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Abstract 

In colliders with asymmetric rigidity such as the proposed 

Large Hadron electron Collider, jitter in the weaker beam 

can cause emittance growth via coherent beam-beam 

interactions. The LHeC in this case would collide 7 TeV 

protons on 60 GeV electrons, which can be modeled us-

ing a weak-strong model. In this work we estimate the 

proton beam emittance growth by separating out the lon-

gitudinal angular kicks from an off-center bunch interac-

tion and produce an analytic expression for the emittance 

growth per turn in systems like the LHeC. 

INTRODUCTION 

The beam-beam effect is the term given to the mutual 

lensing action that each beam in a collider causes on the 

other. In the proposed Large Hadron electron Collider 

(LHeC) the colliding beams would have an asymmetric 

collision between a 7 TeV proton beam, and a 60 GeV 

electron beam from a dedicated recirculating linac [1]. 

Due to the asymmetric rigidities in these beams, the 

beam-beam tune shift is 9.6x10-5 for the proton beam and 

0.75 for the electron beam. Since the LHC proton-proton 

collisions run with an incoherent tune shift of 0.0037 

regularly, it is the coherent effects that will drive emit-

tance growth from these interactions. Furthermore, since 

this is a linac-ring system, the offset jitter that drives this 

increase will not reach an equilibrium, since the linac will 

continuously add a new beam with new jitter [2]. 

GROWTH MECHANISM 

Due to the higher proton rigidity when compared to 

electrons, the proton beam can pull the electron beam in 

and through the proton beam. This action will add hori-

zontal/vertical kicks (as the case may be for a given off-

set) in a manner that is coupled with the longitudinal 

position of the beam. An example of the kicks given are 

shown in Figure 1.  

If we assume that a given kick causes only transverse 

momentum changes (i.e. Δpx only), then we can estimate 

that the given normalized emittance growth is, 
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Where Δεn is the change per interaction of the normalized 

emittance for a given transverse dimension. Finding  

< Δpx
2> is our main challenge [3]. 

 
Figure 1: This figure shows the angular offset of the 

proton beam as a function of longitudinal position 

caused by an electron beam moving through the proton 

beam. Absolute is the total kick received, while relative 

is the kick with the average subtracted out. 

DETERMINING <ΔPX
2> 

The simplest method of determining the < Δpx
2> would 

be to model the kicks received by the proton beam based 

on the relative position of the electron beam. The kicks 

are modeled using the Basetti-Erskine formula [4], and 

we have started out with three methods of determining the 

path of the electron beam through the proton beam. One 

simple way is to model the system in a beam-beam code 

such as GUINEA-PIG [5], another is to directly integrate 

using the equations of motion, and finally an attempt at a 

polynomial ansatz was made. The paths these methods 

make through the LHeC proton beam are shown in Figure 

2. 

 

 
Figure 2: This figure shows the comparison of the three 

methods used so far to calculate the path of the electron 

beam through the proton beam. The dotted line shows the 

path as calculated using GUINEA-PIG, the red line is the 

path directly integrated from the equations of motion, and 

the green path represents our polynomial ansatz. 
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Using GUINEA-PIG and a simplified map of the LHC 

lattice we can simulate the beam-beam interactions and 

how they affect the circulating proton beam. The data 

from multiple random number seeds, as well as the 

growth rates predicted using the three methods already 

described are shown in Figure 3. 

 
Figure 3: The solid orange line is the rate predicted by 

GUINEA-PIG, The solid green line is the rate predicted 

by the ansatz, the solid blue line is the average of the 

four simulation rates, and the solid red line is the direct-

ly integrated path. The point data is the simulated emit-

tances of four different test distributions sent through 

the same set of kicks in our model system. 

TOWARDS AN ANALYTIC MODEL 

While it is possible to estimate the emittance growth 

rate in a system like the LHeC by either using a beam-

beam code like GUINEA-PIG or to directly integrate the 

equations of motion, it would be far simpler if we could 

use a formula to get a quick guess. The attempt at an 

ansatz for the path of the electron beam through the pro-

ton beam was an early attempt at this. 

We can begin to model these systems analytically by 

making a series of assumptions; we assume the following 

about the system. 

 One beam’s motion can be considered constant (Ref-

erence) and one beam can be considered as moving 

(Colliding). (i.e. a weak strong system) 

 Both beams are round at impact, and have a gaussian 

profile so that the round beam Basetti-Erskine ap-

proximation can be used. 

 The colliding beam can be considered a gaussian 

disk of charge moving through the reference beam. 

