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Abstract: The τ− → (3π)−ντ decays offer a good environment to study the three-pion
dynamics. From the point of view of strong interactions, the 3π system in the final state
is isolated thus providing a clean laboratory for studying the properties of the produced
axial a1(1260)-meson. In this work, we provide a description of the contributing axial-
vector form factor that is based on constraints posed by analyticity and unitarity, and by
chiral symmetry to a lesser extent, and we probe its application against the measurement
of the axial-vector spectral function reported by the ALEPH collaboration in 2014. A
satisfactory description of experimental data is achieved working with a twice-subtracted
dispersion relation without the need to include other intermediate states than the contri-
butions of the ρ(770), a1(1260) and a1(1640) resonances. As a side result, the axial form
factor parametrization as extracted from this theoretically clean data will be used as input
to describe the axial-vector form factor of the nucleon [1].
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1 Introduction

Tau lepton decays provide an advantageous laboratory to test the Standard Model under
rather clean conditions. Its exclusive semileptonic decays into a neutrino and hadrons in
particular, offer interesting possibilities to investigate the non-perturbative regime of QCD
since half of the process is purely electroweak and can be computed straightforwardly. These
transitions probe the vector and axial-vector parts of the weak hadronic current between the
QCD vacuum and the hadronic final state. Such privileged framework is used to improve
our understanding of the hadronization of QCD currents, to study form factors and to
extract the physical parameters, mass and width, of the intermediate resonances produced
in the decay.

In the understanding of the strong hadron dynamics at low-and-intermediate energies,
the spectral functions play a capital role. The n-pion decay modes are the cleanest hadronic
channels to test the vector (if n is even) and the axial-vector (if n is odd) spectral functions.
The two-pion decay almost saturates the vector spectral function below ∼ 1 GeV2 which,
in turn, it is dominated by the visible peak corresponding to the formation of the ρ(770)-
resonance. The vector spectral function can be related with the pion vector form factor,
an object of high physical interest, since it enters the description of many physical process,
and that it has been measured in e+e− → π+π− [2–8] and in τ → π−π0ντ [9, 10] and
widely studied in the literature (see e.g. Ref. [11] and references therein). On the contrary,
the three-pion channel dominates the axial-vector spectral function up to ∼ 2 GeV2 and
offers a good environment to study the 3π system under rather clean conditions. This is
expected to be in a JPC = 1++ state produced predominantly through the a1(1260) axial
vector meson thus offering a laboratory to study its properties more advantageous than the
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diffractive reaction πp → πππp [12] where the 3π in the final state shows a more complex
dynamical structure1.

In the past, ARGUS [14], ALEPH [15] and DELPHI [16] have measured the τ− →
(3π)−ντ branching ratio and spectra, while OPAL [17] and CLEO [18, 19] measured the
corresponding structure functions. On the theory side, Breit-Wigner models for the partic-
ipant axial-vector form factor [20–23], with the effects of the a1(1260) encoded into, have
been typically used to describe data until the authors of Refs. [24, 25] abandoned any mod-
elization and provided an Effective Theory based description incorporating the relevant
features of QCD in the resonance region. The most recent measurement of the axial-vector
spectral function corresponds to the results released by the ALEPH Collaboration in 2005
[26], and the corresponding data have been analyzed by several groups following different
approaches [27–29]. In 2014, however, ALEPH made an update [30] of their 2005 data
after improving the method to unfold the measured mass spectra from detector effects and
correcting previous problems in the correlations between the unfolded mass bins; the statis-
tical bin-to-bin correlations introduced by the unfolding method in the 2005 analysis were
not included. As a result, the new data were binned into wider and asymmetric bins with
respect to the old one2 and dropped the number of data points by a factor of ∼ 2.

Our aim is to provide an elaborated analysis of this data following a dispersive approach
similar to the ones employed for the ππ [11, 31, 32] and Kπ [33] vector form factors,
respectively. In our case, the a1(1260)-meson is expected to dominate the 3π axial-vector
form factor and elastic unitarity is expected to hold in a good approximation. Our procedure
is organized according to the fulfillment of unitarity and analyticity constraints. We start
with a representation of the axial form factor corresponding to a Breit-Wigner with only
the a1(1260)-width resummed into the resonance propagator, and follow with a dispersive
Breit-Wigner expression that includes the real part of the unitary corrections, that is, the
off-shell propagation of 3π intermediate states. The effects of the first radial excitation
i.e. the a1(1640)-meson, will be also taken into account and discussed accordingly. The
dispersive Breit-Wigner parametrization allows us to get a model for the phase that we use
as input for the two-times subtracted dispersion relation that completes our representation
of the form factor. As we will see, our parametrization provides a good phenomenological
result when confronted to the experimental ALEPH data [30].

As a benefit of our study, we are in a position to use our parametrization, extracted
from this theoretically clean τ− → (3π)−ντ data, as input to describe the axial-vector form
factor of the nucleon [1].

This paper is organized as follows. The hadronic matrix element and the participating
form factor are defined in section 2, where the differential decay distribution and axial
spectral function in terms of the latter are also given. In section 3, we discuss different
parametrizations of the axial-vector form factor organized according to their increasing
fulfillment of unitarity and analyticity constraints. In sections 4 and 5, we probe our

1The interested reader is referred to Ref. [13] for a discussion on the discrepancy in the extraction of the
a1(1260) resonance parameters from tau decays and from pion diffraction.

2See Fig. 3 of Ref. [30] for a graphical comparison between the new-and-old unfolded spectral functions.

– 2 –



parametrizations against the ALEPH 2014 spectral function data. Finally, in section 6 we
present our conclusions.

2 Matrix elements and decay width

The generic amplitude for a three meson decay of the τ is given by

M(τ− → (PPP )−ντ ) =
GF√

2
|Vij |ūντγµ(1− γ5)uτ 〈(PPP )−|(V −A)µ|0〉 , (2.1)

where GF is the Fermi constant and |Vij | is the corresponding element of the CKM matrix
for the transition. The last term in Eq. (2.1) is the hadronic matrix element that can be
written in terms of four form factors, FA1,2,3 and F V4 , as [34]

〈(P (p1)P (p2)P (p3))
−|(V −A)µ|0〉 = V µ

1 F
A
1 (Q2, s1, s2) + V µ

2 F
A
2 (Q2, s1, s2) ,

+ QµFA3 (Q2, s1, s2) + iV µ
4 F

V
4 (Q2, s1, s2) , (2.2)

where

V µ
1 =

(
gµν − QµQν

Q2

)
(p1 − p3)ν , V µ

2 =

(
gµν − QµQν

Q2

)
(p2 − p3)ν , (2.3)

V µ
4 = εµαβγp1αp2βp3γ , Qµ = (p1 + p2 + p3)

µ , si = (Q− pi)2 , (2.4)

and where the upper indices on the form factors stand for the participating current i.e.
axial-vector (A) and vector (V ). In the decomposition given in Eq. (2.2), FA1 (Q2, s1, s2)

and FA2 (Q2, s1, s2) are the axial-vector form factors that drive a JP = 1+ transition, while
FA3 (Q2, s1, s2) is the pseudoscalar form factor that carries JP = 0− degrees of freedom.
Finally, F V4 (Q2, s1, s2) is the vector form factor that has JP = 1−.

