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ABSTRACT
Jefferson Lab’s cutting-edge parity-violating electron scattering program has increasingly

stringent requirements for systematic errors. Beam polarimetry is often one of the domi-

nant systematic errors in these experiments. A new Møller Polarimeter in Hall A of Jef-

ferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized

scattering experiment. Upcoming parity violation experiments in Hall A include CREX,

PREX-II, MOLLER and SOLID with the latter two requiring <0.5% precision on beam po-

larization measurements, a precision which has not been achieved to date. The polarimeter

measures the Møller scattering rates of the polarized electron beam incident upon an iron

target placed in a saturating magnetic field. The spectrometer consists of four quadrupoles

and one momentum selection dipole. The detector is designed to measure the scattered and

knock out target electrons in coincidence. Beam polarization is extracted by constructing

an asymmetry from the scattering rates when the incident electron spin is parallel and anti-

parallel to the target electron spin. The largest systematic errors associated with Møller

polarimetry comes from the precision that the target polarization and the detector accep-

tance is known will be discussed. Other errors including the Levchuk effect, beam stability,

and target heating will be addressed.
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CHAPTER 1

Physics with GeV Polarized Electrons

1.1 Introduction

Humans have always striven to understand the composition of matter. Early observations
were based off what we “saw”, by making visual observations using light. However visible
light or photons has limitations on what it can reveal because it behaves like a wave which
can only resolve objects larger than its wavelength (∼ 0.5−1.0 µm). De Broglie taught us
that all particles have a wavelength, λ , which is inversely proportional to its momentum, p,
according to the relation λ = h

p , where h is Planck’s constant. This allowed scientists to use
other particles to probe matter at much smaller scales and began a push to develop higher
energy accelerators so that physicists could study matter at shorter and shorter distances.
An ideal particle to use like a precision microscope were electrons because they are point-
like, can be accelerated to high momentum (small wavelengths), and the physics processes
they undergo are well understood by the laws of physics. Scattering experiments using
electrons have been an important tool over the last 100 years by shedding new light on how
we understand the fundamental building blocks of matter.

In order to appreciate the importance of particle physics and scattering experiments
as a probe of matter at small scales, a brief review of the history is fruitful. In 1911,
Ernest Rutherford explained a famous scattering experiment in which alpha particles were
scattered off of a thin gold target. It was expected that the alpha particles would scatter at
very small angles from the gold target which was believed to be comprised of a spatially
uniform spread out positive “pudding”. However, it was observed that most of the alpha
particles passed through the foil with very little deflection and even more puzzling that a
small fraction of them bounced back at very large angles. Rutherford concluded that matter
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was mostly empty space, with most of the mass of an atom located at a very dense center
and that these centers were spaced very far apart relative to their size. From this experiment
the famous Rutherford cross section was derived.

In 1915, Niels Bohr elaborated on this model of the atom as being a dense positive cen-
ter surrounded by negative charge by quantizing the allowed energy levels of the electrons
that circled the nucleus. He named the nucleus of the lightest atom, Hydrogen, the proton.
His model was extremely successful at explaining the Rydberg formula which described
the observed spectral lines of atomic hydrogen. Shortly thereafter, Wolfgang Pauli, Werner
Heisenberg, and Erwin Schrödinger further improved the model upon the birth of quantum
mechanics. The elementary structure of the atom was completed in 1932 when Chadwick
discovered the neutron. From this point on, the atom, in its simplest form, is composed
of positively charged protons and neutral neutrons at a dense center surrounded by a much
larger cloud of negatively charged electrons.

The first modern particle accelerators were built in the 1950’s like the Bevatron at
Berkley, the Stanford Linear Accelerator (SLAC), and the Cosmotron at Brookhaven among
others. As the energies of these accelerators exceeded 1 GeV we were able to probe the
nucleus of the atom with electrons that had wavelengths < 1 fm. We soon learned that
the protons and neutrons (collectively known as nucleons) in the nucleus were made up of
quarks. At these higher energies we were able to “see” the gluons and quark sea that make
up the nucleons as well. GeV electrons also led to discoveries in deep inelastic scattering
where the struck nucleon no longer stayed intact and then a whole new zoo of particles
were discovered.

Over the last 40 years the demand for experiments using polarized electrons at GeV
scales to study hadronic structure has been increasing. Experiments were proposed to study
the elastic from factors of the nucleon and later the contributions that sea quarks make to
them. Other experiments were focused on understanding the spin structure of the nucleon
and how the quarks, gluons and their associated angular momentum add up to the spin 1/2
particles that are the proton and neutron. There is also a whole class of Parity-Violating
electron Scattering (PVeS) that aim to understand the electroweak force by measuring weak
neutral form factors, neutron distributions in heavy nuclei, and search for contributions
beyond the Standard Model of electroweak interactions. A common feature of all these
experiments is a polarized beam in which the helicity is flipped many times per second
allowing an asymmetry to be measured between the two different helicity states.
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An experimental measured asymmetry is proportional to the product of the beam polar-
ization and the ”physics” asymmetry. Therefore, although statistical and systematic uncer-
tainties inherent in the asymmetry measurement are always important, in the end, you don’t
want to be limited by the precision with which you know the polarization of the incident
electron beam. High precision polarimetry is essential when measuring asymmetries and
the motivation for this thesis.

