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The explicit exact analytical expressions for the lowest-order radiative corrections to the semi-
inclusive deep inelastic scattering of the polarized particles are obtained in the most compact,
covariant and convenient for the numerical analysis form. The infrared divergence from the real
photon emission is extracted and cancelled using the Bardin-Shumeiko approach. The contribution
of the exclusive radiative tail is presented. The analytic results obtained within the ultrarelativistic
approximation are also shown.

I. INTRODUCTION

Nowadays the polarized semi-inclusive deep-inelastic
scattering (SIDIS) plays a crucial role in our understand-
ing of the internal spin structure of the nucleons. Infor-
mation on the three-dimensional structure of the polar-
ized proton and neutron can be obtained by extracting
the quark transverse momentum distributions from the
various single spin asymmetries measured in SIDIS with
polarized particles. Specifically, the Sivers and Collins
contributions can be selected [1] from the present data
on transversely polarized targets ~p(e, e′π)x in HERMES

[2], ~D(µ, µ′π)x in COMPASS [3] and 3 ~He(e, e′π)x in
JLab [4] which show a strong flavor dependence of trans-
verse momentum distributions. Moreover in the near fu-
ture, highly accurate experiments are planned at 12-GeV
Jlab [5] that will provide unique opportunities for the
breakthrough in the investigation of the nucleon struc-
ture by carrying out multi-dimensional precision studies
of longitudinal and transverse spin and momentum de-
grees of freedom from SIDIS experiments with high lu-
minosity in combination with large acceptance detectors.
It is well known that one of the important sources

of the systematical uncertainties in SIDIS experiments
with and without polarization of initial particles are the
QED radiative corrections (RC). RC to the three-fold
differential cross section (dσ/dxdydz, where x and y are
the standard Bjorken variables and the z is the frac-
tion of the virtual-photon energy transferred to the de-
tected hadron) can be calculated using the patch SIRAD
of FORTRAN code POLRAD [6] created based on the
original calculations in refs. [7] and [8] for unpolarized
and polarized particles. The calculation of RC to the
five-fold differential cross section of unpolarized parti-
cles (dσ/dxdydzdp2tdφh, where pt is the detected hadron
transverse momentum and φh is the azimuthal angle
between the lepton scattering and hadron production
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planes) was performed in ref. [9]. These calculations
did not contain the radiative tail from the exclusive re-
actions as a separate contribution involving the exclusive
structure functions (SF). This limitation was addressed
in ref. [10] in which the authors explicitly calculated the
exclusive radiative tail and implemented the exclusive SF
using the approach of MAID [11].
In the present paper we consider the general task of RC

calculation when the initial nucleon can be arbitrary po-
larized. The analytical expressions for RC to SIDIS are
obtained for the six-fold cross section with the longitu-
dinally polarized lepton and arbitrary polarized target,
dσ/dxdydzdp2tdφhdφ, where the azimuthal angle φ be-
tween the lepton scattering and ground planes is intro-
duced to appropriately account the transverse target po-
larization. The contribution of the exclusive radiative tail
to the total RC is also presented. Similarly to the previ-
ous analyses we calculated RC in the model-independent
way. These corrections are induced by the unobservable
real photon emission from the lepton leg, leptonic vertex
correction, and vacuum polarization. The model inde-
pendent correction is proportional to the leading loga-
rithm log(Q2/m2), which is large because of high trans-
ferring momentum squared Q2 (> 1 GeV2) and small
electron mass m. What is not accounted in this approach
is the correction due to the real and additional virtual
photon emission by hadrons. However, this correction
should not be accounted in majority of cases, e.g., when
the used model for SF was extracted from the experiment
in which emission by hadrons had not been applied in RC
procedure of experimental data.
The Bardin-Shumeiko approach [12] is used for extrac-

tion and cancellation of the infrared divergence coming
from the real and virtual photon emission. In contrast to
the widely used the Mo-Tsai approach [13, 14] the final
expression for RC within the Bardin-Shumeiko approach
does not depend on an artificial parameter that is intro-
duced in [13, 14] for separation of the photon emission
on the hard and soft parts.
In this paper we apply an approach for decomposi-

tion of the initial nucleon and virtual photon polariza-
tion as well as the real photon four-momentum over the
respective bases (Appendix A). The polarization decom-
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position is used for the hadronic tensor representation
in a covariant form. The momentum decomposition is
used to simplify integration over the momentum of the
unobserved photon. Specifically, this allows us to essen-
tially reduce the number of pseudoscalars occurring after
the convolution of the leptonic tensors of radiative effects
with the hadronic tensor and present the final expressions
for RC in a compact, covariant and convenient for numer-
ical analysis form. All calculations have been performed
in an exact way keeping the lepton mass at all stages
of the calculation. The dependence of certain terms in
the exact final expressions for RC on the electron mass is
quite tricky and therefore we analyze respective contribu-
tions in the ultrarelativistic approximation allowing for
extraction of the electron mass dependence explicitly and
classifying all terms in RC as leading (i.e., containing the
leading logarithms), next-to-leading (i.e., independent on
the electron mass), and other potentially negligible (i.e.,
the terms vanishing in the approximation of m → 0).
Thus the results obtained in the paper contain both ex-
act formulas for RC and expressions in ultrarelativistic
approximations allowing us to explicitly control the de-
pendence on the electron mass. Thus, the analytic ex-
pressions for RC are valid for experiments with muons
(e.g., COMPASS [3]) in which the approximation of zero
lepton mass could be not appropriate.

The rest of the article is organized as follows. The
hadronic tensor, different sets for the SF used in the lit-
erature, as well as the lowest-order (Born) contribution to
SIDIS process are discussed in Section II. The calculation
of the lowest-order QED RC to the observables in SIDIS
as well as the explicit results for both the semi-inclusive
final hadronic state and exclusive radiative tail contribu-
tions are presented in Section III. The infrared diver-
gence in these calculations are extracted from the real
photon emission with the semi-inclusive final hadronic
state by Bardin-Shumeiko approach [12] and then can-
celled with the corresponding term from the leptonic ver-
tex correction in such a way that the obtained results are
free from an intermediate parameter k̄0. For the parame-
terization of the infrared and ultraviolet divergences the
dimension regularization is used. The results of analyses
of the exact expressions in ultrarelativistic approximation
are given in Section IV. Particularly we show that the
double leading logarithms coming from the terms with
the soft photon emission and the leptonic vertex correc-
tion cancel in their sum. Brief discussion and conclusion
are presented in Section V. Technical details and most
cumbersome parts of the RC are presented in four Ap-
pendices. The bases for the decomposition of the initial
target and virtual photon polarization as well as the real
photon momentum are presented in Appendix A. The
explicit expressions for the real photon emission quan-
tities are presented in Appendix B. The details of the
approach for the infrared divergence extraction and can-
cellation are given in Appendix C. The detail calcula-
tions of the additional virtual particle contributions are
presented in Appendix D.

II. HADRONIC TENSOR AND BORN
CONTRIBUTION

The six-fold differential cross section of SIDIS with po-
larized particles

e(k1, ξ) + n(p, η) −→ e(k2) + h(ph) + x(px) (1)

(k21 = k22 = m2, p2 = M2, p2h = m2
h) where ξ (η) is the

initial lepton (nucleon) polarized vector, can be described
by the following set of variables

x = − q2

2qp
, y =

qp

k1p
, z =

php

pq
,

t = (q − ph)
2, φh, φ. (2)

Here q = k1 − k2, φh is the angle between (k1,k2) and
(q,ph) planes and φ is the angle between (k1,k2) and the
ground planes in the target rest frame reference system
(p = 0).
Also we use the following set of invariants:

S = 2pk1, Q
2 = −q2, Q2

m = Q2 + 2m2,

X = 2pk2, Sx = S −X, Sp = S +X,

V1,2 = 2k1,2ph, V+ =
1

2
(V1 + V2),

V− =
1

2
(V1 − V2) =

1

2
(m2

h −Q2 − t),

S′ = 2k1(p+ q − ph) = S −Q2 − V1,

X ′ = 2k2(p+ q − ph) = X +Q2 − V2,

p2x = (p+ q − ph)
2 = M2 + t+ (1− z)Sx.

λS = S2 − 4M2m2, λY = S2
x + 4M2Q2,

λ1 = Q2(SX −M2Q2)−m2λY , λm = Q2(Q2 + 4m2),

λ′
S = S′2 − 4m2p2x, λ

′
X = X ′2 − 4m2p2x. (3)

Non-invariant variables including the energy ph0, lon-
gitudinal pl and transverse pt (kt) three-momenta of the
detected hadron (the incoming or scattering lepton) with
respect to the virtual photon direction in the target rest
frame are expressed in terms of the above invariants:

ph0 =
zSx

2M
,

pl =
zS2

x − 4M2V−

2M
√
λY

=
zS2

x + 2M2(t+Q2 −m2
h)

2M
√
λY

,

pt =
√

p2h0 − p2l −m2
h,

kt =

√
λ1

λY
. (4)

As a result the quantities V1,2 can be written through
cosφh and other variables defined in Eqs. (2-4) as:

V1 = ph0
S

M
− pl(SSx + 2M2Q2)

M
√
λY

− 2ptkt cosφh,

V2 = ph0
X

M
− pl(XSx − 2M2Q2)

M
√
λY

− 2ptkt cosφh.

