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An ab initio quantum Monte Carlo method is introduced for calculating total rates of muon weak
capture in light nuclei with mass number A ≤ 12. As a first application of the method, we perform
a calculation of the rate in 4He in a dynamical framework based on realistic two- and three-nucleon
interactions and realistic nuclear charge-changing weak currents. The currents include one- and
two-body terms induced by π- and ρ-meson exchange, and N -to-∆ excitation, and are constrained
to reproduce the empirical value of tritium Gamow-Teller matrix element. We investigate the
sensitivity of theoretical predictions to current parametrizations of the nucleon axial and induced
pseudoscalar form factors as well as to two-body contributions in the weak currents. The large
uncertainites in the measured values obtained from bubble-chamber experiments (carried out over
50 years ago) prevent us from drawing any definite conclusions.

PACS numbers: 24.10.Cn,25.30.-c

Negative muons passing through matter can be cap-
tured into high-lying atomic orbitals, from where they
rapidly cascade down into the 1s orbital. There, they
either decay via the process µ− → e− νe νµ with a rate
which is almost the same as in free space [1], or are cap-
tured by the nucleus in a weak-interaction process result-
ing in the change of one of the protons into a neutron at
a rate that is proportional to Z4 [2], where Z is the nu-
cleus’ proton number, and which, at least for light nuclei,
is much smaller than the free decay rate.

In the nuclear capture, the muon rest mass (mµ) is
converted in energy shared by the emitted (muon) neu-
trino and recoiling final nucleus. Since mµ ≈ 105 MeV, a
calculation of the total inclusive rate—i.e., summed over
all final states—requires, in principle, knowledge of both
the low-lying discrete states and higher-energy contin-
uum spectrum of the final nucleus. In ab initio dynam-
ical approaches based on realistic nuclear interactions,
the solution of the scattering problem poses a significant
challenge, even for capture in nuclei as light as 3He and
3H. Indeed, while accurate theoretical estimates of the
3He(µ−, νµ)3H rate (a transition only involving bound
states) have been made since the early 1990’s [3–6], it is
only recently that studies based on the Faddeev method
and accounting for the contributions to the rate from the
breakup channels of 3He (into 2H+n and 1H+2n) and 3H
(into 3n) have appeared in the literature, respectively in
Refs. [7] and [8].

The other important aspect of muon capture has to
do with the description of the nuclear charge-changing
weak current responsible for the p-n conversion. Its domi-
nant one-body term is associated with the matrix element
〈n|d γµ(1−γ5)|p〉, and is parametrized in terms four form
factors (FFs). Two of these, F1(q2) and F2(q2) (q2 is the

lepton four-momentum transfer), enter the vector com-
ponent, and are related to the isovector electromagnetic
FFs by the conserved-vector-current (CVC) constraint.
The remaining two, the axial and induced pseudoscalar
FFs, respectively GA(q2) and GPS(q2), characterize the
axial component. The F1(q2) and F2(q2) FFs are well
known over a broad range of momentum transfers from
elastic electron scattering off protons and deuterons [9].
The value gA of the axial FF at vanishing q2 is precisely
determined from neutron β decay, gA = 1.2723(23) [10],
while the q2-dependence is parametrized by a dipole form
with a cutoff ΛA≈ 1 GeV as obtained in analyses of pion
electroproduction data [11] and direct measurements of
νµ/νµ-p [12] and quasielastic νµ-d [13–15] scattering cross
sections. A recent measurement of muon capture in hy-
drogen by the MuCap collaboration at PSI [16] has led to
a precise determination of the GPS(q2) FF (the least well
experimentally known of the four), GPS(−0.88m2

µ) =
8.06±0.55, a value that is consistent with theoretical pre-
dictions derived from chiral perturbation theory [17, 18].