Polarized electron scattering experiments can be broadly divided into two categories,
parity conserving experiments and parity violating experiments. An important distinction
between the two is the size of the measured asymmetry. Parity violation requires an in-
teraction with a pseudo scalar term, for example the inner product between a spin and a
momentum. In electron scattering, this means an interference between the weak neutral
current and the electromagnetic current, which can be shown diagrammatically is propor-
tional to Q2/M2

Z ≈ 120 ppm at Q2 ≈ 1 GeV, where Q is the momentum transfer and MZ is
the mass of the Z-boson. For parity conserving processes, all amplitudes are of the same
order, so the asymmetry is much larger, e.g. for Møller scattering it is almost unity (7/9).

A parity conserving experiment with a polarized beam almost always requires a second
polarization measurement to be made in addition to measuring the beam polarization in
order to be able to construct an asymmetry. Often the target is polarized and the measured
asymmetry is

A =
NLL−NRL

NLL +NRL
= PBPt

σLL−σRL

σLL +σRL
(1.1)

where PB is the beam polarization, Pt is the target polarization, N is the counting rates
and σ is the cross section. The subscripts L and R refer to the polarization or helicity with
the first subscript referring to the beam and the second to the target. Another method of a
parity conserving experiment exploits the polarization transfer from the incident electron
to the unpolarized target and then the recoil particle polarization is measured. Both scenar-
ios are expressed in Figure 1.1 In either case the precision which you know the recoil or
target polarization is generally greater than the precision in which you know the electron
beams polarization. Therefore in parity conserving experiments the precision of which you
must know the beam polarization is usually determined by the precision of the target or
recoil polarization measurement. In PVeS experiments the target is not polarized and the
asymmetry is usually written as

APV =
NL−NR

NL +NR
= PB

σL−σR

σL +σR
(1.2)
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Figure 1.1: Kinematic variables in a transfer polarization experiment when the recoil polariza-
tion is measured(left) and when the target is polarized(Right) [1]

The asymmetries in PVeS experiments are much smaller than parity conserving experi-
ments, at the part per million (ppm) or parts per billion (ppb) level. Furthermore, since
only the beam is polarized, the precision to which we know the beam polarization is often
the largest systematic error in these experiments. Parity violating electron scattering exper-
iments can be designed to further our understanding of either the structure of the nucleon or
fundamental interactions such as the parity violating weak force. To follow is a brief review
of past experiments which relied on polarization measurements or polarimetry. Table 1.1
list these experiments and demonstrates the increasing demand on precision polarimetry.

4



Table 1.1: Example of experiments relying on polarimetry

Experiment Beam Energy Polarization Polarimetry Precision
SLAC 122 PV-DIS (1978)[19] 16-22 GeV 37% 6%
Bates SAMPLE (2000)[20] 0.2 GeV 39% 4%
JLab GEp/Gmp (1999)[21] 1-4 GeV 60% 3 %
HERMES g1n DIS (2007)[22] 30 GeV 55% 2.49%
SLAC E154 DIS g1n (1997)[23] 48 GeV 82% 2.4%
MAMI PV-A4 (2004)[24] 0.85 GeV 80% 2.1%
JLab G0 (2005)[25, 26] 3.0 GeV 74% 1.0%
JLab Qweak (2017)[27] 1.2 GeV 88% 0.62%
SLD ALR (2000)[28] 46.5 GeV 75% 0.5%

1.2 Nuclear Structure in Parity Conserving Reactions

Understanding the structure of the nucleon is of fundamental importance in nuclear and
particle physics; ultimately such an understanding is necessary to describe the strong force
[21]. The parity conserving electromagnetic interaction provides us with an excellent probe
to map out the structure of the nucleon while QCD calculations gives us a theoretical model
that we may compare experimental results with. Experimental we measure cross sections
at different angles, energies and momentum transfer squared, and from these measurements
we are able to calculate the elastic electric and magnetic form factors. These form factors
are related to the spatial charge and current distributions in the nucleon. The cross section
for elastic scattering of an electron from a nucleon in the notation preferred today is [1]

dσ

dΩ
=

(
dσ

dΩ

)
Mott
×
[
G2

E +
τ

ε
G2

M

]
/(1+ τ) (1.3)

where
( dσ

dΩ

)
Mott is the Mott cross section, GE(M) is the electric(magnetic) Sachs Form Fac-

tor (FF), τ = Q2/4M2, ε =
[
1+2(1+ τ) tan2 θe

2

]−1
is the virtual photon polarization, M is

the mass of the nucleon, and Q2 is the square of the energy-momentum transfer. Rosen-
bluth separation has been an extremely powerful method for extracting the individual form
factors. By measuring and plotting the elastic cross section at different values of ε and us-
ing Equation 1.3 the form factors are given by slope=1

