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Abstract

Hadron production at low transverse momenta in semi-inclusive deep inelastic scattering can be described by trans-
verse momentum dependent (TMD) factorization . This formalism has also been widely used to study the Drell-Yan
process and back-to-back hadron pair production in e+e− collisions. These processes are the main ones for extractions
of TMD parton distribution functions and TMD fragmentation functions, which encode important information about
nucleon structure and hadronization. One of the most widely used TMD factorization formalism in phenomenology
formulates TMD observables in coordinate b⊥-space, the conjugate space of the transverse momentum. The Fourier
transform from b⊥-space back into transverse momentum space is sufficiently complicated due to oscillatory inte-
grands and requires a careful and computationally intensive numerical treatment in order to avoid potentially large
numerical errors. In this paper we develop a fast two-dimensional numerical Fourier transform algorithm that can
potentially improve the numerical accuracy of TMD calculations and boost the numerical performance to carry out
global QCD analysis of TMDs.

1. Introduction

The transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions
(FFs) have received great attention from both theoretical and experimental communities in recent years. These TMD
PDFs and FFs, or in short called TMDs, provide new information on hadron structure: the three-dimensional imaging
of hadrons in both longitudinal and transverse momentum space [1–4]. Significant progress has been made in the
last few years in terms of measuring transverse momentum dependent unpolarized and polarized cross sections in
experiments, as well as extracting the associated spin-independent and spin-dependent TMDs in phenomenology, see
Refs. [5, 6] and references therein.

TMDs are non-perturbative objects in Quantum Chromodynamics (QCD) and thus they have to be either com-
puted on the lattice, or extracted from experimental data. For recent developments on lattice computation of TMDs,
see Ref. [7]. On the other hand, in order to extract TMDs from the experimental data, one relies on proper QCD
factorization theorems [8]. TMD factorization [9–12] describes cross sections in scattering events where the relevant
transverse momentum q⊥ of the observed final state is much smaller than the hard scale Q: q⊥ � Q. In such a regime,
the cross section can be factorized in terms of TMD PDFs and/or FFs and perturbatively calculable short distance hard
coefficients. The relevant processes that have been extensively studied include semi-inclusive deep inelastic scattering
(SIDIS) [13, 14], Drell-Yan process in proton-proton collisions [15, 16], and back-to-back dihadron production in
e+e− collisions [17, 18]. There are also other new opportunities in studying TMDs which are proposed recently in e.g.
Refs. [19–28], and usually involve jet measurements.

Within the TMD factorization formalism, the cross section is written as a convolution of the relevant transverse
momentum dependent functions. To motivate our discussion and thus make the case more concrete, let us take SIDIS
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as an example. The differential cross section for the unpolarized scattering process of e(`) + p(P)→ e(`′) + h(Ph) + X
can be written as [29]

dσh

dxbj dy dz d2q⊥
=

2πα2
EM

Q2

1 + (1 − y)2

y
FUU(xbj, z, q⊥,Q2), (1)

where the standard SIDIS variables are defined as

q = ` − `′, Q2 = −q2, xbj =
Q2

2P · q
, y =

P · q
P · `

, z =
P · Ph

P · q
. (2)

The unpolarized structure functions FUU in Eq. (1) can be factorized as follows

FUU(xbj, z, q⊥,Q) = H(Q, µ)
∑

q

e2
q

∫
d2k⊥d2p⊥ fq/p(xbj, k2

⊥) Dh/q(z, p2
⊥) δ(2) (k⊥ + p⊥/z − q⊥) , (3)

where q⊥ = Ph⊥/z, eq is the fractional electric charge for the quarks, and H(Q, µ) is the hard function to be given
by Eq. (33) in Sec. 4. On the other hand, fq/p(xbj, k2

⊥) and Dh/q(z, p2
⊥) are the unpolarized quark TMD PDF and FF,

respectively. Here we have suppressed the additional scale parameters in the TMDs, which are associated with QCD
evolution of the TMDs [30–34]. In general, the convolution and integration of TMDs over the momenta k⊥ and p⊥ are
quite involved. Thus in the original Collins-Soper-Sterman (CSS) approach [35], one takes a Fourier transformation
from the momentum space to the coordinate b⊥ space, 1