In terms of these form factors, the Q2 differential decay rate distribution can be written
as (in the vanishing neutrino mass limit)

dΓ(τ− → (PPP )−ντ )

dQ2
=

G2
F |Vij |2

128(2π)5Mτ

(
M2
τ

Q2
− 1

)2 ∫ smax
1

s1,min

ds1

∫ smax
2

s2,min

ds2

×
[
WSA +

1

3

(
1 + 2

Q2

M2
τ

)
(WA +WB)

]
, (2.5)

where s1 = (p2 + p3)
2, s2 = (p1 + p3)

2 and s3 = (p1 + p2)
2 ≡ Q2− s1− s2 +m2

1 +m2 +m2
3,

and with the hadronic structure functions, WSA and WA,B, given by

WSA =
[
QµFA3 (Q2, s1, s2)

] [
QµF

A
3 (Q2, s1, s2)

]∗
= Q2|FA3 (Q2, s1, s2)|2 , (2.6)

WA = −
[
V µ
1 F

A
1 (Q2, s1, s2) + V µ

2 F
A
2 (Q2, s1, s2)

]
×[

V1µF
A
1 (Q2, s1, s2) + V2µF

A
2 (Q2, s1, s2)

]
, (2.7)

WB =
[
V4µF

V
4 (Q2, s1, s2)

] [
V µ
4 F

V
4 (Q2, s1, s2)

]∗
. (2.8)
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The limits of integration in Eq. (2.5) are given by

smax
2,min(Q2, s1) =

1

4s

{(
Q2 +m2

1 −m2
2 −m2

3

)2
−
[
λ1/2(Q2, s1,m

2
3)∓ λ1/2(m2

1,m
2
2, s1)

]2 }
, (2.9)

s1,min = (m1 +m2)
2 , smax

1 =
(√

Q2 −m3

)2
, (2.10)

Q2
min = (m1 +m2 +m3)

2 , Q2
max = (Mτ −mν)2 , (2.11)

where λ(a, b, c) = (a+ b− c)2 − 4ab.
For τ− → (3π)−ντ , only the axial-vector current is allowed due to G-parity conser-

vation and thus we have no vector contribution i.e. F V4 (Q2, s1, s3) = 0. Bose symmetry
under the interchange of the two identical pions of the final state implies FA1 (Q2, s1, s2) =

FA2 (Q2, s2, s1) ≡ FA(Q2, s1, s2). Meanwhile, conservation of axial-vector current in the
chiral limit imposes that FA3 (Q2, s1, s2) must vanish with the square of the pion mass and
therefore its contribution will be very much suppressed and can be safely neglected. There-
fore, the 3π state is assumed to be dominated by a state of angular momentum one.

For definiteness, we describe the remaining axial vector form factor for the channel
τ− → π−π+π−ντ , and use the isospin symmetry relation [35, 36]

FA(Q2, s1, s2) ≡ FAπ−π+π−(Q2, s1, s2)

= FAπ0π0π−(Q2, s1, s3)− FAπ0π0π−(Q2, s2, s3)− FAπ0π0π−(Q2, s1, s2) ,

(2.12)

to describe the mode τ− → π0π0π−ντ .
Finally, the axial-vector hadronic current takes the form

JµA = FA(Q2, s1, s2)V
µ
1 + FA(Q2, s2, s1)V

µ
2 , (2.13)

while the calculation of the decay rate Eq. (2.5) is reduced to the computation of the axial-
vector spectral function, a1(Q2), and it can be written as

dΓ(τ− → π−π−π+ντ )

dQ2
=
G2
F |Vud|2

32π2Mτ

(
M2
τ −Q2

)2(
1 +

2Q2

M2
τ

)
a1(Q

2) , (2.14)

where

a1(Q
2) =

1

768π3
1

Q4

∫ smax
1

s1,min

ds1

∫ smax
2

s2,min

ds2WA . (2.15)

For comparison of theory and experiment, it is useful to define the ratio of the partial decay
width of τ− → (3π)−ντ over the τ− → e−ν̄eντ partial width

Γ(τ− → (3π)−ντ )

Γ(τ− → e−ν̄eντ )

1

Nevents

dNevents

dQ2
=

6π|Vub|2SEW
M2
τ

(
1− Q2

M2
τ

)2(
1 + 2

Q2

M2
τ

)
a1(Q

2) ,

(2.16)
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where (1/Nevents)(dNevents/dQ
2) is the normalized invariant mass-squared distribution, SEW

accounts for short-distance electroweak radiative corrections, and the CKM matrix element
|Vub| = 0.97418± 0.00019 [37].

For the evaluation of the axial-vector form factor, FA(Q2, s1, s2), we follow Ref. [22] as
an initial approach and assume that this current is dominated by the a1 and its subsequent
decay to ρπ through the decay chain τ → ντa1 → ντρπ → 3π. Under this ansatz, the form
factor can be written as

FA(Q2, s1, s2) = Fa1(Q2)Fρ(s2) , (2.17)

where Fa1(Q2) accounts for the resonant structure of the produced a1(1260)-meson while
Fρ(si) stands for the subchannel ρ→ ππ decay with the requirement Fρ(si)→ 1 as si → 0.
To describe the contribution of the ρ-meson resonance shape, we use [32, 38]

Fρ(s) =
m2
ρ

m2
ρ − s+ κρ(s)Re

(
Aπ(s, µ) + 1

2AK(s, µ)
)
− imρΓρ(s)

, (2.18)

where AP (s, µ) are the chiral loop functions given by (we take µ = mρ)

AP (s, µ2) = log
m2
P

µ2
+

8m2
P

s
− 5

3
+ σ3P (s) log

(
σP (s) + 1

σP (s)− 1

)
, (2.19)

with

σP (s) =

√
1−

4m2
P

s
. (2.20)

In Eq. (2.18), κρ(s) and the energy-dependent width Γρ(s) are given by [38]

κρ(s) =
γρ
mρ

s

π
(
σ3π(m2

ρ) + 1/2σ3K(m2
ρ)
) , (2.21)

Γρ(s) = γρ
s

m2
ρ

σ3π(s) + 1/2σ3K(s)

σ3π(m2
ρ) + 1/2σ3K(m2

ρ)
. (2.22)

The quantities mρ and γρ are model parameters and do not correspond to the physical
ρ(770) mass and width. For our study, we use the parameters mρ and γρ tuned such that
the ρ(770)-pole mass and width, Mpole

ρ = 762.0(3) MeV and Γpole
ρ = 143.0(2) MeV [11], are

reproduced3. These are found to be mρ = 797.5 MeV and γρ = 196.0 MeV. We would like
to point out here that the form presented in Eq. (2.18) fulfills analyticity since both the
real and imaginary part of loop integral function are resummed in the propagator of the
ρ-meson resonance. This represents and improved treatment of the ρ-meson line shape with
respect to the works of Refs. [18, 24, 25, 29], where the real part of the unitary corrections
was not taken into account.