τ
G2

E p and intercept=GMp. However at
higher values of Q2, Rosenbluth separation becomes more difficult as the τGMp dominates
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as τ is increased. Polarization transfer methods are an alternative to measuring the form
factors at higher values of Q2. Figure 1.2 shows an example of a Rosenbluth separation
(left) analysis and a transfer polarization experiment(right).

Figure 1.2: (Left) Demonstration of Rosenbluth separation at Q2 values of 2.5 (open triangle),
5.0 (circles), 7.0 (filled triangles) GeV 2 [2] (Right) Comparison of the ratio of GE p/GMp by
using Rosenbluth separation and polarization transfer data.[1]

The GE p/GMp ratio by polarization transfer in~ee→ p~p experiment was performed in
Hall A at JLab in 1999 and is an example of using polarization transfer to obtain nucleon
form factors. Here an incident polarized electron (∼1 to 4 GeV) was elastically scattered
from an unpolarized proton (liquid hydrogen target) and the polarization was transferred to
the scattered proton. A focal plane polarimeter was installed in the hadron high resolution
spectrometer (HRS) which enabled the transverse polarization, Pt , and the longitudinal
polarization, Pl , of the scattered proton to be measured. The ratio of the electric to the
magnetic form factors, GE p and GMp respectively, was calculated using the relation [21]

GE p

GMp
=
−Pt

Pl

Ee +Ee′

2M
tan

θe

2
(1.4)

Where Ee(′) is the energy of the incident (scattered) electron, θe is the scattering angle mea-
sured with respect to the incident electron, and M is the mass of the proton. This powerful
technique of polarization transfer demonstrated for the first time that the Q2 dependence of
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GE p and GMp is significantly different and that there was a definite difference in the spatial
distribution of charge and magnetization currents in the proton [21].

Using a polarized target in polarized electron scattering allows for a new class of deep
inelastic scattering (DIS) experiments that are designed to study the spin structure of the
nucleon. Two examples of this are the E154 experiment at SLAC and HERMES at DESY.
Experiment E154, The Precision Determination of the Neutron Spin Structure Function gn

1,
used a polarized electron beam and a polarized Helium-3 target to learn about the internal
spin structure of the neutron [23] by measuring the form factor gn

1. The HERMES collab-
oration measured the spin structure function of the proton and deuteron and therefore was
also able to deduce it for the neutron. This experiment used polarized positrons accelerated
to energies of 27.6 GeV[22] incident upon a polarized gas target. Both of these experi-
ments were part of the ongoing effort for a detailed investigation of the spin structure of the
nucleon and the determination of the partonic contribution of its spin projection. One of the
outcomes of these experiment was that we still didn’t have a firm grasp of what contributes
to the spin of the nucleon, because it seems only a small fraction of the total spin of the
nucleon could be accounted for from the valence quarks. If the contribution is due to sea
quarks then further experiments would have to be considered at higher energies.

1.3 Parity Violation for Fundamental Interactions

In 1978 the Weinberg-Salam model, which unified the electromagnetic and weak forces,
was tested at the Stanford Linear Accelerator (SLAC) by experiment E122[3][19]. This
marked the first measurement of parity violation in the neutral weak current and validated
electroweak theory. The experiment featured the scattering of ∼ 20 GeV polarized elec-
trons from an unpolarized deuterium target. The measured asymmetry is shown in Figure
1.3. The success of E122 has lead to a whole new generation of parity-violating electron
scattering experiments using polarized beams.

The SLD experiment at SLAC measured the Z-boson-lepton coupling asymmetry pa-
rameters, Ae, Am and At and therefore also the effective weak mixing angle, θ eff

Weak[28].
Z-bosons were created by e+e− annihilation and subsequently decayed into e+e−,µ+µ−,
or τ+τ− pairs that were detected. The results were consistent with the Standard Model
which assumes lepton universality and that the measured asymmetry should be the same
for all three lepton flavors. The effective weak mixing angle could be calculated by the
relation
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Figure 1.3: Measured asymmetry in E122. Each run was 1 to 3 hours and the solid line is the
expected result [3]

Al =
2(1−4sin2

θ eff
Weak)

1+(1−4sin2
θ eff

Weak)
(1.5)

