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The explicit exact analytical expressions for the lowest-order radiative corrections to the semi-
inclusive deep inelastic scattering of the polarized particles are obtained in the most compact,
covariant and convenient for the numerical analysis form. The infrared divergence from the real
photon emission is extracted and cancelled using the Bardin-Shumeiko approach. The contribution
of the exclusive radiative tail is presented. The analytic results obtained within the ultrarelativistic

approximation are also shown.

I. INTRODUCTION

Nowadays the polarized semi-inclusive deep-inelastic
scattering (SIDIS) plays a crucial role in our understand-
ing of the internal spin structure of the nucleons. Infor-
mation on the three-dimensional structure of the polar-
ized proton and neutron can be obtained by extracting
the quark transverse momentum distributions from the
various single spin asymmetries measured in SIDIS with
polarized particles. Specifically, the Sivers and Collins
contributions can be selected [1] from the present data
on transversely polarized targets p(e, ¢/m)x in HERMES
2], D(p,p/w)z in COMPASS [3] and 3He(e, ')z in
JLab [4] which show a strong flavor dependence of trans-
verse momentum distributions. Moreover in the near fu-
ture, highly accurate experiments are planned at 12-GeV
Jlab [5] that will provide unique opportunities for the
breakthrough in the investigation of the nucleon struc-
ture by carrying out multi-dimensional precision studies
of longitudinal and transverse spin and momentum de-
grees of freedom from SIDIS experiments with high lu-
minosity in combination with large acceptance detectors.

It is well known that one of the important sources
of the systematical uncertainties in SIDIS experiments
with and without polarization of initial particles are the
QED radiative corrections (RC). RC to the three-fold
differential cross section (do/dxdydz, where x and y are
the standard Bjorken variables and the z is the frac-
tion of the virtual-photon energy transferred to the de-
tected hadron) can be calculated using the patch SIRAD
of FORTRAN code POLRAD [6] created based on the
original calculations in refs. [7] and [8] for unpolarized
and polarized particles. The calculation of RC to the
five-fold differential cross section of unpolarized parti-
cles (do/dzdydzdp?dgy, where p; is the detected hadron
transverse momentum and ¢ is the azimuthal angle
between the lepton scattering and hadron production
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planes) was performed in ref. [9]. These calculations
did not contain the radiative tail from the exclusive re-
actions as a separate contribution involving the exclusive
structure functions (SF). This limitation was addressed
in ref. [10] in which the authors explicitly calculated the
exclusive radiative tail and implemented the exclusive SF
using the approach of MAID [11].

In the present paper we consider the general task of RC
calculation when the initial nucleon can be arbitrary po-
larized. The analytical expressions for RC to SIDIS are
obtained for the six-fold cross section with the longitu-
dinally polarized lepton and arbitrary polarized target,
do /dxdydzdp?dprde, where the azimuthal angle ¢ be-
tween the lepton scattering and ground planes is intro-
duced to appropriately account the transverse target po-
larization. The contribution of the exclusive radiative tail
to the total RC is also presented. Similarly to the previ-
ous analyses we calculated RC in the model-independent
way. These corrections are induced by the unobservable
real photon emission from the lepton leg, leptonic vertex
correction, and vacuum polarization. The model inde-
pendent correction is proportional to the leading loga-
rithm log(Q?/m?), which is large because of high trans-
ferring momentum squared Q2 (> 1 GeV?) and small
electron mass m. What is not accounted in this approach
is the correction due to the real and additional virtual
photon emission by hadrons. However, this correction
should not be accounted in majority of cases, e.g., when
the used model for SF was extracted from the experiment
in which emission by hadrons had not been applied in RC
procedure of experimental data.

The Bardin-Shumeiko approach [12] is used for extrac-
tion and cancellation of the infrared divergence coming
from the real and virtual photon emission. In contrast to
the widely used the Mo-Tsai approach [13, 14] the final
expression for RC within the Bardin-Shumeiko approach
does not depend on an artificial parameter that is intro-
duced in [13, 14] for separation of the photon emission
on the hard and soft parts.

In this paper we apply an approach for decomposi-
tion of the initial nucleon and virtual photon polariza-
tion as well as the real photon four-momentum over the
respective bases (Appendix A). The polarization decom-



position is used for the hadronic tensor representation
in a covariant form. The momentum decomposition is
used to simplify integration over the momentum of the
unobserved photon. Specifically, this allows us to essen-
tially reduce the number of pseudoscalars occurring after
the convolution of the leptonic tensors of radiative effects
with the hadronic tensor and present the final expressions
for RC in a compact, covariant and convenient for numer-
ical analysis form. All calculations have been performed
in an exact way keeping the lepton mass at all stages
of the calculation. The dependence of certain terms in
the exact final expressions for RC on the electron mass is
quite tricky and therefore we analyze respective contribu-
tions in the ultrarelativistic approximation allowing for
extraction of the electron mass dependence explicitly and
classifying all terms in RC as leading (i.e., containing the
leading logarithms), next-to-leading (i.e., independent on
the electron mass), and other potentially negligible (i.e.,
the terms vanishing in the approximation of m — 0).
Thus the results obtained in the paper contain both ex-
act formulas for RC and expressions in ultrarelativistic
approximations allowing us to explicitly control the de-
pendence on the electron mass. Thus, the analytic ex-
pressions for RC are valid for experiments with muons
(e.g., COMPASS [3]) in which the approximation of zero
lepton mass could be not appropriate.

The rest of the article is organized as follows. The
hadronic tensor, different sets for the SF used in the lit-
erature, as well as the lowest-order (Born) contribution to
SIDIS process are discussed in Section II. The calculation
of the lowest-order QED RC to the observables in SIDIS
as well as the explicit results for both the semi-inclusive
final hadronic state and exclusive radiative tail contribu-
tions are presented in Section III. The infrared diver-
gence in these calculations are extracted from the real
photon emission with the semi-inclusive final hadronic
state by Bardin-Shumeiko approach [12] and then can-
celled with the corresponding term from the leptonic ver-
tex correction in such a way that the obtained results are
free from an intermediate parameter kq. For the parame-
terization of the infrared and ultraviolet divergences the
dimension regularization is used. The results of analyses
of the exact expressions in ultrarelativistic approximation
are given in Section IV. Particularly we show that the
double leading logarithms coming from the terms with
the soft photon emission and the leptonic vertex correc-
tion cancel in their sum. Brief discussion and conclusion
are presented in Section V. Technical details and most
cumbersome parts of the RC are presented in four Ap-
pendices. The bases for the decomposition of the initial
target and virtual photon polarization as well as the real
photon momentum are presented in Appendix A. The
explicit expressions for the real photon emission quan-
tities are presented in Appendix B. The details of the
approach for the infrared divergence extraction and can-
cellation are given in Appendix C. The detail calcula-
tions of the additional virtual particle contributions are
presented in Appendix D.

