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1. Introduction

Key baryon observables depend on the number of colors Nc of QCD, most notably the
baryon masses and the axial-vector couplings which are O(Nc). Since the latter determine
the strength of the couplings of Goldstone Bosons (GB) to baryons (gπN , etc.), consistency
with the large Nc limit imposes fundamental constraints on the low energy effective theory.
Such constraints result from the observation that a consistent theory of baryons at large
Nc must enforce a dynamical spin-flavor symmetry [1, 2, 3, 4]. Such a symmetry is non-
relativistic in nature, consistent with the fact that in large Nc baryons are heavy, and has
the form of a contracted SU(2Nf ) symmetry, broken by effects O(1/Nc). The spin-flavor
symmetry requires that the baryon states furnish SU(2Nf ) irreducible representations
(irrep) with (at least) Nc boxes in the Young tableux. In particular, ground state baryons
correspond to the totally symmetric irrep with Nc boxes, which spans baryon spins from
S = 1/2 to Nc/2 (Nc assumed odd). The generators of the spin-flavor symmetry are the
baryon spin Si, the flavor T a and the spin-flavor Gia operators, where the latter are at
leading order in 1/Nc proportional to the spatial components of the axial currents. In
particular, the matrix elements of the generators Gia are O(Nc) and reflect the fact that
baryon axial currents are of that order. The spin-flavor symmetry is a large Nc symmetry
of the baryon spectrum, and constrains the couplings of different operators to baryons, e.g.,
axial and vector currents, scalar currents, etc., which are represented at the baryon level as
composite operator products of the SU(2Nf ) generators. On the other hand the spin-flavor
symmetry is not a Noether symmetry, and thus it only leads to constraints on the couplings
(LECs) of the effective theory. In order to implement those constraints in BChPT, one
proceeds as follows. The ground state baryons are represented by a baryon field B which is
in the symmetric irrep of SU(2Nf ) and consists of a tower to spins ranging from S = 1/2 to
Nc/2. For Nf = 2 the baryon isospin is equal to the spin, and for Nf = 3 the SU(3) irrep of
each baryon in the tower is determined by the spin and given by (p,q) = (2S, 1

2(Nc−2S)).
The chiral transformations are then implemented as usual for matter fields (see [5] for
details). Since baryons have mass O(Nc), it is natural to use HBChPT as the expansion in
powers of 1/m becomes part of the 1/Nc expansion. The mass splitting between baryons
of different spin (hyperfine splitting) is driven by effects O(1/Nc), so for instance the ∆-N
mass difference is of that order. This becomes a small mass scale in addition to the GB
masses, both entering together in non-analytic terms of the low energy expansion. For this
reason the chiral and 1/Nc expansions are not independent and must be linked by choosing
the relative order of the GB masses and the hyperfine splitting. The natural choice that
works best in the real world with Nc = 3 is that in which non-analytic terms are not
expanded, thus corresponding to O(1/Nc) = O(p) = O(ξ): the ξ expansion, which serves
to organize the effective chiral Lagrangian. The 1/Nc power counting is implemented in
terms of the n-bodyness of composite operators: irreducible 1 n-body operators consisting
of n factors of the spin-flavor generators carry an overall factor 1/Nn−1

c .
The Baryon chiral Lagrangian terms have the general structure: B†ΛSF⊗Λχ B, where

1Irreducible means that the operator cannot be further reduced using commutation relations between
its factors or operator identities valid for the symmetric irrep of SU(2Nf ).
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ΛSF is a spin-flavor tensor operator and Λχ is a chiral tensor operator built from derivatives,
sources and GB fields (see [6] for details). The O(ξ) Lagrangian is given by [7, 5]:

L(1)
B = B†(iD0−

CHF
Nc

Ŝ2−uiaGia+ c1
2Λ χ̂+)B (1.1)

where the term proportional to CHF gives the hyperfine mass splittings, = 6
5g
N
A is the LO

axial coupling where gNA = 1.2724(23), and the term c1 gives the O(mqNc) =O(ξ) baryon
mass shift; Λ is an arbitrary scale. It is straightforward to determine the ξ power counting
for loop diagrams in general. In particular the analytic pieces of the diagrams, which in
particular involve the UV divergencies, can be strictly organized by powers of p and 1/Nc.
In general the diagrams contributing to a given observable that has a given power behavior
in Nc should not violate it. This is however not the case with the contributions of individual
diagrams, but the total sum of the contributing diagrams will give the consistent result.
As shown below, this can be explicitly shown in the case of the polynomial contributions
of the different diagrams which add up to structures involving multiple commutators of
the spin-flavor generators or products thereof, restoring in this way the required Nc power
counting. This will be illustrated with the examples presented in this note.