The QWEAK experiment in Hall C at JLab performed the most accurate measurement
of the weak charge of the proton by measuring the parity-violating elastic asymmetry of
longitudinally polarized electrons from a liquid hydrogen target at small momentum trans-
fer. It is the smallest and most precise asymmetry measurement of~ep scattering to date and
set many milestones at JLab. The asymmetry measured was remarkably small at 279 parts
per billion (ppb). The helicity of the 1.16 GeV beam was flipped 960 times per second in
order to control systematics associated with helicity correlated asymmetries. Such a precise
measurement on the weak charge of the proton also provided a high precision measurement
of the weak mixing angle sinθW

2 . [7, 27, 29]

1.4 Parity Violation for Nucleon Structure

Parity violating electron scattering experiments can also provide information about nu-
cleon structure. An important example is the SAMPLE (Single Anomalous Moment of
the Proton by Longitudinal Electron Scattering) experiment at the MIT-Bates Labora-
tory which was designed to determine the role of the quark and anti-quark sea in the
nucleon[20]. This experiment, for which the Bonner Prize was rewarded to Bob McKe-
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own in 2009, ushered in the modern era of PV experiments. It focused on strange quark
contributions to the proton spin. A polarized electron beam was used incident upon a liquid
hydrogen target and an asymmetry on the order of 0-20 ppm was measured. As a second
example we can look at the PV-A4 experiment. The results from the PV-A4 experiment at
the Mainzer Mikrotron (MAMI) were published in 2004 and it was the first PV experiment
to count individual scattering events. The experiment was designed as being complimen-
tary to the SAMPLE and the HAPPEX (Jlab Hall A) experiments and aimed to provide a
direct measurement of the strangeness contribution to the vector form factor of the proton.
This is important because it had been suggested that the strange quark sea could contribute
to ≈ 50% of the nucleon mass and ≈ 10% to the overall nucleon spin [24]. experiment at
the MIT-Bates Laboratory which was designed to determine the role of the quark and anti-
quark sea in the nucleon[20]. This experiment, for which the Bonner Prize was rewarded to
Bob McKeown, ushered in the modern era of PV experiments. It focused on strange quark
contributions to the proton spin. A polarized electron beam was used incident upon a liquid
hydrogen target and an asymmetry on the order of 0-20 ppm was measured. As a second
example we can look at the PV-A4 experiment. The results from the PV-A4 experiment at
the Mainzer Mikrotron (MAMI) were published in 2004 and it was the first PV experiment
to count individual scattering events. The experiment was designed as being complimen-
tary to the SAMPLE and the HAPPEX (Jlab Hall A) experiments and aimed to provide a
direct measurement of the strangeness contribution to the vector form factor of the proton.
This is important because it had been suggested that the strange quark sea could contribute
to ≈ 50% of the nucleon mass and ≈ 10% to the overall nucleon spin [24]. experiment at
the MIT-Bates Laboratory which was designed to determine the role of the quark and anti-
quark sea in the nucleon[20]. This experiment, for which the Bonner Prize was rewarded to
Bob McKeown, ushered in the modern era of PV experiments. It focused on strange quark
contributions to the proton spin. A polarized electron beam was used incident upon a liquid
hydrogen target and an asymmetry on the order of 0-20 ppm was measured. As a second
example we can look at the PV-A4 experiment. The results from the PV-A4 experiment at
the Mainzer Mikrotron (MAMI) were published in 2004 and it was the first PV experiment
to count individual scattering events. The experiment was designed as being complimen-
tary to the SAMPLE and the HAPPEX (Jlab Hall A) experiments and aimed to provide a
direct measurement of the strangeness contribution to the vector form factor of the proton.
This is important because it had been suggested that the strange quark sea could contribute
to ≈ 50% of the nucleon mass and ≈ 10% to the overall nucleon spin [24].
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The G0 experiment in Hall C at JLab also measured the strange quark contribution
to the parity violating asymmetry and required polarimetry at the 1% level[25, 26]. The
precision to which the beam polarization was known was a key systematic error in all of
these experiments. From Table 1.1 we can see most of them had percent level precision,
with Qweak and SLD being the only two that required < 1% precision. The future of PVeS
will depend on high precision polarimetry, in particular the program in Hall A at Jefferson
Laboratory.

1.5 Upcoming experiments in Hall A at Jefferson Labora-
tory

The upcoming PVeS experiments in Hall A at Jefferson Laboratory has increasingly strin-
gent demands on polarimetry requirements. The Møller polarimeter, which is the focus of
this dissertation, is an instrumental apparatus for the success of the physics program in Hall
A. The upcoming experiments include CREX, PREX-II, SoLID and MOLLER. CREX and
PREX are scheduled to start in 2019 and will require polarimetry at the <1% level while
SoLID and MOLLER will require <0.5% level precision, which would make it the most
precise electron beam polarization measurement to date.