II. HADRONIC TENSOR AND BORN
CONTRIBUTION

The six-fold differential cross section of SIDIS with po-
larized particles

e(k1,£) +n(p,n) — e(k2) + h(pn) +z(pz) (1)

(k¥ = k3 = m?, p* = M?, pi = m3?) where £ (n) is the
initial lepton (nucleon) polarized vector, can be described
by the following set of variables
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Here ¢ = k1 — ko, ¢p, is the angle between (ki,k2) and
(q, pn) planes and ¢ is the angle between (k1,ka) and the
ground planes in the target rest frame reference system

(p=0).
Also we use the following set of invariants:
S =2pk1, Q° = —¢* QF, = Q*+2m?,
X =2pky, S, =5-X, §,=5+X,

1
Vio = 2k1opn, V4 = §(V1 + Va),

1 1
Vo= §(V1 —Ve) = i(mi - Q)

S'=2ki(p+q—pn)=5-Q°> -V,
X' =2ky(p+q—pn) =X +Q°— Vs,
pi=@+q—pn)?=M>+1+(1-2)S,.
As = S% —4AM?m?, \y = S2 +4M2Q?,
AL = Q%(SX — M2Q?) — m2 Ay, A = Q*(Q? + 4m?),
Ny =872 —dm?p2, Ny = X2 — 4m?p2. (3)
Non-invariant variables including the energy ppq, lon-
gitudinal p; and transverse p; (k;) three-momenta of the
detected hadron (the incoming or scattering lepton) with

respect to the virtual photon direction in the target rest
frame are expressed in terms of the above invariants:
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As a result the quantities V; 2 can be written through
cos ¢y, and other variables defined in Eqgs. (2-4) as:
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The sine of ¢, is expressed as

. 2e1pn
sin ¢, = , 6
PtV A1 ( )
where
el =" pk1pqs (7)

is the pseudovector with a normal direction to the scat-
tering plane (kq, ka).

The lowest-order QED (Born) contribution to SIDIS
is presented by Feynman graph on Fig. 1 (a). The cross
section for this process reads:
_ (4ma)?
2V AsQ1
where the phase space is parameterized as:

d3ks d3py,

(27’()32]{}2() (27T)32ph(]
1 SSdxdydo Sy dzdp?dey, )
4212 2V 4Mp,
Since the initial lepton is considered to be longitudi-
nally polarized, its polarization vector has the form [15]:
AeS 2Aem
§=—Fr—=h——F=m=
Vs

dO'B WMVL%VdFBa (8)

dlp = (2m)*

= /s &+ & (10)

As a result the leptonic tensor is:

L = %Tr[(l%z +m) (k1 +m)(1+v5€)7,]

Q2
= 2[kYRS + RSRY — g
iXe oo
+ﬁ5“ P7(Skapkio + 2m°qops)].  (11)

According to [16] the hadronic tensor for SIDIS process
v* +n — h+ X can be decomposed in the terms of the
scalar spin-independent H ((12) and spin-dependent H ifi)
structures functions
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W = > g @ey®my) + 3 pretOn)). (12)

a,b=0 p,t=0

where e} (or e}”)) and " are the complete set of the
basis vectors for the polarization four-vectors of the vir-
tual photon and nucleon in the target rest frame. These
vectors can be represented in a covariant form [17] using
(Al) and (A2).

Due to the parity and current conservation, hermitic-
ity as well as pn = 0 only the following set of inde-
pendent SF Hflg) and H(gfi) in (12) survives [16]: five
spin-independent Hég), Hl((f), Hég), ReHé(lJ)7 ImH(g(l)) and
thirteen spin-dependent H(ggg, ReHélSz)7 ImH(ng)7 ReHé”gl),

s s s s s s
ImH(g21)7 ReH(g2?27 ImH(()23?7 H§12)7 ReH1(21)a ImHl(Zl)’
ReHgg, ImHﬁﬁ, HQ(“;Q) All the rest SF have to be set
zero [16].

f) g)

FIG. 1. Feynman graphs for the lowest order (a), SIDIS (b-e)
and exclusive radiative tails (f,g) contributions to the lowest
order RC for SIDIS scattering

The hadronic tensor in terms of these SF can be ob-
tained by substitution (A1) and (A2) into (12) resulting
in:

WHV = Z wLqu = —gjl,?'h + pjp,f’]'b + piupﬁuH3

+(PurPiy + Pipy Y Ha + (D5 Ph, — D ) Hs



+(ppmw + nupy Y He + (Dm0 — nupy ) Hr
+(pﬁun1/ + nll«piu)Hg

—l—i(pﬁun,j — nupin, Y Ho- (13)

Here: giy = Guv — unu/q2 and nt = E'M/poqypppha
The generalized SF H; can be expressed via Hég), H(g;i)
using the decomposition of the nucleon polarized three-

vector 7 = (11, M2, n3) over the basis (A2) in the following
way

Hi= 0) 772H2(§2);
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_772H1(12) /\2)\Y(H(O) 772H2(22))

—25; )\Sth\/E(ReHé?) - 772ReH(g1S2) )]s

1 0 s
Hs = ?(H£1) HE) +na(H$) — H)),
?
2 0 0 0 s
Ha = o NaSe(Hyy) — HIY +ma(H{D) — Hy)))
Y Pt
+:QV/ Ay (ReHgy — naReHy)),
2Q ©) ()
Hs = ImHy," — neIlmHyis),
ptm( 01 012
aM
Ho = —575— 1 @pev/ Ay (mReHg) +nsReH))
/\y Py
—XsSa(mReH 5] +nsReH{5))],
aM
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Here Ay = VZ+m3iQ?% A3 = V_ +2Q? and V_ is defined
in Egs.(3).
Finally we find the Born contribution in the form:
o a?852
B _ T B
7 T daedydzdpldéndd . SMQipirs ; o Hir(15)

where 07 = L w!,, /2:

0F =@ —2m?,

= (SX — M*Q?)/2,

= (ViVa — mpQ%)/2,

= (SVa + XV1 — 2Q%S,)/2,
2 Se | pp,
v

07 =

QGB =-S5 pE LPh,
AeS
08 = 4r[)\yV+ S,8:(2Q% + VL),
08B = _2V+€J-phv
Ae
05 = 3 m[ (Q*(25.Vy —miS,) + V_(SVa
—XWV1)) + 2m*(AM>VE + Aymi
—282(2Q* + 2V_))]. (16)

The quantities H 52) and H (Efi) can be expressed
through another set of the SF presented in [18]. Tak-
ing into account that 1, = cos(¢s — dp)S1, N2 = sin(¢s —
én)S1 and n3 = S)| we find that:

Hég) =CiFyu,L,

HEY = Cy(—Fgy ™ +iFyp ™),

Hyy = Cl(Fz(ﬁ;Mh + Fyur),

HYY = C\(Fyur — Fe™),
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S sin(op s sin — s
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where

AMpy(Q? + 2eM?)

