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We discuss conformal properties of TMD operators and present the result of the conformal rapidity
evolution of TMD operators in the Sudakov region.

INTRODUCTION

In recent years, the transverse-momentum dependent
parton distributions (TMDs) [1–4] have been widely used
in the analysis of processes like semi-inclusive deep inelas-
tic scattering or particle production in hadron-hadron
collisions (for a review, see Ref. [5]).

The TMDs are defined as matrix elements of quark
or gluon operators with attached light-like gauge links
(Wilson lines) going to either +∞ or −∞ depending on
the process under consideration. It is well known that
these TMD operators exhibit rapidity divergencies due
to infinite light-like gauge links and the corresponding
rapidity/UV divergences should be regularized. There
are two schemes on the market: the most popular is based
on CSS [2] or SCET [6] formalism and the second one is
adopted from the small-x physics [7, 8]. The obtained
evolution equations differ even at the leading-order level
and need to be reconciled, especially in view of the future
EIC accelerator which will probe the TMDs at values of
Bjorken x between small-x and x ∼ 1 regions.

In our opinion, a good starting point is to obtain
conformal leading-order evolution equations. It is well
known that at the leading order pQCD is conformally
invariant so there is a hope to get any evolution equa-
tion without explicit running coupling from conformal
considerations. In our case, since TMD operators are
defined with attached light-like Wilson lines, formally
they will transform covariantly under the subgroup of
full conformal group which preserves this light-like di-
rection. However, as we mentioned, the TMD operators
contain rapidity divergencies which need to be regular-
ized. At present, there is no rapidity cutoff which pre-
serves conformal invariance so the best one can do is to
find the cutoff which is conformal at the leading order in
perturbation theory. In higher orders, one should not ex-
pect conformal invariance since it is broken by running of
QCD coupling. However, if one considers corresponding
correlation functions in N = 4 SYM, one should expect
conformal invariance. After that, the results obtained in
N = 4 SYM theory can be used as a starting point of
QCD calculation. Typically, the result in N = 4 theory
gives the most complicated part of pQCD result, i.e. the

one with maximal transcendentality. Thus, the idea is to
find TMD operator conformal in N = 4 SYM and use
it in QCD. This scheme was successfully applied to the
rapidity evolution of color dipoles. At the leading order,
the BK evolution of color dipoles [9–12] is invariant under
SL(2,C) group. At the NLO order the “conformal dipole”
with αs correction [13] makes NLO BK evolution Mobius
invariant for N = 4 SYM and the corresponding QCD
kernel [14] differs by terms proportional to β-function.

CONFORMAL INVARIANCE OF TMD
OPERATORS

For definiteness, we will talk first about gluon opera-
tors with light-like Wilson lines stretching to −∞ in “+”
direction. The gluon TMD (unintegrated gluon distribu-
tion) is defined as [15]

D(xB , k⊥, η) =

∫
d2z⊥ e

i(k,z)⊥D(xB , z⊥, η), (1)

g2D(xB , z⊥, η) =
−x−1

B

2πp−

∫
dz+ e−ixBp

−z+

× 〈P |Faξ (z)[z −∞n,−∞n]abFbξ(0)|P 〉
∣∣∣
z−=0

where |P 〉 is an unpolarized target with momentum p '
p− (typically proton) and n = ( 1√

2
, 0, 0, 1√

2
) is a light-like

vector in “+” direction. Hereafter we use the notation

Fξ,a(z⊥, z
+) ≡ gF−ξ,m(z)[z, z −∞n]ma

∣∣∣
z−=0

(2)

where [x, y] denotes straight-line gauge link connecting
points x and y:

[x, y] ≡ Peig
∫
du (x−y)µAµ(ux+(1−u)y) (3)

To simplify one-loop evolution we multiplied Fµν by cou-
pling constant. Since the gAµ is renorm-invariant we
do not need to consider self-energy diagrams (in the
background-Feynman gauge). Note that z− = 0 is fixed
by the original factorization formula for particle produc-
tion [5] (see also the discussion in Ref. [16, 17]).

The algebra of full conformal group SO(2, 4) consists
of four operators Pµ, six Mµν , four special conformal
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generators Kµ, and dilatation operator D. It is easy to
check that in the leading order the following 11 operators
act on gluon TMDs covariantly

P i, P−,M12,M−i, D,Ki,K−,M−+ (4)

while the action of operators P+,M+i, and K+ do not
preserve the form of the operator (2). The action of
the generators (4) on the operator (2) is the same as
the action on the field F−i without gauge link attach-
ments. The corresponding group consists of transforma-
tions which leave the hyperplane z− = 0 and vector n
invariant. Those include shifts in transverse and “+′′

directions, rotations in the transverse plane, Lorentz ro-
tations/boosts created by M−i, dilatations, and special
conformal transformations

z′µ =
zµ − aµz2

1− 2a · z + a2z2
(5)

with a = (a+, 0, a⊥). In terms of “embedding formalism”
[18–21] defined in 6-dim space, this subgroup is isomor-
phic to “Poincare + dilatations” group of the 4-dim sub-
space orthogonal to our physical light-like “+” and “-”
directions.