The form factor in Eq. (2.17) is equivalent to write the current in Eq. (2.13) in the form

JµA = Fa1(Q2) [Fρ(s2)V1µ + Fρ(s1)V2µ] , (2.23)
3We consider the pole mass and width as the relevant resonance properties since one expects the pole

parameters to be essentially model independent.
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and the isospin relation Eq. (2.12) between the modes π−π+π− and π0π0π− reduces to

FA(Q2, s1, s2) = −FAπ0π0π−(Q2, s1, s2) , (2.24)

thus giving the same predictions for both decay channels (in the isospin limit). In [22],
the normalization of Fa1(Q2) was chosen such that for Q2 → 0 one recovers the ChPT
prediction at O(p2) [39]

JµA|
O(p2)
ChPT = −2

√
2

3Fπ
(V1µ + V2µ) . (2.25)

To fulfill Eq. (2.25), the form factor Fa1(Q2) in Eq. (2.23) can be written as:

Fa1(Q2) = −2
√

2

3Fπ
fa1(Q2) , (2.26)

where fa1(Q2) parametrizes theQ2 behavior of the a1 resonance with the property fa1(Q2)→
1 as Q2 → 0.

In this framework, the axial spectral function Eq. (2.15) reads:

a1(Q
2) =

1

768π3

(
−2
√

2

3Fπ

)2

|fa1(Q2)|2 g(Q2)

Q2
, (2.27)

where

g(Q2) =
1

Q2

∫ smax
1

s1,min

ds1

∫ smax
2

s2,min

ds2

{
− V 2

1 |Fρ(s2)|2 − V 2
2 |Fρ(s1)|2

− 2V1V2Re [Fρ(s1)(Fρ(s2))
∗]
}
, (2.28)

with

−V 2
1 = (s2 − 4m2

π) + (s3 − s1)2/(Q2) , (2.29)

−V 2
2 = (s2 − 4m2

π) + (s3 − s2)2/(Q2) , (2.30)

−V1V2 = (Q2/2− s3 −m2
π/2) + (s3 − s1)(s3 − s2)/(4Q2) . (2.31)

However, as pointed out in Ref. [24], the current in Eq. (2.23) has a drawback, while
it was constructed to fulfill the lowest order behaviour of ChPT (cf. Eq. (2.25)) it does not
reproduces the tree-level next-to-leading order result [40]

FA(Q2, s1, s2)|O(p
4)tree

ChPT = −2
√

2

3Fπ

(
1 +

4(2L1 + L3)

F 2
π

(s3 − 2m2
π) +

4L2

F 2
π

(s2 − 2s1 + 2m2
π)

+
4(2L4 + L5)m

2
π

F 2
π

+
2L9Q

2

F 2
π

)
, (2.32)
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and thus it is not consistent with the chiral symmetry of QCD. To further illustrate this
fact, let us take the (vector) resonance saturation of the O(p4) couplings4 [41]

2L1 = L2 =
1

4
L9 =

F 2
π

8M2
V

, (2.33)

that yields a form factor of the form:

FA(Q2, s1, s2)|O(p
4)tree

ChPT = −2
√

2

3Fπ

(
1 +

3s2
2M2

V

)
, (2.34)

or, what is equivalent, an axial-vector current of the form:

JµA|
O(p4)tree
ChPT = −2

√
2

3Fπ

[(
1 +

3s2
2M2

V

)
V1µ +

(
1 +

3s1
2M2

V

)
V2µ

]
. (2.35)

This low-energy behaviour is not reproduced by the model of Eq. (2.23), where the hadronic
current in the limit s1,2 �M2

V behaves as

JµA|s1,2�M2
V

= −2
√

2

3Fπ

[(
1 +

s2
M2
V

)
V1µ +

(
1 +

s1
M2
V

)
V2µ

]
. (2.36)

An advisable solution to this drawback may come from using dispersion relations with
subtractions. In the vicinity of the origin Q2 = 0, the form factor can be represented by its
Taylor expansion

Fa1(Q2) = −2
√

2

3Fπ

(
1 + λ1Q

2 + · · ·
)
, (2.37)

where λ1 can be related into a determination of the low-energy constants of ChPT thus
fulfilling the chiral expansion of the axial-vector form factor.

For our study, we will explore different parametrizations for fa1(Q2) organized accord-
ing to the fulfillment of analyticity and unitarity arguments, and the chiral symmetry of
QCD to some extent. These are presented in the following section.

3 Representations of the axial-vector form factor

3.1 Non-dispersive Breit-Wigner models

As initial setup approach, we represent the form factor by means of a one single resonance
Breit-Wigner

f1 resBW (Q2) =
m2
a1

m2
a1 −Q2 − ima1Γa1(Q2)

, (3.1)

where, since the participating a1(1260) resonance is not narrow, we have considered its
energy dependent width through

Γa1(Q2) = γa1
g(Q2)

g(m2
a1)

θ(Q2 − 9m2
π) . (3.2)

4The low-energy constants L4 and L5 are saturated by scalar contributions that are neglected in our
work and we therefore set them to zero.
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The parameters ma1 and γa1 are the non-physical "mass" and "width" to be determined
from fits to the data. We would like to note that these parameters can acquire values
different from the physical pole mass and width of the resonance, Mpole

a1 and Γpole
a1 , which

are determined from the pole positions in the complex plane.
Despite Eq. (3.1) might provide a successful description of data, contributions from the

first radial excitation i.e. the a′1 ≡ a1(1640)-meson, might appear on the upper part of the
spectrum. To consider these potential effects, we propose to proceed by

f2 resBW (Q2) =
1

1 + |κ|eiφ

[
m2
a1

m2
a1 −Q2 − ima1Γa1(Q2)

+ |κ|eiφ
m2
a′1

m2
a′1
−Q2 − ima′1

Γa′1(Q2)

]
,

(3.3)
where κ is a parameter that accounts for the mixing between resonances, and it is in general
complex thus carrying a phase that we denote by φ. However, for our study we will assume
κ to be real both for lack of precise experimental data near the tau mass, where the effects
of the a′1 can show up, and to avoid introducing a small spurious imaginary part below the
9m2

π threshold. We shall return to this point in section 4.
In Eq. (3.3), we assume that the energy dependent width of the a′1 exhibits the same

energy behavior than that of the a1

Γa′1(Q2) = γa′1
g(Q2)

g(m2
a′1

)
θ(Q2 − 9m2

π) . (3.4)

As the 3π decay offers a limited phase space to extract the mass and width of the a′1
with accurate precision, for our analysis we fix them to their PDG values, ma′1

= 1647 MeV
and γa′1 = 254 MeV [37], while we let |κ| as a free parameter to fit.