In the nuclear charge-changing weak current, in ad-
dition to one-body, there are two-body terms that arise
quite naturally in the conventional meson-exchange pic-
ture, for reviews see Refs. [19, 20], as well as in more mod-
ern approaches based on chiral effective field theory [21–
28]. Those in the vector sector are related by CVC to
the isovector two-body electromagnetic currents, notably
the long-range currents induced by pion exchange. By
now, there is a substantial body of experimental evi-
dence for their presence from a variety of photo- and
electro-nuclear transitions in nuclei, including, among
others, thermal neutron radiative captures on hydrogen
and helium isotopes, magnetic moments and M1 transi-
tion rates in light nuclei, elastic and transition magnetic
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form factors of few-nucleon systems, and lastly transverse
response functions measured in quasielastic (e, e′) scat-
tering off light nuclei (see Refs. [29–31] for reviews which
include extensive listings of original references). In the
axial sector, however, this evidence is not as well estab-
lished, in that discrepancies between experimental data
and theoretical predictions obtained with one-body cur-
rents are not as large as in the electromagnetic case and
concern, primarily, the very low momentum and energy
transfers of relevance in β decays of very light nuclei [32–
34].

Given the above context, the objectives of the present
work are twofold: (i) to formulate a quantum Monte
Carlo (QMC) method for calculating, ab initio, inclusive
muon-capture rates in nuclei in the mass range A=3–
12, and (ii) to test our current modeling of the nuclear
charge-changing weak current by comparing theoretical
results with available experimental data, and therefore
validate this modeling in a range of momentum and en-
ergy transfers that is intermediate between those rele-
vant, at the low end, in β decays and, at the high end,
in neutrino scattering. We begin by establishing the
kinematics of the process and expressing the rate in a
form amenable to a QMC calculation, and then focus on
muon capture in 4He as a first practical application of
the method.

The muon is captured by the nucleus from an atomic
orbital, and its momentum and energy are denoted by kµ
and Eµ, with the understanding that kµ → 0, since the
muon orbital velocity is of order Z α� 1 for light atoms.
The muon-neutrino momentum and energy are denoted
as kν and Eν (Eν = kν), and the masses of the proton
and neutron as mp and mn. In the capture process a
proton in the initial atom is converted into a neutron,
and energy conservation requires

∆m+ Ei = Eν + Ef , ∆m = mµ +mp −mn , (1)

where Ei is the internal energy (of electrons and nucle-
ons) of the initial atom, and Ef is the energy of the final
atom including both its internal and recoil energies. Of
course, binding energies of electrons, at least for light
atoms, are of the order of tens of eV’s, and therefore
negligible when compared to those of nucleons.

The transition amplitude for capture at leading order
is given by

Tfi =
GV√

2
ψ(0)

[
ukνhν γσ (1− γ5)ukµsµ

]
jσfi(−kν) , (2)

where GV is the vector coupling constant for
semi-leptonic weak interactions (GV ≈ 1.1363 × 10−5

GeV−2 [35]), ukµsµ and ukνhν are the spinors (normalized
here as u†u= 1) of, respectively, the muon with spin pro-
jection sµ and neutrino with helicity hν , jσfi is the matrix
element of the hadronic charge-lowering weak current,

jσfi(−kν) = 〈−kν , f |
∫
dx e−ikν ·x jσ(x)|i, JiMi〉 . (3)

Since the matrix element 〈f |jσ(x)|i〉 is localized over
length scales of a few fm’s, the atomic wave function
ψ(x) of the muon has been approximated by its value at

the origin, ψ(0) = (Zαµ)
3
/π where α is the fine structure

constant, and µ is the reduced mass of the muon relative
to the initial nucleus with Z protons. Note that the two-
component spin-state χsµ of the muon has been replaced
by the spinor, which is justified in the limit kµ → 0 (and
also helpful for carrying out the sums over spins by stan-
dard trace techniques). Finally, |i, JiMi〉 and | − kν , f〉
are, respectively, the initial nuclear state with spin and
spin-projection JiMi and the final nuclear state recoiling
with momentum −kν with quantum numbers collectively
specified by the label f .