As the most basic illustrative example, consider the Baryon self energy in SU(3). The
polynomial contribution by the one-loop self-energy is [6]:

δΣpoly
1−loop = 1

(4π)2

(
g̊A
Fπ

)2 (1
2(λε+ 7

3)M2
a [[δm̂,Gia],Gia]− 1

3(λε+ 8
3)[[δm̂, [δm̂, [δm̂,Gia]]],Gia]

+ p0 ((λε+ 1)M2
aG

iaGia− (λε+ 2)[[δm̂, [δm̂,Gia]],Gia])
)
, (1.2)

where Fπ =O(
√
Nc), =O(N0

c ), λε ≡ 1/ε−γ+ log4π, Ma are the GB octet masses, δm̂ ≡
CHF
Nc

Ŝ2 are the hyperfine mass shifts, and p0 is the residual energy defined by the energy
flowing through the self-energy minus the hyperfine mass shift of the corresponding state.
One can check the large Nc limit by additional expansion of the non-analytic contributions,
for which one will also have similar observations concerning the Nc powers as from the
polynomial pieces. In the case of ordinary BChPT with only octet baryons the one loop
correction to the baryon masses are finite and O(m

3
2
q ); this is not the case here where

the presence of the decuplet adds non-analytic contributions which can be summarized
as follows: i) spin-flavor singlet piece O(1/N2

c ) proportional to C3
HF /F

2
π ; ii) spin flavor

singlet O(N0
cmq) proportional to CHFmq/F

2
π ; iii) SU(3) breaking contributions O(Ncm

3
2
q );

iv) quark mass independent contributions to the hyperfine mass difference O(1/N2
c ) and

quark mass dependent ones O(m
1
2
q /Nc;mq/N

2
c ;m

3
2
q /Nc). A key observation is the O(mqNc)

behavior of the WF renormalization constant, which emphasizes the non-commutativity
between the chiral and 1/Nc expansions. It will be shown that those terms play a central
role in restoring the Nc power counting in one loop corrections to the various current
operators. A more detailed discussion of baryon masses and the σ terms is presented in
these proceedings [8]. For details on the higher order Lagrangians and the results for the
observables discussed here to NNLO in the ξ expansion and generic Nc see Ref. [6].
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2. SU(3) breaking in the vector current charges

The vector current charges are of particular interest. SU(3) breaking first manifests
itself through non-analytic terms in the quark masses. The Ademollo-Gatto theorem asserts
that analytic terms first appear at second order in the quark masses, i.e., O(p4). The one
loop corrections are thus finite, with all polynomial terms canceling within each of the two
sets A and B of diagrams shown in Figure 1.

A1 A2

A3

B1 B2

q, a

q, a q, a

q, a q, a

q, a

A3

Figure 1: One loop corrections to vector current charges.

As illustration of the cancellations of terms that lead to a consistentNc power counting,
one can consider first the set of diagram A1 +A2. Each diagram violates Nc power counting;
explicit evaluation gives for the polynomial contributions [6]:

A
poly
1+2 = 1

(4π)2

(
g̊A
Fπ

)2 (1
2(λε+ 1)M2

ab[Gia, [Gib,Γ]]

+ 1
3 (λε+ 2)

(
2[[Gia,Γ], [δm̂, [δm̂,Gia]]] + [[Γ, [δm̂,Gia]], [δm̂,Gia]]

