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Abstract

At high energy, exclusive meson photo- and electro-production give access to the structure of
hadronic matter. At low momentum transfers, the exchange of a few Regge trajectories leads to
a comprehensive account of the cross-sections. Among these trajectories, which are related to
the mass spectrum of families of mesons, the Pomeron plays an interesting role as it is related to
glue-ball excitations. At high momentum transfers, the exchange of these collective excitations
is expected to reduce to the exchange of their simplest (quark or gluon) components. However,
contribution from unitarity rescattering cuts are relevant even at high energies. In the JLab energy
range, the asymptotic regime, where the players in the game are current quarks and massless gluons
has not been reached yet. One has to rely on more effective degrees of freedom adapted to the
scale of the probe. A consistent picture, the “Partonic Non-Perturbative Regime”, is emerging.
The properties of its various components (dressed propagators, effective coupling constants, quark
wave functions, shape of the Regge trajectories, etc. . . ..) provide us with various links to hadron
properties. I will review the status of the field, will put in perspective the current achievements at
JLab, SLAC and Hermes, and will assess future developments that are made possible by continuous
electron beams at higher energies.

1 Introduction

Exclusive photo-production of mesons at high momentum transfer offers us a fantastic tool to investigate
the partonic structure of hadrons. The high momentum transfer implies that the impact parameter is
small enough to allow for a short distance interaction between, at least, one constituent of the probe
and one constituent of the target. In addition, the exclusive nature of the reaction implies that all
the constituents of the probe and the target be in the small interaction volume, in order to be able to
recombine into the well defined particles emitted in the final state.

The relevant constituents depend on the scale of observation. At low momentum transfer −t =
−(k − µ)2 (or −u = −(k − pf )

2), being k, µ and pf respectively the four-momentum of the incoming
photon, the emitted meson and the recoiling hadron, a comprehensive description [1, 2] of available
data is achieved by the exchange of a few Regge trajectories between the probe and the target. At very
high (asymptotic) momentum transfer −t (and −u), the interaction should reduce to the exchange of
the minimal number of gluons needed to share the momentum transfer between all the current quarks
which combine into the initial and final hadrons [3]. Here, dimensional counting rules lead to the famous
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power law behavior of the various cross sections. This is schematically depicted [4] in the top part of
Figure 1.
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Figure 1: (Color on line) A schematic view of the evolution of the reaction mechanism toward
hard scattering. See the description in the text.

When the incoming photon becomes virtual (as it is exchanged between the scattered electron and
the hadrons) two things happen. On the one hand, the lifetime ∆τ = 2ν/(Q2 + m2

V ) of its hadronic
component decreases (being ν, Q2 and mV the energy and the virtuality of the photon and the mass of
the vector meson respectively): its coupling becomes more point-like. On the other hand, the transverse
wave length (λ ∼ 1/Q) of the photon decreases: it probes processes which occur at shorter and shorter

distances. When both the virtuality Q2 = −q2 = ν2 − ~k2 of the photon and the momentum transfer
−t are small (top left panel), the photon behaves as a beam of vector mesons which passes far away
from the nucleon target (large impact parameter b ∼ 1/

√
−t): the partons which may be exchanged

have enough time to interact which each other and build the various mesons, whose the exchange drives
the cross section. At high −t (top right), the small impact parameter b is comparable in size to the
hadronization length of the partons which must be absorbed or recombined into the final particles,
within the interaction volume of radius b, before they hadronize. In other words, the two partons,
which are exchanged between the meson and the nucleon, have just the time to exchange a single gluon.
When Q2 increases, the resolving power of the photon increases and allows it to resolve the structure
of the exchanged quanta. When −t is small (bottom left), it “sees” the partons inside the quantum
which is exchanged between the distant meson and nucleon. When −t is large (bottom right), its wave
length λ becomes comparable to the impact parameter b: the virtual photon “sees” the partons which
are exchanged during the hard scattering.

Varying independently the momentum transfer and the virtuality of the photon enables us to identify,
to determine the role and to access the interactions between each constituent of hadrons.

Pioneering works have been performed at SLAC, Cornell, Daresbury, etc.. At Jefferson Laboratory
(JLab), the Continuous Electron Beam Accelerator Facility (CEBAF) at 6 GeV allowed to reach mo-
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mentum transfers −t up to 6 GeV2 in exclusive reactions, at reasonably high energy (s up to 12 GeV2).
Also, its high intensity continuous beam made it possible to systematically study the virtual photon
sector up to photon virtuality Q2 ∼ 6 GeV2. These ranges are considerably enlarged with the present
upgrade of CEBAF at 12 GeV.

The high momentum transfers accessible at JLab correspond to a resolving power of the order of
0.1 to 0.2 fm. It is significantly smaller than the size of a nucleon, but comparable to the correlation
lengths of partons (the distance beyond which a quark or a gluon cannot propagate and hadronizes). At
this scale, the relevant degrees of freedom are the constituent partons, whose lifetime is short enough to
prevent them to interact and form the mesons which may be exchanged in the t-channel, but is too long
to allow to treat them as current quarks or gluons. This is the partonic non-perturbative regime, where
the amplitude can be computed as a set of few dominant Feynman diagrams which involve dressed
quarks and gluons, effective coupling constants and quark distributions [7].

This has been best achieved in the φ meson production channel. The modeling [5] of the Pomeron
in terms of two gluons provides a good description [2, 6, 7] of the photo-production cross section [8] at
high −t. In addition the exchange of meson Regge trajectories are needed to account for the angular
distributions in the photo-production of ρ and ω mesons [9, 10].

Those meson exchanges dominate the photo-production of pseudo-scalar mesons. The structure of
the amplitudes and the coupling constants are the same as at lower energies [11]. Simply, the Feynman
propagators are replaced by the relevant Regge propagators. Linear Regge trajectories lead to a good
description of the angular distributions at low −t, without extra parameters. A good description
of the cross sections at large −t is achieved when saturating Regge trajectories are used [1]: this is
an educated way to extrapolate toward the hard scattering regime. However, unitarity rescattering
cuts [12, 13, 14] dominate at high −t. They involve the propagation of on-shell hadrons and rely on
elementary amplitudes that are well constrained by independent experiments. The cuts involving the
propagation of the ρ meson survive even at the highest energies.

At backward angles (small −u, highest −t), the exchange of the Nucleon and ∆ Regge trajectories
is necessary to get a good representation of the cross sections.

Being calibrated at the real photon point such a description has been successfully extended to the
virtual photon sector. Here, apart from the Transverse amplitude, also its Longitudinal component
contributes to the cross section. At large −t, the data recorded at JLab [15, 16] and Hermes [17] are
well reproduced when electromagnetic form factors, whose −t dependency is related to the saturation
of Regge trajectories, are used [4]. Unitarity rescattering cuts dominate the cross sections of neutral
pion electro-production [14] and Virtual Photon Scattering [12] even at low −t.

The issue is therefore to identify the channels where the contribution of the unitarity cuts are small
and where there may be a chance to access the hard scattering regime.

In the two following sections, the salient features of each channel will be reviewed and put in
perspective of an hadronic description. In the fourth section, the players in the game will be presented.
Appendix A lists dedicated referred publications where more ancillary technical details can be found.
Appendix B summarizes the relation between the meson electro-production cross sections and the
components of the currents.

2 The real photon sector

2.1 Vector meson production channels

Figure 2 displays the evolution of the cross section of the photo-production of vector mesons with
the total c.m. energy W =

√
s. The details of the model and the references to experiments can be

found in [2]. At the highest energies (HERA), the cross section rises only moderately with energy
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Figure 2: The total cross section of the photo-production of vector mesons. Dashed curves:
Pomeron exchange. Dotted curves: f2 meson exchange included. Solid curves: π or σ meson
exchange included in the ω or ρ meson production channel respectively; π and f ′

2 meson
exchange included in the φ meson production channel.

and is dominated by the Pomeron exchange in all three channels. At low energies, f2 Regge exchange
dominates ρ meson production and contributes significantly to ω meson production. Pion exchange
dominates ω production, while σ meson exchange contributes moderately to ρ meson production. It is
remarkable that the available data follow, over two decades of the c.m. energy, the expected evolution
of the various dominant Regge exchange amplitudes.

Due to the dominant ss component of the wave function of the φ meson, those meson exchange
contributions are suppressed in the φ production channel: π, η and f ′

2 Regge exchanges contribute a
little near threshold. The cross section is therefore dominated by the Pomeron exchange in the entire
energy range in Figure 2.

2.2 The p(γ, φ)p reaction

This picture works best when the φ meson is emitted at the most forward angles (that drive the total
cross section). At higher −t > 1 GeV2, the Pomeron exchange contribution falls down faster than the
experimental data as can be seen in Figure 3. The data are better reproduced by modeling [5, 6, 2] the
Pomeron in terms of the exchange of two gluons as depicted in Figure 4. When the two gluons couple
to the same constituent quark in the nucleon (bottom part), the interference between their coupling to
the same constituent quark or to different quarks in the φ meson induces a node in the cross section.
This node disappears when the coupling to different correlated quarks in the nucleon is allowed (top
part). The two gluon contribution matches the Pomeron contribution at the lowest −t, but provides
more strength at high −t.

It turns out that, in the high energy limit, the Pomeron and the two gluon amplitudes have the
same functional form and the same structure at low −t. The treatment of the quark loop in the vector
meson is the same in the two approaches. The Pomeron Regge pole drives the dynamics of its exchange.
Since it is a perturbative-like calculation there is no Regge factor in the two gluon exchange amplitude:
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Figure 3: (Color on line) The differential cross section of the p(γ, φ)p reaction measured at
HERA. Dotted line: Pomeron exchange. Dashed line: 2 gluons exchange, without quarks
correlations in the nucleon (bottom graphs in Figure 4). Solid line: with quark correlations
in the nucleon (top graphs in Figure 4). References of the experimental data can be found
in [6, 2]
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the dynamics relies upon the shape of the effective gluon propagator and the detail of the constituent
quark wave function of the nucleon. While the two approaches leads to similar results at low −t, the
two gluon exchange approach is more suited at high −t. A detailed summary of these two approaches
is given in section4.5.

2 gluons

CORRELATIONS between quarks

Figure 4: (Color on line) The two gluon exchange graphs. Top: with quark correlations in
the nucleon. Bottom: without these correlations in the nucleon.

The curves in Figure 3 correspond to the latest version [7] of the model: it uses the parameteriza-
tion [18] of the gluon propagator evaluated on lattice, and the correlated constituent quarks nucleon
wave function [19] which reproduces the nucleon form factor. The gluon loop two fold integral is per-
formed numerically. Earlier calculations [5, 6, 2] used Gaussian forms, both for the gluon propagator
and the nucleon wave function, which resulted in a one fold integral. In the vector meson quark loop,
the quarks are frozen with a constituent mass equal to the half of the vector meson mass. Their coupling
to the vector meson is determined from the relevant radiative decay constant.