The transition rate, when averaged over the spin pro-
jections of the initial nucleus and muon, and summed
over those of the final nucleus, is independent of the k̂ν
direction and reduces to the well known expression in
terms of Coulomb, longitudinal, electric, and magnetic
multipoles (see, for example, Ref. [36]). In the present
context, however, we find it convenient to express this
rate (differential in the emitted neutrino energy, but in-
tegrated over the solid angle) in terms of five response
functions

dΓ

dEν
=
G2
V

2π
|ψ(0)|2E2

ν

[
R00(Eν) +Rzz(Eν) +R0z(Eν)

+Rxx(Eν)−Rxy(Eν)
]
, (4)

with

R00(Eν) =
∑

i,f
δ(· · · ) | j0fi(−kν)|2, (5)

Rzz(Eν) =
∑

i,f
δ(· · · ) | j‖fi(−kν)|2, (6)

R0z(Eν) = −
∑

i,f
δ(· · · ) 2 Re

[
j0fi(−kν) j

‖ ∗
fi (−kν)

]
, (7)

Rxx(Eν) =
∑

i,f
δ(· · · ) | j⊥fi(−kν)|2, (8)

Rxy(Eν) = i
∑

i,f
δ(· · · ) k̂ν ·

[
j⊥fi(−kν)× j⊥∗fi (−kν)

]
,(9)

where we have introduced the unit vector k̂ν =kν/Eν ,
the longitudinal and transverse components of the cur-

rent, respectively j
‖
fi =k̂ν · jfi and j⊥fi =jfi − k̂ν j

‖
fi, and

the short-hand notation δ(· · · ) for the energy-conserving
δ-function resulting from Eq. (1). The over-line over
the summation symbol implies the average over (nuclear)
spin projections indicated earlier.

As they stand, a calculation of these response func-
tions by QMC methods [31, 37–40] is not possible, since
the lepton momentum and energy transfers, respectively
q and ω, in the weak capture (like in a photo-absorption
process) are not independent variables; indeed, q =

−Eν k̂ν and ω = mµ −Eν . To circumvent this difficulty,
we consider instead (in a schematic notation)

Rαβ(q, ω) =
∑

if
δ(ω + Ei − Ef )Oαfi(q)Oβ∗fi (q) , (10)
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with q=−Eν k̂ν and ω taken as independent variables,
carry out the Laplace transform

Eαβ(q, τ) =

∫ ∞
0

dω e−τ ω Rαβ(q, ω)

=
∑

i
〈i|Oβ†(q)e−τ(H−Ei)Oα(q)|i〉 , (11)

by evaluating the expectation value in the second line
above with stochastic techniques [41], invert the result-
ing Euclidean response function Eαβ(q, τ) by maximum-
entropy methods [38] to obtain back Rαβ(q, ω), and fi-
nally interpolate the latter at ω=ω+mp−mn = ∆m−Eν
to determine the response Rαβ(Eν) of interest here. No
approximations are made beyond those inherent to the
modeling of the nuclear Hamiltonian and weak current,
in particular interaction effects in the discrete and con-
tinuum spectrum of the final nuclear system are fully and
exactly accounted for.

The dynamical framework adopted in the present work
is based on a realistic Hamiltonian including the Ar-
gonne v18 two-nucleon [42] (AV18) and Illinois-7 three-
nucleon [43] (IL7) interactions, and on realistic charge-
changing weak currents with one- and two-body terms,

see Ref. [44] for a recent overview and a listing of ex-
plicit expressions. The (vector and axial) one-body terms
jσ1b follow from a non-relativistic expansion of the single-
nucleon (charge-changing) weak current, in which cor-
rections proportional up to the inverse-square of the nu-
cleon mass are retained. The two-body currents jσ2b con-
sist of contributions associated with (effective) π- and ρ-
meson exchanges, and N -to-∆ excitation terms, treated
in the static limit. In the axial component, a ρπ tran-
sition mechanism is also included. Configuration-space
representations of these currents (used in the actual cal-
culations below) are regularized by a prescription which,
albeit model dependent, is nevertheless designed to make,
by construction, their short-range behavior consistent
with that of the two-nucleon interaction [44]—the AV18.
In the N -to-∆ axial current, the value for the transition
(axial) coupling constant is determined by reproducing
the measured Gamow-Teller matrix element contribut-
ing to tritium β-decay [44] (within the present dynami-
cal framework). The level of quantitative success these
currents have achieved, when used in combination with
the AV18/IL7 interactions, in accurately predicting many
electroweak properties of s- and p-shell nuclei up to 12C
is illustrated in Refs. [29, 31] and references therein.