As we noted, infinite Wilson lines in the definition (2)
of TMD operators make them divergent. As we discussed
above, it is very advantageous to have a cutoff of these
divergencies compatible with approximate conformal in-
variance of tree-level QCD. The evolution equation with
such cutoff should be invariant with respect to transfor-
mations described above.

In the next Section we demonstrate that the “small-x”
rapidity cutoff enables us to get a conformally invariant
evolution of TMD in the so-called Sudakov region.

TMD FACTORIZATION IN THE SUDAKOV
REGION

The rapidity evolution of TMD operator (1) is very dif-
ferent in the region of large and small longitudinal sep-
arations z+. The evolution at small z+ is linear and
double-logarithmic while at large z+ the evolution be-
come non-linear due to the production of color dipoles
typical for small-x evolution. It is convenient to consider
as a starting point the simple case of TMD evolution in
the so-called Sudakov region corresponding to small lon-
gitudinal distances.

First, let us specify what we call a Sudakov region.
A typical factorization formula for the differential cross
section of particle production in hadron-hadron collision
is [5, 22]

dσ

dηd2q⊥
=
∑
f

∫
d2b⊥e

i(q,b)⊥Df/A(xA, b⊥, η)

× Df/B(xB , b⊥, η)σ(ff → H) + ... (6)

where η = 1
2 ln q+

q− is the rapidity, Df/h(x, z⊥, η) is the

TMD density of a parton f in hadron h, and σ(ff → H)
is the cross section of production of particle H of invari-
ant mass m2

H = q2 ≡ Q2 in the scattering of two partons.
(One can keep in mind Higgs production in the approxi-
mation of point-like gluon-gluon-Higgs vertex). The Su-
dakov region is defined by Q� q⊥ � 1GeV since at such
kinematics there is a double-log evolution for transverse
momenta between Q and q⊥. In the coordinate space,
TMD factorization (6) looks like

〈pA, pB |F aµνF aµν(z1)F bλρF
bλρ(z2)|pA, pB〉

=
1

N2
c − 1

〈pA|Õij(z−1 , z1⊥ ; z−2 , z2⊥)|pA〉σA

×〈pB |Oij(z+
1 , z1⊥ ; z+

2 , z2⊥)|pB〉σB + ... (7)

where

Oij(z+
1 , z1⊥ ; z+

2 , z2⊥)

= Fai (z1)[z1 −∞n, z2 −∞n]abFbj (z2)
∣∣∣
z−1 =z−2 =0

, (8)

Õij(z−1 , z1⊥ ; z−2 , z2⊥)

= Fai (z1)[z1 −∞n′, z2 −∞n′]abFbj (z2)
∣∣∣
z+1 =z+2 =0

,

F i,a(z⊥, z
−) ≡ F+i,m(z)[z, z −∞n′]ma

∣∣∣
z+=0

. (9)

Here pA =
√

s
2n+

p2A√
2s
n′, pB =

√
2
sn
′ +

p2B√
2s
n and n′ =(

1√
2
, 0, 0,− 1√

2

)
. Our metric is x2 = 2x+x− − x2

⊥.

As we mentioned, TMD operators exhibit rapidity di-
vergencies due to infinite light-like gauge links. The
“small-x style” rapidity cutoff for longitudinal divergen-
cies is imposed as the upper limit of k+ components of
gluons emitted from the Wilson lines. As we will see be-
low, to get the conformal invariance of the leading-order
evolution we need to impose the cutoff of k+ components
of gluons correlated with transverse size of TMD in the
following way:(
F i,a(z⊥, z

+)
)σ ≡ F−i,m(z)

[
Peig

∫ z+
−∞dz

+A−,σ(up1+x⊥)
]ma

,

Aσµ(x) =

∫
d4k

16π4
θ
(σ√2

z12⊥

− |k+|
)
e−ik·xAµ(k) (10)

Similarly, the operator Õ in Eq. (9) is defined with with

the rapidity cutoff for β integration imposed as θ
(
σ̃
√

2
z12⊥
−

|k−|
)
.