Thanks to the high intensity of the Continuous Electron Beam Facility (CEBAF), the −t distribution
has been extended to the highest values accessible at Jefferson Laboratory (JLab). In Figure 5 the φ
production cross sections at Eγ = 3.5 GeV (W = 2.73 GeV) [8] and Eγ = 4.5 GeV (W = 3.05 GeV)
follow the prediction of the two gluons exchange model supplemented, at the highest−t, by the reggeized
nucleon exchange in the u-channel. Consistently with the shape of the angular distribution of the photo-
production of ω meson (Figure 6), whose the Regge structure is the same at backward angles, the use
of a non-degenerated nucleon Regge trajectory produces the node outside the range of experimental
data. The analysis [20] of the tensor polarization of the emitted φ meson opened a window on the
strange content of the nucleon, by constraining the φNN coupling constant and determining its sign.
The experimental data at Eγ = 4.5 GeV have never been published, and are shown to illustrate the
evolution with energy of the u-channel contribution. Clearly, the extension of this experiment at higher
energy (Eγ = 12 GeV, for instance) will enlarge the domain where two gluons exchange, explicitly
taking into account the quark correlations in the nucleon, prevails.

2.3 The p(γ, ω)p reaction

In the JLab energy range, t-channel pion Regge exchange dominates the cross section of the p(γ, ω)p
reaction [10] at forward angles, while u-channel nucleon Regge exchange dominates at backward angles
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Figure 5: (Color on line) The differential cross section of the p(γ, φ)p reaction measured at
JLab. Dashed line: 2 gluons exchange without quark correlations. Dash-dotted line: with
quark correlations in the nucleon. Solid lines: u-channel Regge exchanges included.
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Figure 6: (Color on line) The differential cross section of the p(γ, ω)p reaction. Dot-dashed
line: 2 gluons exchange, including quark correlations. Dashed line: π, f2 and nucleon
exchanges with linear Regge trajectories. Solid lines: with saturating trajectory of the π.
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(Figure 6). In between, the use of a linear Regge trajectory for the pion misses badly the data. A decent
agreement is recovered when the saturating trajectory of the pion [1], which is plotted in Figure 7, is
used. It has been obtained [21] by determining the pion Regge trajectory from a QCD motivated
effective interquark potential: its confining part leads to the linear part of the trajectory in the time
like region, while its short range one gluon exchange part leads to the saturation of the trajectory
απ(t) ≈ -1 in the space like region. Such a saturation has been also noted [22] in nucleon-nucleon and
pion-nucleon scattering. It provides a way to reconcile the Regge exchange model with counting rules
at high −t.

π, ρ trajectories
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Figure 7: Saturating Regge trajectories [1, 21].

2.4 The p(γ, ρ)p reaction

Figure 8 shows the differential cross section of the p(γ, ρ)p reaction in the JLab energy range. Besides
two gluons exchange, f2 and σ Regge exchange contribute significantly at forward angles, while nucleon
and ∆ Regge exchanges dominate at backward angles. The use of a saturating Regge trajectory of the
σ restores the agreement with the experimental data [9] at high −t and −u, in the intermediate angular
range (1 ≤ −t ≤ 4 GeV2).

2.5 Real Compton scattering

As can be seen in Figure 9, the differential cross section of the p(γ, γ)p reaction [23] has the same shape
as that of the p(γ, ρ)p reaction depicted in Figure 8. The reason is that the lifetime of the fluctuation of a
ν ≈ 4 GeV outgoing photon into a ρ meson (see left graph in Figure 29) is about ∆τ = 2ν/m2

V = 2.6 fm,
comparable or larger that the size of the nucleon. Therefore the first contribution to the cross section
comes from the photo-production of a ρ meson which converts into a real gamma outside the nucleon
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Figure 8: (Color on line) The differential cross section of the p(γ, ρ)p reaction. Dot-dashed
line: 2 gluons exchange with correlations. Dashed line: 2 gluons exchange without corre-
lations. Dotted line: σ and f2 exchange with linear Regge trajectories. Solid line: with
saturating trajectory of the σ. Nucleon and ∆ Regge exchanges in the u-channel are also
included in the dotted and full lines.

(left graph in Figure 29): the cross section is simply the ρ meson photo-production cross section scaled
by 4παem/f

2
V = 0.00361 where fV is the radiative decay constant of the ρ. The numerical mistake in the

evaluation of this scaling factor in [7] and [24] has been corrected in [25] and subsequent publications.
This correction does not affect the spin transfer coefficients, but leads to a theoretical Compton cross
section which is lower than the data.

As can be seen in Figure 10, the agreement with the data [26] and [27] is restored [12] when the
conversion of the ρ meson into the final photon occurs in the target nucleon (unitarity inelastic cut in
the right part of Figure 29). Unfortunately, the effects of this cut have been quantified only in the range
of low −t which has been covered in the existing Virtual Compton Scattering experiments (section 3.4):
The extension to higher −t remains to be done.

The pole model [24] leads also to a good description of the experimental spin transfer coefficient [28],
opposite to the prediction of pertubative QCD. However the influence of the rescattering cuts remains
to be evaluated here too.

2.6 Charged pion photo-production

Figure 11 shows the differential cross section of π+ photo-production at Eγ = 5 GeV and 7.5 GeV, in
the entire accessible −t range. At low −t, the data are well reproduced by the gauge invariant t-channel
exchange of the π and ρ Regge poles [1], with linear trajectories. At the largest −t (lowest −u), the
exchange of the nucleon and the ∆ Regge poles [13], in the u-channel, dominates the cross section.

At large −t and −u, the ρ0p inelastic cut (Figure 12) fairly accounts for the plateau in the differential
cross section. The singular part of the rescattering integral is computed numerically and depends
upon the on mass shell elementary amplitudes which are strongly constrained by experiments: see e.g.

Figure 8 for ρ0 meson photo-production, Figure 3 in [13] for the ρ0 to π+ transition. Therefore, the
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Figure 9: (Color on line) The differential cross section of the p(γ, γ)p reaction at Eγ = 4 GeV.
The curves are the same as in Figure 8, but scaled by 4παem/f
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agreement with the data is remarkable, since there are no free parameters.
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Figure 12: The unitarity cut contributions in the p(γ, π+)n reaction. Left: π+n elastic cut.
Right: ρ0p inelastic cut. The label ”u” stands for u-channel Regge exchanges.

The cut associated with the ρ0 meson propagation survives at the highest photon energies, since
the ρ0 production cross section stays almost constant with increasing energy (see Figure 2). It also
dominates over the others since the cross section of the p(γ, ρ0)p reaction is the largest of the various
mesons photo-production reaction cross sections, as it is evident from Figure 2. For instance, the π+n
elastic unitarity cut plays a little role at large −t and −u. However, it interferes destructively with the
Regge pole amplitudes, due to the dominant absorptive nature of the π+n elastic amplitude at high
energy. Such a subtle effect is quantified in Figure 4 of [13]: it helps to reproduce the rising differential
cross section a the very forward angles.

Alternately, the plateau at intermediate momentum transfers has also been reproduced [1] by the
use of pion and ρ Regge saturating trajectories. Although there is no doubt that Regge trajectories
must saturate at large −t, the way they have been implemented in the reaction amplitude must be
revisited in view of the dominance of the well constrained unitarity rescattering cut contribution (see
section 4.4).

2.7 Neutral pion photo-production

None of the inelastic unitarity cuts dominates the neutral pion photo-production cross section. Since
the ρ0 meson cannot decays into two π0’s, the corresponding cut (which dominates charged pion photo-
production) is strongly suppressed. In Figure 13, Charge Exchange (Figure 14) and vector mesons
(Figure 15) unitarity cuts contribute equally [14] at intermediate −t and −u. At backward angles, u-
channel nucleon and ∆ Regge Pole exchange amplitudes are the same as in the charged pion production
channel, with trivial changes of the charge and coupling constants. At forward angles the model [14]
relies on the exchange in the t-channel of the ω, the ρ and b1 Regge trajectories. Contrary to ref. [1],
where the use of a non degenerated Regge trajectory for the ω leads naturally to the node at −t ∼
0.5 GeV2, the model [14] uses a degenerated trajectory. The interference with the elastic pion rescat-
tering cut restores the node. Each description leads to a very similar result at the real photon point,
but the model with the interference between the pole and the cut is better suited to the analysis of the
virtual photon sector (see section 3.3).

The highest energy (Eγ above 3 GeV) sample of the latest JLab data [29] are plotted together with
older data in Figure 16. The model describes reasonably well the data, specially at the highest energies
accessible at JLab. Clearly the extension to higher energies would allow to enlarge the intermediate −t
and −u range and to carry out a more comprehensive study of the various cut contributions.
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2.8 Kaon photo-production

Figure 17 shows the differential cross section of the p(γ,K+)Λ reaction. The exchange of the K+ and
the K∗+ meson non saturating Regge trajectories [1] dominates at forward angles, while the exchange
of the Λ, Σ and Σ∗(1385) baryon Regge trajectories in the u-channel dominates at backward angles.
Those u-channel exchange amplitudes have the same form as the nucleon and ∆ amplitudes [13] with
trivial adjustments of the coupling constants and propagators.

It seems that there is little room for unitarity cuts. However, the energy may be too low. Also,
contrary to the pion channels, there is no obvious candidate for an intermediate state with a sizable
production cross section. This is an open issue. An extension of the experiment at higher energies is
clearly needed.

At lower energies (below Eγ = 3 GeV), the model reproduces reasonably well the JLab data [32] over
the entire angular range. However, those data lie in the resonance region, where a Regge approach is not
supposed to work well. In the Λ production sector many resonances contribute and the Regge amplitude
averages their amplitudes. This is not the case in the Σ production sector where the contribution of a
few dominant resonances must be taken into account explicitly.
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Figure 17: The differential cross section of the p(γ,K+)Λ reaction at Eγ = 4 GeV. Dashed
line: K and K∗ exchanges in the t-channel. Dotted line: with Λ and Σ exchange in the
u-channel. Solid line: with Σ∗ exchange in the u-channel. References to the data can be
found in [1].

2.9 J/Ψ meson photo-production

Because of the high value of the mass of the charm quark (about half of the mass of the J/Ψ vector
meson) the approximate treatment of the quark propagator in the cc loop in the two gluon exchange
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amplitude is better justified here (see the discussion of Figure 4 above and section 4.5). It also provides
us with a new mass scale.