(5)
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The sine of φh is expressed as

sinφh =
2ε⊥ph

pt
√
λ1

, (6)

where

εµ⊥ = εµνρσpνk1ρqσ (7)

is the pseudovector with a normal direction to the scat-
tering plane (k1,k2).
The lowest-order QED (Born) contribution to SIDIS

is presented by Feynman graph on Fig. 1 (a). The cross
section for this process reads:

dσB =
(4πα)2

2
√
λSQ4

WµνL
µν
B dΓB , (8)

where the phase space is parameterized as:

dΓB = (2π)4
d3k2

(2π)32k20

d3ph
(2π)32ph0

=
1

4(2π)2
SSxdxdydφ

2
√
λS

Sxdzdp
2
tdφh

4Mpl
. (9)

Since the initial lepton is considered to be longitudi-
nally polarized, its polarization vector has the form [15]:

ξ =
λeS

m
√
λS

k1 −
2λem√

λS

p1 = ξ0 + ξ1. (10)

As a result the leptonic tensor is:

Lµν
B =

1

2
Tr[(k̂2 +m)γµ(k̂1 +m)(1 + γ5ξ̂)γν ]

= 2[kµ1 k
ν
2 + kµ2 k

ν
1 − Q2

2
gµν

+
iλe√
λS

εµνρσ(Sk2ρk1σ + 2m2qρpσ)]. (11)

According to [16] the hadronic tensor for SIDIS process
γ∗ + n → h+X can be decomposed in the terms of the

scalar spin-independent H
(0)
ab and spin-dependent H

(S)
abi

structures functions

Wµν =

3∑

a,b=0

eγ(a)µ eγ(b)ν (H
(0)
ab +

3∑

ρ,i=0

ηρeh(i)ρ H
(S)
abi ).(12)

where e
γ(a)
µ (or e

γ(b)
ν ) and e

h(i)
ρ are the complete set of the

basis vectors for the polarization four-vectors of the vir-
tual photon and nucleon in the target rest frame. These
vectors can be represented in a covariant form [17] using
(A1) and (A2).
Due to the parity and current conservation, hermitic-

ity as well as pη ≡ 0 only the following set of inde-

pendent SF H
(0)
ab and H

(S)
abi in (12) survives [16]: five

spin-independent H
(0)
00 , H

(0)
11 , H

(0)
22 , ReH

(0)
01 , ImH

(0)
01 and

thirteen spin-dependent H
(S)
002 , ReH

(S)
012 , ImH

(S)
012 , ReH

(S)
021 ,

ImH
(S)
021 , ReH

(S)
023 , ImH

(S)
023 , H

(S)
112 , ReH

(S)
121 , ImH

(S)
121 ,

ReH
(S)
123 , ImH

(S)
123 , H

(S)
222 . All the rest SF have to be set

zero [16].
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FIG. 1. Feynman graphs for the lowest order (a), SIDIS (b-e)
and exclusive radiative tails (f,g) contributions to the lowest
order RC for SIDIS scattering

The hadronic tensor in terms of these SF can be ob-
tained by substitution (A1) and (A2) into (12) resulting
in:

Wµν =

9∑

i=1

wi
µνHi = −g⊥µνH1 + p⊥µ p

⊥
ν H2 + p⊥hµp

⊥
hνH3

+(p⊥µ p
⊥
hν + p⊥hµp

⊥
ν )H4 + i(p⊥µ p

⊥
hν − p⊥hµp

⊥
ν )H5
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+(p⊥µ nν + nµp
⊥
ν )H6 + i(p⊥µ nν − nµp

⊥
ν )H7

+(p⊥hµnν + nµp
⊥
hν)H8

+i(p⊥hµnν − nµp
⊥
hν)H9. (13)

Here: g⊥µν = gµν − qµqν/q
2 and nµ = εµνρσqνpρphσ.

The generalized SF Hi can be expressed via H
(0)
ab , H

(S)
abi

using the decomposition of the nucleon polarized three-
vector η = (η1, η2, η3) over the basis (A2) in the following
way

H1 = H
(0)
22 − η2H

(S)
222 ,

H2 =
4

λ2
Y p

2
t

[λY p
2
tQ

2(H
(0)
00 − η2H

(S)
002) + λ2

3S
2
x(H

(0)
11

−η2H
(S)
112)− λ2λY (H

(0)
22 − η2H

(S)
222)

−2Sxλ3ptQ
√

λY (ReH
(0)
01 − η2ReH

(S)
012)],

H3 =
1

p2t
(H

(0)
11 −H

(0)
22 + η2(H

(S)
222 −H

(S)
112)),

H4 =
2

λY p2t
[λ3Sx(H

(0)
22 −H

(0)
11 + η2(H

(0)
112 −H

(S)
222))

+ptQ
√

λY (ReH
(0)
01 − η2ReH

(S)
012)],

H5 =
2Q

pt
√
λY

(ImH
(0)
01 − η2ImH

(S)
012),

H6 =
4M

λ
3/2
Y p2t

[Qpt
√

λY (η1ReH
(S)
021 + η3ReH

(S)
023)

−λ3Sx(η1ReH
(S)
121 + η3ReH

(S)
123)],

H7 =
4M

λ
3/2
Y p2t

[Qpt
√

λY (η1ImH
(S)
021 + η3ImH

(S)
023)

−λ3Sx(η1ImH
(S)
121 + η3ImH

(S)
123)],

H8 =
2M√
λY p2t

(η1ReH
(S)
121 + η3ReH

(S)
123),

H9 =
2M√
λY p2t

(η1ImH
(S)
121 + η3ImH

(S)
123). (14)

Here λ2 = V 2
−+m2

hQ
2, λ3 = V−+ zQ2 and V− is defined

in Eqs.(3).
Finally we find the Born contribution in the form:

σB ≡ dσB

dxdydzdp2tdφhdφ
=

α2SS2
x

8MQ4plλS

9∑

i=1

θBi Hi,(15)

where θBi = Lµνwi
µν/2:

θB1 = Q2 − 2m2,

θB2 = (SX −M2Q2)/2,

θB3 = (V1V2 −m2
hQ

2)/2,

θB4 = (SV2 +XV1 − zQ2Sx)/2,

θB5 =
2λeSε⊥ph√

λS

,

θB6 = −Spε⊥ph,

θB7 =
λeS

4
√
λS

[λY V+ − SpSx(zQ
2 + V−)],

θB8 = −2V+ε⊥ph,

θB9 =
λe

2
√
λS

[S(Q2(zSxV+ −m2
hSp) + V−(SV2

−XV1)) + 2m2(4M2V 2
− + λY m

2
h

−zS2
x(zQ

2 + 2V−))]. (16)

The quantities H
(0)
ab and H

(S)
abi can be expressed

through another set of the SF presented in [18]. Tak-
ing into account that η1 = cos(φs−φh)S⊥, η2 = sin(φs−
φh)S⊥ and η3 = S|| we find that:

H
(0)
00 = C1FUU,L,

H
(0)
01 = C1(−F cosφh

UU + iF sinφh

LU ),

H
(0)
11 = C1(F

cos 2φh

UU + FUU,T ),

H
(0)
22 = C1(FUU,T − F cos 2φh

UU ),

H
(S)
002 = C1F

sin(φh−φs)
UT,L ,

H
(S)
012 = C1(F

sinφs

UT − F
sin(2φh−φs)
UT

+i(F cosφs

LT − F
cos(2φh−φs)
LT )),

H
(S)
021 = −C1(F

sin(2φh−φs)
UT + F sinφs

UT

+i(F
cos(2φh−φs)
LT + F cosφs

LT )),

H
(S)
023 = −C1(F

sinφh

UL + iF cosφh

LL ),

H
(S)
121 = C1(F

sin(3φh−φs)
UT + F

sin(φh+φs)
UT

+iF
cos(φh−φs)
LT ),

H
(S)
123 = C1(F

sin 2φh

UL + iFLL),

H
(S)
112 = C1(F

sin(3φh−φs)
UT + F

sin(φh−φs)
UT,T

−F
sin(φh+φs)
UT ),

H
(S)
222 = C1(F

sin(φh+φs)
UT + F

sin(φh−φs)
UT,T

−F
sin(3φh−φs)
UT ), (17)

where

C1 =
4Mpl(Q

2 + 2xM2)

Q4
. (18)

III. LOWEST-ORDER RADIATIVE
CORRECTIONS

The six matrix elements shown in Fig. 1b-g contribute
to the lowest-order QED RC to the cross section of the
base SIDIS process (Fig. 1a). A critical difference in the
graphs a)-e) comparing to the graphs f) and g) is the
distinct final unobserved hadronic state: continuum of
particles in the former and a single hadron in the latter
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case. The underlying processes are semi-inclusive and ex-
clusive hadron leptoproduction, respectively. At the level
of RC, both of them include the unobservable real photon
emission from the lepton leg as presented in Fig. 1 (b,c)
and (f,g). The contribution to RC from the semi-inclusive
process contains also the leptonic vertex correction and
vacuum polarization (Fig. 1d,e). Thus these two separate
contributions to the total RC to the SIDIS cross section
are considered in two separate subsections below.