FUU(b⊥,Q) =

∫
d2q⊥ e−iq⊥·b⊥ FUU(q⊥,Q), (4)

and thus one can write

FUU(q⊥,Q) =H(Q, µ)
∑

q

e2
q

∫
d2b⊥
(2π)2 eiq⊥·b⊥ fq/p(xbj, b⊥)Dh/q(z, b⊥) ,

=H(Q, µ)
∑

q

e2
q

1
2π

∫ ∞

0
db⊥b⊥J0(q⊥b⊥) fq/p(xbj, b⊥)Dh/q(z, b⊥) , (5)

where b⊥ = |b⊥| is the magnitude of the vector b⊥, J0 is the Bessel function of the first kind of order 0, and
fq/p(xbj, b⊥), Dh/q(z, b⊥) are the Fourier transform of the TMD PDF and FF, respectively.

For the polarized scattering, the generic structure of the cross sections can be written as [10, 29]

qα⊥ F(q2
⊥, · · · ), qα⊥qβ⊥ F(q2

⊥, · · · ) (6)

with F(q2
⊥) representing a generic function of q2

⊥ and “· · · ” denoting the other kinematic variables. The Fourier
transform of such functions will lead to Bessel functions of order 1 and 2. In fact, as shown in [38], all the spin-
dependent structure functions at leading-power can be expressed in terms of a integration over b⊥ multiplied by the
Bessel functions of J0, J1, or J2.

Without loss of generality the integration form stemming from the Fourier transform encountered in TMD observ-
ables can be written as ∫ ∞

0
dx f (x) Jn(x), (7)

where x = b⊥q⊥, Jn(x) is the Bessel function of order n, and f (x) is usually a smooth function of x that slowly
decay as x → ∞. Such an integration can be extremely computationally intensive and time consuming with standard

1There are also other approaches in the literature that do not work in the b⊥ space, see e.g. Refs. [36, 37]. Notice that we drop explicit
dependence on xbj and z for the rest of this paper.

2



integration routines based on adaptive Gaussian quadratures or Monte Carlo integration methods due to the oscillation
nature of the Bessel functions. In the context of TMD global analysis, one has to compute the above integration many
times, and for different kinematic regions, in order to find the best fit for the non-perturbative TMDs. This has become
a huge hurdle for TMD phenomenology in the past for carrying out the global QCD analysis on TMDs using the data
from HERMES, COMPASS, JLAB 6 GeV, Relativistic Heavy Ion Collider (RHIC) and BELLE experiments and it
will become even more challenging for the large amount data that is expected from the JLab 12 GeV program and the
future Electron Ion Collider (EIC). Because of this, and because of the complexity of the TMD evolution improving
the efficiency and the speed of the numerical integration of Eq. (7) is extremely desirable.

Ogata has introduced a quadrature formula in Ref. [39] that is optimized for integrands with Bessel functions
for exactly the same integral as in Eq. (7). In this paper, we further optimize the Ogata’s quadrature method for
the numerical Fourier transform in Eq. (7), to obtain a high efficient algorithm. We demonstrate that the optimized
Ogata’s quadrature is more efficient than the traditional adaptive Gaussian quadrature method and Monte Carlo method
in terms of convergence, and also leads to smaller errors. The rest of this paper is organized as follows. In Sec. 2, we
summarize the relevant formalism for the Ogata quadrature method and describe our optimized numerical algorithm
in detail. In Sec. 3, we give a demonstration of the optimized Ogata quadrature and benchmark the algorithm against
adaptive Gaussian quadrature using an exponential function which has an analytic Fourier transform. In Sec. 4, we
apply our numerical method to an example of a phenomenological form of TMDs. We conclude our paper in Sec. 5.