C = o

III. LOWEST-ORDER RADIATIVE
CORRECTIONS

The six matrix elements shown in Fig. 1b-g contribute
to the lowest-order QED RC to the cross section of the
base SIDIS process (Fig. 1a). A critical difference in the
graphs a)-e) comparing to the graphs f) and g) is the
distinct final unobserved hadronic state: continuum of
particles in the former and a single hadron in the latter



case. The underlying processes are semi-inclusive and ex-
clusive hadron leptoproduction, respectively. At the level
of RC, both of them include the unobservable real photon
emission from the lepton leg as presented in Fig. 1 (b,c)
and (f,g). The contribution to RC from the semi-inclusive
process contains also the leptonic vertex correction and
vacuum polarization (Fig. 1d,e). Thus these two separate
contributions to the total RC to the SIDIS cross section
are considered in two separate subsections below.

A. Semi-Inclusive Contribution

The real photon emission in semi-inclusive process,

e(k1, &) +nlp,n) — e(k2) + hipn) + x(pa) + v(k),
(19)
where k is a real photon four-momentum depicted on

Fig. 1 (b,c) is described by the set variables presented
in (2) and three additional quantities:

kq
R =2k = — 20
D, T kp? ¢k7 ( )

where ¢, is an angle between (kj,ks) and (k,q) planes.
Its sine in the covariant form is:

25lkm
R/ (Q2 +7(S, — TM?))

The contribution of real photon emission from the lep-
tonic leg is:

sin (bk = (21)

(4mar)?
2V AsQ*

Here the symbol of “tilde” denotes that the arguments
of the hadronic tensor such as Q2%, W2, z, t and ¢, are
defined through the shifted ¢ — ¢ — k, i.e. Q% = —(q —
k)? = Q?+R7. The phase space of the considered process
has a form:

dog = W, LA dT . (22)

>k dBky d3py,
I'r=(2n)* 9
A’ = (2m) (27T)32k0 (27T)32k20 (27T)32Ph0’ (23)
where
3
d’k _ Rdequbk. (24)

ko 2v/ Ay

For the representation of explicit results in the simplest
way the leptonic tensor L% in (22) is separated into two
parts:

L = L+ L. (25)

The first term includes the part of the leptonic tensor
that contains spin independent terms and terms contain-
ing &, i.e., the part of the polarization vector (10):

v 1 A arq EVTY
Lipg = =5 Trl(k2 +m)IR" (k1 +m) (1 +7580)Ral,
(26)

where
pue_ (R RS\ w0tk 9ty
R lky  Jks ks 2kky
f‘ﬁa = PYOFURTQ’YO
ko koo VhYa  Yaky”
Y L _ (27
(kkl kk2>7 ks 2k (27)

The second term in (25) is proportional only to the resid-
ual part & of the polarization vector £

v 1 7. ap TV
gy = =5 Tr[(ks + m)UE* (ky +m)1s€Th,)- (28)

As it is shown below this part of the leptonic tensor gives
non-vanishing contribution to RC in the ultrarelativistic
approximation both for the semi-inclusive (71) and ex-
clusive (73) final hadronic states.

The convolution of the leptonic tensors L, and L'y]
with the shifted hadronic tensor can be presented as

k:’.

9
WWLROfZ il = =2 ZZ gR,
ki
> W Hilly Z ORI,

i=5,7,9 i=5,7,9
(29)

W TRV _
Wy Ligy =

where ¢ enumerates the contributions of respective SF in
(13). The sum over j represents the decomposition of the
leptonic (26, 28) and hadronic tensor convolutions over
R. In this decomposition quantities 9 1 do not depend
on R. Their explicit expressions are presented in Ap-
pendix B. The number of terms is different for different
SF: k; = {3,3,3,3,3,4,4,4,4}.

The lowest order SIDIS process (1) is described by
the four independent four-momenta such us p, ki, ¢
and pp. Therefore, the Born cross section contains only
one pseudoscalar e"??py, ,p, k1,9, = €'/ pp. This pseu-
doscalar contributes to 956)8 as it was shown in Eqgs. (16)
and, according to Egs. (6,7), can be expressed in terms
of the variables (2-4) as: e"*py, ,pvk1pqe = €\ pn =
pev/A1 sin ¢, /2. When we deal with real photon emission
the additional independent four-momentum k appears.
As a result the number of pseudoscalar quantities that
can exist in the expressions for the cross section grows
up to five. They are not independent and their number
can be reduced to two, namely ¢, p; and € k, using the
decomposition of the photonic four-momentum over the
basis introduced in Appendix A by Egs. (A5). As shown
in Eqgs. (A9) the rest three pseudoscalars are expressed
through the linear combination of €, p and £, k. The
explicit expression for e, k follows from (21)

sin ¢kR\/>\1(Q2 + T(Sz - TM2))

k f—
L SN

(30)



After substitution (29) into (22)

S 1t
47T2Q4 As = o ko k2o Pho

_ a3 SS2dxdydzdpidendddrdprdR

dO’R:

647T2Mpl)\5\/ /\y@4
9 ki
X ZZ?jliHinj_27 (31)
i=1 j=1

where 0;; = 9% fori=1-4,6,8 and §;; = G?j + Q}j for
i = 5,7,9, we found that the term with j = 1 in (31)
contains the infrared divergence at R — 0 that does not
allow to perform the straightforward integration of dog
over the photonic variable R. For the correct extraction
and cancellation of the infrared divergence the Bardin-
Shumeiko approach [12] is used. Following to this method
the identical transformation:

dop = dog — dokF + dollf = dok + dolF,  (32)

is performed. Here do¥; is the infrared free contribution
and dolft contains only the j = 1-term in which argu-
ments of SF are taken for k = 0,

Z H 911 d3l{3 d3/€2 d3ph
47T2Q4\//\S R? ko

dobf = . (33)

k2o pho

This decomposition allows us to perform the treatment of
the infrared divergence analytically since the arguments
of the SF in (33) do not depend on photonic variables.
Due to ;1 = 4FIRQZB one can find that this contributions
can be factorized in front of the Born cross section