These assumptions prove to be very good for the LHeC 

system since the electron bunch is much less rigid than 

the proton bunch, and much shorter. In the following 

notation we will use subscripts to denote the quantity a 

beam “sees” so for instance DC would be the disruption 

parameter “seen” by the colliding beam. If we start with 

the equations of motion for the colliding beam, 
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We can cast this into dimensionless coordinates (z0=z/σz), 

and make use of the beam-beam disruption parameter, 
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to reduce the equations of motion to, 
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This arrangement has the advantage that a given disrup-

tion parameter will define a unique path for the colliding 

beam through the reference beam. For uniformity we 

assume a 1 σr initial offset and assume a linear scaling in 

the momentum regime. That means that using our dimen-

sionless coordinates, 

〈Δ𝑝𝑟
2〉 = 4𝐷𝑟

2 (
𝜎𝑟𝐶

𝜎𝑧𝐶
)
2

𝑁(𝐷𝐶) (
𝜎𝑗𝑖𝑡𝑡𝑒𝑟

𝜎𝑟𝑅
)
2

,         (6) 
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N(DC) is the momentum change squared, however if we 

assume that the bunches are damped well in our circulator 

ring, then the overall kick that the whole reference bunch 

receives will need to be removed. This is accomplished 

with, 
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Eq. 7, and Eq. 8 can be best understood when viewed 

graphically, as is shown in Figure 4. 

 
Figure 4: This plot shows N(DC), I(DC), and N(DC)-

I(DC) in blue, orange, and green respectively. 

In Figure 4 we see that the green line, which can be in-

terpreted as a system with perfect damping of offsets in 

the recirculating portion of the machine will have a max-

imum growth rate at a disruption parameter seen by the 

colliding beam of 8.89. This is the point where the collid-

ing beam has equal paths on both sides of the reference 

beam. This can be seen in Figure 5. 

 
Figure 5: This is the path of the colliding beam through 

the reference beam at the point of maximum emittance 

growth. 



Thus, half of the beam receives a kick in one direction, 

and half receives a kick in the other direction. This is also 

why the N(DC) and N(DC)-I(DC) lines are equal at that 

point. Above this value both lines are very close, this is 

because the reference beam has such a strong pull that it 

will “suck” the colliding beam into it and keep it there for 

the remainder of the interaction. 

One other issue that could confound this system, is the 

fact that the beams experience an hourglass effect as they 

go through the Interaction Point (IP). These can be added 

to the curves shown in Figure 4, extending them to ac-

commodate an hourglass effect. In order to keep this 

method useful we need to keep the parameters dimension-

less. Thus we create the dimensionless quantity, 

𝑒𝐶 =
𝜎𝑧𝑅

𝛽∗𝑅
.                                    (9) 

A similar term eR can be made for the reference beam, but 

due to the assumptions made that will have a negligible 

effect on our system since the bunch length of the collid-

ing beam is so short. This is included in the dimensionless 

equations by changing the σz term which has been nor-

malized to one, and recast it as (1+(z0eC)2). Examples of 

N(DC,eC) and N(DC,eC)-I(DC,eC) are shown in Figures 6 

and 7 respectively. 

 
Figure 6: This is a plot of N(DC,eC) over a range of 

both numbers. 

 
Figure 7: This is a plot of N(DC,eC)-I(DC,eC) over val-

ues of both DC and eC. 

If we pull together all of the information so far, then we 

can show that for systems that follow our basic assump-

tions, we can calculate the per-turn growth rate as, 
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2 (

𝜎𝑟𝐶

𝜎𝑧𝐶
)
2

(
𝜎𝑗𝑖𝑡𝑡𝑒𝑟

𝜎𝑟𝑅
)
2

𝐸(𝐷𝑐 , 𝑒𝐶 , 𝑒𝑅),   (10) 

Where, 

𝐸(𝐷𝑐 , 𝑒𝐶 , 𝑒𝑅)= N(𝐷𝑐 , 𝑒𝐶 , 𝑒𝑅)-kI(𝐷𝑐 , 𝑒𝐶 , 𝑒𝑅).   (11) 

Where k is 0 if we assume no offset corrections in the 

recirculating beam, and 1 if we assume there are. eC and 

eR can be used as appropriate, but are 0 if not needed. Eq 

10 and 11 when combined with either graphs such as 

Figures 4 6 and 7, or when interpolating from lookup 

tables can provide a very rapid method of estimating per-

turn emittance growth rates in asymmetric systems like 

those found in the LHeC. Examples of these new meth-

ods, are shown in Figure 8. 

 
Figure 8: In this figure we see a variety of analytic 

methods shown in this work as compared to the same 

growth data shown in Figure 3. 

The analytic method that most closely matches the av-

erage of the simulations is N(DC,eC). Since these simula-

tions include hourglass, but do not correct for offset errors 

in the recirculation, this was to be expected. 

CONCLUSIONS AND FURTHER WORK 

This work has made strides in creating an analytic for-

mula to estimate the emittance growth rates for the beam-

beam effect. There is however more work to be done, 

both in expanding from the current focusing interactions 

(ep collisions) to defocusing interactions (pp collisions), 

and also in moving away from looking up numbers on a 

curve to a true formula. Though one interesting insight 

gained from this study is the fact that for high DC the 

growth rate doesn’t increase anymore.    
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