2. Optimized Ogata Quadrature Formalism

In this section we first review the original Ogata quadrature formalism and then discuss our optimization scheme
for performing high efficiency numerical integrals relevant to TMD analysis. The Ogata method, based on a quadrature
formalism was first introduced in Ref. [40] by Frappier and Olivier. The quadrature formula for the integrand of the
form |x|2n+1 f (x) reads: ∫ ∞

−∞

dx|x|2n+1 f (x) = h
∞∑

j=−∞, j,0

wn j|xn j|
2n+1 f (xn j) + O

(
e−c/h

)
, (8)

where the function f (x) must be an integrable function for the sum to be finite. The nodes xn j and the weights wn j of
the quadrature are given by

xn j = hξn j , wn j =
2

π2ξn| j|Jn+1(πξn| j|)
, (9)

with j = ±1,±2, · · · , and ξn j the zeros of the Bessel function Jn(πx) of order n, i.e. Jn(πξn j) = 0, and the parameter
1/h represents the node density. The term O

(
e−c/h

)
accounts for the error of the quadrature sum approximation at a

finite h as described in equation (2.2) of Ref. [39], and c is a positive constant, whose precise value depends on the
functional form of f (x). For the time being, we will be interested in the case of f (x) being an even function of x which
results in the following quadrature formula∫ ∞

0
dx x2n+1 f (x) = h

∞∑
j=1

wn j x2n+1
n j f (xn j) + O

(
e−c/h

)
. (10)

In practice the sum in Eq. (10) is truncated at a given j = N which introduces an error of

In N+1 = h
∞∑

j=N+1

wn j x2n+1
n j f (xn j). (11)

and the quadrature formula becomes∫ ∞

0
dx x2n+1 f (x) = h

N∑
j=1

wn j x2n+1
n j f (xn j) +

[
In N+1 + O

(
e−c/h

)]
. (12)
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The following change of variables, see Ref. [39], optimizes the convergence of integrals of the typical TMD
functional form from Eq. (7):

x =
π

h
ψ(t) with ψ(t) = t tanh

(
π
2 sinh t

)
, (13)

so that Eq. (7) becomes ∫ ∞

0
dx f (x)Jn(x) =

π

h

∫ ∞

0
dt ψ′(t) f

(
π

h
ψ(t)

)
Jn

(
π

h
ψ(t)

)
=
π

h

∫ ∞

0
dt |t|2n+1

ψ′(t) f
(
π
hψ(t)

)
Jn

(
π
hψ(t)

)
t2n+1 , (14)

where ψ′(t) = dψ(t)/dt. At this point, it is important to realize that the part of the integrand beside the factor |t|2n+1 is
an even function of t, and thus we can apply Eq. (10) and obtain the following quadrature formula∫ ∞

0
dx f (x) Jn(x) = π

N∑
j=1

wn j f
(
π

h
ψ(xn j)

)
Jn

(
π

h
ψ(xn j)

)
ψ′(xn j) +

[
I′n N+1 + O

(
e−c/h

)]
, (15)

where I′n N+1 are the same truncation errors defined in Eq. (11) but with the transformed integrand,

I′n N+1 = π

∞∑
j=N+1

wn j f
(
π

h
ψ(xn j)

)
Jn

(
π

h
ψ(xn j)

)
ψ′(xn j) . (16)

Eq. (15) is the aforementioned Ogata quadrature formula, which we advocate in our current paper. The variable
substitution has the useful asymptotic behavior

π

h
ψ(xn j) ≈ πξn j

[
1 − 2 exp

(
−
π

2
exn j

)]
, (17)

such that the asymptotic behavior for the Bessel function becomes

Jn

(
π

h
ψ(xn j)

)
≈ 2πξn jJn+1(πξn j) exp

(
−
π

2
exn j

)
. (18)

This variable substitution then enforces the double exponential convergence of the quadrature sum in j.
The quadrature sum has two parameters, h and N, which control the efficiency and the magnitude of the error

terms. To generate a high efficiency algorithm, the numerical integration must be performed with a small N while at
the same time the error terms must also be small, to ensure reliable results. By inspecting Eqs. (16) and (18) one notes
that for a small number of function calls the truncation errors will be large if h is too small. At the same time for larger
values of h the quadrature error grows as ∼ e−c/h , see Eq. (8). These observations indicate the need to find optimal
values for h and N that keep the error term in Eq. (15) as small as possible. We found that such optimal values can be
obtained by enforcing the largest contribution to the quadrature to be the first term in the truncated sum of Eq. (10)
which can be achieved by maximizing the contribution of the first node, i.e.