IR _ « B F]R dSk
where
ki ko2
Fip= (1—2> , (35)
z1 V)
z1,2 = kki2/kp, and the explicit expressions of these

quantities are given in Appendix B (see (B4)).
The term (34) is then separated into the soft ds and
hard gy parts:
@
O'{BR = ;(55 +0m)oo (36)
by introduction of the infinitesimal photonic energy ko —
0 that is defined in the system p; + q — pn = O:

&k Fir,,
55——* T B2 0(ko — ko),
Bk Frp _
Sy = _7/ (ko — Ko). (37)

The explicit integration, detail of which are described
in Appendix C, results in the final explicit expressions

for these two contributions in the form:
2 Qk !
=2(QnLm — )| Prr + log — |+ 5 Lg

1
+§X/LX/ + Sy,

Pz — (M +my)?
2ko+/p?
The sum of dg and dy does not depend on the sep-

arated photonic energy ko but includes the term repre-
senting the infrared divergence

=2(QpLm —1)log (38)

1
+ —vg +log —— (39)

Prp =
IR = 4 2

1
2y
as well as the arbitrary parameter v. These two quanti-
ties should be cancelled by summing the infrared diver-
gent part with the contribution from the leptonic vertex
correction that is considered below.

The term Sy has a form:

S, — Qz, { og - \/ 1)(z — 23)
WO \ //\’ (z — 22)(2 — 24)
. 1
+ Z S;(—1) ! <25ij log?(z — )
+(1 — 51‘]‘) |:10g(2 — Zz) log(zl — Zj)
Z— 2 BT R
—Li 4
(=)D @
where
[ log |1 —
Lig(x) = — / gt ~ ol g, (41)
; Y
is Spence’s dilogarithm and
1 2p2(Q* FVAm
o= (X’—S'—&-p””(? TV )>,
VA — VA%
234 = 7 o o / 7 ’
VA X'+ /Ny
/ reQl __ N _ 22
Ay Ax
S;={1,1,—-1,-1}. (42)

Note, the absolute value of the argument in the loga-
rithmic function is used when computing the expression
(40).

The infrared free contribution dok from (32) inte-
grated over the three photonic variables reads:

Tmaz Rmax

3 2
R 55, / / /
S dr [ d
TR T T 4 Mpihs /Ay 7 | o
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(43)
where the limits of integration are:
Rae = pi — (M * mﬂ—)27
1+7—pn
Sz £V Ay
Tmax/min = W (44)

and the quantity p is defined in Eq. (B3).

The additional virtual particle contributions consist of
the leptonic vertex correction (Fig.1 (d)) and vacuum
polarization by leptons and hadrons (Fig.1 (e)). These
contributions are given by Eq. (8) with the replacement
of the leptonic tensor L5 by

L4 = 2Tu{ G + )T+ m)(1+ 2577

5 Tr((Rs + m)y# by +m)(1+1sE)TY ], (45)

where

DY = A4 T o 8t o, (46)
and fVV = ’}/or‘V/T’}/O

The first two terms corresponding to the leptonic ver-
tex correction A, and vacuum polarization by leptons
1! are calculated analytically using Feynman rules while
the fit for the vacuum polarization by hadrons 6%, . can
be taken from the experimental data [19].

Since A, and II% contain the ultraviolet divergence
while A, also includes the infrared divergent term the
dimensional regularization is used for the calculation of
the loop integrals:

d™l
_ .2
A“ = e /(zw)nyn—él

’Ya(l%Q - Z+ m)”yu(iﬁ - Z+ m)y®
12(12 — 2lk9) (12 — 21ky) ’

oo / _da
ap Q2 (27r)nl/n74

Tr[(lA—i-mZ) (i_Q+m1) M]
X{Z (= m2) (I~ ? —m?) }

i=e, T

(47)

Details of the calculations are presented in Appendix D;

A, and 1T}, ., have the following structure:
Q 1 R
AM = 27T ( vert(Q2) - 2mLm[q7’7H])’
o .
M= > Sooil¥ (@)gk (48)
i=e,u,T

where the second term in A, is the anomalous magnetic
moment. To remove the ultraviolet divergence the stan-
dard on mass-shell renormalization procedure is used:

SUV.(Q?) and 6¢ UV (Q?) are substituted by the difference

vert vac
of these quantities and their values at Q2 = 0:

5vert 51?27{1&(62 ) 5ge¥t( )
Toae = Tpae’ (Q%) = 0ge” (0). (49)
Here 63.Y,(0) = 2— Pyy —2P;r —3log(m/v), 6.V (0) =

vac

4(Pyy +log(m;/v))/3 and the ultraviolet free terms have
a form:

51)ert = - (Q2 )<PIR +10g ) -2

3 2 2 Q2 2
+(2Q +4m >L \/H( AmL2,
2V m 2

m
Q2+\/Am)_2>’
2 Q%+ 2m?
vac_ Z §vac_ Z |:3 \/Z L

i=e,,T i=e,u,T

+2Liy (

10 8mi( B 2m? i )} (50)

3Q? V™"
The quantity L, is defined in (C10) while the expressions
for A\, and L?, is defined by Egs. (D3).

Finally the contribution of the inelastic tail to the six-
fold SIDIS cross section reads:

(5VR + e + 00 )0 + ofy + oMM (51)
where the sum of the infrared divergent terms

(5\/1{ = (SS + 6H + 5vert
= 2(Qq2an - — (M mﬁ)

P2

1
)log + §S/LS/

1
+*X/LX/ -+ S¢ —2 + (2@2 -+ 4m2>Lm

Qs ) 2/ Am
m( AmLm +2L12<M>
2

J;) (52)

is free both from the infrared divergent term P;r appear-
ing in dg and d,e,+ that are defined by Egs. (38) and (50),
and the arbitrary parameter v.

At last the contribution of the anomalous magnetic
moment coming from the second term in A, given by
Egs. (48) has a form:

3.2Q0Q2 9
AMM a’m=55; AMM
=— % I 0; i
167TMQ2pl/\S ; g H (53)
with:

oM =6

QAMM — Ay

2 2@27

oMM — _om? 2V*2

my — @7



oMM — _9g, <z + g;)
20 (25 + Sy)epn

gLMM
5 Vas@Q

Ae(25 + S,)

O = ST 548V — X Vi = 28,Q%)
+4M2Q2V+)a

Ae

oMM = 20/ A5Q? s (S5 (4m? (mj, — 2(2Q% + 2V2))

FVAVZ) = 4(M3(Q° — 4m®) + 5%)(m} @

+V2) 4+ 2Q%5, (S, (2Q* + Vi + V)

+25V) + 255, V_Vy),
O M = oMM = 0. (54)