A. Semi-Inclusive Contribution

The real photon emission in semi-inclusive process,

e(k1, ξ) + n(p, η) → e(k2) + h(ph) + x(p̃x) + γ(k),

(19)

where k is a real photon four-momentum depicted on
Fig. 1 (b,c) is described by the set variables presented
in (2) and three additional quantities:

R = 2kp, τ =
kq

kp
, φk, (20)

where φk is an angle between (k1,k2) and (k,q) planes.
Its sine in the covariant form is:

sinφk =
2ε⊥k

√
λY

R
√
λ1(Q2 + τ(Sx − τM2))

. (21)

The contribution of real photon emission from the lep-
tonic leg is:

dσR =
(4πα)3

2
√
λSQ̃4

W̃µνL
µν
R dΓR. (22)

Here the symbol of “tilde” denotes that the arguments
of the hadronic tensor such as Q2, W 2, z, t and φh are
defined through the shifted q → q − k, i.e. Q̃2 = −(q −
k)2 = Q2+Rτ . The phase space of the considered process
has a form:

dΓR = (2π)4
d3k

(2π)32k0

d3k2
(2π)32k20

d3ph
(2π)32ph0

, (23)

where

d3k

k0
=

RdRdτdφk

2
√
λY

. (24)

For the representation of explicit results in the simplest
way the leptonic tensor Lµν

R in (22) is separated into two
parts:

Lµν
R = Lµν

R0 + Lµν
R1. (25)

The first term includes the part of the leptonic tensor
that contains spin independent terms and terms contain-
ing ξ0, i.e., the part of the polarization vector (10):

Lµν
R0 = −1

2
Tr[(k̂2 +m)Γµα

R (k̂1 +m)(1 + γ5ξ̂0)Γ̄
ν
Rα],

(26)

where

Γµα
R =

(
kα1
kk1

− kα2
kk2

)
γµ − γµk̂γα

2kk1
− γαk̂γµ

2kk2
,

Γ̄ν
Rα = γ0Γ

ν†
Rαγ0

=

(
k1α
kk1

− k2α
kk2

)
γν − γν k̂γα

2kk2
− γαk̂γ

ν

2kk1
. (27)

The second term in (25) is proportional only to the resid-
ual part ξ1 of the polarization vector ξ

Lµν
R1 = −1

2
Tr[(k̂2 +m)Γµα

R (k̂1 +m)γ5ξ̂1Γ̄
ν
Rα]. (28)

As it is shown below this part of the leptonic tensor gives
non-vanishing contribution to RC in the ultrarelativistic
approximation both for the semi-inclusive (71) and ex-
clusive (73) final hadronic states.
The convolution of the leptonic tensors Lµν

R0 and Lµν
R1

with the shifted hadronic tensor can be presented as

W̃µνL
µν
R0 =

9∑

i=1

w̃i
µνH̃iL

µν
R0 = −2

9∑

i=1

ki∑

j=1

H̃iθ
0
ijR

j−3,

W̃µνL
µν
R1 =

∑

i=5,7,9

w̃i
µνH̃iL

µν
R1 = −2

∑

i=5,7,9

ki∑

j=1

H̃iθ
1
ijR

j−3,

(29)

where i enumerates the contributions of respective SF in
(13). The sum over j represents the decomposition of the
leptonic (26, 28) and hadronic tensor convolutions over

R. In this decomposition quantities θ0,1ij do not depend
on R. Their explicit expressions are presented in Ap-
pendix B. The number of terms is different for different
SF: ki = {3, 3, 3, 3, 3, 4, 4, 4, 4}.
The lowest order SIDIS process (1) is described by

the four independent four-momenta such us p, k1, q
and ph. Therefore, the Born cross section contains only
one pseudoscalar εµνρσph µpνk1ρqσ = εµ⊥ph. This pseu-
doscalar contributes to θB5,6,8 as it was shown in Eqs. (16)
and, according to Eqs. (6,7), can be expressed in terms
of the variables (2-4) as: εµνρσph µpνk1ρqσ = εµ⊥ph =

pt
√
λ1 sinφh/2. When we deal with real photon emission

the additional independent four-momentum k appears.
As a result the number of pseudoscalar quantities that
can exist in the expressions for the cross section grows
up to five. They are not independent and their number
can be reduced to two, namely ε⊥ph and ε⊥k, using the
decomposition of the photonic four-momentum over the
basis introduced in Appendix A by Eqs. (A5). As shown
in Eqs. (A9) the rest three pseudoscalars are expressed
through the linear combination of ε⊥ph and ε⊥k. The
explicit expression for ε⊥k follows from (21)

ε⊥k =
sinφkR

√
λ1(Q2 + τ(Sx − τM2))

2
√
λY

. (30)
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After substitution (29) into (22)

dσR = − α3

4π2Q̃4
√
λS

9∑

i=1

ki∑

j=1

H̃iθijR
j−3 d

3k

k0

d3k2
k20

d3ph
ph0

= −α3SS2
xdxdydzdptdφhdφdτdφkdR

64π2MplλS

√
λY Q̃4

×
9∑

i=1

ki∑

j=1

H̃iθijR
j−2, (31)

where θij = θ0ij for i = 1 − 4, 6, 8 and θij = θ0ij + θ1ij for
i = 5, 7, 9, we found that the term with j = 1 in (31)
contains the infrared divergence at R → 0 that does not
allow to perform the straightforward integration of dσR

over the photonic variable R. For the correct extraction
and cancellation of the infrared divergence the Bardin-
Shumeiko approach [12] is used. Following to this method
the identical transformation:

dσR = dσR − dσIR
R + dσIR

R = dσF
R + dσIR

R , (32)

is performed. Here dσF
R is the infrared free contribution

and dσIR
R contains only the j = 1-term in which argu-

ments of SF are taken for k = 0,

dσIR
R = − α3

4π2Q4
√
λS

9∑

i=1

Hiθi1
R2

d3k

k0

d3k2
k20

d3ph
ph0

. (33)

This decomposition allows us to perform the treatment of
the infrared divergence analytically since the arguments
of the SF in (33) do not depend on photonic variables.
Due to θi1 = 4FIRθ

B
i one can find that this contributions

can be factorized in front of the Born cross section

dσIR
R = − α

π2
dσB FIR

R2

d3k

k0
, (34)

where

FIR =

(
k1
z1

− k2
z2

)2

, (35)

z1,2 = kk1,2/kp, and the explicit expressions of these
quantities are given in Appendix B (see (B4)).
The term (34) is then separated into the soft δS and

hard δH parts:

σIR
R =

α

π
(δS + δH)σ0 (36)

by introduction of the infinitesimal photonic energy k̄0 →
0 that is defined in the system p1 + q− ph = 0:

δS = − 1

π

∫
d3k

k0

FIR

R2
θ(k̄0 − k0),

δH = − 1

π

∫
d3k

k0

FIR

R2
θ(k0 − k̄0). (37)

The explicit integration, detail of which are described
in Appendix C, results in the final explicit expressions

for these two contributions in the form:

δS = 2(Q2
mLm − 1)

(
PIR + log

2k̄0
ν

)
+

1

2
S′LS′

+
1

2
X ′LX′ + Sφ,

δH = 2(Q2
mLm − 1) log

p2x − (M +mπ)
2

2k̄0
√
p2x

. (38)

The sum of δS and δH does not depend on the sep-
arated photonic energy k̄0 but includes the term repre-
senting the infrared divergence

PIR =
1

n− 4
+

1

2
γE + log

1

2
√
π

(39)

as well as the arbitrary parameter ν. These two quanti-
ties should be cancelled by summing the infrared diver-
gent part with the contribution from the leptonic vertex
correction that is considered below.
The term Sφ has a form:

Sφ = − Q2
m

2
√
λm

{
log

X ′ −
√
λ′
X

X ′ +
√
λ′
X

log
(z − z1)(z − z3)

(z − z2)(z − z4)

+

4∑

i,j

Sj(−1)i+1

(
1

2
δij log

2(z − zi)

+(1− δij)

[
log(z − zi) log(zi − zj)

−Li2

(
z − zi
zj − zi

)])}∣∣∣∣
z=zu

z=zd

, (40)

where

Li2(x) = −
x∫

0

log |1− y|
y

dy (41)

is Spence’s dilogarithm and

z1,2 =
1√
λ′
X

(
X ′ − S′ +

2p2x(Q
2 ∓

√
λm)

X ′ −
√
λ′
X

)
,

z3,4 =
1√
λ′
X

(
S′ −X ′ − 2p2x(Q

2 ±
√
λm)

X ′ +
√
λ′
X

)
,

zu =

√
λ′
S

λ′
X

− 1, zd =
X ′(S′ −X ′)− 2p2xQ

2

λ′
X

,

Sj = {1, 1,−1,−1}. (42)

Note, the absolute value of the argument in the loga-
rithmic function is used when computing the expression
(40).
The infrared free contribution dσF

R from (32) inte-
grated over the three photonic variables reads:

σF
R = − α3SS2

x

64π2MplλS

√
λY

τmax∫

τmin

dτ

2π∫

0

dφk

Rmax∫

0

dR
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×
9∑

i=1

[
θi1
R

(
H̃i

Q̃4
− Hi

Q4

)
+

ki∑

j=2

H̃iθij
Rj−2

Q̃4

]
,

(43)

where the limits of integration are:

Rmax =
p2x − (M +mπ)

2

1 + τ − µ
,

τmax/min =
Sx ±

√
λY

2M2
(44)

and the quantity µ is defined in Eq. (B3).
The additional virtual particle contributions consist of

the leptonic vertex correction (Fig.1 (d)) and vacuum
polarization by leptons and hadrons (Fig.1 (e)). These
contributions are given by Eq. (8) with the replacement
of the leptonic tensor Lµν

B by

Lµν
V =

1

2
Tr[(k̂2 +m)Γµ

V (k̂1 +m)(1 + γ5ξ̂)γ
ν ]

+
1

2
Tr[(k̂2 +m)γµ(k̂1 +m)(1 + γ5ξ̂)Γ̄

ν
V ], (45)

where

Γµ
V = Λµ +Πlµ

α γα +
α

2π
δhvacγ

µ, (46)

and Γ̄ν
V = γ0Γ

ν †
V γ0.