The Sudakov region Q2 � q2
⊥ in the coordinate space

corresponds to

z2
12‖
≡ 2z−12z

+
12 � z2

12⊥
(11)

In the leading log approximation, the upper cutoff for
k+ integration in the target matrix element in Eq. (7)
is σB = 1√

2

z12⊥
z−12

and similarly the β-integration cutoff in

projectile matrix element is σA = 1√
2

z12⊥
z+12

.
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In the next Section we demonstrate that rapidity cutoff
(10) enables us to get a conformally invariant evolution
of TMD in the Sudakov region (11).

ONE-LOOP EVOLUTION OF TMDS

Evolution of gluon TMD operators in the Sudakov
region

In this Section we derive the evolution of gluon TMD
operator (8) with respect to cutoff σ in the leading log
approximation. As usual, to get an evolution equation we

(a)

(b)

FIG. 1. Typical diagrams for production (a) and virtual (b)
contributions to the evolution kernel. The dashed lines denote
gauge links.

integrate over momenta σ2

√
2

z12⊥
> k+ > σ1

√
2

z12⊥
. To this end,

we calculate diagrams shown in Fig. 1 in the background

field of gluons with k+ < σ1

√
2

z12⊥
. The calculation is easily

done by method developed in Refs. [23, 24] and the result
is

Oσ2(z+
1 , z

+
2 ) =

αsNc
2π

σ2
√

2

|z12⊥|∫
σ1
√

2

|z12⊥|

dk+

k+
KOσ1(z+

1 , z
+
2 ) (12)

where the kernel K is given by

KO(z+
1 , z

+
2 ) (13)

= O(z+
1 , z

+
2 )

∫ z+1

−∞

dz′+

z+
2 − z′+

e
−i

|z12⊥|σ√
2(z2−z′)+

+ O(z+
1 , z

+
2 )

∫ z+2

−∞

dz′+

z+
1 − z′+

e
i
|z12⊥|σ√
2(z1−z′)+

−
∫ z+1

−∞
dz′+

O(z+
1 , z

+
2 )−O(z′+1 , z+

2 )

z+
1 − z′+

−
∫ z+2

−∞
dz′+

O(z+
1 , z

+
2 )−O(z+

1 , z
′+
2 )

z+
2 − z′+

where we suppress arguments z1⊥ and z2⊥ since they do
not change during the evolution in the Sudakov regime.
The first two terms in the kernel K come from the “pro-
duction” diagram in Fig. 1a while the last two terms
from “virtual” diagram in Fig. 1b. The result (13) can
be also obtained from Ref. [24] by Fourier transforma-
tion of Eq. (5.9) with the help of Eqs. (3.12) and (3.30)
therein. The approximations for diagrams in Fig. 1 lead-
ing to Eq. (13) are valid as long as

k+ � z+
12

z2
12⊥

(14)

which gives the region of applicability of Sudakov-type
evolution.

Evolution equation (12) can be easily integrated using
Fourier transformation. Since

Ke−ik
−z+1 +ik′−z+2 =

[
− 2 lnσz12⊥ − ln(ik−)− ln(−ik′−)

+ ln 2− 4γE + O
( z+

12

|z12⊥ |σ
)]
e−ik

−z+1 +ik′−z+2 (15)

one easily obtains

Oσ2(z1+, z2+) = e−2ᾱs ln
σ2
σ1

[lnσ1σ2+4γE−ln 2
]

×
∫
dz′+1 dz′+2 Oσ1(z′+1 , z′+2 ) z

−2ᾱs ln
σ2
σ1

12⊥

× 1

4π2

[
iΓ
(
1− 2ᾱs ln σ2

σ1

)
(z+

1 − z
′+
1 + iε)1−2ᾱs ln

σ2
σ1

+ c.c.

]

×
[

iΓ
(
1− 2ᾱs ln σ2

σ1

)
(z+

2 − z
′+
2 + iε)1−2ᾱs ln

σ2
σ1

+ c.c.

]
(16)

where we introduced notation ᾱs ≡ αsNc
4π . It should be

mentioned that the factor 4γE is “scheme-dependent”: if
one introduces to α-integrals smooth cutoff e−α/a instead
of rigid cutoff θ(a > α), the value 4γE changes to 2γE .

