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We use lattice QCD to investigate the spectrum of the b̄b̄ud four-quark system with quantum
numbers I(JP ) = 0(1+). We use five different gauge-link ensembles with 2 + 1 flavors of domain-
wall fermions, including one at the physical pion mass, and treat the heavy b̄ quark within the
framework of lattice nonrelativistic QCD. Our work improves upon previous similar computations
by considering in addition to local four-quark interpolators also nonlocal two-meson interpolators
and by performing a Lüscher analysis to extrapolate our results to infinite volume. We obtain
a binding energy of (−128 ± 24 ± 10)MeV, corresponding to the mass (10476 ± 24 ± 10)MeV,
which confirms the existence of a b̄b̄ud tetraquark that is stable with respect to the strong and
electromagnetic interactions.

I. INTRODUCTION

Mesons, i.e., hadrons with integer spin, were first envisioned by Gell-Mann and Zweig [1, 2] to be built from one,
two or more quark-antiquark pairs. However, systems that manifestly contain more than a single quark-antiquark
pair were found only relatively recently, primarily in the heavy-quark sector [3–8]. Exotic mesons can be characterized
as having JPC quantum numbers that cannot be constructed in the simple quark-antiquark model, or as having a
manifestly exotic quark flavor content. In this work, we consider an example for the latter, a b̄b̄ud tetraquark.1

It can be shown that QCD-stable Q̄Q̄qq tetraquarks must exist in the limit mQ →∞ [9–11]. In this limit, the two
heavy antiquarks form a color-triplet object with a size of order (αsmQ)−1 and a binding energy of order α2

smQ due
to the attractive Coulomb potential at short distances. The doubly-heavy Q̄Q̄qq tetraquarks then become related to
singly-heavy Qqq baryons, just like doubly-heavy Q̄Q̄q̄ baryons become related to singly-heavy Qq̄ mesons [12, 13].
The question is whether the physical bottom quark is heavy enough for b̄b̄qq bound states to exist below the b̄q-b̄q
two-meson thresholds. Studies based on effective field theories and potential models suggest that this is indeed the
case [9–11, 14–16]. Possible experimental search strategies for bottomness-2 tetraquarks are discussed in Refs. [17, 18].

Within lattice QCD, b̄b̄qq four-quark systems were explored for the first time using static b̄ quarks and the Born-
Oppenheimer approximation. A stable b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) around 30 . . . 90MeV
below the BB∗ threshold as well as a b̄b̄ud tetraquark resonance with quantum numbers I(JP ) = 0(1−) around 15MeV
above the BB threshold were predicted [19–23]. Effects from the heavy-quark spin were investigated for the stable
I(JP ) = 0(1+) tetraquark by solving a coupled-channel Schrödinger equation in Ref. [22]. Moreover, several flavor
combinations were explored and no stable b̄b̄qq tetraquarks with qq = ss and qq = cc were found in this approach
[24]. Recently, the same b̄b̄qq four-quark systems have been investigated with b̄ quarks of finite mass treated within
nonrelativistic QCD (NRQCD). A stable b̄b̄ud tetraquark with quantum numbers I(JP ) = 0(1+) was also seen in two
such computations [25, 26], but there is a quantitative difference by a factor ≈ 2 . . . 3 in the binding energy between
Refs. [25, 26] and Ref. [22], which is not yet understood. Moreover, Q̄Q̄qq systems with further flavor combinations
Q̄Q̄ ∈ {b̄b̄, b̄c̄, c̄c̄} and q ∈ {u, d, s, c} have been investigated and some indication has been obtained that systems with
JP = 1+ and Q̄Q̄qq ∈ {b̄b̄us, b̄b̄uc, b̄b̄sc , b̄c̄ud , c̄c̄ud} are stable as well [26, 27].

In this paper we perform a lattice QCD study of the b̄b̄ud four-quark system with quantum numbers I(JP ) = 0(1+),
using NRQCD b̄ quarks and domain-wall light quarks (results obtained at an early stage of this project have been
presented in Ref. [28]). We make use of both local interpolating fields (in which the four quarks are jointly projected
to zero momentum) and nonlocal interpolating fields (in which each of the two quark-antiquark pairs forming a
color-singlet is projected to zero momentum individually). It has been shown in previous studies of other systems
[29, 30] that including both types of interpolating fields is required to reliably determine ground-state energies in

1 In the literature, the term “tetraquark” is somewhat ambiguous. In certain papers it exclusively refers to a diquark-antidiquark structure,
while in other papers it is used more generally for arbitrary bound states and resonances with a strong four-quark component, including,
e.g., mesonic molecules. Throughout this paper we follow the latter convention. Moreover, the b̄b̄ud system is a tetraquark in a fully
rigorous sense, since it contains four net quark flavors.
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exotic channels. In this way we expand on the works of Refs. [25–27], where nonlocal interpolating fields were not
considered. Having both local and nonlocal interpolating fields allows us to determine the ground-state and first-
excited-state energy in the I(JP ) = 0(1+) channel and perform a Lüscher analysis of BB∗ scattering.

The paper is structured as follows. In Sec. II we summarize our lattice setup, including the computation of quark
propagators. In Sec. III we discuss the interpolating operators and the corresponding correlation functions. The
extraction of the energy levels on the lattice is discussed in Secs. IV and V. In Sec. VI we present the scattering
analysis, and in Sec. VII we perform a fit of the pion-mass dependence of the binding energy and estimate systematic
uncertainties. Our conclusions are given in Sec. VIII.

II. LATTICE SETUP

A. Gauge-link configurations and light-quark propagators

We performed the computations presented here using gauge-link configurations generated by the RBC and UKQCD
collaborations [31, 32] with 2+1 flavors of domain-wall fermions [33–36] and the Iwasaki gauge action [37]. We use
the five ensembles listed in Table I, which differ in the lattice spacing a ≈ 0.083 fm . . . 0.114 fm, the lattice size (spatial
extent ≈ 2.65 fm . . . 5.48 fm) and the pion mass mπ ≈ 139MeV . . . 431MeV. Ensemble C00078 uses the Möbius
domain-wall action [36] with length of the fifth dimension N5 = 24, while the other ensembles use the Shamir action
[35] with N5 = 16. The lattice spacings listed in the Table were determined in Ref. [32].

Ensemble N3
s ×Nt a [fm] am

(sea)
u;d am

(sea)
s mπ [MeV] Nmeas NEV NCG,sl

C00078 483 × 96 0.1141(3) 0.00078 0.0362 139(1) 2560 sl, 80 ex 500 400
C005 243 × 64 0.1106(3) 0.005 0.04 340(1) 9952 sl, 311 ex 400 100
C01 243 × 64 0.1106(3) 0.01 0.04 431(1) 9056 sl, 283 ex 400 100
F004 323 × 64 0.0828(3) 0.004 0.03 303(1) 8032 sl, 251 ex 400 120
F006 323 × 64 0.0828(3) 0.006 0.03 360(1) 14144 sl, 442 ex 400 120

TABLE I. Gauge-link ensembles [31, 32] and light-quark propagators used in this work. Ns, Nt: number of lattice sites in
spatial and temporal directions; a: lattice spacing; am(sea)

u;d : bare light up and down sea quark mass; am(sea)
s : bare strange sea

quark mass; mπ: pion mass. We use all-mode-averaging [38, 39] with 32 or 64 sloppy (sl) and 1 or 2 exact (ex) measurements
per configuration; the column titled “Nmeas” gives the total numbers of sloppy and exact light-quark propagators used on each
ensemble. The values NEV and NCG, sl are the numbers of eigenvectors used for the deflation of the light-quark solver, and the
conjugate-gradient counts used for the sloppy propagators.

Our calculation uses smeared point-to-all propagators for the up and down quarks (the smearing parameters are
given in Sec. III A). The computational cost of generating these propagators was reduced using the all-mode-averaging
technique [38, 39]. On each configuration, a small number of samples of “exact” correlation functions is combined
with a large number of samples of “sloppy” correlation functions in such a way that the expectation value is equal
to the exact expectation value, but the variance is reduced significantly due to the large number of sloppy samples
[38, 39]. The exact correlation functions are generated from light-quark propagators computed with high precision
(relative solver residual of 10−8), while the sloppy correlation functions are generated from approximate light-quark
propagators. We used the conjugate gradient (CG) solver combined with low-mode deflation, where in the case
of the approximate propagators the CG iteration count is fixed to a smaller value, NCG, sl, than needed for the
exact propagators. The lowest NEV eigenvectors of the domain-wall operator were computed using Lanczos with
Chebyshev-polynomial acceleration. The values of NEV and NCG,sl are also listed in the table. On a given gauge-link
configuration, the different samples were obtained by displacing the source locations on a four-dimensional grid, with
a randomly chosen overall offset.