∂

∂h

(
h(hξn1)2n+1 f (hξn1)

)
= 0 . (19)

By solving numerically Eq. (19) for h one finds the optimal value of h for the quadrature method in Eq. (10). We will
refer to this optimal value as hu.

It is now worth noting that hu will tend to be a large value. This makes intuitive sense since minimizing truncation
errors can be achieved by using a large spacing parameter. However, taking a large value of h introduces quadrature
errors which behave like e−c/h and tend to be large for h = hu. This issues can be mitigated by using the following
scheme. We first use the condition in Eq. (19) to minimize truncation errors in Eq. (10). We then impose the condition
that the final nodes of Eq. (10) and Eq. (15) are placed at the same location by enforcing that

huξnN =
π

h
ψ(hξnN) . (20)
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This ensures that the quadrature in Eq. (15) has the same truncation errors as Eq. (10) with hu. The solution for h in
the above equality is given by

h =
1

πξnN
sinh−1

(
2
π

tanh−1
(

hu

π

))
. (21)

This value, labeled as ht is the optimal value for h to be used in Eq. (15). Note that ht is suppressed by a large factor
of πξnN so that ht � hu. In Fig. 1 we plot the ratio ht/hu as a function of hu for N = 10, 20, and 40. We find that in all
cases ht

hu
� 1 which avoids large errors in Eq. (19).

0 1 2 3
hu

0.005

0.010

0.015

h
t/
h
u

N = 10

N = 20

N = 40

Figure 1: The solution of Eq. (21) as a function of hu at several values of N. The solution is written as ht/hu to demonstrate that for hu < π, that
ht � hu.

In summary, for a given choice of number of integrand evaluations N, our procedure minimizes the error contri-
bution in h as well as truncation errors by applying the conditions Eq. (20) and Eq. (19). The application of these
conditions determines an optimal choice for h in implementing the quadrature formula of Eq. (15). We shall refer
to this procedure as “the optimized Ogata quadrature formula.” We will demonstrate below the efficiency of our
formalism, first through the use of toy TMDs, and then through QCD based TMDs.

3. Benchmarking the Numerical Precision

In this section, we demonstrate the efficiency of the optimized Ogata quadrature method using toy TMDs for which
the exact Bessel transform is known. We will compare the numerical efficiency of the optimized Ogata quadrature
against the adaptive Gaussian quadrature, which is available in QUADPACK integration routine in Ref. [41]. It is
important to emphasize that even though we mainly demonstrate the method for the integration involving Bessel
function J0(x), we have checked that it works equally well for integration involving either J1(x) or J2(x), relevant for
TMD studies in polarized scattering.

To assess the efficacy of our quadrature method we will map the error of the integration relative to the exact known
result as a function of number of integrand calls. As discussed before we are interested in performing integrals of the
form

W(q⊥) =

∫ ∞

0
db⊥b⊥ W̃(b⊥) J0(b⊥q⊥) , (22)

where the function W̃(b⊥) contains the b⊥ space TMD physics. Therefore we will use a toy W̃(b⊥) which mimics the
b⊥ space behavior of realistic unpolarized TMDs that has an exact analytic Fourier-Bessel transform. Specifically we
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choose the gamma distributions which are given in terms of the distribution’s mean, β, and variance, σ, as

W̃(b⊥; β, σ) =
1

b⊥

(
βb⊥
σ2

)β2/σ2

e−
β b⊥
σ2

Γ
(
β2

σ2

) . (23)

This function has an exponential b⊥-dependence, and has been used in the literature for TMD studies [42]. Its exact
Fourier-Bessel transform is given by