Figure 18: (Color on line) The differential cross section of the p(γ, J/Ψ)p reaction measured
at HERA [33, 34] and FNAL [35]. Dotted line: with the approximate nucleon wave function
and gluon propagator used in [2]. Solid line: with the realistic wave function of the nucleon
and the gluon propagator from lattice used in [7].

Figure 18 compares the latest version of the two gluon exchange model [7] to the differential cross
section of the p(γ, J/Ψ)p reaction investigated at HERA [33, 34] and FNAL [35]. On the one hand,
it shows the sensitivity of the model to the choice of the nucleon wave function and the gluon prop-
agator: the more realistic correlated quark nucleon wave function [19] together with the lattice gluon
propagator [18], that have been used in [7], leads to a very good agreement with HERA data (W =
94 GeV), contrary to the approximate Gaussian form used in [2]. On the other hand, the FNAL data
(W = 16.8 GeV) exhibit a slower decrease but match the HERA data above −t = 0.4 GeV2 (within
the error bars) where the model is best suited. As can be seen in Figure 19, this high −t domain is
selected at JLab12 between the threshold and W = 4.64 GeV (Eγ = 11 GeV), due to the large value of
|t|min ≥ 0.4 GeV2.

It has also been proposed [36] that three gluon exchange may dominate the cross section near thresh-
old. Such a prediction have been confirmed by the data recently released by the Hall D collaboration [37]
at JLab.

All these issues will be addressed in the next few years by ongoing experiments at JLab.
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3 The virtual photon sector

3.1 Vector mesons electro-production

The Q2 dependency is already built in the two gluons exchange amplitude. Without any extra param-
eters, it fairly accounts for the ρ0 meson electro-production cross section determined at CERN energies
by EMC collaboration [38], as can be seen in Figure 20. I refer the reader to [6] for more details and
references to experimental data.

Figure 20: The variation with Q2 of the total cross section of the p(γ∗, ρ0)p reaction measured
at CERN. The dashed line shows the Pomeron exchange prediction. The solid line shows
the two gluon exchange prediction.

The latest version [7] of the two gluon exchange model also leads to a fair description of the sparse
available data in the φ meson electro-production. Figure 21 shows the evolution of the total cross
section with Q2 in the HERA high energy range (< W >= 90 GeV), the HERMES intermediate energy
range (< W >= 5 GeV ) and the JLab energy range [39] close to threshold (< W >= 2.4 GeV). Since
the data correspond to a large bin in W , the curves correspond to the mean value and the two limits of
the bin. The model reproduces also fairly well the differential cross section which has been measured
at JLab (Figure 22). Again the curves correspond to the range of virtuality in the bin.

Such an agreement is highly non trivial, since no extra parameters have been adjusted when entering
the virtual photon sector. It thus confirms both the −t and the Q2 dynamics that are built into the qq
quarks loop and the two gluons loop.

In contrast to the description of the φ production data, electromagnetic form factors have to be
added to the Regge pole amplitudes that contribute significantly to the production of ω and ρ at low
energies.

Figure 23 summarizes the evolution of the differential cross section of the p(γ∗, ω)p reaction with
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Figure 21: (Color on line) The variation with Q2 of the total cross section of the p(γ∗, φ)p
reaction measured at JLab, CORNELL, HERMES and HERA. The curves are the prediction
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the photon virtuality Q2. When the canonical pion electromagnetic form factor

Fπωγ(Q
2) =

1

1 + Q2

Λ2
0

(1)

with Λ2
0 = 0.462 GeV2, is introduced at the πωγ vertex of the π-exchange amplitude which reproduces

real photon data (section 2.1) in the left panels, one obtains the dashed curves in the right panels.
They reproduce the evolution of the virtual photon cross section at low momentum transfer, but fall
short by more than an order of magnitude at large momentum transfer. Here, the experimental cross
sections [15] are nearly independent of the virtuality Q2 of the photon, as demonstrated in Figure 24.
This points towards a coupling to a more compact object: The agreement is restored (solid curves)
when a t-dependence on is given to the pion form factor [4]. It is natural to relate it to the way the
pion saturating Regge trajectory, απ(t) [1], approaches its asymptote −1:

Fπωγ(Q
2, t) =

1

1 + Q2

Λ2
π(t)

(2)

with

Λ2
π(t) = Λ2

0 ×
(

1 + απ(0)

1 + απ(t)

)2

(3)

When t → −∞, απ(t) → −1, and Fπωγ(Q
2, t) becomes independent of Q2 at large −t.

Such an ansatz links the evolution of Fπωγ, from the coupling to a nearly on-shell pion toward the
coupling to a point-like far off-shell constituent, with the saturation of the pion Regge trajectory which
is already at work in the amplitude at large −t (section 2.1). While such a t-dependent form factor is
given to us by the experiment, it provides us with a quantity which can be used in related channels;
however it remains to be explained in a more fundamental theory.

The use of the same −t dependency in the γσρ electromagnetic form factor leads to a fair accounting
of the p(γ∗, ρ)p reaction cross section that have been determined in a large kinematics range at JLab. I
refer to the corresponding experimental paper [40] for a detailed comparison between the data and the
model.

3.2 Charged pion electro-production

The analysis of charged pion electro-production needs also a t-dependent form factor (equations 2
and 3) in the Regge pole amplitudes as well as in the ρ0p rescattering amplitude. Figure 25 compares
the Hermes data [17], at W = 4 GeV and Q2 = 2.4 GeV2, to such a prediction as well as to the real
photon data (from figure 11). While the Transverse part (dotted line) is strongly suppressed at the
lowest −t, as expected from the behavior of the canonical electromagnetic form factor of the pion, it
becomes comparable to the real photon cross section at −t ∼ 2 GeV2, as predicted by the use of the
t-dependent form factor. In addition, the pion pole dominates the Longitudinal cross section at the
lowest −t. The extension of such a measurement in the entire −t range would be worthwhile at JLab12
in order to check the contribution of the unitarity cuts in the virtual photon sector. (See Appendix B
for the definition of the Transverse and the Longitudinal cross sections).

Such a systematic study has been carried out at lower energies (JLab6, W ∼ 2.3 GeV). The data [16]
confirm the need of t-dependent form factors. I refer to this experimental paper for a comprehensive
comparison between the model and the data.

An interesting alternative approach [41] leads also to a fair agreement with the world experimental
data at low −t. It takes into account baryonic resonances in the s-channel, or u-channel, amplitudes
that are necessary to restore the gauge invariance of the pion pole. It uses a dual connection between
the exclusive hadronic form factors and inclusive deep inelastic structure functions. To what extent this
approach is suited to larger −t is an open problem.
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Figure 24: (Color on line) The Q2 dependency of the differential cross section of the p(γ∗, ω)p
reaction at constant −t.

3.3 Neutral pion electro-production

When the virtuality Q2 of the photon increases, two things happen: Firstly, the dip, around −t =
0.5 GeV2 in the real photon differential cross section (see e.g. Figure 13), disappears already at low
virtuality: this cannot be explained by simply supplementing the real photon amplitudes with a single
form factor. The problem has been solved [14] by giving a different Q2 dependency to the form factor
attached to the ω Regge pole amplitude and the form factor attached to the elastic unitarity cut. As
can be seen in Figure 26, such a procedure allows to move the node to higher values of −t and to achieve
a good understanding of the DESY data [42] at low virtuality of the photon (red and black solid lines).

Secondly, this pole model misses, by about an order of magnitude, the data [43] measured at JLab
(Hall A) around Q2 = 2.3 GeV2 (bottom right of Figure 26). It turns out that the inelastic unitarity
cuts associated with charged ρ meson propagation dominate the cross section here and lead to a good
understanding of the data. The reason is that the cross section of the electro-production of charged rho
mesons, which corresponds to only 10% of the cross section of electro-production of neutral rho mesons
at the real photon point, becomes comparable at Q2 ∼ 2.3 GeV2, as can be seen in Figure 27.

The model reproduces also fairly well the data recorded at JLab (Hall B), over an extended range
in Q2, W and −t. I refer the reader to Figure 20 of the experimental paper [44], for a comprehensive
comparison of the model with the data. Figure 28 emphasizes two kinematics: lowest virtuality Q2 =
1.16 GeV2, but highest energy W = 2.9 GeV; central virtuality Q2 = 2.25 GeV2, and energy W =
2.3 GeV. This latter kinematics is very close to the JLab (Hall A) kinematics [43] in Figure 26. The
definition of the unpolarized (σL + ǫσT ) and interference cross sections (σTT and σTL) are given in
Appendix B. As far as the unpolarized and Transverse-Tranverse cross sections are concerned the two
experiments got similar results. The slight difference (about 20%) between the unpolarized cross sections
follows the expected energy variation of the theoretical cross section: compare the curves in Figure 26
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(bottom right) and Figure 28 (right) which have been computed for the corresponding kinematics (as
summarized in the body of the Figures). It turns out that the Transverse-Longitudinal experimental
cross sections are comparable in magnitude but opposite in sign. From the experimental papers it is
not possible to understand the origin of this inconsistency.
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Figure 28: (Color on line) The differential cross section of the p(γ∗, π0)p reaction mea-
sured at JLab by the CLAS collaboration [44] (full squares) and Hall A collaboration [43]
(open circles). Black curves and points: unpolarized cross sections. Red curves and points:
Transverse-Tranverse cross sections. Blue curves and points: Transverse-Longitudinal Cross
sections. Solid lines: full model with cuts. Dashed line: without inelastic cuts.

Since the modeling of the elementary amplitudes of the charged vector meson production and the
ρ to π Charge Exchange reaction are constrained by independent experiments, the contribution of the
ρ+n inelastic cut is on solid ground. Due to the lack of dedicated experiments, the contributions of the
ρ+∆0 and ρ−∆++ cuts are less constrained, but are based on reasonable assumptions.

Since the charged vector meson production amplitude is driven by the exchange of Reggeons, the
contribution of the corresponding cuts is expected to decrease when the total energy W increases, in
contrast with the cuts associated with the propagation of the neutral vector meson which survive at high
energies, since the production amplitude is driven by the exchange of the Pomeron (see e.g. Figure 2).

The extension of the measurement to higher energies (at JLab12, for instance) would allow to check
these conjectures.
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3.4 Virtual Compton scattering

Deeply Virtual Compton Scattering (DVCS) is advocated as the flagship experiment to determine
the Generalized Parton Distributions (GPD) of the nucleon. At sufficiently high virtuality Q2, there
is no doubt [45, 46] that the DVCS amplitude factorizes into the perturbative QCD coupling of the
photon to a current quark and the GPD. However, unitarity rescattering cuts (Figure 29) contribute
significantly [12] in the range of energy and momentum transfer that has been accessible in current
experiments.