B. Exclusive Radiative Tail

The exclusive radiative tail is the process

e(k1,§) +n(p,n) — e(ke) + h(pn) + ulpu) + v(k),
(55)

where pu is the four-momentum of undetected hadron
(p2 = m?2) shown in Fig. 1 (f,g). The final unobserved
state contains the photon radiated from the lepton line
and a hadron produced in an exclusive reaction of ~*
and p. The process (55) gives a contribution to the RC
in SIDIS because two observed particles in the final state
can have the same momenta as the unobserved particles
in SIDIS process (1). The square of the invariant mass
of the unobserved state p2 = (p+q — pr)? = 2k(p + q —
pr) +m? depends on the photonic variables. Emission of
the soft photons would result in p2 = m?. This is beyond
the kinematic region of SIDIS. Therefore the process (55)
being the contribution to RC to the SIDIS cross section
does not contain the infrared divergence [10].
Description of the exclusive process without the radi-
ated photon requires the only five of the six presented in
Eqgs. (2) variables of SIDIS: x, y, t, ¢, and ¢. The pro-
cess with the radiated photon is additionally described
by the three photonic variables R, 7 and ¢y, introduced
above by Eq. (20). In this case the sixth SIDIS variable z
is expressed through other SIDIS and photonic variables:
2 2
Z:M mi+t—R(1+7 M)Jrl, (56)
Sy
where 1 is defined by Eq. (B3). Since we calculate RC to
SIDIS we need to keep z and use this equation in order
to express R in terms of z and two remaining photonic
variables:

2 2
bz — My,
Rey = /77— 57
exr 1 + T — l,[,’ ( )
and therefore to reduce the integration over the photon
momentum to the two-dimensional integral in respect of
variables 7 and ¢.

The contribution of the exclusive radiative tail in the

form similar to (22) reads:
(4.71'0[)3 fd R .
exr __ v ex
dJR - 9 ASQ4 Wea: L,u,udFR ) (58)
where the hadronic tensor W describes the exclusive
process ¥v* +n — h+wu and has the same structure as the
hadronic tensor in Eq. (13) but with the SF dependent
only on @2, W2 and t variables. The leptonic tensor LEV
as well as its convolution with the hadronic structures
v
W

3

are the same as in Eqgs. (26-29).
The phase space of this process is:

1 d®ky &3k d3py, d3p,,
(2m)8 2ka0 2ko 2Pho 2Puo
x6* (k1 +p — k2 — ph — pu — k)
2R, SS2dudyddzdndp?drdey
C (4m)P(1 47— p)Mpiv/AsAy

The use of the phase space (59) and convolution of lep-
tonic and hadronic tensors (29) with replacement H; —
He® in (58) and subsequent integration of the obtained
expression over two photonic variables results in the con-
tribution of the exclusive radiative tail to SIDIS process
in the form:

drey =

(59)

Tmax 2T

a3858?
er __ T d d
OR 297T5Mpl)\5\/ )\y 7—/ ¢k
Tmin 0
S HEeg, RI
% Z Z Tt Yiglleg ex (60)
=1 j=1 1 +7 - Q4

IV. ULTRARELATIVISTIC APPROXIMATION

In Section IIT all contributions to the lowest-order RC
are presented by exact formulas. Some of them have a
rather complicate analytical structure. However, due to
smallness of the leptonic mass compared to other quan-
tities that describe kinematics of the process it is rather
useful to obtain RC in the ultrarelativistic approxima-
tion keeping the leptonic mass m only as an argument of
the logarithmic function. This allows us to simplify the
analytical expressions essentially as well as clarify the
leading log behavior of the obtained results. In the other
words, the lowest-order QED RC in this approximation

has the form
2
CTR(jzg Al +B+O<m2>‘| (61)
m Q

where I, = log Q?/m?, and the terms A and B are in-
dependent of the leptonic mass and represent the lowest
order leading and next-to-leading contributions to the
RC to the cross section, respectively.

The terms in (52) that are factorized in front of the
Born contribution, are essentially simplified resulting in



more transparent structure after applying the ultrarela-
tivistic approximation, e.g., the terms (36)

ol = % {(zm 1) (2P,R +2log %

(p2 — (M+mﬂ))2> 1

+ log

1.
STX +5lm

S Q*pr)| _ 7
,7log X’+L12{ x5 |%° (62)

contains both [, and [2,. The latter comes from the soft
photon emission whose contribution cancels in the sum
with the leptonic vertex correction:

(P2 — (M 4+mg)?)? 3
ovr = (lm —1)log B t3

S Q*pr)| _ 7
_710g )(/"‘LIQ{ S/X/ —F—Q(Gg)

lm

The ultrarelativistic approximation for the hard pho-
ton emission contribution (43,60) requires additional care
because of integration over photonic variables and non-
trivial dependence of the integrand on the leptonic mass.
Specifically, the integrand contains the terms 1/z; and

1/2%:

/@ _ 2m/Ay
Joa QP+ 8+ AmA(r (S, — TM?) + Q7)

27
I[ES
2

0

These have a sharp peaking behavior in the region 7 —
T, = —Q?/S due to smallness of the lepton mass. The
integration of the expressions (64) over ¢, and 7 gives:

2m(Q*S) + 7(SS, + 2M°Q%))V Ay
((Q% + 78)2 + 4m2(7(S, — TM?) + Q2))3/2

(64)

Tmax

27
/df/%_2 S og
Al )\S
0

Tmin

S+ Vs
S — Vs’

Tmazx

/ dr7®’“ _ 2y (65)

22 m2
Since
. S+ VAg S2

the terms containing 1/z; contribute to the leading and
next-to-leading RC. The terms containing 1/2% also con-
tain m? in numerators and therefore contribute to the
next-to-leading RC only (the only exception is 625 that
is discussed below). The similar conclusions are true for
the terms containing 1/z5 and 1/23 terms.

Actually the integrand in (65) contains SF. Therefore
we make the identical transformation for extraction of
the leading and next-to-leading terms:

Tmaz 27
G(7, ¢x) Ay Vs + 5

d =2m 1 ,0

, 0/ — £ A 20(n0)
Tmaz 27
+ / dT/d¢kg(T7¢k); g(’rsvo)7
1
Tmin 0

Tmax

/dT/d

Tmin

(7, ¢k =21/ Ay G(7s,0

+ / dT/d(bk 9. x) — _ (TS’O), (67)

21

Tmin
where G(1,¢y) is a regular function of 7 and ¢,. The
second term in the r. h. s. of the first transformation
does not include the leading terms and the second term
in the second equality is proportional to m? and vanishes
in the ultrarelativistic approximation.