V-1b V-2b A-1b A-2b CC-1b CC-2b C̃C-1b C̃C-2b Exp [47] Exp [48] Exp [49] Th [50] Th [51]

Γ(s−1) 65 ± 1 73 ± 1 171 ± 6 200 ± 6 265 ± 9 306 ± 9 310 ± 12 355 ± 12 336 ± 75 375+30
−300 364 ± 46 345 ± 110 278

TABLE I. The inclusive muon rates in 4He obtained by including one-body (1b) only and both one- and two-body (2b) terms
in the vector (V) and axial (A) components of the charge-changing (CC) weak current. The 1b and 2b rates obtained with the

full CC current and the C̃C current without the induced pseudoscalar term are compared to available experimental values and
older theoretical estimates.

Having set-up the formalism and specified the dynami-
cal framework, we now proceed to discuss an application
of the method to muon capture in 4He. As noted by
Measday in his review [46], the only available measure-
ments of the total rate are from experiments in the 1960’s
with helium bubble chambers and helium gas scintillat-
ing targets [47–49], and have large errors, see Table I.
The only theoretical estimates we are aware of are from
Caine and Jones [50] and Walecka [51]; the former based
on closure approximations is rather uncertain, while the
latter obtained with the Foldy-Walecka sum rules for the
giant dipole excitation turns out to be remarkably close
to the value we calculate almost 50 years later!

The calculation of the 4He Euclidean responses in
Eq. (11) is carried out with Green’s function Monte Carlo
(GFMC) methods [37–40] similar to those used in pro-
jecting out the exact ground state of a Hamiltonian from
a trial state [45]. It proceeds in two steps. First, an
unconstrained imaginary-time propagation of the initial
bound state state |i〉, represented here by an accurate
variational Monte Carlo (VMC) wave function (rather

than its exact GFMC counterpart), is performed and
saved. Next, the states Oα(q)|i〉 are evolved in imagi-
nary time following the path previously saved. During
this latter imaginary-time evolution, scalar products of
exp [− (H − Ei) τi]Oα(q)|i〉 with Oβ(q|i〉 are evaluated
on a grid of τi values, and from these scalar products
estimates for Eαβ(q, τi) are obtained. The statistical er-
rors associated with the GFMC evolution remain mod-
est, even at values of τ as large as 0.1 MeV−1, the end-
point of the τ -grid. Maximum entropy methods are em-
ployed “to invert” Eαβ(q, τ) and obtain the correspond-
ing Rαβ(q, ω) [38]. Their implementation is briefly sum-
marized in the supplemental material.

Predictions for the total rate in 4He are compared to
the experimental values and older theoretical estimates
mentioned above in Table I, and the differential rates
as functions of the energy of the muon neutrino emit-
ted in the capture are shown in Fig. 1. Results obtained
by considering only the vector (V) or axial (A) compo-
nents of the charge-changing (CC) weak current and by
including one-body (1b) terms only or both one- and two-
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FIG. 1. (Color online). The differential rates obtained with
one-body (1b) only and both one- and two-body (2b) terms
in the vector (V) and axial (A) components of the charge-
changing (CC) weak current, and full CC current, are dis-
played as function of the νµ-energy in the allowed kinematical
range. The theoretical uncertainites resulting from combining
statistical errors in the GFMC calculation with errors associ-
ated with the maximum-entropy inversion of the imaginary-
time data are shown by the bands. The arrow indicates the
kinematically maximum allowed Eν , see text for further ex-
planations.

body (2b) terms in these currents are listed in Table I,
and displayed in Fig 1, separately. Note that the re-
sponse function Rxy(Eν) in Eq. (9) involves interference
between the matrix elements of the V and A currents, and
therefore only contributes when both are present. As a
consequence, Γ(CC) 6= Γ(V) + Γ(A); indeed, this V-A in-
terference leads to an increase in the Γ(V) + Γ(A) result
by ≈ 10% in both the 1b- and 2b-based calculations.