))
(2.1)

whereM2
ab is the 8×8 matrix representing the square of the GB masses. Γ is any spin-flavor

operator, in the present case a flavor generator T . The general structure involving multiple
commutators leads to the cancellation of the Nc power violating terms contributed by the
individual diagrams. The key role of the wave function renormalization contribution is
here evident. Explicit calculation of diagram A3 shows that for the vector charge operator
A

poly
3 =−Apoly

1+2 fulfilling the AGTh. Diagrams B respect Nc power counting to start with.
The non-trivial polynomial terms proportional to q2 are from diagrams A3 and B2, con-
tributing to the charge radii. A complete analysis of the vector current form factors will
be presented elsewhere [9]. A detailed analysis of the corrections to the SU(3) charges was
presented in Ref. [10]. The consistency with the 1/Nc expansion can only be kept when
the virtual baryons in the loop include all those that are connected via the axial current
to the external baryons. This has a significant effect in the results as it had been noticed
earlier when the decuplet is included in the calculations [11, 12, 12]. The SU(3) breaking
corrections to the ∆S = 1 charges are therefore calculable, with the main uncertainty due
to the value of used, which is discussed in next section. Using the physical value [10] gives
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Charge f1

f
SU(3)
1

f1

f
SU(3)
1

−1

[Flores-Mendieta & Goity] [Villadoro] [Lacour et al] [Geng et al]

[10] [11] [14] [12]
BChPT×1/Nc HBChPT; 8+10 HBChPT: 8 only RBChPT: 8+10

Λp 0.952 −0.048 −0.080 −0.097 −0.031
Σ−n 0.966 −0.034 −0.024 0.008 −0.022
Ξ−Λ 0.953 −0.047 −0.063 −0.063 −0.029
Ξ−Σ0 0.962 −0.038 −0.076 −0.094 −0.030

Table 1: Corrections to the ∆S = 1 vector charges and comparison with previous works.

results which can now be tested with LQCD calculations (as it is well known the accuracy
of hyperon β decay is not enough to pin down those corrections). Using the definitions
in [10], the comparison with a recent LQCD calculation [13] are satisfactory, as shown in
Figure 2. Although at this point those corrections do not play a significant role in phe-
nomenology of hyperon decays, with the use of increasingly accurate LQCD results, they
will provide a significant test of the effective theory.

9

! " !!#$

!%$

$

%$

#$

!!!"

!! !
"! !"

#
!$
" #
!$
%!
""

FIG. 5. Comparison of percentage SU(3)-breaking in f1 determined in this work, highlighted by the shaded bands, with that
of other calculations. The error bands for our results are those given in Table II combined in quadrature. Blue squares, green
circles and orange triangles denote results of quark model [10, 11], 1/Nc expansion [12] and chiral perturbation theory [14, 16, 40]
approaches respectively, while the pink diamonds show results from lattice QCD [18, 20]. The red stars show the results of
this work at Q2 = 0 (solid line), where we have corrected from �q = 0 to Q2 = 0 using the dipole form given in Eq. (29), and at
Q2 = −(MB − MB�)2 (dotted line).

our lattice simulations with fixed zero sink momentum),
with the physical values of the baryon masses B1 and B2,
instead of at Q2 = 0 as is standard. Moving to Q2 = 0
would reduce the magnitude of each form factor, i.e., in-
crease the SU(3)-breaking effect in each case (as will be
shown explicitly later). As described in the previous sec-
tion, the quoted uncertainties allow for 20% variation of
the low-energy constants D, F and C from their SU(6)
values, and for the FRR dipole regulator mass Λ to vary
in the range 0.6-1 GeV. Furthermore, we allow M0, the
heavy-baryon mass scale used to account for leading rel-
ativistic (or kinematic) corrections, to vary between the
chiral-limit value and the average octet baryon mass at
the physical point. We also account for uncertainties in
the finite-volume corrections as described in the previous
section.

Figure 4 shows the results from Table II graphically,
alongside the results obtained using an identical analysis
but omitting either finite-volume corrections or contribu-
tions from decuplet baryon intermediate states. Clearly,
all results are stable under these changes. Previous pure–
effective-field-theory calculations of these quantities (e.g.,
Ref. [15]) have typically been very sensitive to decuplet
baryon effects. We attribute this difference primarily to
our use of the FRR scheme.