B. Bottom-quark propagators

The heavy b quarks are treated with the framework of lattice nonrelativistic QCD (NRQCD) [40, 41]. We use
the same lattice NRQCD action and parameters as in Ref. [42]. This action includes all quark-bilinear operators
through order v4 in the heavy-heavy power counting, and order Λ2/m2

b in the heavy-light power counting. The bare
heavy-quark mass was tuned on the C005 and F004 ensembles such that the spin-averaged bottomonium kinematic
mass agrees with experiment, using the lattice spacing determinations of Ref. [43]. We use the same masses also on
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the other coarse and fine ensembles, respectively, as shown in Table II. The matching coefficients c1, c2, c3 were set
to their tree-level values (= 1), while for c4 we use a result computed at one loop in lattice perturbation theory [44].
The gauge links entering the NRQCD action are divided by the mean link u0L in Landau gauge to achieve tadpole
improvement [45, 46].

Ensemble amb u0L c4

C00078 2.52 0.8432 1.09389
C005, C01 2.52 0.8439 1.09389
F004, F006 1.85 0.8609 1.07887

TABLE II. Parameters used in the NRQCD action for the bottom quarks.

Since we focus on the computation of the energy spectrum in this work, it is sufficient to use the leading-order,
tree-level relation between the full-QCD bottom-quark field b and the two-spinor NRQCD quark and antiquark fields
ψ and χ when constructing the hadron interpolating fields. In the Dirac gamma matrix basis, and omitting the phase
factor that produces the tree-level energy shift, this amounts to

b =

(
ψ

χ

)
, b̄ =

(
ψ†, −χ†

)
, (1)

and the bottom-quark propagator becomes

Gb(x, t,x′, t′) = Θ(t− t′)
(
Gψ(x, t,x′, t′) 0

0 0

)
−Θ(−t+ t′)

(
0 0

0 Gχ(x, t,x′, t′)

)
, (2)

with the two-spinor NRQCD quark and antiquark propagators Gψ and Gχ.

III. INTERPOLATING OPERATORS AND CORRELATION FUNCTIONS

A. b̄b̄ud four-quark system

We are interested in the spectrum of the doubly-bottomed system with quantum numbers I(JP ) = 0(1+). The
lowest two thresholds in this channel correspond to the meson pairs BB∗ and B∗B∗. From Ref. [42] we can see that
the ΞbbN antibaryon-baryon threshold is already much higher than the B∗B∗ threshold: 11.1GeV for ΞbbN compared
to 10.6GeV for B∗B∗. Other possible meson-meson or antibaryon-baryon thresholds with bottomness 2 are even
higher.

The JP = 1+ quantum numbers appear in the T g1 irreducible representation (irrep) of the Oh point group [47].
To determine the low-lying spectrum in this irrep we make use of two types of interpolating operators: local and
nonlocal. The first three operators are local operators, in which all four (smeared) quark fields are multiplied at the
same space-time point and the product is projected to zero momentum (in the following we omit the time coordinate):

O1 = O[BB∗](0) =
∑
x

(
b̄(x)γ5d(x)

)(
b̄(x)γju(x)

)
− (d↔ u) (3)

O2 = O[B∗B∗](0) = εjkl
∑
x

(
b̄(x)γkd(x)

)(
b̄(x)γlu(x)

)
− (d↔ u) (4)

O3 = O[Dd](0) =
∑
x

(
εabcb̄(x)bγjCb̄c,T (x)

)(
εadedd,T (x)Cγ5ue(x)

)
− (d↔ u). (5)

Operators four and five are nonlocal operators, where each color singlet is projected to zero momentum individually:

O4 = OB(0)B∗(0) =

(∑
x
b̄(x)γ5d(x)

)(∑
y
b̄(y)γju(y)

)
− (d↔ u) (6)

O5 = OB∗(0)B∗(0) = εjkl

(∑
x
b̄(x)γkd(x)

)(∑
y
b̄(y)γlu(y)

)
− (d↔ u). (7)
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Above, a, b, c, . . . denote color indices, j, k, l spatial vector indices, and C = γ0γ2 is the charge-conjugation matrix.
We expect that operators O1 to O3 generate sizable overlap to a tetraquark state. O1 is an obvious choice in

studying this channel. Our reason to include O2 is a bit more subtle. Since two B∗ mesons are around 45MeV
heavier than a B and a B∗ meson, one might expect that O[B∗B∗](0) will have less overlap with the ground state than
O[BB∗](0). However, a previous investigation with static quarks (see Ref. [22] and Fig. 3 therein) has determined the
wave functions for both BB∗ and B∗B∗ contributions and found that both spin structures are of similar importance.
The inclusion of the color-triplet diquark-antidiquark interpolator O3 is motivated by the heavy-quark limit, in which
the two heavy antiquarks are expected to form a compact color-triplet object, and the tetraquark becomes equivalent
to a singly heavy baryon [9–11]. The importance of diquark operators was also discussed in Refs. [48, 49].

Note that in exotic channels it is typically difficult to properly resolve the ground state due to the coupling
to nearby thresholds. An example of this phenomenon is the positive-parity Ds spectrum, where the authors of
Refs. [29, 30] had to include nonlocal interpolating operators to resolve the Ds0(2317) mass puzzle. Previous studies
of the I(JP ) = 0(1+), bottomness-2 sector [25, 26] did not include multi-hadron operators, which might have affected
their results. To make our determination of the spectrum more robust, we include operators O4 and O5, which are
nonlocal meson-meson scattering operators built from two color-singlets separately projected to zero momentum. We
expect them to generate sizable overlap with the nearby first excited state, which will help us isolate the ground state
in the multi-exponential fits of the correlation matrices.

To improve the overlap to the low-lying states, we employ standard smearing techniques. The quark fields in O1 to
O5 are Gaussian-smeared using

qsmeared =

(
1 +

σ2
Gauss

4NGauss
∆

)NGauss

q, (8)

where ∆ is the nearest-neighbor gauge-covariant spatial Laplacian. For the up and down quarks, the gauge links in
∆ are spatially APE-smeared [50], while the unsmeared gauge links are used for the bottom quark. The smearing
parameters are collected in Table III.

Ensemble Up and down quarks Bottom quarks
NGauss σGauss NAPE αAPE NGauss σGauss

C00078 100 7.171 25 2.5 10 2.0

C005, C01 30 4.350 25 2.5 10 2.0

F004, F006 60 5.728 25 2.5 10 2.0

TABLE III. Parameters for the smearing of the quark fields in the interpolating operators. The Gauss smearing is defined in
Eq. (8). A single sweep of APE smearing [50] with parameter αAPE is defined as in Eq. (8) of Ref. [51], and we apply NAPE

such sweeps.

To determine the spectrum we compute the temporal correlation functions of the interpolating operators O1 to O5,

Cjk(t) =
〈
Oj(t)O

†
k(0)

〉
, (9)

where 〈. . .〉 denotes the path integral expectation value. The corresponding nonperturbative quark-field Wick contrac-
tions in a given gauge-field configuration are shown in Fig. 1. Because the calculation of the light-quark propagators is
computationally expensive, we reuse existing smeared point-to-all propagators. With such propagators we are limited
to operators O1, O2, O3 at the source, which have only a single momentum projection, allowing us to remove the
summation over x at the source (using translational symmetry). Thus, we do not determine the elements C44(t),
C45(t), C54(t) and C55(t) of the correlation matrix, where two momentum projections are needed both at the source
and at the sink. For a detailed discussion of this approach, see, for example, Refs. [52, 53].