The first two terms corresponding to the leptonic ver-
tex correction Λµ and vacuum polarization by leptons
Πlµ

α are calculated analytically using Feynman rules while
the fit for the vacuum polarization by hadrons δhvac can
be taken from the experimental data [19].
Since Λµ and Πlµ

α contain the ultraviolet divergence
while Λµ also includes the infrared divergent term the
dimensional regularization is used for the calculation of
the loop integrals:

Λµ = −ie2
∫

dnl

(2π)nνn−4

×γα(k̂2 − l̂ +m)γµ(k̂1 − l̂ +m)γα

l2(l2 − 2lk2)(l2 − 2lk1)
,

Πl
αµ = − ie2

Q2

∫
dnl

(2π)nνn−4

×
{
∑

i=e,µ,τ

Tr[(l̂ +mi)γα(l̂ − q̂ +mi)γµ]

(l2 −m2
i )((l − q)2 −m2

i )

}
.

(47)

Details of the calculations are presented in Appendix D;
Λµ and Πi

αµ have the following structure:

Λµ =
α

2π

(
δUV
vert(Q

2)γµ − 1

2
mLm[q̂, γµ]

)
,

Πl
αµ =

∑

i=e,µ,τ

α

2π
δi UV
vac (Q2)g⊥αµ, (48)

where the second term in Λµ is the anomalous magnetic
moment. To remove the ultraviolet divergence the stan-
dard on mass-shell renormalization procedure is used:

δUV
vert(Q

2) and δi UV
vac (Q2) are substituted by the difference

of these quantities and their values at Q2 = 0:

δvert = δUV
vert(Q

2)− δUV
vert(0),

δivac = δi UV
vac (Q2)− δi UV

vac (0). (49)

Here δUV
vert(0) = 2−PUV −2PIR−3 log(m/ν), δi UV

vac (0) =
4(PUV +log(mi/ν))/3 and the ultraviolet free terms have
a form:

δvert = −2(Q2
mLm − 1)

(
PIR + log

m

ν

)
− 2

+

(
3

2
Q2 + 4m2

)
Lm − Q2

m√
λm

(
1

2
λmL2

m

+2Li2

(
2
√
λm

Q2 +
√
λm

)
− π2

2

)
,

δlvac =
∑

i=e,µ,τ

δivac =
∑

i=e,µ,τ

[2
3

Q2 + 2m2
i√

λi
m

Li
m

−10

9
+

8m2
i

3Q2

(
1− 2m2

i√
λi
m

Li
m

)]
. (50)

The quantity Lm is defined in (C10) while the expressions
for λi

m and Li
m is defined by Eqs. (D3).

Finally the contribution of the inelastic tail to the six-
fold SIDIS cross section reads:

σin =
α

π
(δV R + δlvac + δhvac)σ

B + σF
R + σAMM , (51)

where the sum of the infrared divergent terms

δV R = δS + δH + δvert

= 2(Q2
mLm − 1) log

p2x − (M +mπ)
2

m
√
p2x

+
1

2
S′LS′

+
1

2
X ′LX′ + Sφ − 2 +

(
3

2
Q2 + 4m2

)
Lm

− Q2
m√
λm

(
1

2
λmL2

m + 2Li2

(
2
√
λm

Q2 +
√
λm

)

−π2

2

)
(52)

is free both from the infrared divergent term PIR appear-
ing in δS and δvert that are defined by Eqs. (38) and (50),
and the arbitrary parameter ν.

At last the contribution of the anomalous magnetic
moment coming from the second term in Λµ given by
Eqs. (48) has a form:

σAMM =
α3m2SS2

x

16πMQ2plλS
Lm

9∑

i=1

θAMM
i Hi, (53)

with:

θAMM
1 = 6,

θAMM
2 = − λY

2Q2
,

θAMM
3 = −2m2

h − 2
V 2
−

Q2
,
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θAMM
4 = −2Sx

(
z +

V−

Q2

)
,

θAMM
5 =

2λe(2S + Sx)ε⊥ph√
λSQ2

,

θAMM
7 =

λe(2S + Sx)

4
√
λSQ2

(Sx(SV2 −XV1 − zSpQ
2)

+4M2Q2V+),

θAMM
9 =

λe

2
√
λSQ2

(S2
x(4m

2(m2
h − z(zQ2 + 2V−))

+V1V−)− 4(M2(Q2 − 4m2) + S2)(m2
hQ

2

+V 2
−) + zQ2Sx(Sx(zQ

2 + V1 + V−)

+2SV+) + 2SSxV−V+),

θAMM
6 = θAMM

8 = 0. (54)

B. Exclusive Radiative Tail

The exclusive radiative tail is the process

e(k1, ξ) + n(p, η) → e(k2) + h(ph) + u(pu) + γ(k),

(55)

where pu is the four-momentum of undetected hadron
(p2u = m2

u) shown in Fig. 1 (f,g). The final unobserved
state contains the photon radiated from the lepton line
and a hadron produced in an exclusive reaction of γ∗

and p. The process (55) gives a contribution to the RC
in SIDIS because two observed particles in the final state
can have the same momenta as the unobserved particles
in SIDIS process (1). The square of the invariant mass
of the unobserved state p2x = (p+ q − ph)

2 = 2k(p+ q −
ph)+m2

u depends on the photonic variables. Emission of
the soft photons would result in p2x = m2

u. This is beyond
the kinematic region of SIDIS. Therefore the process (55)
being the contribution to RC to the SIDIS cross section
does not contain the infrared divergence [10].
Description of the exclusive process without the radi-

ated photon requires the only five of the six presented in
Eqs. (2) variables of SIDIS: x, y, t, φh and φ. The pro-
cess with the radiated photon is additionally described
by the three photonic variables R, τ and φk introduced
above by Eq. (20). In this case the sixth SIDIS variable z
is expressed through other SIDIS and photonic variables:

z =
M2 −m2

u + t−R(1 + τ − µ)

Sx
+ 1, (56)

where µ is defined by Eq. (B3). Since we calculate RC to
SIDIS we need to keep z and use this equation in order
to express R in terms of z and two remaining photonic
variables:

Rex =
p2x −m2

u

1 + τ − µ
, (57)

and therefore to reduce the integration over the photon
momentum to the two-dimensional integral in respect of
variables τ and φk.

The contribution of the exclusive radiative tail in the
form similar to (22) reads:

dσex
R =

(4πα)3

2
√
λSQ̃4

W̃µν
ex LR

µνdΓ
ex
R , (58)

where the hadronic tensor Wµν
ex describes the exclusive

process γ∗+n → h+u and has the same structure as the
hadronic tensor in Eq. (13) but with the SF dependent
only on Q2, W 2 and t variables. The leptonic tensor LR

µν

as well as its convolution with the hadronic structures
w̃µν

i are the same as in Eqs. (26-29).
The phase space of this process is:

dΓex
R =

1

(2π)8
d3k2
2k20

d3k

2k0

d3ph
2ph0

d3pu
2pu0

×δ4(k1 + p− k2 − ph − pu − k)

=
2RexSS

2
xdxdydφdzdφhdp

2
tdτdφk

(4π)8(1 + τ − µ)Mpl
√
λSλY

. (59)

The use of the phase space (59) and convolution of lep-

tonic and hadronic tensors (29) with replacement H̃i →
H̃ex

i in (58) and subsequent integration of the obtained
expression over two photonic variables results in the con-
tribution of the exclusive radiative tail to SIDIS process
in the form:

σex
R = − α3SS2

x

29π5MplλS

√
λY

τmax∫

τmin

dτ

2π∫

0

dφk

×
9∑

i=1

ki∑

j=1

H̃ex
i θijR

j−2
ex

(1 + τ − µ)Q̃4
. (60)

IV. ULTRARELATIVISTIC APPROXIMATION

In Section III all contributions to the lowest-order RC
are presented by exact formulas. Some of them have a
rather complicate analytical structure. However, due to
smallness of the leptonic mass compared to other quan-
tities that describe kinematics of the process it is rather
useful to obtain RC in the ultrarelativistic approxima-
tion keeping the leptonic mass m only as an argument of
the logarithmic function. This allows us to simplify the
analytical expressions essentially as well as clarify the
leading log behavior of the obtained results. In the other
words, the lowest-order QED RC in this approximation
has the form