There are some drawbacks associated with the Breit-Wigner form factor described
above. Most importantly, the constraints imposed by analyticity and unitarity are not fully
respected. In order to fulfill analyticity, the real part of the unitarity corrections, that
accounts for the off-shell propagation of the 3π intermediate states, should be taken into
account in the resonance propagator. Moreover, this description might generates artificial
poles, and does not incorporates the low-energy constraints from chiral symmetry. There-
fore, the extrapolation of this form factor to low-energies should be taken with caution.
These limitations explains the need to build more sophisticated descriptions. The use of
dispersive parametrizations of the form factor cure most of the aforementioned pathologies,
if not all.

3.2 Dispersive Breit-Wigner models

In order to fully fulfill analyticity, we resumme the real part of the loop integrals, that
account for the off-shell propagation of 3π intermediate states, in the propagator of the
a1-meson resonance through

f1 resBW (Q2)|disp =
m2
a1

m2
a1 −Q2 + Π(Q2)

=
m2
a1

m2
a1 −Q2 + ReΠ(Q2) + iImΠ(Q2)

, (3.5)

wherema1 is the bare or tree level mass of the resonance and Π(Q2) =
∑

i Πi(Q
2) is the (one-

particle-irreducible) renormalization term that accounts for the unitary loop corrections.
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The sum runs over the loops emerging from the coupling of the resonance to various decay
channels. Unitarity relates the imaginary part of Π(Q2) with the partial decay width of the
a1 resonance into mesons in mode i through

ImΠ(Q2) = −ma1Γtotal
a1 (Q2) = −ma1

∑
i

Γia1(Q2) . (3.6)

The incorporation of the real part ReΠ(Q2) in the denominator of Eq. (3.5) constitutes and
improved version of the Breit-Wigner Eq. (3.1) that incorporates unitarity and analyticity
constraints. As a result, one can define the running mass of the resonance as

ma1(Q2) ≡ m2
a1 + ReΠ(Q2) . (3.7)

Analyticity relates the imaginary and real parts of Π(q2) through a dispersion relation

ReΠ(Q2) =
1

π

∫ ∞
9m2

π

ds′
−ImΠ(s′)

Q2 − s′
. (3.8)

From the above equation we see that if ImΠ(Q2) is know up to infinity, we can obtain
ReΠ(Q2) and thus fully determine f1 resBW (Q2)|disp. However, in real physical situations the
full width Γtotal

a1 (Q2) is usually not know up to arbitrarily large energies as demanded by the
dispersive integral of Eq. (3.8). This lack of knowledge can be compensated by introducing
subtractions

ReΠ(Q2) =
n−1∑
k=0

(Q2 − s0)k

k!

dk(ReΠ(Q2))

d(Q2)k

∣∣∣∣∣
Q2=s0

+
(Q2 − s0)n

π

∫ ∞
9m2

π

ds′
−ImΠ(s′)

(s′ − s0)n(Q2 − s′)
.

(3.9)

This has the virtue that increases the powers of Q2 in the denominator of the integrand thus
reducing the importance of the contributions from the high energy region in the integral
where Γtotal

a1 (Q2) is less well-know. For our study, we perform one subtraction and write

f1 resBW (Q2)|disp =
m2
a1 + ReΠa1(0)

m2
a1 −Q2 + ReΠa1(Q2)− ima1Γa1(Q2)

, (3.10)

where

ReΠa1(Q2) = Ha1(Q2)−Ha1(m2
a1) , (3.11)

and with

Ha1(Q2) = −Q
2

π

∫ scut

9m2
π

ds′
ma1Γa1(s′)

(s′)(s′ −Q2)
. (3.12)

The subtraction in Eq. (3.11) corresponds to the term H(m2
a1) and has been chosen such

that the running mass and width, Eqs. (3.7) and (3.2), equal the (renormalized) bare mass
and nominal width5

ma1(Q2)|Q2=m2
a1

= m2
a1 , Γa1(Q2)|Q2=m2

a1
= γa1 . (3.13)

5Without loss of generality, the running mass can be defined to vanish at some other arbitrary values.
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Another important aspect of Eq .(3.12) is the introduction of the integral cutoff scut. By
introducing subtractions we increases the power of Q2 in the denominator of the integrand.
However, the high energy part of the integral, where our models cannot be trusted nor
measurable since include intermediate states that open above the τ mass, still contributes.
This contribution remains as a source of theoretical uncertainty in our results. In order
to quantify it, we vary scut and the corresponding results will be discussed and used as a
source of systematic uncertainties. This constitutes an alternative approach different to the
ones employed in Refs. [18, 27, 29], where the integral was performed until infinity and a
correction form factor introduced ad hoc to force a damping of the amplitudes and make
the integral converge.

The term ReΠa1(0) in the numerator of Eq. (3.10) ensures that f1 resBW (Q2)|disp → 1 for
Q2 → 0.

Similar to Eq. (3.3), the role of the a′1 is included through

f2 resBW (Q2)|disp =
1

1 + |κ|eiφ

[
m2
a1 + ReΠa1(0)

m2
a1 −Q2 + ReΠa1(Q2)− ima1Γa1(Q2)

+ |κ|eiφ
m2
a′1

+ ReΠa′1
(0)

m2
a′1
−Q2 + ReΠa′1

(Q2)− ima′1
Γa′1(Q2)

]
. (3.14)

3.3 Dispersive representation

An important feature the form factor given by Eq. (3.5) possess is that in the elastic ap-
proximation i.e. ImΠ(Q2) ≡ ImΠa1→3π(Q2), it is equivalent to the once subtracted Omnès
representation [42]

f(Q2) = exp

[
Q2

π

∫ ∞
9m2

π

ds′
δ(s′)

s′(s′ −Q2 − i0)

]
, (3.15)

where the phase δ(Q2) entering the dispersive integral encodes the physics of the par-
ticipating resonances. In order to get a model for the phase, we adopt the form factor
representation given in Eq. (3.5) and extract the phase from the relation

tan δ(Q2) =
Imf1 resBW (Q2)|disp
Ref1 resBW (Q2)|disp

, (3.16)

that it is only valid in the τ decay region (Q2 < m2
τ ) since the model parameters i.e. ma1

and γa1 , will be fitted to τ data and therefore one cannot obtain reliable information beyond
m2
τ . Strictly speaking, however, one should integrate the dispersive integral up to infinity.