γ∗

ρ

pp
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γ

P f
2
, σ

γ∗ γ
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pp

P, f
2
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ρ

p

Figure 29: The relevant graphs in the γ⋆p → pγ reaction. Left: Poles + direct conversion.
Right: ρ-nucleon unitarity cut.

When added to the pure QED Bethe-Heitler amplitude they reproduce the pioneering experimental
results of JLab [47], as can be seen in Figure 30, and Hermes[48, 49] (see Figure 7 in [12]).

The coupling with vector meson production channels represents the major part of the DVCS am-
plitude at reasonably low Q2 (up to about 3 GeV2). The coupling to the elastic ρp channel is on solid
ground, since it relies on on-shell matrix elements that are driven by measured ρ photo- and electro-
production cross sections. It provides us with a reliable lower limit of the DVCS cross sections and
observables. The coupling with the inelastic channels is constrained by unitarity and leads to a fair
account of all the DVCS observables. This conjecture has to be kept in mind in any attempt to access
and determine the GPD at the low virtuality Q2 currently available at JLab or Hermes. The available
energy is too low (

√
s < 2.5 GeV at JLab) to sum over the complete basis of hadronic intermediate

states, and safely rely on a dual description at the quark level.
At higher Q2, the available energy increases (at fixed Björken-x) and a partonic description may

become more justified: Above which Q2 is an open issue. However, the contribution of the unitarity cut
associated with the propagation of ρ0 meson will survive even at the highest energies, since its production
cross section not only dominates over the other channels, but also stays constant (see Figure 2).

Any sensible program, that is aimed at determining the GPD with the DVCS reaction, cannot ignore
the very relevant contribution of the various hadronic unitarity cuts and should include a concurrent
determination of the transverse and longitudinal cross sections of the elastic and inelastic production
of vector mesons.

4 Players in the game

Let us now go back to each of the players in the game that we have met in the preceding sections.

4.1 Regge Poles in the t-channel

At forward angles the reaction amplitude is driven by Feynman graphs in which the lightest mesons are
exchanged according to the spin-isospin structure of the vertices. While this description has proven to
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be efficient at low energies (see e.g. [11]), it fails at high energies since the Feynman amplitude increases
as sJ , being J the spin of the exchanged particle, due to the derivative nature of the vertices. Not only
this is not supported by experiments, but also this does not satisfy unitarity.

Regge poles allow to reconcile particle exchanges and the correct energy dependency of the cor-
responding amplitudes which respects unitarity. In the late fifties early sixties, on the basis of the
analytic and unitarity properties of the S-matix and in the limit of high energies, T. Regge [51, 52]
showed that the reaction amplitude is driven by a few poles, and a few cuts, in the complex angular
momentum plane. Each of these Regge poles is related to a family of hadrons which have the same
quantum numbers but differ by their spin. In the time-like region (t > 0) each family lies on a linear
Regge trajectory α(t) which relates their spin J to the square of their mass (which coincides with t):

α(t) = J = α0 + α′t (4)

where the slope α′ is close to 0.9 GeV2 for all trajectories and the intercept α0 is specific to each
trajectory, as can be seen in Figure 31.

Figure 31: The Regge trajectories associated with the π (solid line), the ρ (dashed line) and
the ω (dot-dashed line) families.

The Regge amplitude takes the generic form:

ARegge = β(t, J0)PRegge (5)

where β(t, J0) stands for the vertices spin-momentum dependent coupling with the exchanged particle
with the lightest mass in the trajectory, and spin J0, while PRegge is the Regge pole:

PRegge =
(

s

s0

)α(t)−J0 πα′

sin(πα(t))

S + e−iπα(t)

2

1

Γ(1− J0 + α(t))
(6)
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In this expression, s0 is a mass scale which is conventionally taken as s0 = 1 GeV2 in all channels,
except in the Pomeron exchange channel (see section 4.5), and the gamma function Γ suppresses the
poles in the space-like scattering region (t < 0). The Regge propagator reduces to the Feynman
propagator (1/(t−m2)) when one approaches the first pole on the trajectoriy (i.e. t → m2). This means
that farther one goes from the pole, the more the result of the Regge model will differ from conventional
Feynman diagram based models. On the one hand, the term s−J0 in the propagator compensates the
term sJ0 which drives the vertex amplitude at high energy, and the reaction amplitude (5) behaves
as sα(t). Since the intercept α0 of all hadron trajectories is lower than unity, the Regge cross sections
decrease with energy and do not violate the unitarity bound. On the other hand, the extrapolation of
the linear trajectories in the space-like region allows to reproduce the characteristic exponential decrease
of the experimental cross sections up to −t ∼ 2 Gev2 (above the trajectories may become non-linear as
we shall see in section 4.4).

In the late sixties early seventies, this scheme was used to fit the helicity amplitudes of the reactions
available in the few GeV energy range. On the contrary, in [1] (and subsequent works) we started
from the Feynman amplitudes (with the full spin and momentum dependencies) where we replaced
the Feynman propagator by the corresponding Regge propagator. Therefore the predictions of the
Regge model are basically parameter free, since the structure of the matrix elements relies on the
the well known symmetries and conservation laws, and since the various coupling constants have been
independently determined in the numerous and precise studies and analyses, in the resonance region
for instance.

In addition two subtle improvements have been documented in [1]: i) the use of degenerated trajec-
tories with either constant phase or rotating phase; ii) the implementation of gauge invariance in π±

production channels.
The signature S = ±1 insures that each trajectory connects particles with even or odd spin. In the

space-like region, it induces zeros in the amplitude which coincide with the experimental nodes in certain
channels (for instance, in the π0 photo-production channel), but which are absent in other channels (for
instance the π± photo-production channels). It turns out that the trajectories with opposite signature
go by pair. In Figure 31 the π (even spins) and the b1 (odd spins) trajectories are almost the same. This
is also the case for the ρ (odd spins) and the a2 (even spins) trajectories. Adding or subtracting the
corresponding Regge amplitudes gets rid of the zeros in the space-like region, and leads to degenerate
trajectories with either a rotating (e−iπα(t)) or a constant (1) phase. The actual degeneracy scheme is
driven [1] by the G parity of the photon-meson coupling. For instance, the π± production cross sections
read, in a schematic notation:

dσ

dt
(γp → π+n) ∝| (π + b1) + (ρ+ a2) |2 , (7)

dσ

dt
(γn → π−p) ∝| −(π − b1) + (ρ− a2) |2 , (8)

More explicitly, Eqs.(7) and (8) are written as :

dσ

dt
(γp → π+n) ∝| Mπ e

−iπαπ(t) +Mρ e
−iπαρ(t) |2 , (9)

dσ

dt
(γn → π−p) ∝| −Mπ · 1 +Mρ · 1 |2 , (10)

where Mπ and Mρ are the π+ production amplitudes (without the Regge phase) corresponding with
the exchange of a π or ρ trajectory respectively. G-parity considerations thus lead to a rotating phase
for the π and ρ trajectories in the γp → nπ+process and to a constant phase in the γn → pπ−process.

It turns out that the t-channel π exchange diagram alone does not satisfy electromagnetic gauge
invariance by itself. In [1], the current conservation was restored in a minimal way by adding the electric
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part of the s-channel proton exchange (π+ production) or u-channel proton exchange (π− production).
This leads to the following gauge invariant reggeized π-exchange current operators :

Jµ
π (γp → nπ+) → −i{

√
2}efπNN

mπ

·N̄f [(q − pπ)
µ 6 qγ5 − 2mN(t−m2

π)γ
5 ( 6 ps +mN)

s−m2
N

γµ]NiPπ
Regge ,

(11)

Jµ
π (γn → pπ−) → i{

√
2}efπNN

mπ

·N̄f [(q − pπ)
µ 6 qγ5 + 2mN(t−m2

π)γ
µ ( 6 pu +mN)

u−m2
N

γ5]NiPπ
Regge .

(12)

The second term in Eq.(11) (resp. Eq.(12)) can be interpreted as the electric part of the s-channel
(resp. u-channel) nucleon exchange contribution when using Pseudo-Scalar πNN coupling. We have
kept for the s-channel diagram the minimum necessary term to restore gauge invariant, i.e. the electric
part coupling. This interpretation does of course not imply that one reggeizes all s-channel (resp. u-
channel) exchanges in addition to t-channel exchanges which would violate duality. Being a Born term,
this particular s-channel (u-channel) “diagram” is an indissociable part of the t-channel π-exchange and
is imposed by charge conservation. Indeed a gauge can be found [53] where the contribution from the π-
exchange t-channel diagram vanishes and where consequently the nucleon pole graph produces a π-pole
in the cross section! It is therefore a natural choice to reggeize it by multiplying with Pπ

Regge . (t−m2
π)

as this is exactly the same factor which enters when reggeizing the t-channel pion exchange diagram.
This implementation of gauge invariance is one of the two new features of ref. [1] compared to

various previous works on pion photo-production. The introduction of the s (u) -channel diagram has
an immediate effect on the forward differential cross-section of the reaction γp → nπ+(γn → pπ−) : it
creates a sharp rise at very forward angles, in lieu of the node at t = 0 of the π-exchange diagram alone.
Together with the use of degenerate trajectories whose the phases are determined by Eqs. 9 and 10, it
is the key to the success of the Regge model to account for the ratio of the π+ and π− cross sections
(Figure 10 of [1]), as well as the various spin observables.

In the virtual photon sector, the Longitudinal pion pole amplitude alone does not vanish at the
most forward angles and dominates over the Transverse one. As an example, Figure 32 is a zoom of
Figure 25. The transverse cross section (dotted line) exhibits the same behavior as the real photon
cross section; it is simply smaller consistently with the Q2 behavior of the electromagnetic form factor.
The pion pole drives the shape of the Longitudinal cross section (dashed line). The cuts (see next
sections) bring the model in almost perfect agreement (full line) with the Hermes data. As reminded
in Appendix B, gauge invariance relates the Coulomb and the third component of the spatial part of
the current. The Longitudinal cross section is proportional to the square of the third component of the
current, while the Transverse cross section reduces to the real photon cross section at the real photon
point.

The vector meson exchange amplitudes are gauge invariant by themselves. Their expressions are
given in [1]. In the π0 production channel the choice of a non degenerate trajectory for the the ω
exchange naturally reproduces the node in the cross section around −t = 0.5 GeV2. However, as we
shall see in section 4.3.1, this node can also be obtained from the interference between a degenerate
trajectory and the π0 elastic rescattering cut.