Following the work in Refs. [25, 41, 42], we are also
able to use the chiral extrapolation formalism to deter-
mine the effect of a non-zero light quark mass difference
(mu �= md) on our results. As we find such charge-
symmetry violating effects to be one to two orders of

magnitude smaller than the SU(3)-breaking effects, we
neglect these differences. Explicitly, we find the differ-

ence in the quantity (f1/f
SU(3)
1 − 1) × 100 for Σ− → n

and Σ0 → p and also Ξ0 → Σ+ and Ξ− → Σ0 to be in the
range 0.03–0.04, which is an order of magnitude smaller
than the statistical uncertainties of our calculation.

Finally, to estimate the magnitude of the effect caused
by the non-zero values of Q2 used in our analysis, we
have corrected from Q2 = −(MB1

− MB2
)2 to Q2 = 0

using the standard dipole parameterisation which is used
to fit experimental results [43]:

f1(Q
2) =

f1(0)

(1 + Q2/M2
V )2

, (29)

where MV = 0.97 GeV is chosen, generally universally
across the baryon octet, for strangeness-changing (and
0.84 GeV for strangeness-conserving) decays [44]. These
numbers may be more directly compared with the results
of previous analyses as shown in Fig. 5. It is clear that the
naive extrapolation in Q2 by Eq. (29) causes a significant
enhancement of the SU(3)-breaking in our results, partic-
ularly for the Σ → N transition where in our calculation
the value of Q2 is the largest. We emphasize that our
numerical results are presented in Table II and obtained
at non-zero values of Q2; the Q2 = 0 results are merely
shown to facilitate comparison with other work and are
obtained using Eq. (29) with no attempt to quantify the
model-dependence of the extrapolation.

It is clear from Fig. 5 that quark models in general
predict negative corrections from SU(3)-breaking [10, 11]

• •• •
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Figure 2: One loop corrections to vector current charges. In red the results from the
one-loop calculation and in blue the results from a recent LQCD calculation [13]

3. Axial vector currents

The axial currents play a key role in the implementation of the 1/Nc expansion in
baryons. As mentioned earlier, their couplings O(Nc) to baryons require for consistency
of the effective theory that there is a dynamical spin flavor symmetry. To lowest order in
BChPT ×1/Nc the spatial components of the axial currents are given by Aia =Gia. This
provides already a first important test of the validity of the spin flavor symmetry, as it locks
the relation between the axial couplings of the nucleon and of the ∆−N transition. Using
the ∆−N transition determined at LO by the matrix element of the axial current and the
resulting width of the ∆, one obtains that the ∆−N transition axial coupling is only 2%
smaller than the nucleon’s one, confirming the accuracy of the spin flavor symmetry. In the
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following the one loop corrections are discussed. As observed in LQCD calculations, the
quark mass dependencies of the axial couplings are rather small. Attempts to describe that
observation in ordinary BChPT fail precisely because it does not respectNc power counting.
The cancellation of those terms in BChPT × 1/Nc is quite dramatic, as illustrated by
Figure 4 which is the result of a calculation in SU(2) [5]. This leads naturally to the small
non-analytic in quark mass contributions to the axial couplings. In SU(3) with Nc = 3 at
LO the axial couplings of the octet baryons are determined by the two parameters F and
D, which in SU(6) are predicted to be F/D = 2/3, known to be rather close to the actual
physical case.

A1 A2q, a q, a q, a

B1 q, a

Figure 3: One loop corrections to axial vector current couplings.

