut efficiencies and initial and final pion
contamination for all Fall 2016 GMp kinematics. The applied PID cut is discussed in
the text. The initial (final) pion-to-electron ratio is defined as the ratio before (after)
applying the PID cuts.

Kinematic Spectrometer 𝑑𝜖𝑒/𝜖𝑒 𝑑𝜖𝜋/𝜖𝜋 𝑑
(︀
𝜋
𝑒

)︀
𝑓
/
(︀
𝜋
𝑒

)︀
𝑓

k1-0.4 LHRS 5.2 × 10−4 4.5 × 10−2 3.6 × 10−2

k1-1.5 LHRS 5.2 × 10−4 3.2 × 10−3 1.1 × 10−2

k1-1.8 RHRS 5.3 × 10−4 1.7 × 10−3 8.2 × 10−3

k1-1.9 RHRS 5.4 × 10−4 1.2 × 10−3 1.2 × 10−2

k3-4 LHRS 9.3 × 10−4 1.3 × 10−2 6.3 × 10−2

k3-6 LHRS 7.4 × 10−4 5.2 × 10−3 2.1 × 10−2

k3-7 LHRS 7.6 × 10−4 2.1 × 10−3 1.1 × 10−2

k3-8 LHRS 8.4 × 10−4 1.2 × 10−3 8.7 × 10−3

k4-9 LHRS 8.8 × 10−4 3.3 × 10−3 1.3 × 10−2

k4-10 LHRS 8.1 × 10−4 2.2 × 10−3 8.4 × 10−3

k4-11 LHRS 1.1 × 10−3 1.4 × 10−3 8.8 × 10−3

k3-9 RHRS 2.0 × 10−3 7.8 × 10−4 1.4 × 10−2

k4-12 RHRS 1.5 × 10−3 5.3 × 10−4 9.9 × 10−3

Table 3.4: Relative total uncertainties on extracted electron efficiency, pion rejec-
tion efficiency, and final pion-to-electron ratio for all Fall 2016 GMp kinematics. As
mentioned in the text, uncertainties are applied on the extracted electron and pion
efficiencies due to the purity of the sample selection and the E/p threshold used to
separate the good events from the ‘low-energy’ background. We apply an uncertainty
of 5 × 10−4 (1 × 10−4) on the electron (pion) efficiency due to the sample selection.
We apply an uncertainty of 1 × 10−4 on both the electron and pion efficiency due to
the E/p threshold.
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Figure 3-24: Track beta for a sample of good electrons selected as discussed in the
text. The efficiency of a cut of 𝛽 > 0.2 is shown in table 3.5. The data shown in the
figure is from GMp kinematic k3-7.

Kinematic Spectrometer 𝜖𝛽
k1-0.4 LHRS 0.9999 (8 × 10−6)
k1-1.5 LHRS 0.9997 (2 × 10−5)
k1-1.8 RHRS 0.9999 (1 × 10−5)
k1-1.9 RHRS 0.9999 (2 × 10−5)
k3-4 LHRS 0.9995 (1 × 10−4)
k3-6 LHRS 0.9995 (1 × 10−4)
k3-7 LHRS 0.9997 (9 × 10−5)
k3-8 LHRS 0.9998 (9 × 10−5)
k4-9 LHRS 0.9997 (1 × 10−4)
k4-10 LHRS 0.9996 (1 × 10−4)
k4-11 LHRS 0.9998 (1 × 10−4)
k3-9 RHRS 0.9998 (2 × 10−4)
k4-12 RHRS 0.9999 (1 × 10−4)

Table 3.5: Track beta cut efficiency for a selected cut of beta greater than 0.2 for
all GMp Fall 2016 kinematics. The relative uncertainty shown in parenthesis is the
statistical (binomial) uncertainty.
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Vertical Drift Chamber (VDC) Tracking Efficiency

For every event, the VDC can reconstruct zero, one, or multiple tracks. The ‘standard’

analysis method in Hall A consists of only analysing the events where the number of

tracks is equal to one. Then a correction factor is applied to account for the zero-

track and multi-track events: the fraction of events which consist of only one track is

determined, and the yield is then divided by this value.

It is useful to briefly consider the merit of this ‘one-track efficiency’ approach. Let

us assume that the VDC can reconstruct multiple tracks well and that the experiment

taking data is not limited by statistics. Let us also assume that the experiment is

interested in detecting electrons, as was the case for the GMp experiment. For a

sample of events where there was a good trigger, good timing, and a large energy

deposited in the PID detectors, we know that these events have at least one good

electron present. The majority of the events in this sample will have one track in

the VDC, and these events will be analysed. Some of the events will not have any

track in the VDC. Since we know the event contained a good electron, the fact that

there is no track in the VDC indicates that the detector was inefficient for that event.