The correlation matrix has analytical properties that follow from the symmetries of lattice QCD, in particular
time reversal and charge conjugation. These symmetries imply that (Cjk(t))∗ = Ckj(t) and that all Cjk(t) are real.
Moreover, one can relate Cjk(+t) and Cjk(−t). We exploit these analytical findings to improve our lattice QCD
results, by averaging related correlation functions appropriately and by setting all imaginary parts (which are pure
noise) to zero.
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FIG. 1. Nonperturbative quark-field Wick contractions for the different elements of the correlation matrix. M1 andM2 represent
the B and B∗ mesons that are separately projected to momentum zero, while T represents the jointly projected operators. The
black lines represent b-quark propagators and the red lines represent light-quark propagators.

B. B and B∗ meson

Since we will compare the energy levels of the b̄b̄ud four-quark system to the BB∗ threshold, we need to determine
the energies of the B and B∗ mesons within the same setup. We use the interpolating operators

OB(p) =
∑
x
eipxb̄(x)γ5u(x), (10)

OB∗(p) =
∑
x
eipxb̄(x)γju(x), (11)

where we also consider nonzero momenta p = 2πn/L, n ∈ Z3, to allow the determination of the kinetic masses
(needed for the scattering analysis in Sec. VI). The quark fields are smeared with the same parameters as in Table
III. We compute the correlation functions 〈OB(p, t)O†B(p, 0)〉 and 〈OB∗(p, t)O†B∗(p, 0)〉. As discussed in Sec. III A,
we perform the summation over x at the sink only.

IV. ENERGIES AND KINETIC MASSES OF THE B AND B∗ MESONS

We determined the energies of the B and B∗ mesons from single-exponential fits of the two-point functions; the
results are listed in Table IV. An example of a corresponding effective-energy plot is shown in Fig. 2. The energy of a
state containing nb bottom quarks is shifted by nb times the NRQCD energy shift, which at tree-level would be equal
to −mb. This energy shift is not known with high precision, but cancels in energy differences with matching numbers
of bottom quarks, including the quantities of interest in the following sections: En−EB −EB∗ , where En is the n-th
energy level of the b̄b̄ud system.

For the scattering analysis in Sec. VI (and to assess the tuning of the b-quark mass), we also need the momentum-
dependence of the B and B∗ energies. We find that within statistical uncertainties our results are consistent with the
form

EB(p) = EB(0) +
√
m2
B, kin + p2 −mB, kin (12)

EB∗(p) = EB∗(0) +
√
m2
B∗, kin + p2 −mB∗, kin (13)
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Ensemble aEB(0) aEB∗(0) amB, kin amB∗, kin EB∗(0)− EB(0) [MeV] mkin,spinav [GeV]
C00078 0.4582(45) 0.4820(46) 3.03(14) 3.10(13) 41.2(5.1) 5.33(22)
C005 0.4647(14) 0.4944(16) 3.002(40) 2.993(42) 53.2(1.7) 5.346(73)
C01 0.4742(12) 0.5061(16) 3.034(38) 3.030(40) 57.0(1.8) 5.409(69)
F004 0.3750(11) 0.3975(12) 2.323(21) 2.323(25) 51.3(1.8) 5.536(57)
F006 0.37655(87) 0.3985(10) 2.320(20) 2.311(23) 52.3(1.5) 5.513(54)

TABLE IV. Energies of the B and B∗ mesons at rest and kinetic masses computed using one quantum of momentum. Also
given are the hyperfine splittings and spin-averaged kinetic masses (mkin,spinav = 1

4
mB, kin + 3

4
mB∗, kin) in physical units. All

uncertainties are statistical only.

0 5 10 15 20

t/a

0.44
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0.48

0.50

0.52

0.54

a
E

eff

B∗

B

FIG. 2. Effective energy plot of the B and B∗ two-point functions at zero momentum computed on the C005 ensemble. The
effective energy is defined as aEeff(t+ a/2) = ln[C(t)/C(t+ a)]. The horizontal lines show the results of single-exponential fits
to the two-point functions in the range t/a = 8...20.

up to the highest momenta we computed (p2 = 3(2π/L)2). The kinetic masses given in Table IV were extracted using

mkin =
p2 − [E(p)− E(0)]2

2[E(p)− E(0)]
(14)

with the smallest possible non-vanishing momentum, p2 = (2π/L)2. On the C00078 and C005 ensembles, the spin-
averaged kinetic masses mkin,spinav = 1

4mB, kin + 3
4mB∗, kin agree with the experimental value of 5.28272(2) GeV [54].

On the other ensembles, the lattice results are up to 5% higher, which can be attributed mainly to the following:

(i) The tuning of the bare b-quark mass was performed using bottomonium; the results here are affected by the
heavier-than-physical light-quark masses and by discretization errors.

(ii) The tuning was performed using a different determination of the lattice spacing (that of Ref. [43], while here we
use the lattice spacing determinations of Ref. [32] to convert to physical units).

However, the effect of a possible <∼ 5% mistuning of the b-quark mass is expected to be even smaller in the energy
differences En −EB −EB∗ due to partial suppression by heavy-quark symmetry. The hyperfine splittings EB∗ −EB
are of order Λ/mb, and are therefore affected by the same relative error as the b-quark mass, which corresponds to an
absolute error of <∼ 2.5MeV. Our results for the hyperfine splittings are also shown in Table IV. The value from the
physical-pion-mass ensemble C00078 is consistent with the experimental value of 45.3(2)MeV [54]. We find a trend of
increasing hyperfine splitting as the light-quark mass is increased.
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V. THE LOWEST ENERGY LEVELS OF THE b̄b̄ud SYSTEM

A. Multi-exponential matrix fitting

The spectral decomposition of the correlation matrix (9) reads

Cjk(t) =

∞∑
n=0

〈Ω|Oj |n〉〈n|O†k|Ω〉e−Ent, (15)

where |Ω〉 denotes the vacuum state, |n〉 are the energy eigenstates of the b̄b̄ud system in the T g1 irrep and for isospin
I = 0, and En are the corresponding energy eigenvalues. Eq. (15) assumes an infinite time extent of the lattice, which
is a good approximation in our case. As discussed in Sec. IIIA, all Cjk(t) are real and, thus, so are the overlap factors

Znj = 〈Ω|Oj |n〉. (16)

To extract the energies En from our numerical results for Cjk(t), we perform fully correlated, least-χ2, multi-
exponential fits using a truncated version of (15),

Cjk(t) ≈
N−1∑
n=0

Znj Z
n
k e
−Ent, (17)

where we must choose the time range tmin ≤ t ≤ tmax such that contributions from higher excited states are negligible.
To enforce the ordering of the En returned from the fit, for n > 0 we actually use the logarithms of the energy
differences, ln = ln(aEn − aEn−1), as our fit parameters. Furthermore, we rewrote the overlap factors for n > 0 as
Zn = BnZ0 and used Bn as the fit parameters. Note that Cjk(t) does not need to be a square matrix. In particular,
the multi-exponential matrix fit method allows us to also include correlation matrix elements Cjk(t) with j = 4, 5
and k = 1, 2, 3, i.e. the scattering operators O4 and O5. An example of such a (5 × 3) matrix fit is shown in Fig. 3.
On each ensemble, we performed fits to the full matrix as well as to various sub-matrices, for different fit ranges and
different numbers of states. The results are listed in Tables VII-XI in Appendix A.

The matrix fits have a large number of degrees of freedom, and the covariance matrix, whose inverse enters in χ2,
can become poorly determined or singular if the number of statistical samples used to estimate this matrix is not
much larger than the number of degrees of freedom. This is particularly problematic when using all-mode-averaging
(or, more generally, covariant-approximation-averaging, CAA), where the samples are given by [38, 39]

(CAA sample)e = (exact sample)e − (sloppy sample)e,0 +
1

Nsloppy

Nsloppy−1∑
s=0

(sloppy sample)e,s. (18)

Here, e labels the exact samples (gauge-link configuration and source location), and the different sloppy samples,
computed from quark propagators with reduced solver precision, in our case originate from applying many space-time
displacements s to the initial source location e, with s = 0 corresponding to no displacement. As shown in Table I,
the number of exact samples, and hence CAA samples, is as low as 80 in the case of the C00078 ensemble. To obtain
a meaningful χ2 even for large numbers of degrees of freedom, we use a “modified CAA” (MCAA) procedure, given
by

(MCAA sample)e,s = (exact sample)e − (sloppy sample)e,0 + (sloppy sample)e,s. (19)

This procedure provides Nsloppy (= 32 in our case) times as many samples as the standard CAA procedure, with-
out changing the overall average, and allows robust matrix fits even in the (5 × 3) case. The drawback is that
there are autocorrelations between the different choices of s, introduced by the constant (but very small) term
(exact sample)e − (sloppy sample)e,0 and by any possible autocorrelations between the different sloppy samples on
the same configuration. As a result of these autocorrelations, the uncertainties of parameters obtained from fits based
on the MCAA procedure are initially slightly underestimated. We correct for these autocorrelations by rescaling all
uncertainties in the fitted En with a factor estimated for each ensemble using the simple B meson two-point functions.
The factor is given by the ratio of uncertainties of the B meson energies obtained from single-exponential fits using
the CAA and MCAA procedures. The factors range from 1.08 to 1.27. The uncertainties of all results shown in this
paper are already corrected with these factors.