I refer the reader to [1] for a more complete description of the Regge amplitudes and the actual
values of the coupling constants, as well as a comprehensive comparison of the model with available
experiments. The expressions and the coupling constants of π, f2 and σ meson exchange amplitudes in
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ρ0p inelastic cut included. Blue dotted line (labeled σT ) : Transverse cross section only.
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the vector meson production channels are given in [2] and [7].

4.2 Regge Poles in the u-channel

At backward angles the reaction amplitude is driven by Feynman graphs in which baryons are exchanged,
in the u-channel, according to the spin-isospin structure of the vertices. As can be seen in Figure 33,
each baryon family (same quantum numbers, but different spin and mass) lies on an almost linear Regge
trajectory:

α(u) = J = α0 + α′u (13)
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Figure 33: The Regge trajectories associated with the N (solid line and circles), the D13

(dashed line and squares) and the ∆ (dot-dashed line and triangles) families.

As in the t-channel we start from the Feynman amplitude, which incorporates the full spin-momentum
dependent vertex function β(u, J0), but where the Regge propagator PRegge is used instead of the Feyn-
man propagator:

ARegge = β(u, J0)PRegge (14)

PRegge =
(

s

s0

)α(u)−J0 πα′

sin(πα(u))

S + e−iπα(u)

2

1

Γ(1− J0 + α(u))
(15)
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Only the exchange of the nucleon is allowed in the γp → pω and γp → pφ reactions. The spatial
part of the amplitude is as follows [2]:

TN = i
e µpgV (1 + κV )

2m

(

χf

∣

∣

∣~σ · ~k × ~ǫ ~σ · ~PV × ~ǫV
∣

∣

∣χi

)

(

s

s1

)αN (u)− 1

2 πα′
N(1− e−iπ(αN (u)+ 1

2
))

2 sin(π(αN(u) +
1
2
))Γ(αN(u) +

1
2
)

(16)

where the non degenerate nucleon trajectory (with αN(u) = −0.37 + α′
Nu and α′

N = 0.98 GeV−2) has
been chosen in order to produce a node in the cross section at the place it has been observed at backward
angles [54]. In this expression, e is the electric charge and µp is the magnetic moment of the proton,
~k is the momentum and ~ǫ is the polarization of the incoming photon, while ~PV is the momentum and
~ǫV is the polarization of the emitted vector meson. The coupling constants of the vector meson with
nucleon are gV and κV .

As shown in Figure 34, this amplitude leads to a good accounting of the backward angle cross-
section in the ω channel where all the coupling constants are fixed. Namely, we use gω = 15 and κω = 0
consistently with the analysis of nucleon-nucleon scattering. The agreement is particularly good at the
highest energy, where Regge ideas are best suited. The softening of the node at the lowest energy may
indicate a possible contribution of cuts (see next section).

In the φ channel a good accounting of the rise of the cross section at the most backward angles is
achieved (Figure 5) with the choice gφ(1 + κφ) = 3 consistently with the analysis [56] of the nucleon
form factors.

In the γp → π+n reaction the nucleon exchange amplitude takes the form [13]:

TN = −i eµngπ
√
2

√

(Ei +m)(Ef +m)

2m
PR

N(u)


λf

∣

∣

∣

∣

∣

∣

~σ · ~kγ × ~ǫ ~σ ·




~kπ − ~pi
√

m2 + ( ~kπ − ~pi)2 +m

+
~pi

Ei +m

]∣

∣

∣

∣

∣

λi

)

(17)

Where (Ei, ~pi) and (Ef , ~pf ) are the four momenta of the target proton and the final neutron, respectively.

Where ~kγ is the momentum of the ingoing photon and ~ǫ is its polarization. Where (Eπ, ~kπ) is the four
momentum of the outgoing pion. The four momentum transfer in the u-channel is u = (kπ − pi)

2. The
magnetic moment of the neutron is µn = -1.91, and the pion nucleon coupling constant is g2π/4π = 14.5.

To be consistent with the node in the backward angle cross section of the p(γ, ω)p channel, where
only the proton can be exchanged in the u-channel, we use the same non degenerated Regge propagator

PR
N =

(

s

s◦

)αN−0.5

α′
NΓ(0.5− αN)

1− e−iπ(αN+0.5)

2
(18)

where s◦ = 1 GeV2 and where the nucleon trajectory is αN = −0.37 + α′
N u, with α′

N = 0.98.

The u-channel amplitudes of the γn → π−p and γp → π0p reactions have the same expression with
trivial changes of the charge and well known coupling constants.

In the pion production channels the ∆ Regge trajectory can be exchanged as well, but contributes
to the cross section only at the level of 10%. I refer the reader to [13] for a detailed expression of the
corresponding amplitude.
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Figure 34: (Color on line) The differential cross section of the γp → pω reaction at Eγ = 3.5
and 4.7 GeV. The curve includes also the contributions of meson Regge pole exchanges, as
well as the Pomeron exchange, which dominate at low and intermediate −t. The full dots
come from [10]. the empty triangles come from [54]. The empty boxes come from [55].

36



4.3 Unitarity cuts

The unitarity of the S-matrix relates the imaginary part of the reaction amplitude of a given channel to
the sum of the on the mass shell production and rescattering amplitudes of every channels to which it
can couple. The large cross section of rho production channels compensates the suppression of the loop
integral and boosts the contribution of the corresponding inelastic cuts. The contribution of the elastic
cut is less important but reveals itself through the purely destructive interference with the dominant
pole amplitudes.

4.3.1 Elastic unitarity cuts

The first graph in Fig. 12 depicts the elastic rescattering of the pion. The singular part of the corre-
sponding rescattering amplitude takes the form:

TπN = −i
p′c.m.

16π2

m√
s

∫

dΩ [Tγp→π+n(tγ)Tπ+n→π+n(tπ)]

(19)

where p′c.m. =
√

(s− (mπ −m)2)(s− (mπ +m)2)/4s is the on-shell momentum of the intermediate

nucleon, for the c.m. energy
√
s. The two fold integral runs over the solid angle Ω of the intermediate

nucleon, and is done numerically. The four momentum transfer between the incoming photon and the
intermediate π is tγ = (kγ − Pπ)

2, while the four momentum transfer between the intermediate π and
the outgoing pion is tπ = (kπ − Pπ)

2. The summation over all the spin indices of the intermediate
particles is meant.

The pion photoproduction amplitude is the same as in the previous sections 4.1 and 4.2: it incor-
porates the pole terms in the t-channel as well as in the u-channel. The pion nucleon elastic scattering
amplitude is purely absorptive:

Tπ+n→π+n = −
√
s p′c.m.

m
(ǫπ + i)σπ−p exp[

βπ

2
tπ] (20)

Above
√
s ∼ 2 GeV, the total cross section stays constant at the value σπ−p = 30 mb [57], and the fit of

the differential cross section at forward angles leads to a slope parameter βπ = 6 GeV−2 [58]. At high
energy the ratio between the real and imaginary part of the amplitude is small [57] and is set to ǫπ = 0.

Under those assumptions, the sum of the Regge pole amplitude and the elastic πN cut takes the
form:

T = Tγp→π+n(t)

−p′ 2c.m.

16π2
σπ−p

∫

dΩTγp→π+n(tγ) exp[
βπ

2
tπ] (21)

where t = (kπ − kγ)
2 is the overall four momentum transfer. It clearly shows the purely destructive

interference, that is expected for an absorptive rescattering. It reduces (by about a factor two) the
contribution of the u-channel Regge poles at the very backward angles (Figure 11). The effect is less
important at the very forward angles, simply because the t-channel Regge contribution is more than an
order of magnitude larger than the u-channel one.

Figure 35 is a zoom of Figure 11 that shows how the delicate interference between the pole terms
and the cuts reproduces the π+ cross section at forward angles. The rise of the cross section at the very
forward angles comes from the interference between the t-channel π and ρ exchange and the s-channel
nucleon exchange that is necessary to restore gauge invariance in the basic Regge model (section 4.1).
The πN elastic cut brings the model very close to the data at moderate −t, while the ρN inelastic cut
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.

(next section) fills in the minimum around −t = 0.02 GeV. In the virtual photon sector too the elastic
cut brings the model in perfect agreement with the Hermes π+ electro-production data (see Figure 32).

It offers also an elegant way to understand the disappearance of the node of the π0 photo-production
cross section (see Figure 13) around −t = 0.5 Gev2 when one enters the virtual photon sector (see
Figure 26). To a good approximation the pion elastic scattering amplitude in Eg. 19 is driven by the
exchange of the Pomeron (as we will see in section 4.5.1). Therefore it is possible to express the cut
amplitude as an effective Regge pole [60]. In this scheme, the ω Regge exchange amplitude takes the
form:

Tω = TF × (t−m2
ω)×

gωNN

gGLV
ωNN

(

e−iπαω(t)
(

s

s0

)αω(t)−1

α′
ωΓ(1− αω)Fω(Q

2)

−e−iπδc(Q2)
(

s

s0

)αc(t)−1

α′
cΓ(1− αc)Fc(Q

2)Gc(t)

)

(22)
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where t = (kω − kγ)
2 is the four momentum transfer and mω is the mass of the ω meson. The Feynman

amplitude TF has the same spin-momentum structure as in the GLV [1] scheme; simply the gωNN

coupling constant will be re-fitted to experiment. The ω Regge trajectory is the same as in the GLV
scheme:

αω(t) = αω(0) + α′
ωt = 0.44 + 0.9t (23)

while the intercept and the slope of the effective trajectory of the cut take the form:

αc(0) = αω(0) + αP (0)− 1 = 0.44

α′
c = (α′

ω × α′
P )/(α

′
ω + α′

P ) = 0.2 (24)

where the intercept and the slope of the Pomeron Regge trajectory are respectively αP (0) = 1 and
α′
P = 0.25 (see section 4.5.1)
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Figure 36: (Color on line) The cross section of the p(γ, π0)p reaction [61] (top) and the
photon asymmetry [62] (bottom). The dashed line curve corresponds to the ω Regge Pole
amplitude with a degenerated trajectory. The dotted line curve includes the Pomeron cut.
The red dot-dashed line curves include the ρ exchange, while the black solid lines curves
include also the b1 exchange. The blue short-dashed line curves include all the inelastic cuts.