σRC =
α

π

[
Alm +B +O

(
m2

Q2

)]
, (61)

where lm = logQ2/m2, and the terms A and B are in-
dependent of the leptonic mass and represent the lowest
order leading and next-to-leading contributions to the
RC to the cross section, respectively.
The terms in (52) that are factorized in front of the

Born contribution, are essentially simplified resulting in
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more transparent structure after applying the ultrarela-
tivistic approximation, e.g., the terms (36)

σIR
R =

α

π

[
(lm − 1)

(
2PIR + 2 log

m

ν

+ log
(p2x − (M +mπ)

2)2

S′X ′

)
+

1

2
l2m

−1

2
log2

S′

X ′
+ Li2

{
1− Q2p2x

S′X ′

}
− π2

3

]
σ0 (62)

contains both lm and l2m. The latter comes from the soft
photon emission whose contribution cancels in the sum
with the leptonic vertex correction:

δV R = (lm − 1) log
(p2x − (M +mπ)

2)2

S′X ′
+

3

2
lm

−1

2
log2

S′

X ′
+ Li2

{
1− Q2p2x

S′X ′

}
− π2

6
− 2.(63)

The ultrarelativistic approximation for the hard pho-
ton emission contribution (43,60) requires additional care
because of integration over photonic variables and non-
trivial dependence of the integrand on the leptonic mass.
Specifically, the integrand contains the terms 1/z1 and
1/z21 :

2π∫

0

dφk

z1
=

2π
√
λY√

(Q2 + τS)2 + 4m2(τ(Sx − τM2) +Q2)
,

2π∫

0

dφk

z21
=

2π(Q2Sp + τ(SSx + 2M2Q2))
√
λY

((Q2 + τS)2 + 4m2(τ(Sx − τM2) +Q2))3/2

(64)

These have a sharp peaking behavior in the region τ →
τs ≡ −Q2/S due to smallness of the lepton mass. The
integration of the expressions (64) over φk and τ gives:

τmax∫

τmin

dτ

2π∫

0

dφk

z1
= 2π

√
λY

λS
log

S +
√
λS

S −
√
λS

,

τmax∫

τmin

dτ

2π∫

0

dφk

z21
=

2π
√
λY

m2
. (65)

Since

lim
m→0

log
S +

√
λS

S −
√
λS

= lm + log
S2

Q2M2
(66)

the terms containing 1/z1 contribute to the leading and
next-to-leading RC. The terms containing 1/z21 also con-
tain m2 in numerators and therefore contribute to the
next-to-leading RC only (the only exception is θ̂053 that
is discussed below). The similar conclusions are true for
the terms containing 1/z2 and 1/z22 terms.

Actually the integrand in (65) contains SF. Therefore
we make the identical transformation for extraction of
the leading and next-to-leading terms:

τmax∫

τmin

dτ

2π∫

0

dφk
G(τ, φk)

z1
= 2π

√
λY

λS
log

√
λS + S√
λS − S

G(τs, 0)

+

τmax∫

τmin

dτ

2π∫

0

dφk
G(τ, φk)− G(τs, 0)

z1
,

m2

τmax∫

τmin

dτ

2π∫

0

dφk
G(τ, φk)

z21
= 2π

√
λY G(τs, 0)

+

τmax∫

τmin

dτ

2π∫

0

dφkm
2G(τ, φk)− G(τs, 0)

z21
, (67)

where G(τ, φk) is a regular function of τ and φk. The
second term in the r. h. s. of the first transformation
does not include the leading terms and the second term
in the second equality is proportional to m2 and vanishes
in the ultrarelativistic approximation.
The approach of extraction of the leading and next-

to-leading contributions can be illustrated by considera-
tion of the terms originated from the convolution of the
leptonic tensor (28) with the hadronic structures w̃i

µν .

Summing up the terms θ1ijR
j−3 in the last expression of

Eq. (29) and keeping the leptonic mass only in the term
m2/z21 (in θ1ij the term 1/z22 is proportional tom4) results
in

w̃i
µνL

µν
R1 = −2

ki∑

j=1

θ1ijR
j−3 =

m2

z21
θ1i (R, τ, φk) (68)

with the quantities θ1i (R, τs, 0) expressed through (16) as:

θ1i (R, τs, 0) =
4R

S(S −R)
θBi

(
k1 →

(
1− R

S

)
k1

)
.(69)

The replacement in the brackets is applied for any kine-
matic variable defined through k1, e.g., S → S − R,
Q2 → (1 − S/R)Q2, and ε⊥ph → (1 − S/R)ε⊥ph. Note
that R = Rex has to be used for the exclusive radiative
tail.
The resulting equation for the σξ1

R is obtained using
the second equation of (67) with the regular function
G(τ, φk),

G(τ, φk) =

Rmax∫

0

RdR

(Q2 + τR)2

∑

i=5,7,9

θ1i (R, τ, φk)H̃i.

(70)

Therefore the contribution from the second part ξ1 of the
lepton polarized vector (10) reads:

σξ1
R = − αS2

x

πMplS2

Rs

max∫

0

pslRdR

(Sx −R)2
σ̃B
pl, (71)
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where

psl =
zSSx(Sx −R) + 2M2(RV1 − 2SV−)

2M
√

S(4M2Q2(S −R) + S(Sx −R)2)
,

Rs
max = S(p2x − (M +mπ)

2)/S′, (72)

and σ̃B
pl is a proportional to λe part of the Born con-

tribution with the following replacement: m → 0, S →
S − R, Q2 → Q2(1 − R/S), V1 → V1(1 − R/S) and
z → zSx/(Sx −R).
Similar calculation of the exclusive radiative tail results

in:

σex ξ1
R = − αS2

xR
s
exp

s ex
l

πMplSS′(Sx −Rs
ex)

dσ̃ex B
pl

dx̃dỹdp̃tdφhdφ
, (73)

where

ps ex
l =

1

2M
√
S(4M2Q2(S −Rs

ex) + S(Sx −Rs
ex)

2)

[(Sx −Rs
ex)(S(Sx − 2V− +m2

h −m2
u)

−Rs
ex(S − V1))−Q2(S −Rs

ex)(Sx −Rs
ex)

+M2(S(Sx − 4V−)−Rs
ex(S − 2V1))], (74)

Rs
ex = S(p2x−m2

u)/S
′ and the exclusive Born cross section

reads:

dσex B
pl

dxdydptdφhdφ
=

α2SSx

64π3Q4MplλS

×
∑

i=5,7,9

Hex
i θBi (z → t+M2 −m2

u

Sx
+ 1). (75)

Finally, we consider the extraction of the leading and

next-to-leading terms in the quantity θ̂053 given in Ap-

pendix B. In contrast to other θ̂0ij , the quantity θ̂053 in-

cludes terms 1/z21 without factors proportional tom2 and
therefore can potentially result in electron mass singular-
ity ∼ m−2 after integration (65). This is, however, is not

the case because θ̂053 = 0 at the peak point, i. e., for
τ = τs = −Q2/S (and µ = V1/S). Explicit integration
in the limit m2 → 0,

τmax∫

τmin

dτ

2π∫

0

dφkθ̂
0
53 = − 2λeπpt sinφh

√
λY

M2S2
√

Q2(SX −M2Q2)

[
4M2Q2(SX −M2Q2)

(
lm + log

S2

Q2M2
− 3

)
+ S2λY

]
(76)

shows that θ̂053 has a standard form A log(Q2/m2) +B.

V. CONCLUSION

Newly achieved accuracies in modern SIDIS experi-
ments in TJNAF and CERN require renewed attention to
RC calculations and their implementation in data analy-
sis software. In this paper we obtained the exact analyt-
ical expressions for the lowest-order model-independent
part of QED RC to the SIDIS cross section with the lon-
gitudinally polarized initial lepton and arbitrary polar-
ized target and demonstrated how the leading and next-
to-leading contributions can be extracted. The model-
independent RC includes i) the contributions of radiated
SIDIS processes and loop diagrams (51) and ii) the contri-
bution of the exclusive radiative tail (60). The method-
ology developed in this paper is the extension of the co-
variant approach for the RC calculations developed ear-
lier: i) the method of covariant extraction and cancella-
tion of the infrared divergence suggested by Bardin and
Shumeiko [12]; ii) the set of integration variables used in
RC calculation to DIS [15], iii) RC to unpolarized and po-
larized SIDIS in the quark-parton model [6–8], iv) RC for
SIDIS of unpolarized particles [9], and v) the calculation
of the exclusive radiative tail for unpolarized SIDIS [10].
The calculations of RC in SIDIS measurements were per-
formed by the model independent way that involves con-
structing and using the SIDIS (and exclusive) hadronic

tensor containing the eighteen SIDIS and exclusive SF.
We obtained the explicit form of the hadronic tensor us-
ing approaches of [16] and [17] and demonstrated that
the Born cross section exactly coincides with that given
by [18]. The next step in the RC calculation includes
coding of the formulae and numeric evaluation of the ef-
fects of the RC. However, this requires models of the
SIDIS/exclusive SF that are not known now. Therefore,
a broad discussion and efforts of theoreticians and exper-
imentalists are required to complete the evaluation of all
SIDIS SF as well as SF in resonance region and exclu-
sive SF. Further development will include development
of i) iteration procedure with fitting of measured SF and
joining with models beyond SIDIS measurements at each
iteration step, and ii) tools for generation of the radiated
photon. Such generator can be constructed based on a
code for RC in SIDIS in the same way of how RADGEN
[20] is constructed based on POLRAD 2.0. Generation
of semi-inclusive processes based on DIS Monte Carlo
generators can provide only approximate cross sections,
because a part of the SIDIS cross section involving pure
semi-inclusive SF and respective convolutions of the lep-
tonic and hadronic tensors are not presented in such DIS
Monte Carlo generators.
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Appendix A: Bases in the four-dimensional space