As a cross-check of the multi-exponential matrix fitting method, we also determined the spectrum using the varia-
tional approach, which involves solving the generalized eigenvalue problem (GEVP) [55–57]. We found that the GEVP
method, where applicable, gives results consistent with the direct multi-exponential matrix fits. The comparison of
the two methods is presented in Appendix B.
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FIG. 3. Example of a multi-exponential matrix fit for the C005 ensemble. This fit has N = 3, tmin/a = 11, tmax/a = 24, and
gives χ2/d.o.f. ≈ 1.08.

B. Dependence of the fit results on the choices of interpolating fields

Even though the actual energy levels for a chosen set of quantum numbers are independent of the interpolating
operators used in the two-point functions, in practice the numerical results depend on these choices, due to limited
statistical precision. In Fig. 4 we present the two lowest energy levels relative to the BB∗ threshold as determined
on ensemble C005 using multi-exponential matrix fitting. The interpolators used are indicated by the five bars below
each column. The three black bars at the bottom correspond to the local interpolators O1, O2, O3, while the two
red bars at the top correspond to the nonlocal interpolators O4 and O5. A filled bar indicates that an interpolator is
included, an empty bar that it is not included. Two things are evident from Fig. 4: first, stable results for the two
lowest energy levels are only obtained once the nonlocal two-meson interpolators are included in the analysis; second,
once the nonlocal interpolators are included, the estimates of both the ground-state energy and the first excited energy
drop significantly. Both observations clearly indicate the importance of the nonlocal interpolators for our study of
the b̄b̄ud system. Note that the first excited energy is close to the BB∗ threshold, while the ground state energy
is significantly below threshold. This is a first indication that the ground state corresponds to a stable tetraquark,
while the first excitation corresponds to a meson-meson scattering state. Similar plots for the other four ensembles
are collected in Appendix A.
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FIG. 4. Results for the lowest two b̄b̄ud energy levels relative to the BB∗ threshold, ∆En = En − EB − EB∗ , as determined
on ensemble C005 from several different fits. The five bars below each column indicate the interpolators used, as explained in
the main text. Above each column, we give the number of exponentials, the fit range, and the value of χ2/d.o.f.. The shaded
horizontal bands correspond to our final estimates of ∆E0 and ∆E1, obtained from a bootstrap average of the subset of fits
that are shown with filled symbols.

C. Overlap factors

For a given j, the overlap factors Znj indicate the relative importance of the energy eigenstates |n〉 when expanding
the trial state O†j |Ω〉 in terms of energy eigenstates,

O†j |Ω〉 =

∞∑
n=0

|n〉〈n|O†j |Ω〉 =

∞∑
n=0

Znj |n〉. (20)

Therefore, the overlap factors Znj provide certain information about the composition and quark arrangement of the
energy eigenstates |n〉. In particular, if the overlap factor Zmj for one state |m〉 is significantly larger than all other
Znj , n 6= m, this might be a sign that |m〉 is quite similar to O†j |Ω〉.

It is convenient to consider rescaled squared overlap factors,

|Z̃nj |2 =
|Znj |2

maxm(|Zmj |2)
, (21)

which are normalized such that maxm(|Z̃mj |2) = 1 for each trial state O†j |Ω〉. Here, the indices n and m can take on
values from 0 to N − 1, where N is the number of states included in the fit. The results for |Z̃nj |2 obtained from our
fits are qualitatively similar for all ensembles, and do not strongly depend on the temporal fit range tmin ≤ t ≤ tmax.
In Fig. 5 we show the normalized overlap factors obtained on ensemble C005 using the full 5 × 3 correlation matrix
for N = 2 and N = 3, with fit ranges of 11 ≤ t/a ≤ 24 and 10 ≤ t/a ≤ 24, respectively. In particular, for N = 3,
one can clearly see that for the three trial states created by the local operators O1, O2 and O3, the ground-state
overlaps are significantly larger than the overlaps to the first excited state. Vice versa, for the two trial states created
by the nonlocal operators O4 and O5, the overlaps to the first excited state are much larger than the ground-state
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overlaps. This supports our above interpretation concerning the composition of the lowest two energy eigenstates:
the ground state |0〉 seems to be a four-quark bound state and the first excitation |1〉 a meson-meson scattering state.
Finally, it is interesting to note that in the three-exponential fit, O1 and O2 appear to produce a large overlap with
the second excited state, while the diquark-antidiquark operator O3 and the nonlocal operators O4 and O5 do not.
What appears in the fit as the “second excited state” (with a rather high energy and large uncertainty, as shown in
Table VIII) is likely an admixture of the dense spectrum of all the scattering states above threshold, which are all
created with similar weights by the local operators O1 and O2, while the nonlocal operators O4 and O5 mostly create
the lowest-lying scattering state.
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FIG. 5. The normalized overlap factors |Z̃nj |2 as determined on ensemble C005, indicating the relative contributions of the
energy eigenstates |n〉 to the trial state O†j |Ω〉. The upper row corresponds to a two-exponential fit with 11 ≤ t/a ≤ 24, while
the lower row corresponds to a three-exponential fit with 10 ≤ t/a ≤ 24.

D. Final results for the lowest two energy levels on each ensemble

To obtain final results for the energy differences ∆E0 and ∆E1 on each ensemble, we select a subset of fits that
we deem reliable, based on the discussion in the previous two subsections and based on χ2/d.o.f.. All of these fits,
which are indicated with filled symbols in Fig. 4 and Figs. 9-12, include at least one of the nonlocal interpolating
operators O4 and O5. We then repeat all selected fits for 500 bootstrap samples, where each bootstrap sample
consists of randomly drawn gauge-link configurations and source locations (using the same random numbers for the
different types of fits to preserve correlations). This produces 500 samples for ∆E0 and ∆E1 for each type of fit
(and on each ensemble). We then average these values over the different types of fits with equal weights, bootstrap
sample by bootstrap sample. Finally, we compute the mean and standard deviation (rescaled again by the MCAA
autocorrelation correction factors; see the discussion in Sec. VA) of these new 500 samples. The results for ∆E0 and
∆E1 obtained in this way are listed in Table V and are indicated with the horizontal lines and shaded uncertainty
bands in Fig. 4 and Figs. 9-12.
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Ensemble a∆E0 a∆E1 ∆E0 [MeV] ∆E1 [MeV]
C00078 −0.075(16) 0.001(21) −129(27) 2(36)

C005 −0.069(19) 0.015(30) −123(34) 27(53)

C01 −0.061(15) −0.014(22) −109(26) −26(39)

F004 −0.051(11) −0.011(15) −122(25) −25(37)

F006 −0.037(12) 0.025(32) −88(29) 61(76)

TABLE V. Final results for the lowest two energy levels of the b̄b̄ud system on each ensemble, in lattice units and in MeV. All
results are given relative to the BB∗ threshold, i.e. ∆En = En − EB − EB∗ .

VI. SCATTERING ANALYSIS

The energies En determined in a spectroscopy computation can be related to the infinite-volume scattering ampli-
tude using Lüscher’s method [58] and its generalizations [59–66]; see Ref. [67] for a recent review. Here, we apply
Lüscher’s method to the lowest two energy levels of the b̄b̄ud system in the T g1 irrep, assuming that these energy
levels can be described in terms of the elastic S-wave B-B∗ scattering amplitude (and its analytic continuation below
threshold). Thus, we obtain the S-wave scattering amplitude for the two scattering momenta k0 and k1 that corre-
spond to E0 and E1. Having only these two points limits the choice of parametrization of the scattering amplitude
to a function with two parameters, for which we use the effective-range expansion (ERE). The ERE parametrization
then allows us to determine the infinite-volume bound-state energy.