So a correction should be applied, as is done in the standard ‘one-track efficiency’

correction.

What about the cases where there are multiple tracks in the VDC? This may

be because an event has multiple good electrons (a pile-up event). In the standard

analysis method, this event will be thrown away; and then the ‘one-track efficiency’

correction will add back one of the lost electrons. The other lost electrons will be

added back through the dead-time (electronic or computer) correction. Indeed, it

would be a mistake to try to reconstruct two electrons in the same event, because the

second electron is already counted in the dead-time correction. Multiple tracks in the

VDC may also arise if there is one good electron and a ‘junk’ track. 2 The standard

tracking correction will correct for the one good electron.

2This ‘junk’ track may be contained in the VDC; or it may be a delta-electron which escapes
and either hits or misses the trigger detectors. Even if the ‘junk’ track hits the trigger detectors,
however, it should come at the same time as the good electron track. So it will be within the
electronic dead-time window, and it should not be counted by the scalers.
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So the standard VDC ‘one-track efficiency’ correction seems justified. However,

there is a complication. The newest version of the analysis software will only form

two tracks when there are at least two clusters in all four VDC planes. There are

some events where there are two clusters in one plane, but one cluster is the other

three planes. In this case, the VDC software will reconstruct one track; but there is

not always a robust way to determine which of the two clusters should be used. 3 So

it might be better to throw away all events with multiple clusters in any of the four

planes, and then calculate a ‘one-cluster efficiency’ correction. (In addition, when

multiple clusters are present, the clusters may interfere with one another, and they

may not be reconstructed well.)

In this section, we will calculate both the ‘one-track efficiency’ and the ‘one-

cluster’ efficiency for the GMp Fall 2016 dataset. We will spend some time discussing

placing reasonable uncertainties on the extracted efficiencies. In addition, we will

describe a novel technique to extract position-dependent VDC efficiencies by forming

a non-VDC ‘track’ using information from the other detectors.

Overall Efficiencies

To calculate the VDC efficiencies, we begin by selecting a sample of good electrons.

First we require the event to have a good hit on the main trigger (trigger 1, which is a

coincidence of the two scintillator planes). Then we require at least 5 photoelectrons

in the gas cherenkov detector. Lastly we apply a cut on the energy deposited in

the calorimeter normalized by the spectrometer central momentum. It is important

to highlight the reason that we divide the energy deposited in the calorimeter by

the spectrometer central momentum instead of the event momentum, as we did in

previous sections. The event momentum is calculated using the central momentum

and information from the reconstructed VDC track. Using VDC information when

creating a sample to study the VDC efficiency would obviously bias our study. By

normalizing the calorimeter energy deposition by a fixed number (the spectrometer

3Of course, the VDC software could be changed to reconstruct two tracks here. But this is just
a semantic issue, as it would change the ‘one-cluster efficiency’ into the ‘one-track efficiency’.
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central momentum), we avoid this particular pitfall.

Now that we have a sample of good electrons, we can calculate the fraction of

these events with one track in the VDC or one cluster in all four VDC planes. But we

first make use of two additional pieces of information to remove any potential cosmic

contamination or events which miss the VDC detector entirely: the relative time in

the two scintillator planes, and the hit positions of the event in the two scintillator

planes.

The S0 and S2m scintillators have been well calibrated, with regards to their

relative times and their positions with respect to the VDC. For every event, we can

extract the (X,Y,Z) hit positions for each scintillator. For the S2m scintillator, the Z

position relative to the VDC is known; we can set the X position as the center of the

S2m paddle that had a hit; and we can use the time difference between the left and

right PMTs of the hit paddle to determine the Y position. For the S0 scintillator,

the Z position relative to the VDC is known; we can set the Y position as the center

of the S0 detector; and we can use the time difference between the top and bottom

PMTs to determine the X position. Using the extracted (X,Y,Z) hit positions for the

two scintillator detectors, we form a ‘track’ (i.e. non-VDC track).

Using the scintillator relative times and the scintillator-based track, we calculate

a beta for every event (figure 3-25). (If multiple S2m paddles fire, we use the earliest

one that was within a 50 ns time window of the S0 hit.) As can be seen in the plot,

even after the PID cut, there are a few events with negative beta. We remove these

events by requiring the beta to be larger than 0.4 and less than 2.0.