Wexact(q⊥; β, σ) =

(
σ2

β

) Γ

(
β2

σ2 + 1
)

Γ
(
β2

σ2

) 2F̃1

(
1
2

(
β2

σ2 + 1
)
,

1
2

(
β2

σ2 + 2
)

; 1;−
q2
⊥σ

4

β2

)
, (24)

where 2F̃1 (a, b; c, d) is the regularized Gaussian hyper-geometric function. The function W̃(b⊥; β, σ) has a single peak

0.01 0.1 1 10
b⊥ (GeV−1)

−0.1

0.1

0.3

0.5

0.7

b
⊥
J

0
(q
⊥
b
⊥

)W̃
(b
⊥

)

q⊥ = 0.2 GeV

q⊥ = 2 GeV

q⊥ = 4 GeV

0.0001 0.001 0.01 0.1 1
h

0.01

1

100
re

l.
e
rr

o
r

(%
)

Figure 2: Left panel: The integrand of Eq. (22) with W̃ from Eq. (23) as a function of b⊥ for small, moderate and large transverse momenta
q⊥ = 0.2, 2, and 4 GeV. We choose Q = 2 GeV in Eq. (26). Right panel: The relative percent error Eq. (28) of the Ogata quadrature is plotted as
a function of h for small, moderate and large transverse momentum q⊥ at N = 15, the number of nodes used in the integration.

in b⊥ space, which is given in terms of β and σ as

bpeak
⊥ =

β2 − σ2

β
. (25)

We further introduce a parameter Q to our toy TMD model, which is the inverse of the bpeak
⊥ , i.e.

Q =
1

bpeak
⊥

=
β

β2 − σ2 . (26)

Such a Q-dependence mimics the hard scale Q encountered in QCD based TMDs such as the photon virtuality in
SIDIS reactions. [35, 43]. Notice that it is the quantity q⊥/Q that controls how oscillating the toy TMD is. The larger
q⊥/Q is, the more oscillating the integrand is in b⊥ space and the more numerically intensive the integration becomes.

For our demonstration, we take Q = 2 (GeV) and σ = 1 (GeV−1) similar to the usual JLab kinematics. We
choose q⊥ = 0.2, 2, and 4 (GeV), and plot the integrands on the left hand side of Fig. 2. As one can see clearly, the
integrands do become more oscillating as q⊥/Q increases. To test the precision of our formalism, we take N = 15 in
our optimized Ogata formula in Eq. (15),

WOgata(q⊥; β, σ) = π

15∑
j=1

wn j f
(
π

h
ψ(hξn j)

)
Jn

(
π

h
ψ(hξn j)

)
ψ′(hξn j). (27)
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The relative percent error is defined as

rel. error(%) =

∣∣∣∣∣∣Wexact(q⊥; β, σ) −WOgata(q⊥; β, σ)
Wexact(q⊥; β, σ)

∣∣∣∣∣∣ × 100 , (28)

where the exact result Wexact(q⊥; β, σ) is given in Eq. (24). On the right panel of Fig. 2, we plot the relative percent
error of the numerical integration as a function of the parameter h for q⊥ = 0.2, 2, and 4 GeV, respectively. One can
see that in each case, there is an optimal value of the parameter h, which minimizes the measured error.

Intuitively having a small node spacing h should result in a small error, since the error in h is of the order O(e−c/h)
in Eq. (15). However, the truncation errors I′n N+1 in Eq. (15) will generate large errors in the numerical integration,
due to the factors of f

(
π
hψ(hξn j)

)
Jn

(
π
hψ(hξn j)

)
, unless one increases N significantly. Therefore, for a small and fixed

number of nodes N, there is an optimized h that minimizes the errors as argued in Sec. 2. On the right panel of Fig. 2,
we indicate with stars the values of h which are determined by the optimization conditions Eqs. (19) and (20). We
find that within this range of kinematics, our optimization conditions indeed determine suitable values of h for our
quadrature method which is key to achieve high efficiency in the numerical integration.