It is possible to reproduce the GLV non-degenerated ω amplitude (Figure 12 in [1]) with the following
choice (dotted line curve in Fig. 36):

g2ωNN/4π = 4.9

Gc(t) = 3.7e2t (25)
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It is worth pointing out that the ωNN coupling constant is about half of the GLV one (g2ωNN/4π =
17.9), in better agreement with the range of values that are determined in the analysis of low energy
NN scattering data. It is also almost the same as the value (g2ωNN/4π = 6.44) needed in the analysis of
the p(γ, η)p reaction [63]. In this channel, there is no node and the ηN scattering cross section is much
lower than the πN one: The use of a degenerated ω Regge amplitude alone, with no elastic cut, is more
justified. The exchange of the ρ meson degenerated trajectory, with the same coupling constants as in
GLV, brings the model close to the unpolarized cross section. The exchange of the b1 meson contributes
little to the cross section but is essential to reproduce the photon asymmetry. Note that an axial-tensor
coupling is used at the b1NN vertex, contrary to the axial-vector coupling which was wrongly used
in [1] (I refer the reader to [14] for details).

Such a treatment offers us with the most obvious way of shifting the minimum of the cross section
when the virtuality Q2 of the photon increases (Figure 26). Using slightly different cut off masses in the
electromagnetic form factors of the poles and the Pomeron cut, F (Q2) = 1/(1 +Q2/Λ2), modifies their
relative importance when the photon becomes virtual. The following choice leads to a good accounting
of the DESY data [42] at Q2 = 0.85 GeV2: Λ2

ω = 0.325 GeV2, Λ2
ρ = 0.400 GeV2, Λ2

b1
= 1. GeV2, Λ2

c =
0.300 GeV2 and δc(Q

2) = −0.46Q2/0.85. The agreement is good too at Q2 = 0.55 GeV2, but it is not
possible to get rid of the second maximum in t when Q2 = 0.22 GeV2.

Note that this the only place in this review where the couplings of a cut have been adjusted to
reproduce the experiments. But this is justified by the extreme sensitivity of the interference between
the pole and the elastic cut amplitudes, whose the functional expressions are nevertheless well defined.

The extrapolation at Q2 = 2.3 GeV2 misses the recent JLab data [43] and [44], but the agreement
is restored when inelastic rescattering cuts are taken into account (next section). The agreement is less
good at moderate virtuality, but no attempt has been made yet to adjust the electromagnetic form
factors of the pole and elastic cut, when the contribution of inelastic cut is included in the amplitude.

4.3.2 Inelastic unitarity cuts

The second graph in Fig. 12 depicts the production of the ρ meson followed by the reabsorption of one
of its decay pions by the nucleon. In charged pion production reactions, the corresponding rescattering
amplitude takes the form:

TρN =
∫ d3~p

(2π)3
m

Ep

1

P 2
ρ −m2

ρ + iǫ
Tγp→ρ0pTρ0p→π+n (26)

where the integral runs over the three momentum ~p of the intermediate nucleon, of which the mass
is m and the energy is Ep =

√
p2 +m2. The four momentum and the mass of the intermediate ρ are

respectively Pρ and mρ. The integral can be split into a singular part, that involves on-shell matrix
elements, and a principal part P :

TρN = −i
pc.m.

16π2

m√
s

∫

dΩ [Tγp→ρ0p(tγ)Tρ0p→π+n(tπ)]

+P (27)

where pc.m. =
√

(s− (mρ −m)2)(s− (mρ +m)2)/4s is the on-shell momentum of the intermediate

proton, for the c.m. energy
√
s. The two fold integral runs over the solid angle Ω of the intermediate

proton. The four momentum transfer between the incoming photon and the ρ is tγ = (kγ − Pρ)
2, while

the four momentum transfer between the ρ and the outgoing pion is tπ = (kπ − Pρ)
2. The summation

over all the spin indices of the intermediate particles is meant.
I neglect the principal part. The singular part of the integral relies entirely on on-shell matrix

elements and is parameter free as long as one has a good description of the production and the absorption
processes. Again the integral is done numerically.
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For photoproduction of vector mesons, Tγp→ρ0p, the Regge model [2, 7] which reproduces the world
set of data in the entire angular range (see for instance section 2.4, and reference [9]) is used. The
model takes into account the exchange of the Pomeron, the f2 and σ mesons in the t-channel, as well
as the exchange of the nucleon and the Delta in the u-channel.
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Figure 37: (Color on line) The cross section of the reaction p(π−, ρ◦)n. The experimental
data are from ref. [64].

For the reabsorption of the ρ meson, Tρ0p→π+n, a pion exchange Regge description nicely reproduces
the data in the energy range that is considered in this study (Figure 37). The corresponding matrix
element takes the form:

Tρπ =
√
2gπgρ

√

(Ep +m)(Ef +m)

2m
PR

π (tπ)F1(tπ)
[

~ǫρ ·
(

~kπ+ − ~p+ ~pf
)

− ǫ◦ρ (Eπ+ − Ep + Ef )
]

(

λf

∣

∣

∣

∣

∣

~σ ·
[

~p

Ep +m
− ~pf

Ef +m

]∣

∣

∣

∣

∣

λ

)

(28)

where (ǫ◦ρ, ~ǫρ) is the intermediate ρ polarization, and where (Ef , ~pf ) and (Eπ+ , ~kπ+) are the four momenta
of the outgoing neutron and pion respectively. The pion nucleon coupling constant is g2π/4π = 14.5, and
the rho decay constant is g2ρ/4π = 5.71 as deduced from the ρ width. PR

π is the pion Regge propagator,
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with a degenerated non rotating saturating trajectory, and F1 is the nucleon Dirac form factor (with
Λ = 0.7 GeV2):

F1(t) =
1− 2.79t

4m2

(1− t
4m2 )(1− t

Λ
)2

(29)

Up to −t = 2 GeV2, the model reproduces fairly well the dominant peak but it misses the dip at
−t = 2.5 GeV2. Above, the cross section of the ρ0p → π+n reaction is two orders of magnitude smaller
than at forward angles. It contributes less to the rescattering integral and an average description of the
elementary channel cross section is sufficient here.

In neutral pion production reactions, the coupling to the ρ0N intermediate state is forbidden (isospin
does not allow the decay of the ρ0 into two π0). At the real photon point, the contributions of the
other possible inelastic cuts (πN charge exchange, ωN , ρ+p, ρ±∆) have been found to be small [14],
consistently with the experimental data (see Figure 13). On the contrary, the contributions of the ρ+n,
ρ±∆ cuts become dominant in the virtual photon sector. As we have already seen in section 3.3, the
cross section of the electro-production of charged rho mesons becomes comparable to the cross section of
the electro-production of neutral rho mesons at Q2 ∼ 2.3 GeV2, (Figure 27). The amplitude of the ρ+n
cut takes the same form as Equation 27. The amplitude of the elementary reaction ρ+n → π0p is trivialy
related to the amplitude of the reaction ρ0p → π+n by changing the charges and the isospin couplings.
The amplitude of the elementary reaction γp → ρ+n relies on a Regge model which incorporates the
pion exchange pole as well as the ρ exchange pole supplemented by the contact and the s-channel
nucleon exchange necessary to restore gauge invariance (Figure 38). I refer the reader to [14] for a more
detailed account.

γ ρ+

π

γ ρ+

ρ

γ ρ+ γ ρ+

Figure 38: (Color on line) The graphs of the reaction p(γ, ρ+n). Top: meson exchange
graphs. Bottom: contact and nucleon exchange gauge graphs.

4.4 Saturating trajectories vs cuts

In the highest transverse momentum pT (large −t and −u) range, which has been reached to day in
exclusive reactions, inelastic cuts provide a robust interpretation of the plateau which has been observed
in the angular distributions around 90◦. Their contributions are almost parameter free, as they are based
on on-shell reaction amplitudes that are fixed by independent experiments. They leave little room for
other possible more exotic processes.
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For instance, we have proposed [1] an alternative explanation of the flattening of the angular distri-
bution of the γN → π±N reactions based on the use of the saturating Regge trajectories of Figure 7.
This is a way to reconcile, at higher momentum transfer, the Regge exchange model with experiment
and the counting rules [3].

The analysis of nucleon-nucleon and pion-nucleon scattering, led to infer [22] that the Regge tra-
jectories saturate at -1 for −t → ∞, consistently with the expectation of the behavior of the QCD
interaction of the exchanged two quarks at asymptotic momentum transfer. A prescription inspired
from [22] has been applied to the pion photo-production reactions [1]. At high momentum transfers,
the hard scattering amplitude Mhard factorizes into

Mhard = Msoft · Fπ(t) · FN(t) (30)

where Msoft is the amplitude of the Regge exchange model with saturating Regge trajectories and Fπ(t)
and FN(t) are the transition form factors of the two outgoing particles.

For meson trajectories, this saturation follows [21] a QCD motivated effective interquark potential
of the form:

V(r) = −4

3

αs

r
+ κr + V0 , (31)

where the first term represents the short distance part of the quark-antiquark interaction and corre-
sponds to one gluon exchange, whereas the term which is linear in r, leads to confinement (κ is known
as the “string tension”) and V0 is a constant term in the potential.

The eigenvalue equation (E2 = t as function of the angular momentum α) of the potential of Eq. 31
was inverted in Ref. [21] and the resulting equation for α was analytically continued into the scattering
region (t < 0). This leads to the π and ρ Regge trajectories shown in Figure 7. They become linear
as t → +∞ which reflects the bound state spectrum but saturate at -1 for t → −∞ which reflects the
hard scattering (pQCD) region. This treatment quantifies the evolution of the interaction between the
two exchanged quarks which have been schematically depicted in Figure 1: at low −t, on the left of the
figure, they exchange many gluons, while at asymptotic high −t, on the right, they exchange one gluon
only.

The resulting hard scattering amplitude of Eq. 30 with these saturating trajectories has a t-dependence
which is much flatter than the exponential t-dependence of the “soft” model. This leads to a plateau
for the differential cross section at large transverse momentum transfers pT . Moreover the differential
cross section satisfies the counting rules as shown in [22] because of the saturation of the trajectories
and because of the scaling behavior of the form factors of the outgoing particles. Let us also remark
that the high momentum transfer amplitude of Eq. 30 is normalized by the low momentum transfer
amplitude. The resulting cross sections are shown in Figure 1 of [1]. They are very similar to the cross
sections, which include the contribution of the cuts, presented in Figure 11 in this review.

The concept of saturating trajectories, as well as their determination in [21], are on solid ground
and can be safely used as guide to implement the dependency against −t of the electromagnetic form
factors that has been used in sections 3.1 and 3.2, for instance. However, we may question the way we
have implemented them in the practical treatment [1] of the amplitude. On the one hand, the particular
choice of the hadronic form factors in Eq. 30 should be revisited. For instance, we have used the Dirac
form factor Eq. 29 of the nucleon, but we have set Fπ = 1. Using a more realistic (but still badly
known at the highest momentum) pion transition form factor will certainly decrease the effect of the
saturation. On the other hand, we may have not yet reached high enough pT for the factorization in
Eq. 30 to be justified.