The approach of extraction of the leading and next-
to-leading contributions can be illustrated by considera-
tion of the terms originated from the convolution of the
leptonic tensor (28) with the hadronic structures wW
Summing up the terms 91 R7~3 in the last expression of
Eq. (29) and keeping the leptonlc mass only in the term
m?/z} (in 6}; the term 1/23 is proportional to m*) results
in

2
@', L = —22915{] 3 = zeg(R,T,m) (68)
1

with the quantities Hil (R, 7s,0) expressed through (16) as:

4R R
mof <k1 — ( S)k1>.(69)

The replacement in the brackets is applied for any kine-
matic variable defined through ki, eg., S — S — R,
Q? - (1 - S/R)Q?, and €, py — (1 — S/R)e1pn. Note
that R = R., has to be used for the exclusive radiative
tail.

The resulting equation for the o R is obtained using
the second equation of (67) with the regular function

g(Tv d)k)v
Rz
G(r,¢x) =
| @
(70)

Therefore the contribution from the second part &; of the
lepton polarized vector (10) reads:

0} (R,7s,0) =

Q2+TR ZQ RTQ/)’C

1=5,7,9
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s? SRR
R L Y
wMp;S? (Sz — R)? p
0



where
s 258,(S, — R) + 2M2(RV; — 25V
P oM\ /SAMPQ2(S —R) + 5(5, _ R)2)’
RSue = S(p7 — (M +my)?)/5, (72)

and 65 is a proportional to A, part of the Born con-
tribution with the following replacement: m — 0, S —
S—R, Q% - Q*(1 - R/S), Vi — Vi(1 — R/S) and
z — 28;/(Sz — R).

Similar calculation of the exclusive radiative tail results
in:

oo SR ot
R TMpSS' (S, — Rg,) didjdp;dénde’
where
S er __ 1
b 2M/S(4M2Q*(S — Rg,) + S(S; — Rg,)?)
[(Sp — R2,)(S(Sy — 2V_ +m?2 —m?2)
Tmax 2m
ar [ dondo, — - 2Xempy Sin P/ Ay
J 53 M2S2,/Q?(SX — M2Q?)

shows that 6%, has a standard form Alog(Q?/m?) + B.

V. CONCLUSION

Newly achieved accuracies in modern SIDIS experi-
ments in TJNAF and CERN require renewed attention to
RC calculations and their implementation in data analy-
sis software. In this paper we obtained the exact analyt-
ical expressions for the lowest-order model-independent
part of QED RC to the SIDIS cross section with the lon-
gitudinally polarized initial lepton and arbitrary polar-
ized target and demonstrated how the leading and next-
to-leading contributions can be extracted. The model-
independent RC includes i) the contributions of radiated
SIDIS processes and loop diagrams (51) and ii) the contri-
bution of the exclusive radiative tail (60). The method-
ology developed in this paper is the extension of the co-
variant approach for the RC calculations developed ear-
lier: i) the method of covariant extraction and cancella-
tion of the infrared divergence suggested by Bardin and
Shumeiko [12]; ii) the set of integration variables used in
RC calculation to DIS [15], iii) RC to unpolarized and po-
larized SIDIS in the quark-parton model [6-8], iv) RC for
SIDIS of unpolarized particles [9], and v) the calculation
of the exclusive radiative tail for unpolarized SIDIS [10].
The calculations of RC in SIDIS measurements were per-
formed by the model independent way that involves con-
structing and using the SIDIS (and exclusive) hadronic

4AM?Q*(SX — M?Q?) (zm + log

10
_sz(s - Vl)) - QQ(S - R;x)(si? - Rzz)
+M?(S(S, —4V_) = R, (S —2W))],  (74)

RS, = S(p2—m?2)/S’ and the exclusive Born cross section
reads:

dogi® 4?88,
drdydpidénde — 64m3Q4Mphs
t M2 _ 2
xS ez TR T gy (75)
i=5,7,9 Sa

Finally, we consider the extraction of the leading and
next-to-leading terms in the quantity 9g3 given in Ap-
pendix B. In contrast to other é?j, the quantity égd in-
cludes terms 1/2? without factors proportional to m? and
therefore can potentially result in electron mass singular-
ity ~ m~2 after integration (65). This is, however, is not
the case because ég3 = 0 at the peak point, i. e., for
T=1s=—-Q%/S (and u = V1 /S). Explicit integration
in the limit m2 — 0,

2

—Qf ik 3) + S2AY] (76)

(

tensor containing the eighteen SIDIS and exclusive SF.
We obtained the explicit form of the hadronic tensor us-
ing approaches of [16] and [17] and demonstrated that
the Born cross section exactly coincides with that given
by [18]. The next step in the RC calculation includes
coding of the formulae and numeric evaluation of the ef-
fects of the RC. However, this requires models of the
SIDIS/exclusive SF that are not known now. Therefore,
a broad discussion and efforts of theoreticians and exper-
imentalists are required to complete the evaluation of all
SIDIS SF as well as SF in resonance region and exclu-
sive SF. Further development will include development
of 1) iteration procedure with fitting of measured SF and
joining with models beyond SIDIS measurements at each
iteration step, and ii) tools for generation of the radiated
photon. Such generator can be constructed based on a
code for RC in SIDIS in the same way of how RADGEN
[20] is constructed based on POLRAD 2.0. Generation
of semi-inclusive processes based on DIS Monte Carlo
generators can provide only approximate cross sections,
because a part of the SIDIS cross section involving pure
semi-inclusive SF' and respective convolutions of the lep-
tonic and hadronic tensors are not presented in such DIS
Monte Carlo generators.
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Appendix A: Bases in the four-dimensional space

In this Appendix three bases in the four-dimensional
space that are used in our analyses, are presented. The
first two are used for the decomposition of the initial
target and virtual photon polarization in the hadronic
tensor defined by (12). The latter allows us to decompose
the real photon momentum in such a way that all five
pseudoscalar quantities appearing in processes (19) and
(55) reduce down to two: €, p, and € k.