It is easy to see that the r.h.s. of Eq. (16) transforms
covariantly under all transformations (4) except Lorentz
boost generated by M+−. The reason is that the Lorentz
boost in z direction changes cutoffs for the evolution.
To understand that, note that Eq. (15) is valid until

σ >
z+12
z212⊥

so the linear evolution (16) is applicable in the

region between

σ2 = σB =
|z12⊥ |
z−12

√
2

and σ1 =
z+

12

√
2

|z12⊥ |
(17)

From Eq. (16) it is easy to see that Lorentz boost
z+→λz+, z−→ 1

λz
− changes the value of target matrix

element 〈pA|O|pB〉 by exp{4λᾱs ln
z212‖
z212⊥
} but simultane-

ously it will change the result of similar evolution for pro-

jectile matrix element 〈pA|Õ|pA〉 by exp{−4λᾱs ln
z212‖
z212⊥
}

so the overall result for the amplitude (7) remains intact.
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Evolution of quark TMD operators

A simple calculation of evolution of quark operator

Oq(z+
1 , z1⊥ ; z+

2 , z2⊥) ≡ g
2CF
b ψ̄(z⊥ + un) (18)

× [un+ z⊥,−∞n] 6n[z⊥ −∞n,−∞n][∞n, 0]ψ(0)

the same evolution (16) as for the gluon operators with

trivial replacement Nc → CF [25]. The factor g
2CF
b (b ≡

11
3 Nc−

2
3nf ) is added to avoid taking into account quark

self-energy.

Evolution beyond Sudakov region

As we mentioned above, TMD factorization formula
(6) for particle production at q⊥ � Q translates to
the coordinate space as Eq. (7) with the requirement
z2

12‖
� z2

12⊥
. As the result of evolution (16) the trans-

verse separation between gluon operators Fi and Fj re-
mains intact while the longitudinal separation increases.
As discussed in Refs. [23, 24] , the Sudakov approxima-
tion can be trusted until the upper cutoff in α integrals

is greater than
q2⊥
xBs

which is equivalent to Eq. (14) in
the coordinate space. If xB ∼ 1 and q⊥ ∼ mN , the rel-
ative energy between Wilson-line operators F and tar-
get nucleon at the final point of evolution is ∼ m2

N so
one should use phenomenological models of TMDs with
this low rapidity cutoff as a starting point of the evo-
lution (16). If, however, xB � 1, this relative energy

is
q2⊥
xB
� m2

N so one can continue the rapidity evolution

in the region
q2⊥
xBs

> σ >
m2
N

s beyond the Sudakov re-
gion into the small-x region. The evolution in a “proper”
small-x region is known [26] - the TMD operator, known
also as Weiczsäcker-Williams distribution, will produce a
hierarchy of color dipoles as a result of the non-linear evo-
lution. However, the transition between Sudakov region
and small-x region is described by rather complicated
interpolation formula [23]. In the coordinate space this
means the study of operator O at z2

‖ ∼ z2
⊥ and we hope

that conformal considerations can help us to obtain the
TMD evolution in that region.

DISCUSSION

As we mentioned in the Introduction, TMD evolution
is analyzed by very different methods at small x and mod-
erate x ∼ 1. In view of future EIC accelerator, which will
probe the region between small x and x ∼ 1, we need a
universal description of TMD evolution valid at both lim-
its. Since the two formalisms differ even at the leading
order where QCD is conformally invariant, our idea is to
make this universal description first in N = 4 SYM. As
a first step, we found a conformally invariant evolution

in the Sudakov region using our small-x cutoff with the
“conformal refinement” (10).

To compare with conventional TMD analysis let us
write down the evolution of “generalized TMD”[27, 28]

Dσ(x, ξ) =

∫
dz+e−ix

√
s
2 z

+

〈p′B |Oσ
(
− z+

2
,
z+

2

)
|pB〉

where ξ = −p
′
B−pB√

2s
. From Eq. (16) one easily obtains

Dσ2(x, ξ)

Dσ1(x, ξ)
= e−2ᾱs ln

σ2
σ1

[lnσ2σ1(x2−ξ2)sz212⊥
+4γE−2 ln 2]

(19)
For usual TMD at ξ = 0 with the limits of Sudakov
evolution set by Eq. (17) one obtains

Dσ2(x, q⊥)

Dσ1(x, q⊥)
= e

−2ᾱs ln Q2

q2⊥

[
ln Q2

q2⊥
+4γE−2 ln 2

]
(20)

which coincides with usual one-loop evolution of TMDs
[29] up to replacement 4γE − 2 ln 2 → 4γE − 4 ln 2. As
we discussed, such constant depends on the way of cut-
ting k−-integration which should be coordinated with the
cutoffs in the “coefficient function” σ(ff → H) in Eq.
(6). Thus, the discrepancy is just like using two dif-
ferent schemes for usual renormalization. It should be
mentioned, however, that at ξ 6= 0 the result (19) differs
from conventional one-loop result which does not depend
on ξ , see e.g. [30].

Our main outlook is to try to connect to small-x re-
gion, first in N = 4 and then in QCD. Also, it would be
interesting to study if the “conventional” Sudakov-region
results in two [31–33] and three loops [34] can be recast
in our cutoff scheme which in principle allows transition
to small-x region. The study is in progress.
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