A. Relation between finite-volume energy levels and infinite-volume phase shifts

We define the scattering momentum kn corresponding to the n-th energy level of the b̄b̄ud system En through the
equation

En = EB +
√
m2
B, kin + k2n −mB, kin + EB∗ +

√
m2
B∗, kin + k2n −mB∗, kin, (22)

where EB = EB(0) and EB∗ = EB∗(0) are the energies of the single-B meson and single-B∗ meson states at zero
momentum. Solving for k2n gives

k2n =
∆En(∆En + 2mB, kin)(∆En + 2mB∗, kin)(∆En + 2mB, kin + 2mB∗, kin)

4(∆En +mB, kin +mB∗, kin)2
, (23)

where

∆En = En − EB − EB∗ . (24)

The mapping between the finite-volume scattering momentum in the rest frame and the infinite-volume scattering
amplitude expressed as the S-wave scattering phase shift δ0 is

cot δ0(kn) =
2Z00(1; (knL/2π)2)

π1/2knL
, (25)

where Z00 is the generalized zeta function [58]. The scattering amplitude is given by

T0(k) =
1

cot δ0(k)− i . (26)

B. Effective-range expansion and determination of the bound-state pole

On each ensemble, we use the lattice QCD results for the energy differences ∆E0 and ∆E1 combined with the
corresponding results for the B and B∗ meson energies and kinetic masses to calculate k2n for n = 0 and n = 1 using
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Ensemble 1/a0 [fm−1] r0 [fm] |kBS| [MeV] Ebinding [MeV]
C00078 −0.7(11.0) 0.4(1.3) 824(89) −129(28)

C005 0.2(7.2) 0.51(88) 808(110) −123(34)

C01 −1.24(77) 0.35(12) 765(91) −109(26)

F004 −1.28(76) 0.33(10) 819(85) −122(25)

F006 −0.9(10.9) 0.4(1.8) 697(113) −88(29)

TABLE VI. The inverse scattering length 1/a0, the effective range r0, the binding momentum |kBS|, and the binding energy
Ebinding for all ensembles.

Eq. (23), and we determine the corresponding kn cot δ0(kn) using Eq. (25). We parametrize the scattering amplitude
using the effective-range expansion (ERE),

k cot δ0(k) =
1

a0
+

1

2
r0k

2 +O(k4), (27)

and determine the two parameters a0 (the S-wave scattering length) and r0 (the S-wave effective range). Bound
states correspond to poles in the scattering amplitude (26) below threshold, where −ik > 0. Such a pole occurs for
cot δ0(kBS) = i, where kBS is the (imaginary) bound-state momentum. Combining this condition with the ERE then
gives

−|kBS| =
1

a0
− 1

2
r0|kBS|2, (28)

where terms of O(|kBS|4) are neglected. We solve Eq. (28) for |kBS| and obtain the binding energy via

Ebinding = EBS − EB − EB∗ =
√
m2
B, kin + k2BS −mB, kin +

√
m2
B∗, kin + k2BS −mB∗, kin

=
√
m2
B, kin − |kBS|2 −mB, kin +

√
m2
B∗, kin − |kBS|2 −mB∗, kin. (29)

This approach was previously utilized in Refs. [29, 30, 68, 69]. Determining masses of bound states in this way
is equivalent to taking the infinite-volume limit up to exponentially small finite-volume corrections proportional to
e−|kBS|L (for more details, see, for example, Refs. [70, 71]).

C. Numerical results

In Fig. 6 we show k cot δ0(k) = 1/a0 + r0k
2/2 as a function of the scattering momentum k together with the

corresponding lattice data points, for the five different ensembles. One can see that k cot δ0(k) is consistent with
zero within uncertainties at k = 0, which implies an inverse scattering length also consistent with zero. The results
for the inverse scattering length 1/a0, the effective range r0, the binding momentum |kBS|, and the binding energy
Ebinding are given in Table VI. The binding energies are essentially identical to the finite-volume energy differences
∆E0 collected in Table V. This supports our interpretation of the ground state as a stable tetraquark. We also
applied the consistency check proposed in Ref. [72], but our statistical uncertainties are too large to reach a definitive
conclusion.
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VII. FIT OF THE PION-MASS DEPENDENCE AND ESTIMATES OF SYSTEMATIC
UNCERTAINTIES

Given the statistical uncertainties in our results for Ebinding (shown in Table VI), we cannot resolve any significant
dependence on the lattice spacing or pion mass. We expect lattice discretization errors to be at the level of a few
MeV, as discussed further below. Since this is well below our statistical uncertainties, we choose to perform a fit of
the pion-mass dependence of our results from all ensembles without including a-dependence. We consider a quadratic
pion-mass dependence, corresponding to linear dependence on the light-quark mass,

Ebinding(mπ) = Ebinding(mπ,phys) + c(m2
π −m2

π,phys), (30)

where we use mπ,phys = 135MeV for the physical pion mass in the isospin-symmetric limit. The fit gives

Ebinding(mπ,phys) = (−128± 24)MeV, c = (1.5± 2.3)× 10−4 MeV−2, (31)

and has χ2/d.o.f. = 0.27. A plot of the fit function together with the data is shown in Fig. 7. Given that, (i), the fit
has excellent quality, (ii), the resulting coefficient c is consistent with zero, and (iii), the result for Ebinding(mπ,phys)
is nearly identical with the result from the C00078 ensemble with mπ = 139(1) MeV, we conclude that any remaining
systematic uncertainties associated with the extrapolation to mπ,phys are negligible.

The lattice discretization errors associated with our light-quark and gluon actions and are expected to be at the 1%
level for the fine lattices, and at the 2% level for the coarse lattices [32]; multiplying by the QCD scale of Λ ∼ 300MeV
yields 3MeV to 6MeV. The NRQCD action introduces additional systematic uncertainties. For our choice of lattice
discretization and matching coefficients, the most significant systematic errors in the energy of a heavy-light hadron
are expected to be the following:

• Four-quark operators, which arise at order α2
s in the matching to full QCD, are not included in the action. The

analysis of Ref. [73] suggests that their effects could be as large as 3MeV.

• The matching coefficient c4 of the operator − g
2mb

σ · B was computed to one loop. Missing higher-order
corrections to this coefficient introduce systematic errors of order

α2
sΛ

2/mb ≈ 2 MeV. (32)

• The matching coefficients of the operators of order (Λ/mb)
2 were computed at tree-level only. The missing

radiative corrections to these coefficients introduce systematic errors of order

αsΛ
3/m2

b ≈ 0.4 MeV. (33)

These estimates are appropriate for EB and EB∗ , which contribute to our calculation of the binding energy via
Ebinding = EBS − EB − EB∗ . For the tetraquark energy EBS, the power counting is more complicated due to the
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FIG. 7. Fit of the pion-mass dependence of Ebinding. The vertical dashed line indicates the physical pion mass.
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presence of two bottom quarks. Conservative estimates of the systematic errors can be obtained by replacing the scale
Λ in the heavy-light power counting by the binding momentum |kBS| ∼ 800 MeV, which suggests systematic errors of
order 10 MeV. It is likely that there is a partial cancellation of the systematic errors in Ebinding = EBS − EB − EB∗ .
Therefore, we estimate the overall discretization and heavy-quark systematic errors to be not larger than 10MeV (in
future work, the estimates of the heavy-quark errors could be made more precise by numerically investigating the
dependence of Ebinding on the lattice NRQCD matching coefficients). Our final results for the tetraquark binding
energy and mass are therefore

Ebinding(mπ,phys) = (−128± 24± 10)MeV, mtetraquark(mπ,phys) = (10476± 24± 10)MeV, (34)

where mtetraquark is obtained by adding the experimental values of the B and B∗ masses [54] to Ebinding.

VIII. CONCLUSIONS

In this work we computed the low-lying spectrum in the bottomness-2 and I(JP ) = 0(1+) sector. Using both local
and nonlocal interpolating operators, we determined the two lowest energy levels for five different ensembles of lattice
gauge-link configurations, including one with approximately physical light-quark masses. We carried out a Lüscher
analysis for the first time in this sector and used the effective-range expansion to find the infinite-volume binding
energies (but we found these to be nearly identical to the finite-volume binding energies). Our calculation confirms
the existence of a b̄b̄ud bound state that is stable under the strong and electromagnetic interactions.