So, in the range of energies W and transverse momentum pT which have been covered so far in
exclusive reactions, the physics resides in the contribution of the cuts. In the light quark sector, the cut
associated with the propagation of the ρ0 meson dominates since the large production cross section of
the ρ0 compensates the cost to pay in the rescattering integral. Its contribution is expected to survive
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at higher energies, in the charged pion production as well as in Virtual Compton Scattering, since the
ρ0 production cross section stays almost constant with energy (see Figure 2). The cuts associated with
the propagation of the charged vector mesons ρ± dominate neutral pion electro-production, due to the
peculiar dependency against the virtuality Q2 (see Figure 27). But their importance is expected to
decrease with the energy W , since the production cross section is driven by the exchange of Reggeons.

In the heavy (strange and charm) quark sectors, cuts are not expected to play a significant role. On
the one hand, there is no channel with large enough cross section to couple with; on the other hand,
quark exchange mechanisms are suppressed, due to the different nature of the quark components of the
nucleon and the meson. As we shall see in the next section, gluon exchange mechanisms dominate and
are more amenable to a partonic description.

In between, the production cross sections of vector mesons made of light quarks are dominated by
gluon exchanges at high energies, but receive also contributions from quark exchange at low energies
W < 10 GeV (see e.g . sections 2.3 and 2.4). However no obvious cut dominates, and the way saturating
trajectories have been taken into account in [1] provides an elegant “QCD inspired” parameterization
of the quark exchange part of the amplitudes (see figures 6 and 8). Here the vector meson transition
form factor does not need to be the same as the pion transition form factor in Eq. 30, while the nucleon
form factor is the same.

4.5 The Pomeron and its two gluon realization

4.5.1 Pomeron exchange

The Pomeron occupies a singular place in the family of Regge poles. Its trajectory has been deduced
from the analysis of forward cross section of proton-proton as well as meson-nucleon scattering up to
the highest energies (see [60] for a review):

αP = 1 + ǫ′ + α′
P t (32)

Its slope α′
P = 0.25 GeV−2 is about four times smaller than the slope of the other Reggeon tra-

jectories, and was deduced from the angular distributions at forward angles. Its intercept 1 + ǫ′ is
slightly greater than 1, and the choice of ǫ′ = 0.08 leads to a good accounting of the slight rise of
the proton-proton total cross section, which behaves as sαP (0)−1 = sǫ

′

, up to energies which has been
reached before [60] and even at [65] the Large Hadron Collider (LHC at CERN). Note that at these
high energies (about

√
s = 13 TeV) the cross section is still lower, by about an order of magnitude,

than the Froissart’s unitary bound. While we do not know yet which mechanisms will restore unitarity
at asymptotic energies, we can safely rely on Pomeron exchange in the energy range covered in this
review.

Contrary to the trajectories of other Reggeons, the Pomeron trajectory has not been determined
from a family of particles, but directly determined from scattering experiments. It turns out however
that a 2++ glueball candidate [66], with a mass around 1930 MeV, lies on the Pomeron trajectory in
Figure 39. This is remarkable and suggests [60] that the Pomeron is related to a family of glueballs, of
which the other members remain to be found.

This analysis of nucleon-nucleon scattering at high energy leads [67] to infer that the Pomeron
couples to the valence quark as an isoscalar photon and that the corresponding quark-quark interaction
is [68] :

β2
0uγµu uγµu

(

s

s0

)α(t)−1

exp
[

−i
π

2
α(t)

]

(33)

where β2
0 = 4 GeV −2 and where the parameters of the Pomeron Regge trajectory α(t) = 1+ ǫ′+α′t are

α′ = 0.25 GeV −2, ǫ′ = 0.08 and s0 = 1/α′ = 4 GeV 2. Within this model, the differential cross-section
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Figure 39: The Regge trajectories associated with the Pomeron. The 2++ glueball candi-
date [66] lies on the trajectory α(t) = 1.08 + 0.25t.
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of elastic nucleon-nucleon scattering reduces to :

dσ

dt
=

1

4π
[3β0F1(t)]

4
(

s

s0

)2α(t)−2

(34)

where the factor 3 takes into account that three valence quarks must recombine into a nucleon, whose
structure results in the isoscalar form factor F1(t), Eq. 29.

Figure 40: Pomeron exchange graphs in exclusive vector meson photoproduction (a) and
elastic nucleon-nucleon scattering (b). The quark marked with a circle is far off-shell.

In the graph which describes the electro-production of vector mesons (Figure 40), the loop integral in
the upper part, is computed assuming that the two quark legs, q and q2, which recombine into the vector
meson, are almost on-shell and share equally the four-momentum of the vector meson (q ≃ q2 ≃ PV /2).
The third quark leg q1, which is exchanged between the photon and the Pomeron, is far off-shell and
its propagator is factored out of the loop integral. The denominator of its propagator is :

q21 −m2
q = −Σ2 = −1

2
[Q2 +m2

V − t] (35)

assuming that the quark mass is mq ≃ mV /2. After the integration in the quark loop, the vertex
function of the vector meson, including the attached quark propagator, reduces to:

1

2
√
6
γ · ǫV fV (γ · PV +mV ) (36)

where ǫV and PV are respectively the polarization vector and the four-momentum of the vector meson,
and where its decay constant fV is related to its radiative decay width Γe+e− [69] as follows:

f 2
V e

2
q =

3mV

8πα2
em

Γe+e− (37)

The lower part of the graph is nothing but the exchange of the Pomeron between a quark and a
nucleon. The amplitude can be cast in the simple form:

[3F1(t) β0] s
(

s

s0

)α(t)−1
[

µ2
0

−q21 +m2
q + µ2

0

β0

]

(38)
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It is made of three parts. The first is the effective coupling of the Pomeron to an isoscalar nucleon. The
second is the Pomeron Regge trajectory. And the last factor is the effective coupling of the Pomeron
to the off-shell quark q1.

Gathering all these pieces together and performing the necessary trace evaluation lead to the am-
plitude [70]:

M = 3F1(t)
4
√
6mV eqfV β

2
0µ

2
0

(Q2 +m2
V − t)(2µ2

0 +Q2 +m2
V − t)

ǫ · ǫV s
(

s

s0

)α(t)−1

exp
[

−i
π

2
α(t)

]

(39)

where ǫ is the photon polarization factor. When squared this amplitude leads to the cross-section:

dσ

dt
=

81m3
V β

4
0µ

4
0Γe+e−

παem

(

s

s0

)2α(t)−2
[

F1(t)

(Q2 +m2
V − t)(2µ2

0 +Q2 +m2
V − t)

]2

(40)

4.5.2 Two gluon exchange

Figure 41: Direct (a) and crossed (b) two gluon exchange graphs in quark-quark scattering.

In the large energy limit (ν → ∞), the crossed two gluon exchange graph contribution cancels the real
part of the direct two gluon exchange in quark-quark scattering (Figure 41). Only the imaginary part of
the direct exchange graph, where the two intermediate quarks are on-shell, survives. Considering only
abelian gluons, Landshoff and Nachtmann [71] demonstrated that this contribution to the quark-quark
scattering amplitude reduces to a form very similar to the Pomeron exchange amplitude (Eq. 33) :

uγµu uγµu
1

8π2

∫

d2~l
[

4παnD
(

[~l +
1

2
~qT ]

2
)] [

4παnD
(

[~l − 1

2
~qT ]

2
)]

(41)

where l2 = −~l2 is the square of the transverse momentum of the exchanged gluon and ~qT
2 = −t. When

an exponential form

αn D(l2) =
β0√
πλ0

exp

(

l2

λ2
0

)

, l2 ≤ 0 (42)
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is used for the gluon propagator this amplitude reduces to:

uγµu uγµu
1

8π

∫

dl2
[

4παnD(l2 +
1

4
t)
]2

(43)

The value of the range parameter λ2
0 = 2.7 GeV2, which is used in this review as well as in [2] and [6],

corresponds to a correlation length a ≈ 0.19 fm (see appendix C of [6]).
When this two-gluon exchange amplitude is used in nucleon-nucleon elastic scattering, the cross-

section at t = 0 fixes the norm of the gluon propagator:

2π
∫ 0

−∞

dl2
[

αnD(l2)
]2

= β2
0 (44)

The vector meson production amplitude, corresponding to the coupling of the two gluons to the
same quark of the vector meson (bottom left graph in Figure 4), takes the form:

M = 3F1(t)
2
√
6mV eqfV

(Q2 +m2
V − t)

s ǫ · ǫV
√

αs(Σ2)

αn

1

8π

∫

dl2
[

4παnD(l2 +
1

4
t)
]2

(45)

where Σ2 stands for the degree of off-shellness of the quark which connects the photon and one gluon,
as given by Eq. 35.

Using the norm condition (Eq. 44), Eq. 45 reduces to the Pomeron exchange amplitude (Eq. 39),
without the phenomenological form-factor µ2

0/(µ
2
0 +m2

q − q21) at the quark-Pomeron vertex, in the limit
αs(Σ2)
αn

→ 1.
When each gluon couples to a different quark of the vector meson (bottom right graph in Figure 4),

the denominator of the propagator of the far off-shell quark is :

−4l2 +Q2 +m2
V (46)

and the corresponding amplitude is :

M = −3F1(t) 2
√
6mV eqfV s ǫ · ǫV

√

αs(Σ2)

αn

1

8π

∫

dl2
[

4παnD(l2 +
1

4
t)
]2 1

(Q2 +m2
V − 4l2)

(47)

which combined with Eq. 45 leads to :

M = 3F1(t) 2
√
6mV eqfV s ǫ · ǫV

√

αs(Σ2)

αn

1

8π

∫

dl2
[

4παnD(l2 +
1

4
t)
]2
[

1

(Q2 +m2
V − t)

− 1

(Q2 +m2
V − 4l2)

]

(48)

and to the cross-section:

dσ

dt
=

81m3
V Γe+e−

256π3αem

[F1(t)]
2





√

αs(Σ2)

αn

∫

dl2
−4l2 + t

(m2
V +Q2 − 4l2)(m2

V +Q2 − t)

[

4παnD(l2 +
1

4
t)
]2




2

(49)
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Donnachie and Landshoff [70], and then Cudell [72], showed an analogy between the phenomeno-
logical Pomeron and the two gluon exchange approaches. Obviously, since it is a perturbative like
calculation, there is no Regge factor in the two gluon result. When this Regge factor is removed from
the Pomeron exchange amplitude, the similarity between the two cross-sections is striking when the
loop integral in Eq. 49 is performed in an approximate way [72]. If the squared mass Q2 of the virtual
photon, or the mass mV of the vector meson is large enough, one may neglect the dependence against
l2 in the denominator of the integrand of Eq. 49, and the cross section takes the simple form :

dσ

dt
=

81m3
V β

4
0Γe+e−

4παem

[F1(t)]
2





√

αs(Σ2)

αn

2λ2
0 + t

(m2
V +Q2 + 2λ2

0)(m
2
V +Q2 − t)

exp

(

t

2λ2
0

)





2

(50)

At t = 0, and in the limit αs/αn → 1, this cross-section coincides with the Pomeron exchange cross-
section (Eq. 40), provided that λ0 is identified with µ0. Thus, in this limit, the two approaches are
almost identical for low values of t. The coupling to two different quarks in the vector meson (bottom
right graph in Figure 4) provides us with a more microscopic explanation of the phenomenological form
factor which is used in the Pomeron exchange cross-section.