For the decomposition of the hadronic tensor over the
SF it is convenient to introduce the reference system
(Xh,¥h,2zn) in the target rest frame where the two polar
axises are defined as: zj is chosen in the virtual photon
three-momentum direction q = k; — ks and the x; along
the part of the registrated hadronic momentum that is
transverse to the z,-axis. The direction of the rest axial
yr-axis is defined as y, = zp X xp. In this system the
complete basis for polarization vectors can be presented
into covariant form [17] both for the virtual photon

() — 1 i — Sz(mj + (22 = 1)Q* — t)pL
hp Ay Koo

V(2 26#UpUpVQppho

a DV Ay ’

e1® = %, (A1)

and nucleon:
h(0) _ Pp
e#( ) — T
1 Se(ms + (22 —1)Q* —1t)

h(l) _ — _ Pz 1
€ = Dhy Ay Dy s
(@) _ 2€W"”pqupha

a vy

2

6h(3) _ 2M qu — fpﬂ’ (A2)

H M/ Ay

where Q = \/@ and for any four-vector aj = a, +
aq q,/Q*. Note, that direction of e (and e as
well) is chosen in such a way that the projection of kj o
on yp reads yn - k1 =y - ko = —eh@ ) = —eh@f, =
—ky sin(p).
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The components of these two bases in the reference
system (xh,yh,zh) read:

eN 2MQ \/AY7OO S a O)_(17O7070)a

;™ =(0,1,0,0), e =(0,1,0,0),

el = (0, 0, 1,0),
(84,0,0, /Ay

In the rest frame system the virtual photon longitudi-
nal and transverse polarizations correspond to ¢?(?) and
e712) | respectively, and the left and right circular polar-
izations are defined as

er® = (0,0,1,0),

13 —

3) _
H 2MQ (0,0,0,1).(A3)

1
eV(E) — F—

(6’7(1) 4 Z'e’Y(Q))_
V2

(Ad)

To decompose the photonic four-momentum the other
the reference system (x;,y;,2;) in the rest target frame
has to be introduced. In this system the polar z;-axis has
the same direction as three-vector q, other polar x;-axis
is chosen along the incoming or outgoing lepton part that
is transverse to q, at last the axial y;-axis is defined as
yvi =2z X X;. As a result (x;,y;) is the scattering plane.
In the covariant form this basis reads as:

10) _ Pu
e“ )—M7

Ay 5,02
el = All (K1p + kop) — f;\y P

@ _ 2L
K /)\1

61(3) _ 2M2Q,u - Swpp
= .

My

Note, that direction of y; is chosen in such a way that the
projection of pj, on y; is y; - pn = —€'Ppy, = p; sin(¢y).
The two reference systems (xp,, ¥n,2zn) and (x;,y;,2;) can
be expressed through each other in a following way:

(A5)

Xp = xcos(¢p) + yirsin(gp),
yi = —x;sin(¢n) + yi cos(dp ),

Zy, — Zj

(A6)

where cos(¢y) and sin(¢p,) are defined by Egs. (5) and
(6) respectively.
It should be also noted that for ¢ = ~, h,{

eib(a)efl(b)gw

£@ei)

_ gab
Yab = Guv- (A7)

The photonic four-momentum can be decomposed into
the following way k = k(a)e(“) where

R

oy = kel® — 2
(0) € 2M7
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P kyupubh plo = 5v—(Reipn(z1Ay — QS
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This decomposition for the four-momentum of the +Q2S — 21 (S8, + 2M3Q?))
real unobservable photon allows us to express all pseu- 9 2 a2
doscalars through the linear combinations two of them FeLk@mIAV_MT - 25;)
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+2V1 M2Q?)). (A9)
E'prcrkuph ukpoU = 2)\ (Rngh( (Q2S + 2m25x)
_|_Q2 (4m2 + Q2 — ZISp)) Appendix B: Explicit expression for 6;;
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—28,Q%)Fa),
2).9
Vs

(Q*(28,Vy —m3.S,) + V_(SVa — XV1))Frg,



A
982 =

S
VAs

14

(Q%S,(2V_ —m?)Fiy + m*(Q*(pzSy — 2m3) + V_ (S, — 2V_)) Fy_

+7(Q*(m3.Sp — 28,. Vi) + Vo (XVy — SVo))Fy + (2V_(2uS — Vi) + 27(2S. V4 — m3.Sp)
—p(Vi + V2)S:)Fir),

0 _
993_

AeS
24/ As

(22m2 Q% + V?) — 11S,(22Q% + VL) Fiy +m?(u((272 — 1) Sy 4 2V_) — 4drm? ) Fy_

Fu(2Vy = pSp) Fir + 7(21(mi Sy — 28, Vi) + pSe (V- + Vi) + 2V_ (V. — 2u85)) Fu),

984 = 7)\65
4v/As

((2r(2m}, — pzSe) + p(uSy = 2V-)) Fiy + pr(uS, — 2Vi ) Fy). (B1)

The quantities 91-1j have a form:

1
071_

1 _
072_

1
073_

1 _
074*

1
992_

1 _
093_

1
994_

2m3 )\,
MV s

+AM?Q* (1S — Q%) — 4m>\y ) Fy) + 2

[e1pn(22m° Ay + (Q 4 75)(2M>Q* + SS2)) Fo1 — Sedy Fiy + (2Q°X S, + 75,(25% — S7)

gLk

= (S (28,Q% + X Vi — SVa) — AM?Q?*V,)) (X Fy — SFn)],

2m2 )\,

A v/As
+7(S% + X)) Fy) + 2%((27712(255 —AMPV_) + 2M2Q%Vs + X (X Vi — SVo — 25,Q%)) Fa

[e1pn(2((Q% 4+ 2m?) (27 M? 4+ X) — (71X +2m*)S)Fo1 — A\y Fiy + (4m?(S, — 27 M?) + 2Q*S

+(2m*(AM>V_ — 28%) + 2M?*Q*V; + S(SVy — X Vi — 2Q%S,.)) Fy)l,
0,

m2 e
Vs
+8%(12X + Vo — 2Q%) — pAy X)Fy),
m2 e
Vs
FRM?((Q* = 7X) +21Vy ) + 8. (20 — 72)8 — 2Q° = 2Vy) — pS2)Fyl,

m2 e

VAs
AAem?(mi Ny +4M?V2 — 282(2Q? + 2V_))
Vs

[2m2(2m3 (27 M? — S,) 4+ 2(2S, — 2uM?)V_ + 2(u — 72)S?) Fy

(AM?(TSV_ — Q*Vy) — S2(128 + 2Q* + V1) + pdy S) For + (4M?(Q*V4 — 7XV_)

[(2M2(u(Q* +78) = 27V4) + Su((t2 — 20) S + 2Vy — 2Q°) + (1 — 72)S3) i

[(2urM? + uX — 728, — Vo) Foy + (2urM? +Vy — S — 728,)Fy),

Frg,

2m2 )\,
Vs
+5:(2Q% (1S = Vi) + Vo ((u +72)8 = Vi) = m (Q* + 75)) Far
+(Sp(mi — 2V)(TX +3Q% + 8m?) + (V- + 2Q*) (Vo — pX))
F2(4M(UV- — mm) + (27 — 1)257)(Q% + 2m?)) Fy,
m3\e
Vs
+uVh) 4 2Vo (Vo — pu X)) For + (u((Q* 4 2m?) (528, — 4uM?) + (u — 72) X Sy
—2m3 (78 4+ 3Q% + 4m?) + S, (272Vy — Vo — 2uzm?) 4+ 2V_(uS — V1)) Fyl,
m2 e

Vs

[Am?(m3 + p>M? — p2S8,)Foy + (2m3 (17X — Q?) + Sp(u(rz — p)S — 272V + pzQ?