20 30 40
Ntot

0.01

0.1

1

10

100

re
l.

e
rr

o
r

(%
)

q⊥
Q = 0.1

20 30 40
Ntot

q⊥
Q = 1

quad

ogata

30 50 70 90
Ntot

q⊥
Q = 2

Figure 3: From left to right, the relative percent error of optimized Ogata and adaptive Gaussian quadrature as a function of total number of calls
Ntot to the integrand at small, moderator and large transverse momentum: q⊥/Q = 0.1 (left), q⊥/Q = 1 (middle), and q⊥/Q = 2 (right).

We now compare the efficiency of the optimized Ogata quadrature against adaptive Gaussian quadrature. Note that
the optimized Ogata quadrature first samples the integrand to determine the optimal value of h using Eq. (19), then the
integration routine samples the integrand at N nodes to perform the sum. This results in a total number of integrand
calls Ntot. Likewise, we measure the total number of function calls of adaptive Gaussian quadrature requested by the
numerical routine. In Fig. 3 we plot the relative error as a function of Ntot for small, intermediate and large values of
q⊥/Q. As is evident, the optimized Ogata quadrature method is more efficient than adaptive Gaussian quadrature, for
all three probed regions of q⊥/Q with relative errors that go below 0.1% with fairly less number of function calls than
the adaptive Gaussian quadrature.

4. Application to TMDs

In this section we use the optimized Ogata quadrature to calculate the SIDIS q⊥-differential cross sections in QCD
TMD factorization framework. We then use these calculations to describe COMPASS charged hadron multiplicity data
[14]. In addition, we use adaptive Gaussian quadrature and Vegas Monte Carlo algorithm for the same calculations to
benchmark the performance.

Let’s first summarize the basic ingredients for the implementation of the unpolarized SIDIS structure function
FUU in Eq. (5) in the CSS TMD framework [9, 32]. In such context the TMD PDFs and TMD FFs can be expressed

7



as

fq/p(xbj, b⊥; µ, ζ) =
∑

j

∫ 1

xbj

dx̂
x̂

Cpd f
q/ j

(
xbj/x̂, b∗, µb∗

)
f j/p (x̂, µb∗) exp

S pert − gA(xbj, b⊥, bmax) −
1
2

gK(b⊥, bmax) ln
 ζ

Q2
0

 ,
(29)

Dh/q(z, b⊥; µ, ζ) =
∑

j

∫ 1

z

dẑ
ẑ3 C f f

j/q
(
z/ẑ, b∗, µb∗

)
dh/ j (ẑ, µb∗) exp

S pert − gB(z, b⊥, bmax) −
1
2

gK(b⊥, bmax) ln
 ζ

Q2
0

 ,
(30)

where µ is the renormalization scale, ζ is the rapidity scale, Cpd f
q/ j and C f f

j/q are perturbatively calculable coefficient
functions (see Ref. [32]), and f j/p (x̂, µb∗) and dh/ j (ẑ, µb∗) are the standard collinear PDFs and FFs, respectively. We
will use the initial scale Q2

0 = 2.4 GeV2. We follow the usual b∗-prescription [9] to avoid the Landau pole of αs, with

b∗ =
b⊥√

1 + b2
⊥/b2

max

. (31)

The perturbative Sudakov factor S pert is given by

S pert =
1
2

∫ µ

µb∗

dµ′

µ′

[
2γ(µ′) − ln

(
ζ

µ′2

)
γK(µ′)

]
+

1
2

K̃(b⊥, µb∗ ) ln

 ζ

µ2
b∗

 , (32)

i.e., the evolution is done from the auxiliary scale µb∗ = 2e−γE/b∗ to the scale µ. In the actual phenomenology, we
set the rapidity scale ζ = Q2 and set the renormalization scale µ = Q. We will implement the TMD evolution at
next-to-leading-logarithmic (NLL) accuracy, and use the coefficient functions C at next-to-leading order (NLO). All
the relevant NLO coefficients and NLL anomalous dimensions can be found in Refs. [9, 32]. In addition, we use NLO
expression for hard function H(Q, µ) in Eq. (5) from Ref. [32] reads