In this Appendix three bases in the four-dimensional
space that are used in our analyses, are presented. The
first two are used for the decomposition of the initial
target and virtual photon polarization in the hadronic
tensor defined by (12). The latter allows us to decompose
the real photon momentum in such a way that all five
pseudoscalar quantities appearing in processes (19) and
(55) reduce down to two: ε⊥ph and ε⊥k.
For the decomposition of the hadronic tensor over the

SF it is convenient to introduce the reference system
(xh,yh, zh) in the target rest frame where the two polar
axises are defined as: zh is chosen in the virtual photon
three-momentum direction q = k1−k2 and the xh along
the part of the registrated hadronic momentum that is
transverse to the zh-axis. The direction of the rest axial
yh-axis is defined as yh = zh × xh. In this system the
complete basis for polarization vectors can be presented
into covariant form [17] both for the virtual photon

eγ(0)µ =
2Q√
λY

p⊥µ ,

eγ(1)µ =
1

pt

[
p⊥hµ − Sx(m

2
h + (2z − 1)Q2 − t)

λY
p⊥µ

]
,

eγ(2)µ = 2
εµνρσpνqρphσ

pt
√
λY

,

eγ(3)µ =
qµ
Q

, (A1)

and nucleon:

eh(0)µ =
pµ
M

,

eh(1)µ =
1

pt

[
p⊥hµ − Sx(m

2
h + (2z − 1)Q2 − t)

λY
p⊥µ

]
,

eh(2)µ = 2
εµνρσpνqρphσ

pt
√
λY

,

eh(3)µ =
2M2qµ − Sxpµ

M
√
λY

, (A2)

where Q =
√

Q2 and for any four-vector a⊥µ = aµ +

aq qµ/Q
2. Note, that direction of eh(2) (and eγ(2) as

well) is chosen in such a way that the projection of k1,2

on yh reads yh · k1 = yh · k2 = −eh(2)k1 = −eh(2)k2 =
−kt sin(φh).

The components of these two bases in the reference
system (xh,yh, zh) read:

eγ(0)µ =
1

2MQ
(
√

λY , 0, 0, Sx), e
h(0)
µ = (1, 0, 0, 0),

eγ(1)µ = (0, 1, 0, 0), eh(1)µ = (0, 1, 0, 0),

eγ(2)µ = (0, 0, 1, 0), eh(2)µ = (0, 0, 1, 0),

eγ(3)µ =
1

2MQ
(Sx, 0, 0,

√
λY ), e

h(3)
µ = (0, 0, 0, 1).(A3)

In the rest frame system the virtual photon longitudi-
nal and transverse polarizations correspond to eγ(0) and
eγ(1,2), respectively, and the left and right circular polar-
izations are defined as

eγ(±) = ∓ 1√
2
(eγ(1) ± ieγ(2)). (A4)

To decompose the photonic four-momentum the other
the reference system (xl,yl, zl) in the rest target frame
has to be introduced. In this system the polar zl-axis has
the same direction as three-vector q, other polar xl-axis
is chosen along the incoming or outgoing lepton part that
is transverse to q, at last the axial yl-axis is defined as
yl = zl × xl. As a result (xl,yl) is the scattering plane.
In the covariant form this basis reads as:

el(0)µ =
pµ
M

,

el(1)µ =

√
λY

λ1

[
1

2
(k1µ + k2µ)−

SpQ
2

λY
p⊥µ

]
,

el(2)µ = −2ε⊥µ√
λ1

,

el(3)µ =
2M2qµ − Sxpµ

M
√
λY

. (A5)

Note, that direction of yl is chosen in such a way that the
projection of ph on yl is yl · ph = −el(2)ph = pt sin(φh).
The two reference systems (xh,yh, zh) and (xl,yl, zl) can
be expressed through each other in a following way:

xh = xl cos(φh) + yl sin(φh),

yh = −xl sin(φh) + yl cos(φh),

zh = zl (A6)

where cos(φh) and sin(φh) are defined by Eqs. (5) and
(6) respectively.
It should be also noted that for i = γ, h, l

ei(a)µ ei(b)ν gµν = gab,

ei(a)µ ei(b)ν gab = gµν . (A7)

The photonic four-momentum can be decomposed into
the following way k = k(a)e

(a) where

k(0) = kel(0) =
R

2M
,
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k(1) = −kel(1) =
R(Q2Sp + τ(SSx + 2M2Q2)− z1λY )

2
√
λ1λY

,

k(2) = −kel(2) =
2ε⊥k√
λ1

,

k(3) = −kel(3) =
R(Sx − 2τM)

2M
√
λ1

. (A8)

This decomposition for the four-momentum of the
real unobservable photon allows us to express all pseu-
doscalars through the linear combinations two of them
ε⊥ph and ε⊥k:

εµνρσkµph νk1ρqσ =
1

2λ1
(Rε⊥ph(τ(Q

2S + 2m2Sx)

+Q2(4m2 +Q2 − z1Sp))

+ε⊥k(Q
2(SV2 +XV1 − zQ2Sx)

−4m2Sx(zQ
2 + V−))),

εµνρσkµpνph ρqσ =
1

2λ1
(Rε⊥ph(z1λY −Q2Sp

−τ(SSx + 2M2Q2))

+ε⊥k(Sx(zQ
2Sp − SV2 +XV1)

−4V+M
2Q2)),

εµνρσkµpνk1ρph σ =
1

2λ1
(Rε⊥ph(τλS + 2m2Sx

+Q2S − z1(SSx + 2M2Q2))

+ε⊥k(2m
2(4V−M

2 − zS2
x)

+S(SV2 −XV1 − zQ2Sx)

+2V1M
2Q2)). (A9)

Appendix B: Explicit expression for θij

For all i = 1− 8, the quantities θ0i1 = 4FIRθ
B
i and FIR

are defined by (B5). The other θ0ij read:

θ012 = 4τFIR,

θ013 = −4− 2Fdτ
2,

2θ022 = SxSpF1+ + 2m2SpF2− + 2(Sx − 2τM2)FIR − τS2
pFd,

2θ023 = (4m2 + τ(2τM2 − Sx))Fd − SpF1+ + 4M2,

θ032 = 2((µV− − τm2
h)FIR + V+(µm

2F2− + V−F1+ − τV+Fd)),

θ033 = (2µ2m2 + τ(τm2
h − µV−))Fd − µV+F1+ + 2m2

h,

θ042 = (SV1 −XV2)F1+ +m2(µSp + 2V+)F2− − 2τSpV+Fd + ((µ− 2τz)Sx + 2V−)FIR,

2θ043 = (8µm2 + τ((2τz − µ)Sx − 2V−))Fd − (µSp + 2V+)F1+ + 4zSx,

θ052 =
λeS

λ1

√
λS

[ε⊥ph(2(Sx(Q
2 + 4m2) + 2τ(SX − 2M2(Q2 + 2m2)))FIR +Q2(Sp(SxF1+ + 2m2F2−)

−τ(4SX + S2
x)Fd)) + 2

ε⊥k

R
(m2(Sx(SV2 −XV1 − zQ2Sp) + 4M2Q2V+)F2−

+((Q2 + 4m2)(4M2V− − zS2
x) + Sp(SV2 −XV1))FIR)],

θ053 = θ̂053 +
λeS

λ1

√
λS

[ε⊥ph(8m
2(τ(τM2 − Sx)−Q2)F21 + (Q2(4τM2 + Sp) + 2τSSx)F1+ + τ(4m2(2τM2 − Sx)

+Q2(Sx − 4S)− 2τS2)Fd) + 2
ε⊥k

R
(2m2(Sx(2zQ

2 + 2V− + (τz − µ)Sx)− 4M2(µQ2 + τV−))F21

+τ(2m2(zS2
x − 4M2V−)− 2M2Q2V1 + S(zSxQ

2 − SV2 +XV1))Fd)],

θ̂053 =
2λeS

λ1

√
λS

F21[
ε⊥k

R
(2(µQ2 + τV1)(SX −M2Q2) + (Q2 + τS)(zQ2Sx − SV2 −XV1))− ε⊥ph(Q

2 + τS)2],

θ062 =
1

2λ1
[ε⊥ph((4M

2Q2(Q2 + 4m2)− S2
x(Q

2 − 4m2)− 8Q2SX)(SxF1+ + 2m2F2− − τSpFd)

+2Sp(2τ(2M
2(Q2 + 2m2)− SX)− Sx(Q

2 + 4m2))FIR) + 2Sp
ε⊥k

R
(m2(Sx(zSpQ

2 − SV2 + V1X)