For that, the phase has to be known for all values of Q2 > 9m2
π. This is certainly not our

case, since we are using a modelization for the phase δ(Q2) given by Eq. (3.16) as input. For
the high-energy region, we thus take a conservative interval between 0 and 2π and guide
smoothly the phase to π at Q2 = m2

τ through [11]

δ∞(Q2) ≡ lim
s→∞

δ(Q2) = π − a

b+ (Q2/m2
τ )3/2

, (3.17)
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where a and b are parameters taken such the phase ψ(s) and its first derivative ψ′(s) are
continuous at Q2 = m2

τ

a =
3
(
π − δ(m2

τ )
)2

2m2
τδ
′(m2

τ )
, b = −1 +

3
(
π − δ(m2

τ )
)

2m2
τδ
′(m2

τ )
. (3.18)

This ensures the correct asymptotic 1/Q2 fall-off of the form factor.
In order to diminish the importance of the contributions coming from the high-energy

part of the integral where the phase is less well known, one can introduce subtractions. The
general solution for n subtractions can be written as

f(Q2) = Pn(Q2) exp

[
(Q2 − s0)n

π

∫ ∞
9m2

π

ds′
δ(s′)

(s′ − s0)n(s′ −Q2 − i0)

]
, (3.19)

with

P(Q2) = exp

[
n−1∑
k=0

λk(Q
2 − s0)k

]
, (3.20)

and where

λk =
1

k!

dk

d(Q2)k
log f(Q2)

∣∣∣∣
Q2=s0

. (3.21)

4 Breit-Wigner fits to the ALEPH spectral function data

The χ2 function minimized in our fits is defined as

χ2 =
all∑
i,j=1

∆ALEPH
i (CovALEPH

ij )−1∆ALEPH
j , (4.1)

with
∆ALEPH
k = aALEPH

1 (Q2)k − ath1 (Q2)k , (4.2)

where aALEPH
1 (Q2)k and Covij are, respectively, the ALEPH experimental measurement

of the spectral function and the corresponding covariance matrix in the k-th bin, while
ath1 (Q2)k is our theoretical description. The number of fitted data points is 74 and 73 for
the π0π0π−6 and π−π+π− decay channels, respectively.

We start by fitting Eq. (2.15) to the axial spectral function measured by ALEPH [30]
with the non-dispersive Breit-Wigner form factor given in Eq. (3.1). In order to optimize
our fits to the data, we did not fix the normalization but rather introduced a scale factor,
denoted by N hereafter, that we have allowed to float in order to reproduce better the
branching ratio quoted by ALEPH. The parameters resulting from our first fit take the
values

ma1 = 1271(4) MeV , γa1 = 523(8) MeV , N = 1.59(4) , (4.3)
6The first two points of the π0π0π− mode have been excluded from the minimization since the central

values are found to be negative.
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with a χ2/dof = 1.16 for the τ− → π0π0π−ντ decay channel, and

ma1 = 1243(3) MeV , γa1 = 480(7) MeV , N = 1.43(3) , (4.4)

with a χ2/dof = 3.11 for the τ− → π−π+π−ντ mode.
For our second fit, we include the a1(1640)-meson and use Eq. (3.3). We obtain

ma1 = 1236(7) MeV , γa1 = 506(10) MeV , |κ| = 0.16(2) , N = 1.21(6) , (4.5)

with a χ2/dof = 0.99 for τ− → π0π0π−ντ , and

ma1 = 1212(4) MeV , γa1 = 460(8) MeV , |κ| = 0.14(1) , N = 1.10(4) , (4.6)

with a χ2/dof = 2.83 for the mode τ− → π−π+π−ντ .
These results bring us to a first observation that is that, in general, the agreement be-

tween our models and ALEPH data is better for τ− → π−π0π0ντ than for τ− → π−π+π−ντ
as indicated by the χ2/d.o.f. We also observe that the overall normalization with the model
without the inclusion of the a′1 needs an unnaturally large correction ∼ (40−60)% to match
experimental data, while if this resonance is included, the χ2/dof is slightly better and the
required normalization factor reduces to 1.21 and 1.10 for the π−π0π0 and π−π+π− modes,
respectively.

We next run fits with the dispersive Breit-Wigner form factor presented in Eqs. (3.10)
and (3.14). Regarding the integral cutoff scut in Eq. (3.12), one should take a value as large
as possible so as not to spoil the a priori infinite interval of integration, but low enough that
the running width is well known within the interval. The parameters resulting from the
fits are collected in Table 1 as Fit-a1 and Fit-a′1, respectively, for the model including only
the a1 and both the a1 and a′1 axial resonances. The dependence of the fitted parameters
on scut is explored for three representative values of scut, namely 4 GeV2, 9 GeV2 and 100
GeV2. One observes that only the a1-width is sensitive to these variations with a tendency
of becoming larger as scut increases, the rest of parameters remain rather stable. Despite
this issue represents a source of systematic (model-dependent) uncertainty with regard to
the treatment of the a1-meson resonance parameters, slightly better fits are obtained with
scut = 100 GeV2 as the χ2/dof indicates. We have also tried larger values of scut i.e. 1000
GeV2 or 10000 GeV2, and found that while the numerical value for the a1-width still suffers
positive variations of some MeV, the χ2/dof remains stable. Therefore, we consider the
parameters obtained with scut = 100 GeV2 as our reference fits. Although this choice it
may not be rigorous, the quality of the present data is not precise enough to disentangle
these effects. As seen from the table, the value for the a1 mass(width) is slightly shifted
upwards(downwards) with respect to non-dispersive model as a consequence of including
the running mass in the parametrization. Also, the fit parameters are found to be much
more stable against the inclusion of the a′1. However, the most important improvements
are seen in the goodness of the χ2/dof of the π−π+π− decay, which has been reduced by
∼ 50%, and in the normalization factor N . For the π0π0π− decay channel one observes
that, due to the satisfactory quality of the fit, the fit parameter N = 0.97(3) is found to
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Fit Decay channel scut [GeV2] ma1 [MeV] γa1 [MeV] N |κ| χ2/dof
Fit-a1 π0π0π− 4 1293(5) 416(6) 0.84(2) — 1.07

9 1293(5) 448(7) 0.87(2) — 1.02
100 1293(5) 501(9) 0.88(2) — 1.01

π−π+π− 4 1256(3) 395(5) 0.77(1) — 1.61
9 1259(3) 426(6) 0.80(1) — 1.53
100 1259(4) 474(7) 0.81(2) — 1.51

Fit-a′1 π0π0π− 4 1289(5) 404(7) 0.92(3) 0.11(4) 0.97
9 1291(5) 434(8) 0.96(3) 0.12(4) 0.88

100 1293(4) 485(10) 0.97(3) 0.12(4) 0.86
π−π+π− 4 1256(3) 390(6) 0.80(2) 0.03(2) 1.60

9 1259(3) 420(6) 0.84(2) 0.05(2) 1.47

100 1260(3) 467(8) 0.85(2) 0.05(2) 1.43

Table 1. Results for the fits to the 2014 ALEPH τ− → (3π)−ντ axial spectral function data [30]
obtained with the dispersive Breit-Wigner representations Eqs. (3.10) and (3.14) including, respec-
tively, only the a1(1260) (Fit-a1) and both the a1(1260) and a1(1640) (Fit-a′1) axial resonances, for
three representative values of scut in the dispersive integral Eq. (3.12).

be very well compatible with data i.e. N = 1. On the contrary, the π−π+π− mode needs
to be corrected by a scale factor of N = 0.85(2).