CREX and PREX-II aim to measure the weak charge by exploiting the fact that the
Z-boson of the weak interaction primarily couples to neutrons. By using the neutron rich
and “doubly magic” nuclei of Pb208 and Ca48 these experiments will be measuring an
APV of 2.2ppm for CREX (Ca Radius EXperiment) and 0.6 ppm for PREX (Pb Radius
EXperiment). The asymmetry measurement will provide a model independent probe of
neutron densities unlike the present knowledge of the neutron distributions which comes
primarily from model dependent hadron scattering [30]. The parity violating asymmetry,
APV , in the Born approximation is

APV ≈
GFQ2

4πα
√

2
FW (Q2)

FCh(Q2)
(1.6)

Where GF is Fermi’s constant, α is the fine structure constant, FCH(Q2) is the Fourier
transform (FT) of the charge density and FW (Q2) is the FT of the weak form factor. FW (Q2)

is related to the weak charge density, ρW (r) by

FW (Q2) =
1

QW

∫
d3r

sinQr
Qr

ρW (r) (1.7)
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Figure 1.4: Upcoming experiments in Hall A (CREX, PREX-II, MOLLER, SoLID) will be
pushing the frontier by measuring extremely small asymmetries with remarkable precision
(Figure courtesy of Kent Paschke)
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where it is normalized so that F(Q = 0) = 1. The total weak charge of the nucleus is
QW =

∫
d3rρW (r)[31]. APV is also related to the neutron density by

APV ≈
GFQ2

4πα
√

2

[
1−4sin2

θW −
Fn(Q2)

FCh(Q2)

]
(1.8)

where Fn(Q2) is the FT of the neutron density.
So by measuring APV we are able to find the weak form factor which can then give

us the radius of the neutron distribution in the nucleus, Rn. The neutron skin (Rn−Rp)
can then be found which provides unique input into such diverse areas such as neutron
star structure, heavy ion collisions, atomic parity violation, the isovector sector of nuclear
theories, new coupled cluster calculations sensitive to three neutron forces, and a critical
bridge between ab-initio approaches and density functional theories (DFT)[31].

CREX and PREX-II, which will require 0.8% and 2.2% polarimetry, will be followed
by the MOLLER experiment and the SoLID program which will both require 0.4% po-
larimetry. The MOLLER (Measurement of a Lepton Lepton Electroweak Reaction) ex-
periment will provide the most precise measurement to date of the weak mixing angle, a
factor of 5 times better than the E158 result. The prediction for APV for the proposed ex-
perimental design is 33 parts per billion (ppb) and the goal is to measure this quantity with
an overall precision of 0.7 ppb and thus achieve a 2.4% measurement of Qe

W [17, 32]. The
SoLID (Solenoidal Lare Angle Intensity Device) program at Jlab will allow for a whole
new class of parity violating deep inelastic scattering experiments (PVDIS). Some of the
physics issues these experiments will address are to search for new interactions beyond the
Standard Model (SM) in a unique way, to search for Charge Symmetry violation (CSV) at
the quark level, to search for higher-twist effects in APV , to measure the d/u ratio in the
proton (without requiring any nuclear corrections), and to determine if additional CSV is
induced in heavier nuclei[33].

The common theme to all the experiments described in that last four sections are that
they relied on precision polarimetry. The progress of polarized electron scattering exper-
iments is dependent upon further improving the precision of beam polarization measure-
ments and the motivation for this dissertation. In Chapter 2, I will briefly review the differ-
ent type of polarimetry techniques used at electron accelerator facilities, with an emphasis
on Jefferson Laboratory (JLab). The focus of this dissertation is on Møller Polarimetry and
in particular the newly upgraded polarimeter in Hall A at JLab. Chapter 3 will describe the
apparatus and how it is modeled in Monte Carlo simulations. A systematic study of the
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uncertainties will be presented in Chapter 4, and recent results from the DVCS experiment
and the 2019 commissioning data will be presented in Chapter 5. In preparations for future
polarimetry demands, the plan for CREX and PREX running will be presented in Chap-
ter 6 along with recommendations to achieve 0.4% precision required for the MOLLER
experiment and SoLID program on Hall A.
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CHAPTER 2

Precision Electron Beam Polarimetry
Techniques

There are three different types of polarimeters typically used at electron beam accelerator
facilities: Mott, Compton, and Møller polarimeters, each with their own advantages and
disadvantages. Mott polarimeters are limited to MeV range energy scales so they are typi-
cally found at the low energy region of electron accelerators, called the “injector region” at
Jlab, and may not accurately represent the polarization that is being delivered to the main
experiment after the electrons are accelerated to higher energies. Compton polarimeters are
only practical at high current but have the advantage of being “non-invasive” so they may
operate without affecting the main experiment. Møller polarimeters can operate at a wide
range of energies but are limited to low beam currents (< 2 µm). They are also invasive so
experimental data acquisition must stop in order to perform a polarization measurement. In
the following sections these three basic types of polarimetry will be discussed.