In the 4He capture, the neutrino energy is in the range
0 ≤ Eν ≤ Emax

ν ≈ 83.6 MeV; however, the distribution,
also on account of the E2

ν -weighing factor present in the
expression for dΓ/dEν , is skewed towards the high end,
confirming the expectation that the energy release in the
capture process is converted primarily in energy for the
emitted neutrino [46] with the remaining balance being
absorbed by the final nuclear system. In the present case,
since 4H is not bound, the possible final breakup chan-
nels are 3H+n (3+1), 2H+2n (2+2), and 1H+3n (1+3),
which have slightly different thresholds. While the con-
tributions of these channels are fully accounted for here,
they cannot be individually identified over the allowed
Eν range—a limitation intrinsic to the present method
and apparent from Eq. (11), which relies on closure to
remove the sum over final states. Nevertheless, Caine
and Jones [50] estimated the branching ratios into the
3+1, 2+2, 1+3 channels to be, respectively, 97.75%, 2%
and 0.25%.

A related issue has to do with the behavior of the
response functions in the threshold region Eν . Emax

ν .

The kinematical constraint that Rαβ(Eν) vanish for Eν
larger than Emax

ν is not imposed when performing the
inversion (see supplemental material). Even though rel-
atively high values of τ ≤ τmax = 0.1 MeV−1 are cal-
culated by GFMC, the maximum-entropy procedure we
utilize still produces some strength beyond Emax

ν , as
is apparent from Fig. 1. However, the integrals of
dΓ/dEν , when evaluated over the whole Eν-range includ-
ing the unphysical region, remain stable to within 1% for
τmax =(0.1, 0.08, 0.05) MeV−1.

In Table I we list the results for the 1b and 2b to-
tal rates (indicated as C̃C) obtained with a CC weak
current in which the term proportional to the induced
pseudoscalar form factor GPS(q2) (in the axial sector)
is ignored. The effect is significant: retaining this term
reduces the C̃C values by ≈ 15% (14%) in the 1b (2b)
calculations. The parametrization for GPS(q2) adopted
here [44] is consistent with the recent determination of
this form factor by the MuCap collaboration [16]. It also
leads, in an accurate ab initio calculation based on es-
sentially the same dynamical inputs adopted here [52],
to a prediction for the 3He(µ−, νµ)3H total rate that is
agreement with the (remarkably precise) measurement
of Ref. [53], 1496(4) s−1. Thus, muon capture provides
a sensitive test of the GPS(q2) form factor at low mo-
mentum transfers. By contrast, this observable is only
very marginally affected (at a fraction of a 1% level) by
changes in the parametrization of the nucleon axial form
factor, as we have explicitly verified by calculating how
the total rate changes when the cutoff ΛA is varied by
±10% about its central value of ΛA≈ 1 GeV. The reason
is that GA(q2) = gA

[
1 + 2 q2/Λ2

A + · · ·
]
, and q2/Λ2

A � 1
in the allowed kinematical region.

In this letter, we have formulated an ab initio QMC
method for calculating inclusive muon-capture rates on
light nuclei (mass number A ≤ 12), and have presented,
as a first application, a calculation of the total rate in
4He. The predicted value is consistent with the lower
range of available experimental determinations (see Ta-
ble I). However, these measurements from bubble cham-
ber experiments of the late 60’s have large errors, making
it impossible to establish, at a quantitative level, the va-
lidity of the model for the nuclear charge-changing weak
current we have adopted here. We hope the present work
will motivate our colleagues to carry out a new experi-
ment on 4He.

Future plans in this area include (i) the application
of the method to other (light) nuclei, especially in cases
where more accurate data are known [46], and (ii) its
extension to more fundamental dynamical approaches
based on interactions and electroweak currents derived
from chiral effective field theory. The presence of dis-
crete states in the final nuclear system substantially com-
plicates the calculation of the capture rate, since the
imaginary-time response functions Eαβ(q, τ) would have
to be evaluated at large enough values of τ to reliably
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resolve the contributions of these states in the threshold
region of the corresponding “inverted” Rαβ(Eν)—that
is, when Eν is close to the maximum kinematically al-
lowed value. A similar issue arose in the calculation of
the longitudinal and transverse electromagnetic response
functions of 12C [39].
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