−4M2Q2V+)F2− + ((Q2 + 4m2)(zS2
x − 4M2V−) + Sp(XV1 − SV2))FIR)],
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θ063 =
1

2λ1
[2ε⊥ph((2Q

2(SX − 2M2Q2)− τSx(S
2
x + 3SX − 4m2M2)− (Q2 + 2m2)S2

x)F1+

+m2(2τ(2M2(Q2 + 2m2)− SX)− Sx(Q
2 + 4m2))F2− −Q2SpFIR + Sp(τ

2(S2
x + 2SX

−2M2(Q2 + 4m2)) + 2τSx(Q
2 + 2m2)− 4m2Q2)Fd + SpS

2
x) +

ε⊥k

R
(((Q2 + 4m2)(zS2

x − 4M2V−)

+Sp(XV1 − SV2))(SxF1+ + 2m2F2−) + 2m2(Sx(zQ
2Sp − SV2 +XV1)− 4M2Q2V+)F2+

+(4τ(M2Q2(4SV− + Sx(V2 − V−)) + 2SX(SV2 −XV1) + 2m2Sp(4M
2V− − zSx2))

+(3τSx + 2(Q2 − 2m2))(SV2 −XV1 − zQ2Sp)Sx + 8(Q2 − 2m2)M2Q2V+)Fd)],

θ064 =
1

2λ1
[ε⊥ph(((Q

2 + 4m2)Sx + 2τ(SX − 2M2(Q2 + 2m2)))F1+ + Sp(τQ
2Fd − 2Sx))

+
ε⊥k

R
(((Q2 + 4m2)(4M2V− − zS2

x) + Sp(SV2 −XV1))F1+ + τ(4M2Q2V+ + Sx(SV2 −XV1 − zQ2Sp))Fd)],

θ072 =
λeS

2
√
λS

[Q2(4M2V− − zS2
x)F1+ +m2(µλY − 2Sx(zQ

2 + V−))F2− + (2(4τM2 − Sx)V+

+(µ− 2τz)SpSx − 2SV2 + 2XV1)FIR + τ(Q2(zSxSp − 4M2V+) + Sx(XV1 − SV2))Fd],

θ073 =
λeS

4
√
λS

[(Sx(4zQ
2 + 2V− − µSx)− 8µM2Q2)F1+ + 2m2(4µτM2 + 2V− − (µ+ 2τz)Sx)F2−

+2(2V+ − µSp)FIR + τ(4(Sx − 2τM2)V+ + Sp((2τz − µ)Sx − 2V−))Fd],

θ074 =
λeS

4
√
λS

[((µ+ 2τz)Sx − 2V− − 4µτM2)F1+ + τ(µSp − 2V+)Fd],

θ082 =
1

λ1
[ε⊥ph((Q

2Sx(SxV+ − 2SV2)− 2V−(2λ1 +Q2SSx))F1+ − 2m2(2µλ1 +Q2SpV+)F2−

+V+(2m
2(2τ(2(Q2 + 2m2)M2 − SX)− (Q2 + 4m2)Sx)F2+ + (4m2((3Q2 + 4m2)Sx

+τ(2SX − 4(3Q2 + 2m2)M2 − S2
x)) +Q2(τ(12SX + S2

x) + 2Q2(Sx − 6τM2)))Fd))

+2V+
ε⊥k

R
(((Q2 + 4m2)(zS2

x − 4M2V−) + Sp(XV1 − SV2))FIR +m2(Sx(XV1 − SV2 + zSpQ
2)

−4Q2V+M
2)F2−)],

θ083 =
1

2λ1
[ε⊥ph((2µ(Q

2 − 2m2)Q2Sp + τ(2(Q2 + 8m2)SxV+ +Q2(µSxSp + 2SV1 − 2XV2))

−2τ2(4(Q2 + 4m2)V+M
2 − Sp(SV1 +XV2)))Fd + 2µm2(2τ(2(Q2 + 2m2)M2 − SX)− (Q2 + 4m2)Sx)F2−

+4SpSxV− − 2µm2Q2SpF2+ + (2τ(X2V2 − S2V1) + 8m2V−(2τM
2 − Sx) +Q2(4µ(SX − 2Q2M2)

−Sx(2V− + µSx)))F1+) + 2
ε⊥k

R
(((Q2 + 4m2)(zS2

x − 4M2V−) + Sp(XV1 − SV2))(V−F1+ + µm2F2−)

+µm2(Sx(zSpQ
2 +XV1 − SV2)− 4Q2V+M

2)F2+ + (µ(Q2 − 2m2)(4Q2V+M
2 + Sx(SV2 −XV1

−zSpQ
2)) + τ(SxSpV2(V1 + V+) + 2V−V+((Sx − 4S)X + 2(3Q2 + 8m2)M2) + zSx(Q

2(XV2 − SV1)

−(Q2 + 8m2)SxV+)))Fd)],

θ084 =
µ

2λ1
[ε⊥ph(((Q

2 + 4m2)Sx + 2τ(SX − 2(Q2 + 2m2)M2))F1+ + Sp(τQ
2Fd − 2Sx))

+
ε⊥k

R
(((Q2 + 4m2)(4M2V− − zS2

x) + Sp(SV2 −XV1))F1+ + τ(4Q2V+M
2 + Sx(SV2 −XV1

−zSpQ
2))Fd)],

θ091 =
2λeS√
λS

(Q2(zSxV+ −m2
hSp) + V−(SV2 −XV1))FIR,
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θ092 =
λeS√
λS

(Q2Sx(zV− −m2
h)F1+ +m2(Q2(µzSx − 2m2

h) + V−(µSx − 2V−))F2−

+τ(Q2(m2
hSp − zSxV+) + V−(XV1 − SV2))Fd + (2V−(2µS − V+) + 2τ(zSxV+ −m2

hSp)

−µ(V1 + V−)Sx)FIR),

θ093 =
λeS

2
√
λS

((2(2m2
hQ

2 + V 2
−)− µSx(2zQ

2 + V−))F1+ +m2(µ((2τz − µ)Sx + 2V−)− 4τm2
h)F2−

+µ(2V+ − µSp)FIR + τ(2τ(m2
hSp − zSxV+) + µSx(V− + V1) + 2V−(V+ − 2µS))Fd),

θ094 =
λeS

4
√
λS

((2τ(2m2
h − µzSx) + µ(µSx − 2V−))F1+ + µτ(µSp − 2V+)Fd). (B1)

The quantities θ1ij have a form:

θ151 = 0,

θ152 =
2m2λe

λ1

√
λS

[ε⊥ph(2(2m
2λY + (Q2 + τS)(2M2Q2 + SSx))F21 − SxλY F1+ + (2Q2XSx + τSx(2S

2 − S2
p)

+4M2Q2(τS −Q2)− 4m2λY )Fd) + 2
ε⊥k

R
(Sx(zSpQ

2 +XV1 − SV2)− 4M2Q2Vp)(XFd − SF21)],

θ153 =
2m2λe

λ1

√
λS

[ε⊥ph(2((Q
2 + 2m2)(2τM2 +X)− (τX + 2m2)S)F21 − λY F1+ + (4m2(Sx − 2τM2) + 2Q2S

+τ(S2 +X2))Fd) + 2
ε⊥k

R
((2m2(zS2

x − 4M2V−) + 2M2Q2V2 +X(XV1 − SV2 − zSxQ
2))F21

+(2m2(4M2V− − zS2
x) + 2M2Q2V1 + S(SV2 −XV1 − zQ2Sx))Fd)],

θ171 = 0,

θ172 =
m2λe√

λS

((4M2(τSV− −Q2V+)− S2
x(τzS + zQ2 + V1) + µλY S)F21 + (4M2(Q2V+ − τXV−)

+S2
x(τzX + V2 − zQ2)− µλY X)Fd),

θ173 =
m2λe√

λS

[(2M2(µ(Q2 + τS)− 2τV+) + Sx((τz − 2µ)S + 2V+ − zQ2) + (µ− τz)S2
x)F21

+(2M2(µ(Q2 − τX) + 2τV+) + Sx((2µ− τz)S − zQ2 − 2V+)− µS2
x)Fd],

θ174 =
m2λe√

λS

[(2µτM2 + µX − τzSx − V2)F21 + (2µτM2 + V1 − µS − τzSx)Fd],

θ191 =
4λem

2(m2
hλY + 4M2V 2

− − zS2
x(zQ

2 + 2V−))√
λS

FIR,

θ192 =
2m2λe√

λS

[2m2(2m2
h(2τM

2 − Sx) + 2(zSx − 2µM2)V− + z(µ− τz)S2
x)F2+

+Sx(zQ
2(µS − V+) + V−((µ+ τz)S − V1)−m2

h(Q
2 + τS))F21

+(Sx((m
2
h − zV−)(τX + 3Q2 + 8m2) + (V− + zQ2)(V2 − µX))

+2(4M2(µV− − τm2
h) + (zτ − µ)zS2

x)(Q
2 + 2m2))Fd],

θ193 =
m2λe√

λS

[4m2(m2
h + µ2M2 − µzSx)F2+ + (2m2

h(τX −Q2) + Sx(µ(τz − µ)S − 2τzV+ + µzQ2

+µV1) + 2V−(V2 − µX))F21 + (µ((Q2 + 2m2)(5zSx − 4µM2) + (µ− τz)XSx)