We can also form the standard focal plane tracking variables in the transport

coordinate system using the scintillator-based track. We can then remove events

from our sample which track far outside the acceptance of the VDC detector. In

figure 3-26, we show these four quantities formed with the scintillator-based track,

both for all trigger 1 events and for those events passing the above PID and beta

cuts. After applying the PID and beta cuts, it is clear that very few events are left

which are outside the VDC fiducial region. Nonetheless, we apply cuts to remove the

small number of events which are far outside the VDC acceptance.
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Figure 3-25: Beta formed from the scintillator times and path-length of the
scintillator-based track. The blue curve shows all trigger 1 events. The cosmic events
are the ones with negative beta. The green curve shows the distribution for the
events remaining after the application of the PID cuts discussed in the text. The
PID cuts remove the majority of the cosmic events. Note how there are no events
with −0.1 < 𝛽 < 0.1; this occurs because we require the S0 and S2m hit times to be
within 50 ns of each other. The results are shown for an inelastic run on the LHRS.

We use the sample of events remaining after applying the PID, beta, and scintillator-

based tracking cuts to study the VDC efficiency. That is, we calculate the fraction

of these events that have one-track or one-cluster present in the VDC. Figure 3-27

shows the number of tracks reconstructed by the VDC for the selected event sample

for an inelastic run on the LHRS.

In table 3.6, we show the extracted VDC one-track and one-cluster efficiencies for

all GMp Fall 2016 kinematics. In addition, the table shows the statistical uncertainty

placed on the efficiencies assuming standard binomial uncertainties. We place an

additional uncertainty of 0.2% on all extracted VDC efficiencies. This additional

uncertainty is needed to take into account the fact that the fraction of one-track or

one-cluster events in the physics region of interest may be different from the fraction

of multi-track or multi-cluster events in that same region. See Ref. [68] for a more

complete discussion.

Position-Dependent Efficiency

While the procedure we developed in the previous section works well for calculating

the overall VDC efficiency, the scintillator-based track is not adequate for calculating
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Figure 3-26: The standard focal plane variables in the transport coordinate system
formed from the scintillator-based track. (Clockwise from the top left: angle in
the dispersive direction, angle in the non-dispersive direction, position in the non-
dispersive direction, position in the dispersive direction.) The blue curves show the
distributions for all trigger 1 events. The green curves show the distributions after
applying the PID and beta cuts discussed in the text. For the green curves, a few
events reconstruct far outside the known VDC acceptance; these events are removed
with the cuts shown in the figure. The results are shown for an inelastic run on the
LHRS.

efficiencies as a function of position in the VDC detector. The reason for this can

be seen in figure 3-28. In this figure, we take events in which a good track was

reconstructed in the VDC. We then project the VDC track to the S0 (S2m) detector

plane, and we compare this track’s X (Y) position in the S0 (S2m) plane to the X

(Y) position given by the time difference of the S0 (S2m) PMTs. The X position we

get by using the S0 PMT time difference can differ from the X position of the VDC

track projection by up to 10 cm. For S2m, the PMT-based Y position can differ by 5

cm from that of the VDC track projection. Since the VDC tracks are reconstructed

with a high accuracy, this large discrepancy is mostly due to the time resolution of

the scintillators (and also perhaps to some multiple scattering between the VDCs and

the scintillator detectors).

Thankfully, additional position information from other detectors can be used to
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Figure 3-27: Number of tracks reconstructed by the VDC for a sample of good elec-
trons. The results are shown for an inelastic run on the LHRS.

form a more accurate non-VDC-based track. In the calorimeter, we have access to

the energy-weighted X and Y hit positions in both layers (figure 3-29). In the straw

chambers, we can extract X and Y positions based on which straws had signals for

that event (figure 3-30).

So we have five potential sets of (X,Y,Z) values for each event: one from S0, one

from S2m, two from the calorimeter (since there are two layers), and one from the

straw chamber. Since we have already imposed the requirement that trigger 1 is

present and that there is a large amount of energy deposited in the calorimeter (i.e.

the PID cuts), we are guaranteed to have at least four (X,Y,Z) values for every event.

(If there are multiple clusters in the calorimeter, we take the one with the largest

energy deposition.) When the event has one cluster in the straw chamber, we include

the (X,Y,Z) hit information from the straw chamber; if the straw chamber has zero

or multiple clusters, we do no use the straw chamber information. We weight each

used X and Y position based on its accuracy (as determined from figures 3-28 - 3-30),

and we perform a least-squares fit to determine a track.