H(Q, µ) = 1 +
αs

π
CF

[
3
2

ln
(

Q2

µ2

)
−

1
2

ln2
(

Q2

µ2

)
− 4

]
, (33)

and we set µ = Q so that the logarithmic terms vanish. Finally, we choose the parametrizations for the non-perturbative
factors used in Refs. [44, 45] which are given by

gA(xbj, b⊥, bmax) = gqb2
⊥, gB(z, b⊥, bmax) =

gh

z2 b2
⊥ , gK(b⊥, bmax) = g2 ln

(
b⊥
b∗

)
, (34)

with gq = 0.106 GeV2, g2 = 0.21, and gh = 0.042 GeV2.
Having established the QCD based TMD setups, let’s examine the behavior of the SIDIS cross section in b⊥

space. In Fig. 4 the b⊥ space integrand given in Eq. (5) for the SIDIS differential cross section is plotted, for three
different values of q⊥/Q = 0.1, 1.0 and 2.0, respectively. We take the lepton-proton center-of-mass energy square
S `p = 52.7 (GeV2), xbj = 0.25, z = 0.5, and Q2 = 2.5 (GeV2). These kinematics are within the coverage of the
pion production in unpolarized lepton-proton SIDIS data at the HERMES experiment [13]. Just like in the case of
the toy TMDs in Sec. 3, the integrand becomes more oscillating as q⊥/Q increases. As a consequence, the numerical
estimation of the Fourier-Bessel transform from b⊥-space to q⊥-space becomes increasingly more challenging for
larger values of q⊥/Q.

We next analyze the performance of our optimized Ogata quadrature to get the q⊥-space cross sections against the
adaptive Gaussian quadrature and the Vegas Monte Carlo integration routines. For that we consider a related experi-
mental observable so-called hadron multiplicity which has been measured by both HERMES [13] and COMPASS [14]
experiments. Such hadron multiplicity is defined as [14]

Mh(q⊥; xbj, z,Q) =
π

z2

dσh

dxbjdydzd2q⊥

/
dσDIS

dxbjdy
, (35)
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Figure 4: SIDIS b⊥ space integrand from Eq. (5) for the differential cross section at NLO+NLL for π+ production for three different values of
transverse momenta: q⊥/Q = 0.1, 1, and 2, respectively. For the rest of the external kinematics we select S `p = 52.7 (GeV2), xbj = 0.25, z = 0.5,
and Q2 = 2.5 (GeV2) within the coverage of the HERMES experiment

[13].
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⊥
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x
b
j
,
z
,
Q
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〈Ntot〉 = 629

〈Ntot〉 = 3995

Figure 5: The theoretical prediction for the hadron multiplicity, |Mh+
(q⊥; xbj, z,Q)|, as a function of q⊥/Q, using three different integration

algorithms: the optimized Ogata quadrature (“Ogata”, left panel), the adaptive Gaussian quadrature (“Quad”, middle panel), and the Vegas Monte
Carlo algorithm (“Vegas”, right panel). For illustration, we choose the kinematics to be consistent with the COMPASS experiment: 0.055 < xbj <
0.1, z = 0.2, and 3 GeV2 < Q2 < 7 GeV2. The experimental data from COMPASS [14] are also shown for comparison (red solid points).

where the numerator is the SIDIS cross section for the production of a hadron h that we have been discussing so
far, and the denominator is the inclusive DIS cross section. In Fig. 5, we plot the absolute value of the theoretical
prediction for the hadron multiplicity, |Mh+

(q⊥; xbj, z,Q)|, as a function of q⊥/Q, using the above mentioned integration
algorithms. For illustration, we choose the kinematics to be consistent with hadron multiplicity data from COMPASS
experiment: 0.055 < xbj < 0.1, z = 0.2, and 3 GeV2 < Q2 < 7 GeV2. The three panels (from left to right) correspond
to the optimized Ogata (labeled as Ogata), adaptive Gaussian quadrature (labeled as Quad), and the Vegas Monte
Carlo (labeled as Vegas), respectively. We also show the COMPASS experimental data in the plots for comparison. 2

Note that at relatively large hadron transverse momentum q⊥/Q & 2, the theoretical calculations in TMD factorization
formalism would become negative. There, one has to include the so-called Y-term [9], or switch/match onto the usual

2In order to describe the data, the normalization issue with the COMPASS data must be resolved. We follow the work done in [46] to normalize
the COMPASS multiplicities such that the data and theory are equal at the lowest values of the transverse momentum in each z bin.