−2m2
h(τS + 3Q2 + 4m2) + Sx(2τzV+ − µV2 − 2µzm2) + 2V−(µS − V1))Fd],

θ194 =
m2λe√

λS

[(µ(τzSx + µX − V2)− 2τm2
h)F21 + (µ(τzSx + V1 − µS)− 2τm2

h))Fd]. (B2)
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The variable µ is defined as

µ =
kph
kp

=
ph0
M

+
pl(2τM

2 − Sx)

M
√
λY

−2Mpt cos(φh − φk)

√
(τmax − τ)(τ − τmin)

λY

(B3)

The quantities Fi (i = d, 1+, 2+, 2−, IR) are expressed
through:

z1 =
k1k

pk

=
Q2Sp + τ(SSx + 2M2Q2)− 2M

√
λz cosφk

λY
,

z2 =
k1k

pk

=
Q2Sp + τ(XSx − 2M2Q2)− 2M

√
λz cosφk

λY
,

λz = (τmax − τ)(τ − τmin)λ1

(B4)

in the following way:

F2± = F22 ± F21 =
1

z22
± 1

z21
,

Fd =
1

z1z2
,

F1+ =
1

z1
+

1

z2
,

FIR = m2F2+ − (Q2 + 2m2)Fd. (B5)

Appendix C: Calculation of δS and δH

The dimensional regularization is used for calculation
of δS in (37),

d3k′

k′0
→ dn−1k′

(2πν)n−4k′0

=
2πn/2−1k′n−3

0 dk′0(1− x2)n/2−2dx

(2πν)n−4Γ(n/2− 1)
, (C1)

where x = cos θ (θ is defined as the spatial angle between
the photon three-momentum and k′

i (i = 1− 3 ) that are
introduced below) and ν is an arbitrary parameter of the
dimension of a mass. The Feynman parameterization of
propagators in FIR:

FIR =
R2

4k′20

1∫

0

dyF(x, y), (C2)

where y is the Feynman parameter and

F(x, y) =
m2

k′210(1− xβ1)2
+

m2

k′220(1− xβ2)2

− Q2
m

k′230(1− xβ3)2
. (C3)

The energies of the real photon (k′0), initial (k
′
10) and final

(k′20) leptons are defined in the system p + q − ph = 0
while k′30 = yk′10 + (1− y)k′20 and βi = |k′

i|/k′i0.
Then, the substitution Eqs. (C1) and (C3) into the

definitions of δS by Eq. (37), integration over k′0, and
expanding the obtained result into Laurent series around
n = 4 result in

δS = δIRS + δ1S , (C4)

where

δIRS = −1

2

[
PIR + log

k̄0
ν

] 1∫

0

dy

1∫

−1

dxF(x, y) (C5)

and

δ1S = −1

4

1∫

0

dy

1∫

−1

dx log(1− x2)F(x, y). (C6)

Here PIR is the infrared divergent term defined by
Eq. (39). Since k′230−|k′

3|2 = m2+y(1−y)Q2 the integra-
tion over x and y variables in δIRS is performed explicitly:

δIRS = 2(Q2
mLm − 1)

[
PIR + log

k̄0
ν

]
, (C7)

For the covariant analytical integration in δ1S we ex-
press the initial and final lepton energies through the
invariants:

k′10 =
S′

2
√

p2x
, k′20 =

X ′

2
√

p2x
, (C8)

As a result,

δ1S = 2(Q2
mLm − 1) log(2) +

1

2
S′LS′ +

1

2
X ′LX′

+Sφ, (C9)

where the quantities Lm, LS′ and LX′ are

Lm =
1√
λm

log

√
λm +Q2

√
λm −Q2

,

LS′ =
1√
λ′
S

log
S′ +

√
λ′
S

S′ −
√
λ′
S

,

LX′ =
1√
λ′
X

log
X ′ +

√
λ′
X

X ′ −
√
λ′
X

(C10)

and

Sφ =
1

2
Q2

m

1∫

0

dy

β3(m2 + y(1− y)Q2)
log

1− β3

1 + β3
.

(C11)
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The explicit expression for Sφ after integration over y is
given in Eq. (40).
For the calculation of δH we carry out integration in

the same reference system p+ q− ph = 0

δH = − 1

π

kmax′

0∫

k̄0

k′0dk
′
0

π∫

0

sin(θ′k)dθ
′
k

2π∫

0

dφ′
k

FIR

R2
,

(C12)

where θ′k is the angle between k and q three momenta,
and φ′

k is the angle between (k1,k2) and (k,q) planes.
In this system

z1 =
2k′0
R

(k′10 − k′t cosφ
′
k sin θ

′
k − k′13 cos θ

′
k),

z2 =
2k′0
R

(k′20 − k′t cosφ
′
k sin θ

′
k − k′23 cos θ

′
k), (C13)

that allows us to take the first integration in respect to
φk:

δH =

kmax′

0∫

k̄0

dk′0
2k′0

π∫

0

sin(θ′k)dθ
′
k

[
Q2

m

B1 −B2

(
1√
C2

− 1√
C1

)
− m2B1

C
3/2
1

− m2B2

C
3/2
2

]
. (C14)

Here

Bi = k′i0 − cos(θ′k)k
′
i3, Ci = B2

i − sin2(θ′k)k
′2
t (C15)

for i = 1, 2.
After the integration in respect to θ′k and the use of

the following replacements:

k′t =
√
k′210 − k′213 −m2 =

√
k′220 − k′223 −m2,

k′13 =
2k′10q

′
0 +Q2

2
√

Q2 + q′20
, k′23 =

2k′20q
′
0 −Q2

2
√

Q2 + q′20
(C16)

with q′0 = k′10 − k′20, the hard contribution δH are ex-
pressed in the form

δH = 2

kmax

0∫

k̄0

dk0
k0

(Q2
mLm − 1). (C17)

Since kmax′
0 = (p2x− (M +mπ)

2)/2
√

p2x the integration
for δH is finally presented in the form of (38).

Appendix D: Calculation of Λµ and Πl
αµ

The γ-matrix recombination, convolution over α-
indexes in Eq. (47) for Λµ and calculation of the traces
for Πl

αµ in n-dimension space result in:

Λµ =
α

4π

{
γµ[(n− 2)Jδ

δ − 4Jδ(k1δ + k2δ)

+2Q2
mJ ] + 2γδ[2J

δ(k1µ + k2µ)

−(n− 2)Jδ
µ]− 4mJµ

}
,

Πl
αµ =

α

π

1

Q2

( ∑

i=e,µ,τ

{
gαµ(qδJ

δ
i +m2

iJi − Jδ
iδ)

+2Jiαµ − qαJiµ − qµJiα

})
. (D1)

where:

J =
1

iπ2
lim
n→4

∫
(2πν)4−ndnl

l2(l2 − 2lk2)(l2 − 2lk1)
= −2Lm

(
PIR + log

m

ν

)
− 1

2

√
λmL2

m +
1

2
√
λm

(
π2 − 4Li2

2
√
λm√

λm +Q2

)
,

Jδ =
1

iπ2
lim
n→4

∫
lδ(2πν)

4−ndnl

l2(l2 − 2lk2)(l2 − 2lk1)
= −Lm(k1δ + k2δ),

Jδρ =
1

iπ2
lim
n→4

∫
lδlρ(2πν)

4−ndnl

l2(l2 − 2lk2)(l2 − 2lk1)
=

1

4

{
gδρ

(
3− 2PUV − 2 log

m

ν
− λm

Q2
Lm

)
+ qδqρ

2Q2 − λmLm

Q4

−Lm(k1δ + k2δ)(k1ρ + k2ρ)

}
,

Ji =
1

iπ2
lim
n→4

∫
(2πν)4−ndnl

(l2 −m2
i )((l − q)2 −m2

i )
= 2− 2PUV − 2 log

mi

ν
− λi

m

Q2
Li
m,

Jiδ =
1

iπ2
lim
n→4

∫
lδ(2πν)

4−ndnl

(l2 −m2
i )((l − q)2 −m2

i )
=

1

2
qδJi,

Jiδρ =
1

iπ2
lim
n→4

∫
lδlρ(2πν)

4−ndnl

(l2 −m2
i )((l − q)2 −m2

i )
=

1

72

{
gδρ

(
6

[
Q2 − 3λi

m

Q2

]
(PUV + log

mi

ν
) +

[
21− 6λi

m

Q2
Li
m

]
λi
m

Q2
− 5Q2

)
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+qδqρ

(
40− 48PUV − 48 log

mi

ν
+ 12

λi
m

Q4
− 6

λi
m

Q2

[
3 +

λi
m

Q4

]
Lm

)}
. (D2)

The infrared divergent PIR term is defined by Eq. (39)
while the ultraviolet divergent term has the same struc-

ture PUV = PIR and

Li
m =

1√
λi
m

log

√
λi
m +Q2

√
λi
m −Q2

, λi
m = Q2(Q2 + 4m2

i ).

(D3)

After substituting (D2) into (D1) and using nPUV =
4PUV + 1 we find the final expressions for Λµ and Πl

αµ

(48).
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