In Figs. 1 and 2, we provide a graphical account of the results of our fits compared to
ALEPH data7. In particular, the results of the fits given in Eqs. (4.3) and (4.4) obtained
with the non-dispersive Breit-Wigner model are shown by the dashed blue curve for the
π0π0π− (solid black circles) and π−π+π− (solid red squares) decay channels in Figs. 1 and
2, respectively. In these plots, we also display the fits presented in Table 1 resulting from
the application of the dispersive Breit-Wigner description with one (dotted and dot-dashed
green curves for the π0π0π− and π−π+π− modes, respectively) and two (solid red and black
curves) axial-vector resonances. Comments on the effects of including the running mass are
in order: i) the description of the low-energy data points is slightly improved (see the insets
in Figs. 1 and 2); ii) the peak is seen slightly shifted to the left; iii) the description of the
second half of the spectral function is found to be slightly over the non-dispersive ones. In
all, the agreement with data is found to be quite satisfactory.

Let us discuss next the individual a1 and a′1 contributions in more detail. In Figs. 3
and 4, we display our fit results obtained with the dispersive Breit-Wigner representation
including both the a1(1260) and a1(1640) axial meson resonances, together with their indi-
vidual contributions. While the total contribution is given by the solid curves in the figures,
that result in a total branching ratio of

BR(τ− → π0π0π−ντ ) = 9.32()% , BR(τ− → π−π+π−ντ ) = 9.05()% , (4.7)

7Notice that in the figures we have kept the corresponding normalization factors in order to compare
the shapes of the spectral function.
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Figure 1. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π0π0π−ντ
(solid black circle) as compared to the fit results presented in Eq. (4.3), obtained with the non-
dispersive Breit-Wigner including only the a1 resonance according to Eq. (3.1) (dashed blue curve),
and in Table 1, with the dispersive Breit-Wigner including one (dashed green curve) and two (solid
red curve) axial resonances according to Eqs. (3.10) and (3.14), respectively. The inset shows a
magnification of the respective fits in the region Q2 ∈ [0.35, 0.9] GeV2 in logarithmic scale.

the resulting contribution of the a1(1260)-meson to the spectral function is shown as the
dashed curve, and its individual contribution to the branching ratio is found to be

BR(τ− → a1ντ → π0π0π−ντ ) = 10.56()% , BR(τ− → a1ντ → π−π+π−ντ ) = 9.61()% .

(4.8)

The contribution of the a1(1640) is shown by the dotted curve in Figs. 3 and 4 for the
central values of |κ| = 0.12 and |κ| = 0.05 given in Table 1; let us remind that for the a′1
mass and width we have employed the PDG values. Notice that, although the individual
contribution of the a′1 is found to be small,

BR(τ− → a′1ντ → π0π0π−ντ ) = 1.0× 10−3 , BR(τ− → a′1ντ → π−π+π−ντ ) = 1.7× 10−4 ,

(4.9)

its effect is rather important due to the destructive interference with the dominant a1
resonance. As seen, the individual a′1 contribution turns out to be rather sensitive to the
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Figure 2. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π−π+π−ντ
(solid red square) as compared to the fit results presented in Eq. (4.4) obtained with the non-
dispersive Breit-Wigner including only the a1 resonance according to Eq. (3.1) (dashed blue curve),
and in Table 1 with the dispersive Breit-Wigner including one (dor-dashed green curve) and two
(solid black curve) axial resonances according to Eqs. (3.10) and (3.14), respectively. The inset
shows a magnification of the respective fits in the region Q2 ∈ [0.25, 0.9] GeV2 in logarithmic scale.

mixing parameter |κ| (cf. Eq. (3.14)). It is difficult to asses a precise value for κ, but an
estimate can be inferred adjusting κ such that the experimental branching ratios reported
by ALEPH, BR(τ− → π0π0π−ντ ) = 9.239% and BR(τ− → π−π+π−ντ ) = 9.041%, are
reproduced. As an exercise, we fix both the mass and width of the a1 and a′1 to their PDG
values, and we find that κ is positive, κ ≈ 0.26 and κ ≈ 0.29. These values are in reasonable
agreement with, although slightly larger than, our findings of Table 1.

To make our work self-contained, in Fig. 5, our expressions for the running mass
(cf. Eq. (3.7)) and width (cf. Eq. (3.2)) are plotted as a function of the 3π invariant mass for
the nominal values ma1 = 1293(5) MeV and γa1 = 501(9) MeV obtained from the π0π0π−

mode Fit-a1 in Table 1.

We have also performed a simultaneous fit to both decay channels. The corresponding
results are found to be

ma1 = 1270(3) MeV , γa1 = 480(5) MeV , N = 0.83(1) , (4.10)
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Figure 3. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π0π0π−ντ
(solid black circles) as compared to the fit results obtained with the dispersive Breit-Wigner includ-
ing two axial resonances according to Eq. (3.14), together with the individual contributions from
the a1(1260) (dashed red lines) and a1(1640) (dotted red lines) axial mesons.

with a χ2/dof = 1.57 for Fit-a1, and

ma1 = 1271(3) MeV , γa1 = 473(5) MeV , N = 0.87(2) , (4.11)

with a χ2/dof = 1.50 for Fit-a′1. The fit parameters tend to lie in between the individual
fit results of both channels with a little preference to those of the π−π+π− mode as also
indicated by the χ2/dof. As a matter of example, the corresponding results for Fit-a1 are
displayed in Fig. 6 where we compare the dispersive Breit-Wigner fit results to the individual
π0π0π− (dotted green curve) and π−π+π− (dot-dashed green curve) decay modes together
with the outcome from the simultaneous fit (solid purple curve) to both data sets. As seen,
the curve of the joint fit tends to that of the π−π+π−, in line with the results of Table 1.