In Fig. 8 we compare our result (34) for the binding energy with several previous determinations. These include
direct lattice QCD calculations that also treated the heavy b̄ quarks with NRQCD [25, 26], calculations in the Born-
Oppenheimer approximation using static b̄b̄ potentials (in the presence of u and d valence quarks) computed on the
lattice [19, 20, 22], as well as the studies of Refs. [15] and [11], which are based on a quark model and heavy-quark
symmetry relations.

The calculations using static b̄b̄ potentials [19, 20, 22] consistently give a binding energy that is about a factor of 2
smaller than our result (34), but such a disagreement is not unexpected, given the approximations used there.

The two previous direct lattice QCD calculations [25, 26] employed only local four-quark interpolating operators.
According to our observations, the lack of nonlocal operators can affect the reliability of the extracted ground-state
energy, as the local operators are not well-suited to isolate the lowest BB∗ threshold state. While the result of
Ref. [26] agrees with ours, Ref. [25] gives a significantly larger binding energy. Apart from the lack of nonlocal
interpolating operators, another possible source of this discrepancy is the use of ratios of correlation functions as
input to the generalized eigenvalue problem in Ref. [25]. It is interesting to observe that the effective energies shown
in Ref. [25] approach the ground state from below, corresponding to a decrease in the magnitude of the extracted
binding energy as the time separation is increased. Note also that Ref. [25] used wall sources for the quark fields, while
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the Schrödinger equation [19, 20, 22]; green: effective field theories and potential models [11, 15]).
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we use Gaussian-smeared sources. These two types of sources can behave quite differently with regard to excited-state
contamination [74].

Above threshold, the excited-state spectrum of B-B∗ and B∗-B∗ scattering states is very dense, because the
changes in the kinetic energy when increasing the back-to-back momenta are suppressed by the heavy-meson masses.
For example, on a lattice with L = 6 fm, the energy difference between the threshold and next scattering state is only
around 8MeV. In the context of two-nucleon systems, it has been argued that the dense spectrum can lead to “fake
plateaus” at short time separations in the effective energies from ratios of correlation functions [75]; see Ref. [76] for
a critical discussion of this issue.

Even though our work has improved upon previous studies of the b̄b̄ud system by including nonlocal meson-
meson scattering operators at the sink, our fits still require rather large time separations, leading to large statistical
uncertainties. As demonstrated for the case of the H dibaryon in Ref. [53], the results can be vastly improved by
including nonlocal operators at both source and sink, and by including additional back-to-back momenta to map out
a larger region of the spectrum. This requires more advanced techniques [52, 77] for constructing the correlation
functions.
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Appendix A: The two lowest energy levels for all ensembles

In Figs. 9-12 we show the two lowest energy levels for the ensembles C00078, C01, F004, and F006. The style is
identical to Fig. 4, where the same energy levels are shown for ensemble C005, and which is discussed in detail in
Sec. VC. The numerical results of the fits for all ensembles are given in Tables VII-XI.
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FIG. 9. Like Fig. 4, but for the C00078 ensemble.

−300

−200

−100

0

100

200

300

E
−
E
B
−
E
B
∗

[M
eV

]

N
=

2,
t/
a

=
7−

24
:

1.
11

N
=

2,
t/
a

=
14
−

24
:
1.

03

N
=

2,
t/
a

=
7−

24
:

1.
04

N
=

2,
t/
a

=
14
−

24
:
1.

02

N
=

2,
t/
a

=
7−

24
:

0.
94

N
=

2,
t/
a

=
14
−

24
:
0.

80

N
=

2,
t/
a

=
11
−

24
:
1.

02

N
=

2,
t/
a

=
14
−

24
:
0.

96

N
=

1,
t/
a

=
13
−

24
:
1.

16

N
=

2,
t/
a

=
8−

24
:

1.
13

N
=

1,
t/
a

=
13
−

24
:
0.

85

N
=

2,
t/
a

=
8−

24
:

1.
18

N
=

2,
t/
a

=
13
−

24
:
1.

24

N
=

2,
t/
a

=
14
−

24
:
1.

10

N
=

2,
t/
a

=
15
−

24
:
1.

17

N
=

2,
t/
a

=
13
−

24
:
1.

17

N
=

2,
t/
a

=
14
−

24
:
0.

95

N
=

2,
t/
a

=
12
−

24
:
1.

21

N
=

2,
t/
a

=
13
−

24
:
0.

94

N
=

2,
t/
a

=
13
−

24
:
1.

14

N
=

2,
t/
a

=
14
−

24
:
1.

07

FIG. 10. Like Fig. 4, but for the C01 ensemble.



18

−300

−200

−100

0

100

200

300

E
−
E
B
−
E
B
∗

[M
eV

]

N
=

2,
t/
a

=
8−

24
:

0.
98

N
=

2,
t/
a

=
13
−

24
:

0.
90

N
=

2,
t/
a

=
8−

24
:

0.
96

N
=

2,
t/
a

=
13
−

24
:

0.
70

N
=

2,
t/
a

=
8−

24
:

0.
98

N
=

2,
t/
a

=
13
−

24
:

0.
95

N
=

2,
t/
a

=
12
−

24
:

0.
90

N
=

2,
t/
a

=
13
−

24
:

0.
85

N
=

1,
t/
a

=
14
−

24
:

1.
20

N
=

2,
t/
a

=
6−

24
:

0.
71

N
=

1,
t/
a

=
14
−

24
:

0.
82

N
=

2,
t/
a

=
5−

24
:

0.
82

N
=

2,
t/
a

=
14
−

24
:

0.
99

N
=

2,
t/
a

=
15
−

24
:

0.
88

N
=

2,
t/
a

=
14
−

24
:

0.
81

N
=

2,
t/
a

=
15
−

24
:

0.
71

N
=

2,
t/
a

=
14
−

24
:

1.
10

N
=

2,
t/
a

=
14
−

24
:

1.
00

N
=

2,
t/
a

=
15
−

24
:

0.
93

FIG. 11. Like Fig. 4, but for the F004 ensemble.
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FIG. 12. Like Fig. 4, but for the F006 ensemble.
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Matrix N Fit range χ2/d.o.f. En − EB − EB∗ [MeV]
(O1, O2)× (O1, O2) 2 7...10 1.05 −159(31), +61(77)

(O1, O2)× (O1, O2) 2 7...17 1.42 −136(27), +100(75)

(O1, O3)× (O1, O3) 2 7...10 0.82 −144(35), +137(85)

(O1, O3)× (O1, O3) 2 7...17 1.63 −116(30), +204(84)

(O2, O3)× (O2, O3) 2 7...10 1.32 −151(38), +104(82)

(O2, O3)× (O2, O3) 2 7...17 1.29 −106(33), +168(81)

(O1, O2, O3)× (O1, O2, O3) 2 8...10 0.96 −181(40), +66(129)

(O1, O2, O3)× (O1, O2, O3) 2 8...17 1.24 −125(34), +142(123)

(O1, O2, O3)× (O1, O2, O3) 3 6...17 1.41 −93(24), +245(55), +612(328)

(O1, O2, O3)× (O1, O2, O3) 3 6...24 1.28 −86(23), +260(55), +651(337)

(O1, O2, O3)× (O1, O2, O3) 3 7...10 0.98 −165(31), +63(77), +6283(3782)

(O1, O4)× (O1) 1 11...17 0.84 −169(96)

(O2, O5)× (O2) 1 11...15 0.84 −133(128)

(O1, O2, O4, O5)× (O1, O2) 2 11...13 0.90 −181(110), −104(199)

(O1, O3, O4)× (O1, O3) 2 9...15 1.81 −125(51), +86(98)

(O1, O3, O4)× (O1, O3) 2 9...24 1.52 −129(53), +79(94)

(O1, O3, O4)× (O1, O3) 2 10...16 1.72 −217(85), +327(187)

(O1, O3, O4)× (O1, O3) 3 5...10 1.29 −169(35), +13(28), +516(100)

(O1, O3, O4)× (O1, O3) 3 7...10 1.34 −175(159), −75(143), +253(538)

(O1, O3, O4)× (O1, O3) 3 5...16 1.55 −169(35), +7(28), +479(89)