Before describing the different types of polarimetry, let me briefly explain how a po-
larized electron beam is produced. Almost all accelerators now use photoemission from a
GaAs or a related material because this method allows for both peak high currents and rapid
polarization reversal. The operation and two fundamental aspects of this type of source is
nicely summarized in “Polarized electron sources: The next generation” by Larry Cardman
[34]:

1) the polarized electrons are produced by optically pumping electrons from
the top of the valence band to the bottom of the conduction band of a suit-
able direct-bandgap semiconductor (usually GaAs); and 2) these electrons are
able to escape from the semiconductor because its surface has been atomically
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cleaned and then covered with a monolayer of an alkali metal (typically Cs)
and oxidized (most often using NF3) to lower the work function of the surface
to the point where the energy of the electron in the vacuum outside the material
is lower than its energy in the bulk material, a condition referred to as negative
electron affinity (NEA). A typical GaAs surface that has been treated in this
manner will have a quantum efficiency of order a few percent. One watt of
laser power will produce 6.5 mA of beam current from a GaAs photocathode
having a 1% quantum efficiency, so very reasonable laser power can provide
very high electron currents.

Photoemission from GaAs produces a beam polarization of 40−50% as seen in Figure
2.12. Shortly thereafter it was discovered that using a strained GaAs lattice could provide
even a higher polarization of around 86% [34]. The reason for the higher polarization is
that the uniaxial strain to a crystal of GaAs removes the band degeneracy by breaking the
symmetry of the crystalline structure[35]. This technique for production of a polarized
electron beam has been used at JLab since 2004 [36].

2.1 Mott Polarimetry

Mott polarimeters, as the name suggests, use Mott scattering to measure the electron beam’s
transverse polarization by scattering electrons off a high Z nucleus. The single spin asym-
metry is measured and converted into a beam polarization by combining it with the the-
oretical Sherman functions that determine the analyzing power. The analyzing power is
large at MeV-scale energies and for this reason Mott polarimeters are found at the injector
region of an electron accelerator, before the beam is accelerated to high (GeV) energies.
The relationship between the measured asymmetry, ε , the transverse beam polarization PT

and the Sherman function S(θ) is

ε = PT S(θ) (2.1)

The Sherman function is a theoretically calculated value for single-atom scattering and
depends on the electron’s kinetic energy, the atomic number of the target nucleus, and
the scattering angle of the electron. [6]. The precision to which the Sherman function is
known has been improved over the years by using more accurate models of the electronic
and nuclear charge distributions which now include the finite size of the nucleus and the
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latest nuclear and atomic structure data. The largest uncertainties associated with the Sher-
man function are due to radiative corrections and experimental evidence suggest that their
contribution is considerably smaller than 1%. [5, 37]

Figure 2.1: Sherman Functions for Gold nucleus. These function show the asymmetry in a
Coulomb field as a function of scattering angle when assuming a point like nucleus and no
screening. [4]

One of the biggest challenges with Mott polarimeters is overcoming the large back-
ground from multiple scattering. This is handled by taking measurements with different
thickness targets and extrapolating the measured asymmetries to a zero thickness target
where the theoretical Sherman function described above is valid. Once the dependence of
target thickness is known an effective Sherman function is used to calculate the polarization
for the different foil thicknesses. An example of this treatment is shown in Fig. 2.2

The Mott polarimeter at Jefferson Lab [38] is optimized to run at a beam energy of
∼5 MeV. A target ladder with 14 Au, Ag or Cu foils of varying thicknesses are used as tar-
gets. Four detectors are used to measure the horizontal and vertical transverse polarizations.
The setup is shown in Fig. 2.3. The electron beam comes in from the right and scatters
from one of the foil targets. The detectors are arranged to detect electrons which scatter at
172.7◦. An asymmetry is constructed by measuring the rates while flipping the helicity of
the incident beam. The combined systematic errors on polarization measurements has been
reported to be 1.1% [5].
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Figure 2.2: Foil - thickness extrapolation for 2.75, 5 and 8.2 MeV. Lines symbolize calculation
and dots the measurement. [5]

Figure 2.3: MeV Mott Polarimeter at Jefferson Lab. Electron is incident from right, scatters
off target foil, and is detected after passing through the aluminum windows
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Even though we have a fairly well known polarization measurement at the electron
source that does not necessarily translate to knowing the polarization of the beam where
the main experiments are taking place. After leaving the injector site, the electrons are
accelerated and bent around the racetrack design of the accelerator. As the electrons are
bent their spins are rotated as a result of spin precession [39]. Therefore it is important to
have additional Compton or Møller polarimeters located in the experimental halls.