Figure 3-31 compares the non-VDC-based track to the standard VDC track for

events with one cluster in all four VDC planes. The figure shows the difference be-

tween the non-VDC-based track and the standard VDC track for the four focal plane

quantities in the transport coordinate system. The blue curves show the differences

between the non-VDC-based track and the standard VDC track when only the two
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Kinematic Spectrometer 𝜖1−𝑡𝑟𝑎𝑐𝑘 𝜖1−𝑐𝑙𝑢𝑠𝑡𝑒𝑟

k1-0.4 LHRS 0.9899 (9.6 × 10−5) 0.9282 (2.6 × 10−4)
k1-1.5 LHRS 0.9913 (9.6 × 10−5) 0.9244 (2.9 × 10−4)
k1-1.8 RHRS 0.9940 (9.7 × 10−5) 0.9242 (3.5 × 10−4)
k1-1.9 RHRS 0.9940 (1.3 × 10−4) 0.9244 (4.8 × 10−4)
k3-4 LHRS 0.9728 (6.5 × 10−4) 0.8886 (1.37 × 10−3)
k3-6 LHRS 0.9770 (4.9 × 10−4) 0.9016 (1.06 × 10−3)
k3-7 LHRS 0.9800 (5.1 × 10−4) 0.9107 (1.11 × 10−3)
k3-8 LHRS 0.9846 (5.6 × 10−4) 0.9171 (1.35 × 10−3)
k4-9 LHRS 0.9726 (4.1 × 10−4) 0.8949 (1.27 × 10−3)
k4-10 LHRS 0.9744 (4.0 × 10−4) 0.9015 (1.27 × 10−3)
k4-11 LHRS 0.9793 (6.0 × 10−4) 0.9095 (1.27 × 10−3)
k3-9 RHRS 0.9905 (7.4 × 10−4) 0.9195 (2.24 × 10−3)
k4-12 RHRS 0.9833 (7.5 × 10−4) 0.9118 (1.80 × 10−3)

Table 3.6: Extracted VDC one-track and one-cluster efficiencies for all GMp Fall 2016
kinematics. The relative uncertainty shown in parenthesis is the statistical (binomial)
uncertainty. As discussed in the text, we suggest placing an additional uncertainty
of 0.2% on these values.

scintillators are used to form the non-VDC-based track; the red curves show the

differences when the two scintillators and the calorimeter are used to form the non-

VDC-based track; the green curves show the differences when the non-VDC-based

are formed as described in the previous paragraph. As can be seen in the figure,

the resolution on the green curves is quite good. (In figure 3-32, we show the same

differences as in figure 3-31 for the final non-VDC-based track, but this time as a

function of position in the VDC detector.)

The upshot of all this is the following: for a sample of good electrons selected

by the trigger and PID detectors, we can form a non-VDC-based track using the

scintillators, the calorimeter, and (usually) the straw chamber. We can then bin

that sample across the entire VDC detector and study the one-track and one-cluster

efficiency of the VDC in different parts of the detector. We do this as a function of the

X and Y position in the focal plane transport coordinate system in figures 3-33 and

3-34 for an inelastic run on the LHRS. As can be seen in figure 3-34, the one-cluster

efficiency shows a minor dependence on X. (The full rotated width of the VDC in

the X direction in the transport coordinate system is 156 cm.) It appears that the

162



Difference [m]
0.1− 0 0.1

1000

2000

3000

4000

5000

VDC Proj. x - S0 Time x: 1 Track EventsVDC Proj. x - S0 Time x: 1 Track Events

Difference [m]
0.1− 0 0.10

5000

10000

VDC Proj. y - S2 Time y: 1 Track EventsVDC Proj. y - S2 Time y: 1 Track Events

Difference [m]
0.1− 0 0.1

1000

2000

3000

4000

VDC Proj. x - S0 Time x: 1 Cluster EventsVDC Proj. x - S0 Time x: 1 Cluster Events

Difference [m]
0.1− 0 0.10

5000

10000

VDC Proj. y - S2 Time y: 1 Cluster EventsVDC Proj. y - S2 Time y: 1 Cluster Events

Figure 3-28: Top/Bottom Left: Difference between the VDC track projection to the
S0 scintillator in the X direction and the position determined by the S0 PMT times.
The top plot is shown for events with one track in the VDC; the bottom plot is shown
for events with one cluster in all four VDC planes. Top/Bottom Right: Difference
between the VDC track projection to the S2m scintillator in the Y direction and the
position determined by the S2m PMT times of the struck paddle. The top plot is
shown for events with one track in the VDC; the bottom plot is shown for events with
one cluster in all four VDC planes.

efficiency shows a major dependence on Y. However, while the full physical width of

the VDC in the Y direction is 30 cm, the vast majority of the events fall within about

8 cm of the center of the VDC for the run studied, as can be seen in figure 3-32. In

this narrow window, the efficiency is very stable.