[(u(T28y + uX — Vo) — 2rm3) For + (u(72S; + Vi — uS) — 21m3)) Fy). (B2)



The variable p is defined as

_ kpn _pro  p(27M? — S,)
kp M M\/ )\y
—2Mp; cos(pn — ¢k)\/(Tmaz ~ T = Timin)
Ay

(B3)

The quantities F; (i = d, 14, 24, 2—, I R) are expressed
through:

,_lak
1= o
_ Q2S, + 7(SS. + 2M?Q?*) — 2M+/X, cos ¢y,
= ™ ,
Lk
2 = ol
Q%S, + (XS, —2M2Q?) — 2M /X, cos Py,
= ™ ,
)‘z = (Tma:r - T) (T - Tmin))\l
(B4)
in the following way:
1 1
Foy = Fog + Fo1 = — + —,
25 23
1
Fy; =
Z129
1 1
o= — 1
H 21 * 22
Frr =m?Fyy — (Q* +2m?)Fy (B5)

Appendix C: Calculation of §s and dy

The dimensional regularization is used for calculation
of (55 in (37),
d3k/ dn—lk,/
K (2mo)nikg
2P R Ak (1 — )2 2de
Q2mv)" 4T (n/2 — 1) ’

(C1)

where © = cos # (6 is defined as the spatial angle between
the photon three-momentum and k; (i = 1—3 ) that are
introduced below) and v is an arbitrary parameter of the
dimension of a mass. The Feynman parameterization of
propagators in Frp:

1
R2
Frr = 4k;’2/dy]:( Y),
)

(C2)
where y is the Feynman parameter and

m? m?

Py = e T R k)

15

Q5
KR - afs)?

The energies of the real photon (k{), initial (k},) and final
(k%o) leptons are defined in the system p +q — pp = 0
while kg = ykig + (1 — y)ky and B; = [ki| /K.

Then, the substitution Egs. (C1) and (C3) into the
definitions of dg by Eq. (37), integration over k{, and
expanding the obtained result into Laurent series around
n = 4 result in

(C3)

5s = 6L + 6%, (C4)
where
1 _ 1
SLR = {PIR + log } / dy / dzF(z,y) (C5)
0 —1
and

o = - (©6)

el

1 1
/dy/dxlog(l — ) F(x,y).
0 1

Here P;p is the infrared divergent term defined by
Eq. (39). Since k5 — |k5|> = m? +y(1—y)Q? the integra-
tion over z and y variables in ¢ SR is performed explicitly:

QAL — 1) [PIR T log ’“] ()

For the covariant analytical integration in 6 we ex-
press the initial and final lepton energies through the
invariants:

S’ X'
ko= ——, khy = ——, C8
10 2\/}7% 20 2\/@ ( )
As a result,
1 2 1 / 1 /
+S, (C9)
where the quantities L,,, Lg: and Lx: are
I 1 \/ + Q?
Y vl V5 ey 2
1 ST+ X
Lg = lo S,
RV e TN
1 X'+ /Ny
LX/ = log (CIO)
VY -V
and
1 dy 1-— 63
Sy = = 7271/ lo .
*72¢ 0 Ba(m? + y(1 - y)Q%) ° 1+ B
(C11)



The explicit expression for Sy4 after integration over y is
given in Eq. (40).

For the calculation of dy we carry out integration in
the same reference system p+q — pp =0

kvnnu_/

T R
- = / kodko/sm (67,)doy, /d¢k éf’

where 0], is the angle between k and g three momenta,
and ¢}, is the angle between (k;,ks) and (k,q) planes.

16

/ 2]9/10(]6 + Qz /o 2k/20Q(/) B Q2

SN/ N 2R

(C16)

with ¢ = ki, — kb, the hard contribution dy are ex-
pressed in the form

kyer
dk
(C12) og = / I?OO( 2L — 1). (C17)
ko
Since k' = (p2 — (M +my)?)/2+/p2 the integration

In this system

2k

21 = f(kllo — kj cos ¢y, sin 0y, — k14 cos b)),

2k,

29 = RO (kbo — K} cos ¢y, sin 0, — kb cos 6y.), (C13)
that allows us to take the first integration in respect to
Dr:

T Q2 1
o = —O/siné)'dﬂ’i’”
i= [ 3, | o 31_32< =
ko
. 1 > _m231 _m232 (014)
/C 3/2 3/2
o Cl/ 02/
Here

B; = kjjy — cos(0},)kls, C; = B — sin®(6},)k;? (C15)

fori=1,2.

After the integration in respect to 65 and the use of
the following replacements:

I __ 12 1.2 2 __ 12 1.2 2
kt—\/km kT3 m—\/kzo kgz —m?,

(2mv)A="d™l _
— 2ky)(12 — 2lky)
Is(2mv)4="d"

= 2 n—>4/ 12(1

1
2L (P,R +log m) —5VAmL +
1%

for &g is finally presented in the form of (38).

Appendix D: Calculation of A, and wa

The ~-matrix recombination, convolution over a-
indexes in Eq. (47) for A, and calculation of the traces
for I, ., In n-dimension space result in:

A, = ;‘r{w[(n —2)J2 — 4J% (k15 + kas)
+2Q2,J] + 275 [2J° (k1 + kay)
—(n—2)J3] - 4mJN},

m, = inQ( > {gau(quf +mid; = i)

i=e, T

+2Jiau - aniM - qHJia}) . (Dl)

where:

o= rlg};/ 12(12 — 2lky) (12 — 2lk1) —Ly (ks + k2s),
= 3332/ (2 = (221712;/));;—6”;1%1) 411{9“9 (3 ~2Pyy —2log * Z\;Lm> + ng,,QQzQimLm
L (krs + ko) (b + kgp)}
9= 22 1, | =g gy =2 2R s - G
= gl G —lvjz@ﬂ(z)—q)dl— m?) 3
oo A Ll e -] o)
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i A Al M\
+a54, (40 —48Pyy — 48log "t 4 122 — 622 [3 + m] Lm) } (D2)

The infrared divergent Prr term is defined by Eq. (39)
while the ultraviolet divergent term has the same struc-

Qt @ Q*

(

ture Pyy = Prr and

; 1 VAL Q7 202 2
L, = — lo ac , Ay = + 4ms).
(D3)
After substituting (D2) into (D1) and using nPyy =

4Pyy + 1 we find the final expressions for A, and wa
(48).
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