9



0 1 2 3 4 5 6
q⊥/Q

0.01

0.1

1

|M
h

+
(q
⊥
,
x
b
j
,
z
,
Q

)| COMPASS 〈z〉 = 0.2

〈z〉 = 0.3

〈z〉 = 0.4

〈z〉 = 0.6

Figure 6: Comparison of COMPASS hadron multiplicity data [14] and absolute value of the theoretical calculations using the optimized Ogata
algorithm with a number of nodes N = 15. The computations are performed for 0.02 < xbj < 0.032, 1.7 GeV2 < Q2 < 3 GeV2, and for 4 different
〈z〉 values as shown in the figure. The black solid curves are the absolute values of the theoretical results.

collinear factorization formalism [35, 47]. It is important to realize that even in this large q⊥ region, computations
with high precision for the TMD factorization formalism of Eq. (5) is extremely important, in order to estimate the
Y-term with high precision [48].

In each plot the inversion is performed using a small number of calls to the integrand in blue, a moderate number
of function calls to the integrand in orange, and a large number of function calls to the integrand in green. We
also provide the average number of calls 〈Ntot〉 for each case. As one can not, in the limit of large sampling, all
the numerical integrators converge to the same result. However, we observe that the optimized Ogata quadrature
converges to this result more than an order of magnitude faster than adaptive Gaussian quadrature, and even more
than two orders of magnitude faster than Vegas Monte Carlo integration. This result demonstrates that our optimized
Ogata algorithm can improve significantly the numerical efficiency of the Fourier-Bessel integration encountered in
the TMD analysis.

Finally in Fig. 6, we plot four multiplicity distributions at different values of 〈z〉 = 0.2, 0.3, 0.4, 0.6, respectively
for the bins 0.02 < xbj < 0.032 and 1.7 GeV2 < Q2 <3 GeV2 using the optimized Ogata algorithm with the number
of nodes N = 15. It is worthwhile to emphasize again that the theory predictions become extremely efficient, thanks
to the optimized Ogata quadrature. This gives us a great confidence that the optimized Ogata method would be ideal
in the future for performing efficient numerical calculations and/or for the global analysis of TMDs. 3

5. Conclusions

In this paper we have developed a high performance numerical algorithm for Fourier transforms for TMD factor-
ization formalism from position b⊥ space to transverse momentum q⊥ space using the optimized Ogata quadrature
method, which uses the zeros of Bessel functions as nodes. For a relatively small and fixed number N of functional
calls to the integrand, we derived conditions to find the optimal parameter h, which controls the node density. Such
an optimized Ogata quadrature ensures the small number of calls while achieving a high accuracy at the same time,
and thus becomes extremely efficient in TMD studies. We use both toy TMDs, and parametrizations of QCD based

3Note that we are not presenting a new fit here. Rather we just display, using fixed parameters from Refs. [44, 45], that this numerical method
can be used to perform efficient numerical calculations for describing TMD data.
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TMDs to demonstrate the efficiency of our integration algorithm. We found that the optimized Ogata quadrature per-
forms an order of magnitude faster than adaptive Gaussian quadrature, and even two orders of magnitude faster than
Vegas Monte Carlo integration for all regions of transverse momentum in semi-inclusive deep inelastic scattering.
Our algorithm thus can have wide application in the future TMD computations and/or TMD global analysis. The
Python code which illustrates the optimized Ogata quadrature is available for download with an open source licence
at https://ucla-tmd.github.io/Ogata/.
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