Eq. 50 shows explicitely that the cross-section exhibits a dip at t = −2λ2
0. This dip results from the

cancellation between the direct two gluon exchange graph, where the two gluons couple to the same
quark in the vector meson, and the crossed graph where each gluon couples to a different quark. This
behavior also remains in the complete expression of the cross-section (Eq. 49). The results shown in [2]
and [6] have been obtained by performing explicitly the integral in Eq. 49 and not using Eq. 50. The
effective αn and the strong running αs coupling constants were set as:

αn = 0.3

αs(Σ
2) = 1.396/ ln(

Σ2

0.04
) (51)

Two improvements have been implemented in [2]. On the one hand, the full expression of the
coupling between the two gluons and the photon and the vector meson has been taken into account,
instead of its leading part at high energy sǫV ǫ. The amplitude is explicitly gauge invariant. On the
other hand, the coupling of the exchanged gluons with different quarks in the nucleon (top graphs in
Figure 4) has been taken into account. Under the assumption that the gluons couple to valence quarks
equally sharing the longitudinal momentum of the nucleon (xq = 1/3), the correlation function can be
expressed [73, 74, 75] as the isosclar form factor at a different argument F1(3l

2 + t
4
). The resulting

amplitude takes the form:

M2g =
6
√
6mV eqfV
8π

[2p · qǫV · ǫ+ 2ǫV · pǫ · (q − PV )

−2ǫV · qǫ · p+ Q2 +m2
V − t

p · q ǫV · pǫ · p]
∫

dl2[4παsD(l2 +
1

4
t)]2[F1(t)− F1(3l

2 +
t

4
)]

(

1

Q2 +m2
V − t

− 1

Q2 +m2
V − 4l2

)

(52)

Each of the two last terms in eq. 52 corresponds to the propagator of the quark which is off-shell
in the vector meson loop, when the two gluons couple either to the same quark or to two different
quarks. The contribution of the quark correlations in the nucleon does not modify the cross section at
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low momentum transfer, but get rid of the node in the uncorrelated cross section and bring it close to
the experimental cross section at high −t. Note that the off-shell ratio αs(Σ

2)/αn has been set to 1 in
Eq. 52.

Two last improvements have been implemented in [7]. Going beyond the simple assumption that
the quarks equally share the longitudinal momentum of the nucleon, the correlation function has been
evaluated using a more realistic nucleon wave function [19], which incorporates the dependency on the
fraction of the longitudinal momentum of the nucleon xq carried by each quark. The two fold integral
runs now on xq, besides l

2, and has been computed numerically. Also the gluon dressed propagator [18]
deduced from a lattice calculation has been used (together with αn = 0.28) instead of the simpler
gaussian parameterization Eq. 42 (which includes αn).

The node in the uncorrelated part of the cross section in Figure 5 moves from −t = 2.3 GeV2 [2] to
−t = 1.2 GeV2, but the correlated part restores the agreement with the experiments at high −t. I refer
the reader to [7] for more details and a more complete presentation. It is this last version of the model
that has been used in this review.

4.5.3 The Partonic Non-Perturbative Approach

Such a finding is important as it tells us that, in the intermediate range of momentum transfer (let’s say
1 ≤ −t ≤ 10 GeV 2), large angle exclusive vector meson production cross sections can be understood at
the level of effective parton degrees of freedom: dressed quark and gluon propagators, constituent quark
wave functions of the nucleon and of the meson, etc. . . . As summarized in Figure 42, such a “Partonic
Non-Perturbative Approach” relates different aspects of the structure of hadronic matter which are
constrained by specific experiments.

At low momentum transfer (up to −t ≈ 2 GeV2), the cross section is driven by their integral
properties: any nucleon wave function which reproduces the nucleon form factor leads to similar results;
the differences which may be due to gluon propagators can be reabsorbed in a reasonable value of αn

(for the amplitude based on the lattice propagator we have used αn = 0.28). At higher momentum
transfer, the cross section becomes more sensitive to the details of the wave function (giving access to
quark correlations) and the shape of the gluon propagator.

5 Conclusion

After this journey in the field of exclusive photo- and electro-production of mesons, it appears that
the current quarks hide themselves in the nucleon and that unitarity constraints prevent the photon
to directly see them. On the one hand, unitarity regularizes the Feynman pole amplitudes that drive
the peripheral interactions at forward and backward angles: Regge poles prevent them to exceed the
unitarity bound at high energies. By treating in a compact form the exchange of families of mesons (or
baryons) they provide us with a good effective representation at forward (or backward) angles.

On the other hand, unitarity s-channel rescattering cuts provide the strength at intermediate angles
(large −t and −u), where head-on collision were expected to reveal the quark degrees of freedom. In the
light quark sector, these cuts contribute even at forward angles in the neutral pion electro-production
and Deeply Virtual Compton Scattering, where they cannot be neglected. Any sensible analysis of
DVCS should take into account their contribution.

In fact, the energy available in the center of mass at JLab or Hermes is too low to sum over the
complete basis of all the possible intermediate hadronic states and safely replace them by a dual basis
of current quark states. Only a few hadronic cuts are relevant: they deserve a dedicated treatment.

Amplitudes for the production of vector mesons made of light quarks are less sensitive to cuts:
there is no channel with higher cross section to couple with. At high energies they are driven by gluon
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exchange mechanisms, while they receive contributions of saturating Regge trajectories at lower energies
(let say W < 10 GeV).

Also, in the production of vector mesons involving heavy quarks, the contribution of such unitarity
cuts is suppressed: the different flavors of the quarks in the meson and in the nucleon prevent quark
exchange mechanisms and favor gluon exchanges. These channels open a window for the ”Partonic
Non-Perturbative Approach” discussed in the present review: It is based on constituent quarks and
dressed gluon propagators and has been successfully tested at low −t up to the HERA energy range as
well at high −t in the JLab6 energy range. The study of its evolution at higher momentum transfer may
open the way to approach the current quarks domain. In this respect, photo- and electro-production of
the φ meson at large −t should be actively studied at JLab12, and at higher energies.

Charm production near threshold becomes accessible at JLab12. The large value of |t|min, as well
as the large mass of the charm quark, make pertinent the ”Partonic Non-Perturbative Approach”. It
also opens the way to the study of new mechanisms, such as e.g. three gluon exchanges.

As a last word, let me emphasize that Nature organizes itself in a complex way from simple structures.
We have visited an efficient architecture which tries to span a bridge between many aspects of Hadronic
Matter. It remains to a new generation of young researchers to polish it.
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7 Appendix A

More detailed expressions of the amplitudes of the various channels, and further discussions, can be
found in the following list the references:

• Pomeron and 2-gluons exchange amplitudes: [2], [6], [7];

• t-channel Reggeon amplitudes: [1]. Their expression in terms of σ matrices and Pauli spinors can
be found in the Appendix of [50]. The b1 exchange amplitude has been corrected in [14];

• u-channel Reggeon amplitudes: [2], [13];

• Unitarity rescattering cuts: [12], [13], [14].

For the interested reader, an introduction to Regge or two gluon exchange models, as well as a
review of previous works, can be found in [1] and [6] respectively. A more general introduction to hard
scatterings and Pomeron can be found in [22], [60] and [76].

8 Appendix B

The cross-section of the p(e, e′V )p reaction is related to the cross-section of the virtual photon reaction
p(γv, V )p as follows :

dσ

dE ′d cos θedΦedt
= Γv

dσ

dΦedt
(53)
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where the flux of the virtual photons is :

Γv =
αem

2π2

E ′

E

| ~k |
1− ǫ

1

−q2
(54)

The polarization of the virtual photon is :

ǫ =



1− 2
~k2

q2
tan2 Θe

2





−1

(55)

The energy of the incident electron is E, while the energy and the angles of the scattered electron are
respectively E ′, Θe and Φe (as measured with respect to the meson emission plane, with the convention
that Φe = 0 when the outgoing electron and meson lie on the same side with respect to the virtual photon
direction). The energy, the momentum and the squared mass of the virtual photon are respectively ν,
~k and q2 = −Q2 = ν2 − ~k2

The virtual photon absorption cross section takes the form [14]:

dσ

dtdΦe

=
d

2πdt

[

σT + ǫσL + ǫ cos 2Φe σTT +
√

2ǫ(ǫ+ 1) cosΦe σTL

]

(56)

When integrated against the electron azimuthal angle Eq. 56 reduces to :

dσ

dt
=

d

dt
[σT + ǫσL] (57)

The Transverse and Longitudinal cross-sections are related to the matrix elements in the following
way:

dσT

dt
=

αem

4s2
1

2

[

∑

| MX |2 +
∑

| MY |2
]

dσL

dt
=

αem

4s2
Q2

ν2

∑

| MZ |2 (58)

where the averaging over the magnetic quantum numbers of the target proton and the summation over
those of the outgoing proton are implicitly understood, and where MX , MY and MZ are the projections
of the hadronic matrix element on the three cartesian axis.

The Transverse-Transverse and the Tranverse-Longitudinal interference cross sections are defined
as:

dσTT

dt
=

αem

4s2
1

2

[

∑

| MX |2 −
∑

| MY |2
]

dσLT

dt
= −αem

4s2

√

Q2

4ν2

[

∑

M∗
ZMX +

∑

M∗
XMZ

]

(59)

At the real photon point, the photon asymmery is simply:

Σ =
dσTT

dt
/
dσT

dt
(60)

In these expressions the time component of the current have been expressed in term of its longitudinal
component, since the gauge invariance of the electromagnetic currents relates them:

qµMµ = νM0− | ~k | MZ = 0

qµjµ = νj0− | ~k | jZ = 0 (61)
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Therefore:

jµMµ = j0M0 − jZMZ − jXMX − jYMY

jµMµ =
−q2

ν2
jZMZ − jYMX − jYMX (62)

So, the various electro-production cross sections rely only on the spatial part of the hadronic current.
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