The technique we described in this section can be used to extract position-dependent

VDC efficiencies in many situations. However, we do not think it is correct to ap-

ply the curves in figure 3-34 as a general efficiency correction. The VDC one-track

and one-cluster overall efficiency will change with the event rate, and the shape of

the efficiency curve across the VDC may be affected by the relative event rate. For

experiments, like GMp, where the events of interest are rather localized at the focal

plane, a single number for the VDC efficiency correction is probably sufficient.
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Figure 3-29: The energy-weighted X position of the largest-energy cluster in the
calorimeter vs. the VDC track X projection to the calorimeter. Since the extracted
energy-weighted position is consistent with the VDC position (within resolution), the
energy-weighted position can be used when calculating the non-VDC-based track.
The left plot is for calorimeter layer 1, while the right plot is for calorimeter layer 2.
The results are shown for a LHRS inelastic run.
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Figure 3-30: Left (Right): The difference between the position extracted from the
straw chamber in the X (Y) direction minus the position of the VDC track projected
to the straw chamber. The extracted positions are consistent to better than 1 cm.
This means that the straw chamber hit information can be used when forming a non-
VDC-based track. The results are shown for events with a single track in the VDC
and a single cluster in the straw chamber. The straw chamber geometry consists of 3
parallel layers followed by an additional 3 layers perpendicular to these; so we assume
that all straw chamber hits occur at the center of the detector in the Z direction when
calculating the hit X and Y positions. The results are shown for a LHRS inelastic
run.
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Figure 3-31: The difference between the standard focal plane variables in the transport
coordinate system formed from the non-VDC-based track and those formed from the
standard VDC track for events with one cluster in all four VDC planes. (Clockwise
from the top left: difference in the angle in the dispersive direction, difference in the
angle in the non-dispersive direction, difference in the position in the non-dispersive
direction, difference in the position in the dispersive direction.) As discussed in the
text, the blue curve shows the difference when only the two scintillators are used
to form the non-VDC-based track. The red curve shows the difference when the
calorimeter information is included in addition. The green curve shows the difference
when the straw chamber information is included as well, if a single cluster is present
in the straw chamber. The results are shown for an inelastic run on the LHRS.
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Figure 3-32: The difference between the standard focal plane variables in the transport
coordinate system formed from the non-VDC-based track and those formed from the
standard VDC track vs. the position in the VDC (as determined from the standard
VDC track). (Clockwise from the top left: difference in the angle in the dispersive
direction vs. the position in the dispersive direction, difference in the angle in the
non-dispersive direction vs. the position in the non-dispersive direction, difference
in the position in the non-dispersive direction vs. the position in the non-dispersive
direction, difference in the position in the dispersive direction vs. the position in
the dispersive direction.) The results show that the final non-VDC-based track is
accurate across the entire VDC detector. The results are shown for an inelastic run
on the LHRS.

  1

0.5 0.2 0.17 0.38

0.5 0.67 0.6 0.44 0.57 0.67 0.5

  1 0.5 0.62 0.7 0.75 0.82 0.87 0.91 0.78 0.86   1

0.67 0.6 0.81 0.86 0.91 0.92 0.92 0.87 0.85 0.79 0.4   1   1   1

  1 0.7 0.85 0.9 0.92 0.93 0.93 0.89 0.89 0.8 0.86   1   1

  1   1 0.93 0.9 0.91 0.92 0.93 0.92 0.91 0.9 0.89 0.75

  1   1 0.86 0.87 0.89 0.91 0.93 0.93 0.91 0.9 0.89 0.94

  1 0.8 0.76 0.84 0.89 0.9 0.93 0.93 0.91 0.89 0.85 0.85   1   1

  1   1   1 0.75 0.87 0.89 0.89 0.93 0.92 0.9 0.88 0.86 0.68

  1 0.78 0.77 0.87 0.88 0.9 0.92 0.92 0.9 0.88 0.9 0.92

  1   1 0.5 0.8 0.9 0.89 0.91 0.9 0.88 0.88 0.89 0.76   1

  1 0.6 0.86 0.72 0.77 0.83 0.67 0.71 0.5   1   1

0.17 0.71 0.67 0.89 0.6 0.67

0.5 0.33 0.5 0.67

0.5 0.38   1   1

0.5 0.67 0.5 0.67   1

  1

VDC 1 Cluster Efficiency

'Track' Y [m]
0.4− 0.2− 0 0.2 0.4

'T
ra

ck
' X

 [m
]

1−

0

1

VDC 1 Cluster Efficiency

Figure 3-33: Fraction of the good electron events which contain one cluster in all
four VDC planes as a two-dimensional function of position at the VDC. The data
is binned in X vs. Y in the focal plane transport coordinate system using the non-
VDC-based track, and an efficiency is calculated for each bin. The results are shown
for an inelastic run on the LHRS.
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Figure 3-34: Left (Right): Fraction of the good electron events which contain one
cluster in all four VDC planes as a function of the X (Y) position at the VDC. The
data is binned in X (Y) in the focal plane transport coordinate system using the
non-VDC-based track, and an efficiency is calculated for each bin. The results are
shown for an inelastic run on the LHRS.
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Cosmic Suppression

As mentioned in previous sections, the main trigger for the GMp experiment was

Trigger 1 (T1), a coincidence of the two scintillator detectors (S0 and S2m). This

trigger collected cosmic events at a raw rate of approximately 5 Hz. Since the GMp

experiment took data for over a month, it is important to determine whether any

cosmic contamination is present in the data after the application of our final software

cuts. During the experiment, we were able to take a 33 hour cosmic run on the LHRS

(i.e. a run where we collected data in the same way as during production running,

but no beam was present in the experimental hall). We can use this run to study our

success in suppressing cosmic contamination with our software cuts.