2.2 Compton Polarimetry

Figure 2.4: Compton Scattering [6]

Compton scattering can be used as another powerful polarimetry method. A Comp-
ton polarimeter scatters a circularly polarized photon from a laser off an electron. The
backscattered photon and/or scattered electron is detected and an asymmetry in scattering
rates is measured by flipping the helicity of the primary beam. One large advantage of a
Compton polarimeter is that it is non-invasive to the main experiment which allows po-
larization measurements to be performed while the experiment is running. Since they are
non-invasive they are often the only choice of polarimetry at storage rings and colliders
facilities. Unlike Mott polarimeters, Compton polarimeters can be located in the experi-
mental hall so spin precession in the arcs does not have to be taken into account. Compton
polarimeters also have an advantage over Moller polarimeters because they are able to op-
erate at high current (∼ 100 muA at Jlab). Primary disadvantages are they are not reliable
at low currents > 1 µA, the analyzing power is small at the GeV level (see Figure 2.5) and
at higher beam energies large synchrotron radiation can lead to high backgrounds.
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Figure 2.4 depicts the process of scattering a circularly polarized photon off a longitu-
dinally polarized electron. The energy of the scattered photon Eγ is

Eγ ≈ Elaser
4aγ2

1+aθ 2
γ γ2 (2.2)

where γ =Ee/me, θγ is the angle of the scattered photon relative to the incident electron,
and a is defined as

a =
1

1+4γElaser/me
(2.3)

It is useful to define the quantity ρ = Eγ/Emax
γ where Emax

γ = 4aElaserγ
2. Then we can

write the unpolarized differential cross section as

dσ

dρ
= 2πr2

0a

[
ρ2 (1−a)2

1− p(1−a)
+1+

(
1− p(1+a)
1− p(1−a)

)2
]

(2.4)

where r0 is the classical electron radius. The analyzing power for circularly polarized
photons and longitudinal polarized electrons is

Along =
σ++−σ−+

σ+++σ−+
=

2πr2
0a

(dσ/dρ)
(1−ρ(1+a))

[
1− 1

1−ρ(1−a))2

]
(2.5)

Figure 2.5 shows the unpolarized differential cross section and longitudinal analyzing
power for three different beam energies and also how the analyzing power is strongly de-
pendent on both the beam energy and the energy of the scatter photon.

The main elements of the Compton polarimeter in Hall A is shown in figure 2.6. The
first two dipoles bend the main electron beam to the interaction region of the polarimeter.
Here a ∼532nm laser is coupled to a Fabry-Perot optical cavity which allows several kW
of laser power to be stored which is necessary to obtain the required rates for the currents
available at Jefferson Lab. The main beam crosses at a very small angle in the center of
the cavity. The back scattered photon is detected as a gamma ray in the photon detector.
Depending on the energy of the photon either a GSO (low energy) or PbW04 crystal is used
to produce scintillation light that can be detected by a PMT. The scattered electron is bent
by a third dipole to a segmented silicon strip detector. The third dipole momentum analyzes
the scattered electrons allowing their energies to be obtained from their detected positions
in the silicon detector. The main electron beam is returned to the beam line by the third and
fourth dipoles and continues along to the main experimental target.
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Figure 2.5: Compton Scattering Cross Section (left) and longitudinal analyzing power (right)
assuming a 532 nm laser colliding with an electron beam at 1 GeV, 11 GeV and 27 GeV.[6]

Figure 2.6: Compton Polarimeter in Hall A [7]
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The photon and electron detectors can be used to provide somewhat independent mea-
surements of the beam polarization. Also, the electron detector can be used in coincidence
with the photon detector to reduce backgrounds in the photon detector. If the polarimeter
is operated in “counting mode” then for each helicity cycle an asymmetry vs. energy spec-
trum can be constructed and this result is then fit to the theoretical analyzing power and the
polarization is extracted. An example of this analysis is shown in figure 2.7.

Figure 2.7: (Left)Compton photon energy spectrum (Right)Asymmetry vs photon energy spec-
trum. Both plots show data fit to Monte Carlo simualtion [8]

If the polarimeter is operated in “integrating mode”, an energy weighted asymmetry is
constructed by integrating the total energy deposited in the photon detector for each helicity
state. This has the advantage of measuring a larger asymmetry since the analyzing power is
largest at the higher end of the scattered photon energy spectrum. An example of this anal-
ysis is shown in figure 2.8. The results shown are from the HAPPEX-III experiment which
ran in 2009. Here the systematic uncertainty was quoted as 0.94% for a beam energy of 3.4
GeV which was dominated by the uncertainty in the laser polarization. More recently, the
Hall C Compton polarimeter reported a systematic error of 0.59% [40] at a beam energy of
1.16 GeV used for the QWEAK experiment which ran from 2010 to 2012 .
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Figure 2.8: Integrating mode asymmetry for different circular polarization laser states and with
the laser cavity unlocked (for background subtraction)Here M+(−) is the measured integrated
signal plus background for positive (negative) helicity electrons. [8]

2.3 Møller Polarimetry with Polarized Foil Target

Møller polarimeters measure the electron beam polarization by measuring the difference in
Møller scattering rates off a polarized target as the helicity of the beam is flipped. Møller
scattering is the elastic scattering of two electrons and since it is a pure QED process, its
cross-section is calculated to very high precision[41]. Møller polarimeters have an advan-
tage over Compton and Mott polarimeters because they can make measurements over a
wide range of beam energies. Disadvantages include that they must be operated at low
currents to avoid target depolarization and measurements are invasive so dedicated Møller
runs must be taken. The dominant systematic error in Møller polarimeters is the precision
to which the target polarization is known.