5 Dispersive fits to the ALEPH spectral function data

Our central fit results are obtained from the general solution of the dispersive representation
presented in Eq. (3.19). In particular, we employ a twice subtracted dispersion relation
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Figure 4. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π−π+π−ντ
(solid red squares) as compared to the fit results obtained with the dispersive Breit-Wigner including
two axial resonances according to Eq. (3.14), together with the individual contributions from the
a1(1260) (dashed black lines) and a1(1640) (dotted black lines) axial mesons.

(n = 2) at s0 = 0. In this case, the form factor takes the form:

f(Q2) = exp

[
α1Q

2 +
Q4

π

∫ scut

9m2
π

ds′
δ(s′)

(s′)2(s′ −Q2 − i0)

]
, (5.1)

where α1 is a subtraction constant that can be related to low-energy observables appearing
in the low-energy expansion of the form factor (cf. Eq. (2.37))

f(Q2) = 1 + λ1Q
2 + · · · . (5.2)

Explicitly, the relation for the linear slope parameter λ1 reads

λ1 = α1 . (5.3)

This subtraction constant can be calculated theoretically through the sum rule

αs.r.
k =

k!

π

∫ scut

9m2
π

ds′
δ(s′)

s′k+1
. (5.4)
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Figure 5. Running mass (solid black curve) and width (dashed blue curve) as a function of the
invariant mass of the 3π system according to Eqs. (3.7) and (3.2), respectively.

As seen, the calculation of the subtraction constants from the sum rules depends in nothing
else than on the perfect knowledge of the input phase δ(Q2), knowledge that we do not have
until infinity. Therefore, for our analysis, we treat them as free parameters to be determined
from fits to data. This has the advantage that they turn out to be less model dependent
and absorbs the effects of other possible production mechanisms different than the ones
considered here-as they are in the data. In summary, the introduced subtraction constant
encodes the low-energy physics but also capture our ignorance of the high-energy part of the
dispersive integral, where the phase is less well know, thus showing a nice synergy between
high-and low-energy regimes.

The contribution of the high-energy region of the dispersive integral can be studied
through the cutoff scut introduced in Eq. (5.1) as the upper limit of integration. The result-
ing fit parameters with a twice-subtracted dispersion relation are given in Table 2 employing
three values of scut, namely 4 GeV2, 9 GeV2 and scut →∞. As one observes, the dependence
of the resulting fit parameters on scut is in general small and within uncertainties, though
visible. In this table, we also show the subtraction constant αs.r.

1 calculated through the
sum rule Eq. (5.4), and the values we get are found to be in a reasonable agreement with the
results of the fits. This indicates that the content of the phase is such that saturates rather
well the dispersive integral, otherwise the differing results among them would be larger.
Compared with the fits of Table 1, which employed a dispersive Breit-Wigner, while the
χ2/dof is practically unchanged, although now it remains slightly below, the normalization
N turns out to be well compatible with data.

A graphical account of our central fit results is shown in Figs. 7 and 8 for the π0π0π−

and π−π+π− decay modes, respectively. The solid lines correspond to the fit of Table 2
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Figure 6. Simultaneous fit (solid purple curve) to both decay channels τ− → π0π0π−ντ (solid
black circle) and τ− → π−π+π−ντ (solid red square) as compared to the individual fit results.

Fit Channel Parameter scut = 4 GeV2 scut = 9 GeV2 scut →∞
Fit-a1 π0π0π− ma1 [MeV] 1336(5) 1321(8) 1319(8)

γa1 [MeV] 532(10) 489(10) 486(10)

α1 [GeV−2] 0.66(3) 0.52(4) 0.49(4)

αs.r.
1 [GeV−2] 0.39(1) 0.52(1) 0.63(1)

N 1.02(8) 1.22(12) 1.24(12)

χ2/dof 1.07 0.91 0.90

π−π+π− ma1 [MeV] 1280(3) 1271(7) 1270(7)

γa1 [MeV] 503(2) 477(4) 474(7)

α1 [GeV−2] 0.75(1) 0.64(3) 0.61(3)

αs.r.
1 [GeV−2] 0.43(1) 0.56(1) 0.66(1)

N 0.78(3) 0.90(7) 0.93(7)

χ2/dof 1.61 1.50 1.49

Table 2. Results for the fits to the 2014 ALEPH τ− → (3π)−ντ axial spectral function data [30]
obtained with the dispersive representation Eqs. (5.1) including the a1(1260)-meson axial resonance,
for three representative values of scut in the dispersive integral.
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with scut →∞. As it can be see, our model provides a very good description of the ALEPH
experimental data. In these plots, we also display the results obtained in Table 1 with the
single resonance dispersive Breit-Wigner for comparison.
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Figure 7. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π0π0π−ντ
(solid black circle) as compared to the fit results presented in Table 2 for scut →∞ (solid red line)
and Table 1 with the single resonance dispersive Breit-Wigner (dotted green line). The inset shows
a magnification of the respective fits in the region Q2 ∈ [0.35, 0.9] GeV2 in logarithmic scale.

Finally, in Fig. 9 we take a closer look to the low-energy region of the spectral function.
We can see that while the low-energy data points of the decay τ− → π0π0π−ντ carry a
large error bar and show some scatter, the data for the π−π+π− mode is more precise
and is reasonably well accommodated within our description (solid purple curve) resulting
from the simultaneous fit to both decay channel data sets. In this figure, the tree-level
calculation in ChPT at LO (dotted gray line) and NLO (dot-dashed gray line), with the
use of Eqs. (2.25) and (2.32), respectively, are also shown for illustrative purposes. As
seen, while the ChPT prediction at NLO is able to accommodate the low-energy data of
the π−π+π− decay channel, it fails from Q2 ∼ 0.4 GeV2 on where the effects of the a1
resonance contribution starts showing up.
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Figure 8. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π−π+π−ντ
(solid red square) as compared to the fit results presented in Table 2 for scut →∞ (solid black line)
and Table 1 with the single resonance dispersive Breit-Wigner (dot-dashed green line). The inset
shows a magnification of the respective fits in the region Q2 ∈ [0.25, 0.9] GeV2 in logarithmic scale.