(O1, O3, O4)× (O1, O3) 3 5...24 1.47 −168(35), +8(27), +483(88)

(O1, O3, O4)× (O1, O3) 3 7...16 1.55 −250(120), −76(58), +312(207)

(O1, O3, O4)× (O1, O3) 3 7...24 1.46 −237(97), −70(52), +372(233)

(O2, O3, O5)× (O2, O3) 2 8...24 1.30 −124(36), +0(62)

(O2, O3, O5)× (O2, O3) 2 10...24 1.30 −182(116), +290(173)

(O2, O3, O5)× (O2, O3) 3 5...10 1.52 −146(36), +5(31), +510(105)

(O2, O3, O5)× (O2, O3) 3 7...10 1.99 −163(55), −19(111), +520(708)

(O2, O3, O5)× (O2, O3) 3 5...16 1.40 −134(36), +2(31), +452(95)

(O2, O3, O5)× (O2, O3) 3 5...24 1.13 −138(37), −2(30), +450(92)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 10...16 1.34 −102(60), −54(70)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 10...24 1.28 −119(57), −63(71)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 6...16 2.61 −122(28), −21(31), +406(254)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 6...24 2.11 −143(54), −34(30), +359(225)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 7...16 1.74 −155(27), −78(39), +1736(1580)

TABLE VII. Multi-exponential matrix fit results from the C00078 ensemble.
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Matrix N Fit range χ2/d.o.f. En − EB − EB∗ [MeV]
(O1, O2)× (O1, O2) 2 7...22 0.84 −58.7(8.2), +187(15)

(O1, O2)× (O1, O2) 2 14...24 0.87 −121(57), +535(464)

(O1, O3)× (O1, O3) 2 7...22 0.94 −59.1(8.8), +194(15)

(O1, O3)× (O1, O3) 2 14...24 0.75 −165(70), +571(459)

(O2, O3)× (O2, O3) 2 7...22 1.03 −60.6(9.1), +189(15)

(O2, O3)× (O2, O3) 2 14...24 0.99 −175(65), +602(475)

(O1, O2, O3)× (O1, O2, O3) 2 11...24 0.90 −72(22), +282(79)

(O1, O2, O3)× (O1, O2, O3) 2 14...24 0.80 −116(58), +628(505)

(O1, O2, O3)× (O1, O2, O3) 3 6...24 0.88 −50.6(7.3), +199(11), +696(74)

(O1, O2, O3)× (O1, O2, O3) 3 8...24 0.90 −57(11), +180(20), +362(264)

(O1, O2, O3)× (O1, O2, O3) 3 14...24 0.78 −174(93), +550(466), +1220(1642)

(O1, O4)× (O1) 1 13...24 0.77 −74(39)

(O1, O4)× (O1) 2 7...24 0.50 −63(43), +113(74)

(O2, O5)× (O2) 1 13...24 0.90 −6(52)

(O2, O5)× (O2) 2 7...24 0.75 −39(34), +232(84)

(O1, O2, O4, O5)× (O1, O2) 2 12...24 1.07 −100(26), +22(45)

(O1, O2, O4, O5)× (O1, O2) 2 13...24 0.89 −94(35), −8(66)

(O1, O2, O4, O5)× (O1, O2) 2 14...24 0.85 −161(49), +13(110)

(O1, O3, O4)× (O1, O3) 2 12...24 1.10 −92(25), +6(50)

(O1, O3, O4)× (O1, O3) 2 13...24 0.92 −93(35), +11(75)

(O1, O3, O4)× (O1, O3) 3 7...24 0.85 −59.2(8.9), +9(31), +193(16)

(O1, O3, O4)× (O1, O3) 3 11...24 0.79 −106(28), −38(161), +246(119)

(O2, O3, O5)× (O2, O3) 2 14...24 1.01 −184(57), +9(126)

(O2, O3, O5)× (O2, O3) 2 15...24 0.92 −164(78), +302(276)

(O2, O3, O5)× (O2, O3) 3 6...24 1.00 −49.9(7.8), +88(28), +204(21)

(O2, O3, O5)× (O2, O3) 3 8...24 0.98 −60(11), −15(50), +178(20)

(O2, O3, O5)× (O2, O3) 3 10...24 1.07 −65(29), −23(141), +219(47)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 11...24 1.25 −100(19), −8(28)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 12...24 1.07 −93(26), +25(45)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 13...24 0.96 −82(36), +9(64)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 14...24 0.91 −148(51), +22(110)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 10...24 1.47 −89(15), +40(122), +215(67)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 11...24 1.08 −97(20), +136(199), +288(160)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 3 12...24 1.03 −90(27), −14(231), +360(199)

TABLE VIII. Multi-exponential matrix fit results from the C005 ensemble.
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Matrix N Fit range χ2/d.o.f. En − EB − EB∗ [MeV]
(O1, O2)× (O1, O2) 2 7...24 1.11 −37.6(7.2), +203(13)

(O1, O2)× (O1, O2) 2 14...24 1.03 −104(47), −57(97)

(O1, O3)× (O1, O3) 2 7...24 1.04 −37.7(7.5), +210(13)

(O1, O3)× (O1, O3) 2 14...24 1.02 −108(52), −40(91)

(O2, O3)× (O2, O3) 2 6...24 0.94 −29.0(6.8), +218(10)

(O2, O3)× (O2, O3) 2 14...24 0.80 −84(51), −55(85)

(O1, O2, O3)× (O1, O2, O3) 2 11...24 1.02 −58(17), +88(51)

(O1, O2, O3)× (O1, O2, O3) 2 14...24 0.96 −104(49), −60(66)

(O1, O2, O3)× (O1, O2, O3) 3 6...24 0.99 −31.1(6.5), +211(10), +825(69)

(O1, O2, O3)× (O1, O2, O3) 3 8...24 1.04 −36.1(8.5), +208(18), +1281(434)

(O1, O2, O3)× (O1, O2, O3) 3 10...24 1.07 −50(13), +156(36), +2821(3773)

(O1, O4)× (O1) 1 13...24 1.16 −96(25)

(O1, O4)× (O1) 2 8...24 1.13 −114(25), +240(63)

(O2, O5)× (O2) 1 13...24 0.85 −70(31)

(O2, O5)× (O2) 2 8...24 1.18 −66(26), +394(98)

(O1, O2, O4, O5)× (O1, O2) 2 13...24 1.24 −96(25), −26(41)

(O1, O2, O4, O5)× (O1, O2) 2 14...24 1.10 −121(30), −90(46)

(O1, O2, O4, O5)× (O1, O2) 2 15...24 1.17 −116(46), −79(84)

(O1, O3, O4)× (O1, O3) 2 13...24 1.17 −92(24), −12(50)

(O1, O3, O4)× (O1, O3) 2 14...24 0.95 −138(39), −41(66)

(O1, O3, O4)× (O1, O3) 3 7...24 1.19 −36.2(6.9), +30(25), +210(11)

(O2, O3, O5)× (O2, O3) 2 12...24 1.21 −107(22), −56(36)

(O2, O3, O5)× (O2, O3) 2 13...24 0.94 −79(32), −21(55)

(O2, O3, O5)× (O2, O3) 3 6...24 1.11 −30.0(7.5), +87(26), +244(38)

(O2, O3, O5)× (O2, O3) 3 8...24 1.10 −44(12), +59(32), +322(74)

(O2, O3, O5)× (O2, O3) 3 10...24 1.01 −123(64), −26(27), +241(116)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 13...24 1.14 −93(25), −21(43)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 14...24 1.07 −118(30), −95(47)

TABLE IX. Multi-exponential matrix fit results from the C01 ensemble.
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Matrix N Fit range χ2/d.o.f. En − EB − EB∗ [MeV]
(O1, O2)× (O1, O2) 2 8...24 0.98 −31.4(8.6), +288(17)

(O1, O2)× (O1, O2) 2 13...24 0.90 −81(21), +133(79)

(O1, O3)× (O1, O3) 2 8...24 0.96 −37.0(9.3), +300(17)

(O1, O3)× (O1, O3) 2 13...24 0.70 −83(25), +113(79)

(O2, O3)× (O2, O3) 2 8...24 0.98 −36.2(9.5), +302(17)

(O2, O3)× (O2, O3) 2 13...24 0.95 −76(28), +145(80)

(O1, O2, O3)× (O1, O2, O3) 2 12...24 0.90 −59(17), +218(56)

(O1, O2, O3)× (O1, O2, O3) 2 13...24 0.85 −78(21), +132(78)

(O1, O4)× (O1) 1 14...24 1.20 −118(24)

(O1, O4)× (O1) 2 6...24 0.71 −111(14), +370(24)

(O2, O5)× (O2) 1 14...24 0.82 −42(29)

(O2, O5)× (O2) 2 5...24 0.82 −67(11), +495(20)

(O1, O2, O4, O5)× (O1, O2) 2 14...22 0.99 −120(22), −55(34)

(O1, O2, O4, O5)× (O1, O2) 2 15...22 0.88 −119(29), −58(37)

(O1, O3, O4)× (O1, O3) 2 14...24 0.81 −135(26), −5(49)

(O1, O3, O4)× (O1, O3) 2 15...24 0.71 −135(34), +12(70)

(O2, O3, O5)× (O2, O3) 2 14...24 1.10 −68(29), −37(51)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 14...24 1.00 −119(21), −61(32)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 15...24 0.93 −115(28), −55(34)

TABLE X. Multi-exponential matrix fit results from the F004 ensemble.