The one loop corrections to the axial couplings are given by the diagrams in Figure
3. Unlike the case of the vector charges, here renormalization is needed. It involves a
renormalization of by a counterterm O(1/Nc), and a number of counterterms: quark mass
independent ones that break the spin symmetry, and quark mass dependent ones, a total
of nine for general Nc, some of which are irrelevant at fixed Nc = 3 (see [6] for details).
LQCD calculations of axial couplings have a long history, but in the context of SU(3) and
including those of the decuplet baryons the efforts are rather recent. Ref. [15] provides
results for the couplings of the two neutral axial currents for both octet and decuplet. In
that calculation ms is kept fixed to approximately its real value, and mu = md is varied
corresponding to the interval 200 MeV<Mπ < 450 MeV. Adjusting the definition of axial
couplings to those used in [15], using BChPT ×1/Nc one fits the LECs corresponding to
the mentioned renormalizations. The small quark mass dependency of the axial couplings
is naturally described, i.e., with LECs which have natural size magnitude. The LQCD
results used here have the well know issue of giving the nucleon’s axial couplings about
10% smaller than the physical one; this seems to be also the case for the rest of the
couplings. One would expect that a corresponding fudge factor for all couplings can give
a realistic adjustment of that issue. Among the important points is that the LO coupling
is adjusted by renormalization to be about 20% smaller that at tree level. The one loop
corrections to the axial couplings are not small for the spin-flavor singlet contributions,
i.e., the ones that renormalize , while they are small for the rest, including the quark mass
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dependent ones. For further tests of the performance of BChPT ×1/Nc in describing axial
couplings it would be good to have LQCD calculations for the decuplet-octet transition
axial couplings, as well as calculations wherems is also varied, as this would help determine
the LECs with more accuracy. It is interesting to observe that there are several tests based
on combinations of axial couplings which vanish at NNLO tree level receiving only finite
loop corrections [6]. Such predictions can be used as tests of the effective theory vis-à-vis
LQCD calculations. The NNLO results also show that there are no one-loop contributions
to the Goldberger-Treiman discrepancies (now generalized to octet and decuplet as well as
transition GT discrepancies), with only tree level contributions by two terms (singlet and
octet in quark masses) in the O(ξ3) Lagrangian [6]. Finally, recent LQCD calculations of
axial form factors [16] are a strong motivation for extending the analysis of the couplings
in [6] to the form factors.

SU(3) BChPT×1/Nc José L. Goity
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Figure 1: Left panel: summary of the determinations of σπN from πN scattering (blue), from LQCD (red), and from this work showing the

combined fit and theoretical error. Right panel: N and ∆ masses from Fit 2 of Table 1: physical and LQCD masses from [32]. The squares are the

results from the fit and the error bands correspond to 68% confidence interval.

∆GMO and the nucleon σ terms. The value of σπN = 69±10 MeV obtained here from including LQCD baryon masses

agrees with the more recent results from πN analyses, where the increase in value with respect to previous analyses

has been understood as a result of the values of the input scattering lengths, and strongly disfavor the values from

recent LQCD evaluations. The tension between results, which includes LQCD, remains as an important problem to

which the present approach can hopefully contribute with useful insights. The resolution of that tension will in turn

provide a validation test of the approach.
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Figure 4: Finite loop correction to the axial coupling of the nucleon in SU(2), evaluated
at renormalization scale µ=m0, showing the dramatic cancellation effect of including the
∆ contribution.
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Figure 5: Neutral axial currents’ couplings of octet and decuplet baryons. Data from the
LQCD calculation of Ref. [15].
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4. Summary

The impact of the 1/Nc expansion on BChPT cannot be emphasized strongly enough.
It improves the convergence of observables by eliminating Nc power counting violating
contributions, leading to vastly improved behavior of the low energy expansion. This
has been demonstrated for several observables, namely masses, vector charges and axial
couplings as discussed in this note. The case of baryon masses, discussed in detail in [17, 8],
is of particular interest. It is in the masses where there is a contributionO(Nc), proportional
to (mu+md+ms)

3
2 , which is a manifestation of the non-commutativity of the chiral and

1/Nc expansions; such a contribution is spin-flavor singlet. All contributions which break
spin and/or flavor symmetry are however O(1/Nn

c ) with n≥ 0. In particular relations such
as Gell-Mann-Okubo and Equal Spacing, which remain valid at generic Nc, are corrected
by calculable at NNLO terms O(1/Nc), which helps explain the small deviation observed in
the physical case. The discussion of the currents presented here also shows very important
differences with respect to ordinary BChPT, being the case of the axial currents where the
improvements are most significant. Virtually any baryon observable will be affected by the
imposition of consistency with the 1/Nc expansion, and thus revisiting the most important
ones is worthwhile. In addition to current form factors, the applications to πN scattering
and to Compton scattering are of high interest [18, 19].
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