6 Conclusions

Hadronic tau decays constitute an advantageous laboratory to study the low-energy regime
of QCD. In this work, we have analyzed the τ− → (3π)−ντ axial-vector spectral function
experimental data reported by ALEPH in 2014. These decays offer a good environment to
study the strong dynamics of the three-pion system under rather clean conditions. This
is expected to be dominated by the axial a1(1260)-meson resonance and, therefore, the
measured axial-vector spectral function allows one to study its properties and test models
for the participant axial-vector form factor. For its description, we have explored several
models which incorporate the constraints posed by analyticity and unitarity in an increasing
degree of soundness. We have found that a satisfactory description of experimental data
is achieved working with a twice-subtracted dispersion relation and without the need to
include further intermediate states beyond the contributions of the ρ(770), a1(1260) and
a1(1640) resonances. Furthermore, we have investigated the contribution of the high-energy
region of the dispersive integral through the introduction of a cutoff scut as the upper limit
of integration. This cutoff was varied between 4 GeV2 and infinity in order to test the
sensitivity of the model for the form factor phase that we have used as input to contributions
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Figure 9. ALEPH 2014 measurements [30] of the axial spectral function from τ− → π0π0π−ντ
(solid black circle) and τ− → π−π+π−ντ (solid red square) as compared to the fit results presented
in Table 2 for scut →∞. The tree-level ChPT calculation at leading-and-next-to-leading order are
also shown for illustration (dotted and dot-dashed gray lines, respectively).

coming from higher-energies where the phase is not well-known.

Acknowledgments

The work of S.G-S has been supported by the National Science Foundation (Grant No. PHY-
1714253). The work of E.P. is supported in part by the U.S. Department of Energy (contract
DE-AC05-06OR23177) and by the National Science Foundation (Grant No. PHY-1714253).

References

[1] A. Friedland, S. Gonzàlez-Solís, E. Passemar, K. Quirion, in preparation.

[2] S. R. Amendolia et al. [NA7 Collaboration], Nucl. Phys. B 277, 168 (1986).

[3] A. Aloisio et al. [KLOE Collaboration], Phys. Lett. B 606, 12 (2005) [hep-ex/0407048].

[4] R. R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B 648, 28 (2007)
[hep-ex/0610021].

[5] B. Aubert et al. [BaBar Collaboration], Phys. Rev. Lett. 103, 231801 (2009)
[arXiv:0908.3589 [hep-ex]].

– 22 –



[6] F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B 700, 102 (2011) [arXiv:1006.5313
[hep-ex]].

[7] M. Ablikim et al. [BESIII Collaboration], Phys. Lett. B 753, 629 (2016) [arXiv:1507.08188
[hep-ex]].

[8] A. Anastasi et al. [KLOE-2 Collaboration], JHEP 1803, 173 (2018) [arXiv:1711.03085
[hep-ex]].

[9] S. Anderson et al. [CLEO Collaboration], Phys. Rev. D 61, 112002 (2000) [hep-ex/9910046].

[10] M. Fujikawa et al. [Belle Collaboration], Phys. Rev. D 78, 072006 (2008) [arXiv:0805.3773
[hep-ex]].

[11] S. Gonzàlez-Solís and P. Roig, Eur. Phys. J. C 79, no. 5, 436 (2019) [arXiv:1902.02273
[hep-ph]].

[12] C. Adolph et al. [COMPASS Collaboration], Phys. Rev. D 95, no. 3, 032004 (2017)
[arXiv:1509.00992 [hep-ex]].

[13] S. Eideleman (Particle Data Group), "The a1(1260) and a1(1640)" (2003).

[14] H. Albrecht et al. [ARGUS Collaboration], Z. Phys. C 58, 61 (1993).

[15] R. Barate et al. [ALEPH Collaboration], Eur. Phys. J. C 4, 409 (1998).

[16] P. Abreu et al. [DELPHI Collaboration], Phys. Lett. B 426, 411 (1998).

[17] K. Ackerstaff et al. [OPAL Collaboration], Z. Phys. C 75, 593 (1997).

[18] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 61, 012002 (2000) [hep-ex/9902022].

[19] T. E. Browder et al. [CLEO Collaboration], Phys. Rev. D 61, 052004 (2000)
[hep-ex/9908030].

[20] N. A. Tornqvist, Z. Phys. C 36, 695 (1987) Erratum: [Z. Phys. C 40, 632 (1988)].

[21] N. Isgur, C. Morningstar and C. Reader, Phys. Rev. D 39, 1357 (1989).

[22] J. H. Kuhn and A. Santamaria, Z. Phys. C 48, 445 (1990).

[23] M. Feindt, Z. Phys. C 48, 681 (1990).

[24] D. Gomez Dumm, A. Pich and J. Portoles, Phys. Rev. D 69, 073002 (2004)
[hep-ph/0312183].

[25] D. G. Dumm, P. Roig, A. Pich and J. Portoles, Phys. Lett. B 685, 158 (2010)
[arXiv:0911.4436 [hep-ph]].

[26] S. Schael et al. [ALEPH Collaboration], Phys. Rept. 421, 191 (2005) [hep-ex/0506072].

[27] M. Vojik and P. Lichard, arXiv:1006.2919 [hep-ph].

[28] P. Lichard, arXiv:1703.06315 [hep-ph].

[29] M. Mikhasenko et al. [JPAC Collaboration], Phys. Rev. D 98, no. 9, 096021 (2018)
[arXiv:1810.00016 [hep-ph]].

[30] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J. C 74, no. 3,
2803 (2014) [arXiv:1312.1501 [hep-ex]].

[31] A. Pich and J. Portolés, Phys. Rev. D 63, 093005 (2001) [hep-ph/0101194].

[32] D. Gómez Dumm and P. Roig, Eur. Phys. J. C 73, no. 8, 2528 (2013) [arXiv:1301.6973
[hep-ph]].

– 23 –

http://pdg.lbl.gov/2006/reviews/a11260_m010.pdf


[33] D. R. Boito, R. Escribano and M. Jamin, Eur. Phys. J. C 59, 821 (2009) [arXiv:0807.4883
[hep-ph]].

[34] P. Roig, arXiv:1301.7626 [hep-ph].

[35] L. Girlanda and J. Stern, Nucl. Phys. B 575, 285 (2000) [hep-ph/9906489].

[36] J. J. Sanz-Cillero and O. Shekhovtsova, JHEP 1712, 080 (2017) [arXiv:1707.01137 [hep-ph]].

[37] M. Tanabashi et al. [Particle Data Group], Phys. Rev.D 98, 030001 (2018).

[38] A. Celis, V. Cirigliano and E. Passemar, Phys. Rev. D 89, 013008 (2014) [arXiv:1309.3564
[hep-ph]].

[39] R. Fischer, J. Wess and F. Wagner, Z. Phys. C 3, 313 (1979).

[40] G. Colangelo, M. Finkemeier and R. Urech, Phys. Rev. D 54, 4403 (1996) [hep-ph/9604279].

[41] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B 321, 311 (1989).

[42] R. Omnes, Nuovo Cim. 8, 316 (1958).

– 24 –


	Introduction
	Matrix elements and decay width
	Representations of the axial-vector form factor
	Non-dispersive Breit-Wigner models
	Dispersive Breit-Wigner models
	Dispersive representation

	Breit-Wigner fits to the ALEPH spectral function data
	Dispersive fits to the ALEPH spectral function data
	Conclusions