Matrix N Fit range χ2/d.o.f. En − EB − EB∗ [MeV]
(O1, O2)× (O1, O2) 2 9...24 0.92 −31.0(6.8), +240(13)

(O1, O2)× (O1, O2) 2 13...24 0.90 −50(13), +205(40)

(O1, O3)× (O1, O3) 2 9...24 0.96 −31.6(7.2), +253(13)

(O1, O3)× (O1, O3) 2 13...24 0.70 −62(15), +192(41)

(O2, O3)× (O2, O3) 2 9...22 1.08 −32.0(7.5), +249(14)

(O2, O3)× (O2, O3) 2 13...24 0.88 −64(15), +208(41)

(O1, O2, O3)× (O1, O2, O3) 2 13...24 0.91 −47(12), +199(40)

(O1, O2, O3)× (O1, O2, O3) 2 15...24 0.86 −57(19), +231(80)

(O1, O4)× (O1) 1 17...24 1.11 −66(28)

(O1, O4)× (O1) 2 7...24 0.99 −107(10), +350(21)

(O2, O5)× (O2) 1 17...24 0.73 −30(36)

(O2, O5)× (O2) 2 6...24 0.99 −63.6(8.9), +479(18)

(O1, O2, O4, O5)× (O1, O2) 2 17...24 1.29 −88(27), +28(63)

(O1, O3, O4)× (O1, O3) 2 17...24 1.06 −84(28), +7(70)

(O1, O3, O4)× (O1, O3) 2 18...24 0.88 −89(34), +74(109)

(O2, O3, O5)× (O2, O3) 2 17...24 1.21 −92(35), +109(87)

(O2, O3, O5)× (O2, O3) 2 18...24 0.98 −89(51), +67(120)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 15...24 1.44 −95(17), +24(31)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 16...24 1.21 −93(21), +32(44)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 17...24 1.09 −83(27), +19(61)

(O1, O2, O3, O4, O5)× (O1, O2, O3) 2 18...24 0.93 −74(34), +66(92)

TABLE XI. Multi-exponential matrix fit results from the F006 ensemble.
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Appendix B: Comparison of multi-exponential matrix fitting and solving the GEVP

In this section we compare the multi-exponential matrix fitting method, used in the main part of this work, to the
variational method [55–57]. The latter is based on the generalized eigenvalue problem

Cjk(t)vnk (t, t0) = λn(t, t0)Cjk(t0)vnk (t, t0), (B1)

where Cjk(t) must be a hermitian square matrix. As discussed in Sec. III A, our use of point-to-all propagators did
not allow us to compute the correlation matrix elements Cjk(t) with j, k ∈ {4, 5}, which means that we can only
include the operators O1 to O3 in the GEVP analysis (in contrast, the multi-exponential matrix fitting method does
not require a square matrix and allows us to include O4 and O5 at the sink).

For large time, the eigenvalues λn(t, t0) are expected to satisy

λn(t, t0) ∝ e−Ent, (B2)

where En is the energy of the nth state. We define the effective energy Eeff,n(t) as

Eeff,n(t) =
1

a
ln

(
λn(t, t0)

λn(t+ a, t0)

)
, (B3)

which for large t should plateau at En. An example for Eeff,n(t) is shown in Fig. 13. We determined En from constant
fits to Eeff,n(t) in a suitable range tmin ≤ t ≤ tmax such that χ2/d.o.f. <∼ 1. Alternatively, one can fit exponential
functions Ae−Ent to the eigenvalues λn(t, t0). We performed such fits as cross-checks and found consistent energies
and statistical uncertainties.

0 5 10 15 20

t/a

0.6
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1.0

1.2
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E

eff
,n

aEeff,1

aEeff,0

FIG. 13. Effective energies aEeff,n for n = 0, 1 obtained for the C005 ensemble by solving the GEVP for the 3× 3 correlation
matrix Cjk(t) containing operators O1 to O3. The horizontal lines show the results of constant fits in the regions t/a = 8 . . . 17
(n = 0) and t/a = 8 . . . 14 (n = 1).

We compared the multi-exponential matrix-fit method and the GEVP method by determining the lowest two energy
levels with both methods in the following way:

• We used the same symmetric correlation matrices: 2× 2 correlation matrices with operators (O1, O2), (O1, O3)
and (O2, O3) as well as the 3× 3 correlation matrix with operators (O1, O2, O3).

• We used the same values for tmin (larger tmin leads to a stronger suppression of excited states; we performed a
comparison for several values for tmin).

• We used similar values for tmax (the results only weakly depend on tmax; we chose tmax as the largest temporal
separation where the signal is not lost in statistical noise).

• We checked that the energy levels obtained by solving the GEVP are independent of the parameter t0 for
t0/a = 1, 2, . . . , 6 (results shown in the following were obtained with t0/a = 3).

This comparison is shown in Table XII for the C005 ensemble. It is reassuring that the results obtained from multi-
exponential matrix fits and from the GEVP are in excellent agreement (when using the same operator bases). The
two methods were also compared extensively in the study of ππ scattering in Ref. [78], were agreement was also found.
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Operators Energy
difference

Multi-exponential fitting GEVP
Fit range χ2/d.o.f. Fit range χ2/d.o.f.

(O1, O2)× (O1, O2)
∆E0 7...22 0.84

−58.7(8.2) 7...20 0.70 −60.5(11.4)

∆E1 +187(15) 7...14 0.53 +183(19)

(O1, O2)× (O1, O2) ∆E0 14...24 0.87 −121(57) 14...20 0.61 −129(67)

(O1, O3)× (O1, O3)
∆E0 7...22 0.94

−59.1(8.8) 7...20 0.80 −62.1(12.1)

∆E1 +194(15) 7...14 0.51 +188(19)

(O1, O3)× (O1, O3) ∆E0 14...24 0.75 −165(70) 14...20 0.42 −160(76)

(O2, O3)× (O2, O3)
∆E0 7...22 1.03

−60.6(9.1) 7...20 0.86 −61.4(12.3)

∆E1 +189(15) 7...14 0.56 +188(19)

(O2, O3)× (O2, O3) ∆E0 14...24 0.99 −175(65) 14...20 0.44 −164(79)

(O1, O2, O3)× (O1, O2, O3)
∆E0 6...24 0.88

−50.6(7.3) 6...17 1.32 −53.4(10.2)

∆E1 +199(11) 6...14 0.85 +198(14)

(O1, O2, O3)× (O1, O2, O3)
∆E0 8...24 0.90

−57(11) 8...17 0.85 −62.8(13.7)

∆E1 +180(20) 8...14 0.57 +176(24)

(O1, O2, O3)× (O1, O2, O3) ∆E0 11...24 0.90 −72(22) 11...17 0.73 −92(29)

(O1, O2, O3)× (O1, O2, O3) ∆E0 14...24 0.78 −174(93) 14...17 0.43 −156(80)

TABLE XII. Comparison of the results for the two lowest b̄b̄ud energy levels (relative to the BB∗ threshold, i.e., ∆En =
En − EB − EB∗) from multi-exponential matrix fitting and from the GEVP, for the C005 ensemble.
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