For this cosmic run, figure 3-35a shows the beta distribution for T1 events. The

beta is calculated using the relative time between the two scintillator detectors and

the scintillator-based track described in section 3.3. The vast majority of events have

a negative beta peaked at -1, as expected (i.e. the cosmic event first hits S2m and then

hits S0). However, there are a few events peaked around beta equal to +1. Since at

this point we only require the two scintillator detectors to have a signal, these events

may be ones that first hit the top of the S0 detector before striking the S2m detector.

In figure 3-35b, we plot the beta vs. the angle in the dispersive direction (i.e. the

vertical direction) for the same events as shown in figure 3-35a. As can be seen in

figure 3-35b, the events with negative beta have a negative angle. This is consistent

with the events hitting S2m at a higher part of the detector than S0. (Remember

that +X is down, and +Z points from S0 to S2m.) The events with positive beta tend

to have a positive angle. This suggests that these events hit S0 higher than S2m.

The important question for the cosmic contaimination is what happens when we

apply cuts on the VDC and the PID detectors. In figure 3-36, we plot the beta

distribution for the cosmic run under study after applying cuts on the VDC and PID

detectors. We require a single cluster to be present in all four VDC planes, and

we require 5 photoelectrons in the gas cherenkov detector. In addition, we require

the total energy deposited in the calorimeter to be greater than 510 MeV. This is
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Figure 3-35: (a) Beta calculated from the scintillator times and scintillator-based
track for a cosmic run on the LHRS. The vast majority of events have a negative
beta, as expected for cosmic particles, but a few events have positive beta. The
events shown here are the same ones in figure 3-35a. (b) The angle calculated using
the scintillator-based track vs. beta. The coordinate system used to define the angle
is the spectrometer transport coordinate system. So a positive angle means that the
event hit the S0 detector vertically higher than the S2m detector (+X points down).
As discussed in the text, the events with positive beta have a more positive angle,
indicating that they hit the S0 detector prior to the S2m detector.

equivalent to requiring a momentum-normalized energy deposition of 0.6 if the central

momentum is 850 MeV/c. (For the GMp production data, the set momentum was

always greater than 1 GeV/c; so what is shown here is a worst-case scenario.) As

can be seen in the figure, there are still approximately 100 events remaining after the

VDC and PID cuts. However, they are all at negative beta.

We can conclude that the combination of trigger, VDC, PID, and beta cuts are

sufficient to remove all cosmic events over a 33 hour period. The higher 𝑄2 GMp

kinematic settings took data for approximately a week, and accumulated about 10,000

good electrons during that time. In addition to the cuts discussed here, software cuts

are applied on the reconstructed target quantities and the invariant mass. These

cuts would further reduce the cosmic contamination. Furthermore, these higher 𝑄2

kinematics had central momentum settings of around 2 GeV/c; thus the applied

calorimeter energy deposition cut is higher than the one used in this study. So it is

justified to claim that the final cosmic contamination is less than 5 × 10−4.
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tracking and PID cuts discussed in the text. There are 100 or so events left in the
plot, all at negative beta.

Computer and Electronic Live-Time

When an event triggers the data-acquisition system, another event can not be pro-

cessed for some time. We need to correct for the number of events lost during this time

period. Because the events which occur during the period when the data-acquisition

is down are still recorded on the scalar counters, we define the computer live-time as

the ratio of the number of events recorded for the main trigger divided by the number

of counts on the main trigger scalar. The measured yield then needs to be divided

by the computer live-time to correct for the lost time. (For the GMp experiment,

the pre-scale factor for the main trigger was always set to one during production

running. If this were not the case, we would need to take this into account in our

calculation.) In table 3.7, we show the computer live-time for all GMp Fall 2016 kine-

matics, along with the accompanying relative uncertainties calculated using standard

binomial errors.

In addition, there is a set of events that are not recorded on the scalar counters.

These lost events are due to the electronic dead-time. For every recorded event, the

number of lost events is equal to 𝑅𝑎𝑡𝑒 × 𝜏 , where 𝑅𝑎𝑡𝑒 is the raw event rate on

the scalar counters and 𝜏 is the electronic dead-time. To correct for this electronic

dead-time, the measured yield should be multiplied by the following factor:
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Kinematic Spectrometer Computer Live-Time
k1-0.4 LHRS 0.6935 (5.1 × 10−4)
k1-1.5 LHRS 0.9454 (2.2 × 10−4)
k1-1.8 RHRS 0.9171 (3.3 × 10−4)
k1-1.9 RHRS 0.9207 (5.1 × 10−4)
k3-4 LHRS 0.9654 (4.2 × 10−4)
k3-6 LHRS 0.9774 (3.1 × 10−4)
k3-7 LHRS 0.9794 (1.1 × 10−4)
k3-8 LHRS 0.9843 (3.0 × 10−4)
k4-9 LHRS 0.9742 (2.5 × 10−4)
k4-10 LHRS 0.9728 (2.6 × 10−4)
k4-11 LHRS 0.9790 (3.6 × 10−4)
k3-9 RHRS 0.9684 (5.4 × 10−4)
k4-12 RHRS 0.9547 (6.5 × 10−4)

Table 3.7: Extracted computer live-times for all GMp Fall 2016 kinematics. The rela-
tive (i.e. fractional) uncertainty shown in parenthesis is calculated assuming binomial
errors.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟 = 1 + 𝑅𝑎𝑡𝑒× 𝜏 .

One way to estimate the correction factor is to use multiple coincidence units with

different output widths [19]. In our case, we make use of the fact that we have multi-

hit TDCs. Figure 3-37a shows the TDC time (relative to a common start) for the

main trigger when two hits are present. The vertical axis is the earlier hit, and the

horizontal axis is the later hit. The vertical band in the figure shows events for which

earlier hit came prior to the data acquisition system being ready to accept an event.

The horizontal band represents events for which the earlier hit carried the time. By

examining the gap in the middle of the figure, we can conclude that the electronic

dead-time (𝜏) is about 40 ns.

In figure 3-37b, we plot the correction factor as a function of rate for a 40 ns

electronic dead-time. For GMp Fall 2016 production running, the raw rate was always

below 6 kHz (usually below 1 kHz). This means the correction due to the electronic

dead-time is at most 2 × 10−4.
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Figure 3-37: (a) Main trigger TDC times for events with two hits. The interpretation
of the figure is discussed in the text. (b) Electronic dead-time correction factor vs.
raw rate. The plot is made assuming a 40 ns electronic dead-time. The measured
yield should be multiplied by this correction factor.
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3.4 Preliminary Cross-Section Results

The data collected by the GMp experiment for large 𝑄2 is at lower 𝜖 than the SLAC

data [69] extracted in the same 𝑄2 range (figure 3-38a). The GMp data was collected

with better than 1% statistical uncertainty for the majority of the measured kinematic

points. The final combined point-to-point and normalization systematic uncertainties

are expected to be better than 2.25%. This will give a total uncertainty of better

than 2.5% for the majority of measured reduced cross-sections.

The GMp collaboration has extracted preliminary cross-section results for much of

the data collected in the spring and fall of 2016. These preliminary results are shown

in figure 3-38b without uncertainties for 𝑄2 > 6 𝐺𝑒𝑉 2. The final results should be

completed before the end of 2018.

Since the GMp dataset is at lower 𝜖 and will have better uncertainties than the

high 𝑄2 SLAC data, the measured cross-sections will have a smaller contribution

from the electric form factor. This allows for a higher precision extraction of the

magnetic form factor, which can be used to test the high 𝑄2 QCD scaling of the

Dirac 𝐹1 form factor [1]. In addition, the GMp results are needed for the extraction

of the individual form factors from the ratios obtained from the future high 𝑄2 recoil

polarization measurement at JLab [70].

Note that the cross-sections presented in figure 3-38b are divided by the cross-

sections assuming dipole form factors. Once this normalization is made, the results

from the two datasets agree with each other to the few percent level. This is to

be expected if the form factors extracted using inclusive scattering approximately

scale (i.e. the ratio of the electric to magnetic form factors is a constant). The form

factors extracted using inclusive scattering cross-section measurements are expected

to scale in some approaches even if the measurements are contaminated by two-photon

exchange effects [9].

A global analysis of the inclusive cross-section measurements and the form factor

ratios extracted from the polarization transfer results can be used to constrain two-

photon exchange effects. For example, the measured inclusive cross-sections can be
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written as

𝜎𝑒𝑥𝑝
𝑅 = 𝜎𝐵𝑜𝑟𝑛

𝑅 + 𝜎2𝛾
𝑅 , (3.4)

where 𝜎𝑒𝑥𝑝
𝑅 is the measured inclusive cross-section, 𝜎𝐵𝑜𝑟𝑛

𝑅 is the true Born cross-section,

and 𝜎2𝛾
𝑅 is the contribution from two-photon exchange. The Born term can be written

as

𝜎𝐵𝑜𝑟𝑛
𝑅 = 𝜏(𝐺𝑝

𝑀)2(1 +
𝜖

𝜏
𝑅2) , (3.5)

where R is the ratio of the electric to magnetic form factors, which comes from the

polarization data.

The magnetic form factor, (𝐺𝑝
𝑀)2, and the two photon exchange term, 𝜎2𝛾

𝑅 , can

then be parametrized based on different models, and those models can be compared

to the measured data.

The final, high precision GMp results will be an important input to these types

of global studies.
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Figure 3-38: GMp kinematics and preliminary results
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Chapter 4

Conclusions

This thesis presented studies of nucleon structure at different resolution scales using

inclusive electron scattering, including studies of how that structure is modified by

the nuclear medium. Nucleon structure is of course a very broad term with many

different avenues of study. This thesis focused on three topics: the electromagnetic

structure of the proton as encapsulated by the form factors, the motion of nucleons

inside the nucleus in the high-momentum SRC region, and the modification of the

inelastic structure of the nucleon by the nuclear medium (the EMC effect). The work

related to the electromagnetic form factors was conducted in Hall A at JLab, while

the data analysed on nucleon SRCs and the EMC effect were collected using the

CLAS detector in Hall B at JLab.

The electromagnetic form factors of the proton have been under experimental

and theoretical study for many years. From an experimental standpoint, these form

factors are unknown functions of 𝑄2 that are present in the elastic electron-proton

Born cross-section formula. These functions can then be extracted by measuring

the elastic cross-section. Much work has been done to show that these form factors

are the momentum space representations of the charge and magnetic distributions

inside the proton [1]. The electric and magnetic form factors exhibit scaling when

extracted using the Rosenbluth method, but this scaling was not observed in the

recently developed polarization transfer technique [8]. This may be an indication

that hard two-photon exchange effects play a large role in the Rosenbluth results
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[9, 71]. As discussed in section 3.4, one way to put better constraints on two-photon

exchange models is by taking precision elastic cross-section measurements at high 𝑄2

and relatively low 𝜖. These are the results that the GMp experiment will publish in

the next several months.

A direct way to nail down the radiative corrections for electron-proton elastic

scattering is by comparing electron-proton and positron-proton elastic cross-sections

[72]. Looking into the future, the small acceptance spectrometers in Hall A and Hall

C at JLab would be an ideal place to make these measurements if a future positron

beam were available [73].

The other topic discussed in this thesis was the EMC effect and its connection with

nucleon SRCs. The EMC effect is non-trivial, in the sense that it cannot be explained

without modifying the nucleon structure or including multi-nucleon clusters. If the

nucleon inelastic structure is modified and certain quarks move slower on average in

the nuclear medium, the question is how that modification takes place - primarily in

the mean-field or in SRC pairs.

This thesis presented new measurements of the EMC effect in heavy nuclei, in-

cluding the first measurement on the asymmetric nucleus lead. The results of these

measurements are consistent with previously published data. We made simultaneous

measurements of the SRC pair probability (𝑎2) in the same heavy nuclei. This work

made the first measurements of 𝑎2 on aluminum and lead, as well as the first direct

iron to deuterium measurement.

One unique aspect of the measurements presented here is that they were performed

at a large acceptance spectrometer, while the vast majority of the previous electron-

based inclusive measurements were performed using small acceptance spectrometers.

This means that the cross-section ratios presented here are integrated over a somewhat

wide 𝑄2 range for every 𝑥𝐵 point. As discussed in section 2.6, we studied the kinematic

cut sensitivity of the extracted EMC slopes. We varied the 𝑄2 cut between 1.5 and

2.5 𝐺𝑒𝑉 2 and the 𝑊 cut between 1.8 and 2.0 𝐺𝑒𝑉 . We observed the slopes to be

independent of the selected cut.

Lastly, this thesis developed a data-driven SRC-based EMC modification func-
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tion. Prior data-driven studies of the connection between the EMC effect and SRC

[28, 29] did not take into account the known isospin dependence of SRC pairs. This

work developed a simple isospin-dependent model that quantified the connection be-

tween the EMC effect and SRCs. This model was able to consistently describe the

EMC effect for nuclei ranging from 3He to 208Pb. As nuclei become heavier and more

asymmetric, this model makes the interesting prediction that the EMC effect will

continue to grow for protons but will saturate for neutrons. This growth and satura-

tion behavior was confirmed by calculating per-neutron and per-proton cross-section

ratios for the measured data.

Future measurements of "tagged" DIS [74] - where a high momentum spectator

nucleon is detected in addition to the scattered electron - will allow testing this

model’s extraction directly, providing further insight to the underlying mechanisms

driving bound nucleon structure modification in QCD.
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