There are two different target polarization methods used in Møller polarimeters 2.9.
The first approach is a tilted target where the foils are positioned in the beam line at an
angle, typically at ∼ 20◦. This allows a relatively low field (∼ .02T ) to saturate or polarize
the target “in plane”. The holding field is typically reversed between data runs to eliminate
systematic errors[42]. The polarization of the target is measured using pick-up coils and
experiments have claimed target polarization uncertainties of 1.5% - 3.0% relative[6]. The

22



original Møller polarimeter in Hall A used this method which lead to overall precision on
beam polarization measurements of 3%[10]. With over a decade of experience and further
improvements upon the tilted-foil apparatus an uncertainty of 1.7% was claimed[9]. The
second method is the “brute-force” target which is the current design in Hall A. Here the
foils are positioned in the beam line normal to the incoming beam. The foils are polar-
ized out-of-plane using a 3-4T magnetic field and and knowledge of the target polarization
relies on existing bulk measurements of the target material (typically iron). This method
reduces the uncertainty of the target polarization. For the Hall A polarimeter, the target po-
larization uncertainty went from 1.5% for the tilted target to 0.35% using the “brute-force”
method[9].

Figure 2.9: a) Scheme of “classic” technique of ferromagnetic foil polarization in the foil
plane. b) Scheme of “brute force” technique of ferromagnetic foil polarization in out-of-the-
foil plane.[9]

2.3.1 Polarized Møller Scattering

Electron-electron scattering, with arbitrary spin orientation for the beam and target, has
been calculated in lowest order QED by many authors [43–46], and the basic formulas for
(non parity-violating) polarized Møller scattering are given in many places. Following the
convention in [6], the Møller cross-section in the center-of-mass (CM) frame is:

dσ

dΩ∗
=

dσ◦
dΩ∗

[
1+ ∑

i, j=x,y,z
Pb

i Ai jPt
j

]
(2.6)
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where Pb(t)
i is the beam(target) polarization projected on the i-th axis, Ai j is known as

the analyzing power, and the unpolarized cross-section, dσ◦
dΩ∗ , is

dσ◦
dΩ∗

=
α2

s

(
3+ cos2 θCM

)2

sin4
θCM

, (2.7)

where s = 2mee (E0 +me) is the Mandelstam variable, θCM is the CM scattering angle,
and E0 is the beam energy in the lab frame. Assuming that the beam direction is along the
Z-axis and that the scattering happens in the ZX plane, in the ultra-relativistic limit, Ai j is:

Azz =−
sin2

θCM
(
7+ cos2 θCM

)
(3+ cos2 θCM)

2 , Axx =
sin4

θCM

(3+ cos2 θCM)
2 , Ayy =−Axx,

Azx = Axz =
2sin4

θCM cosθCM

γ (3+ cos2 θCM)
2 , Axy = Ayx = Azy = Ayz = 0,

(2.8)

where γ =
√

s/2me. For a brute-force Møller Polarimeter, where the target polarization
is along the z-axis (beam axis) Equation 2.9 simplifies to

dσ

dΩ∗
=

dσ◦
dΩ∗

[
1+Pb

z AzzPt
z

]
(2.9)

The cross-section asymmetry for beam and target spins aligned parallel and anti-parallel
can be written now as

A =

( dσ

dΩ∗
)
↑↑−

( dσ

dΩ∗
)
↑↓( dσ

dΩ∗
)
↑↑+

( dσ

dΩ∗
)
↑↓

= Pb
z Pt

zAzz(θCM) (2.10)

In practice, a Møller polarimeter measures the rates, N+/−, as the beam helicity is
flipped. The detector acceptance is in a range of θCM and an average analyzing power is
used , 〈Azz〉. The acceptance is chosen to be centered about θCM = 90◦ where the magnitude
of Azz reaches a maximum of 7/9. To summarize, the relationship between the measured
asymmetry, rates, analyzing power, beam polarization, and target polarization for a brute-
force Møller Polarimeter is

A =
N+−N−
N++N−

= Pbeam ·P f oil · 〈Azz〉 (2.11)

where 〈Azz〉 is the mean analyzing power and I have abandoned the polarization sub-
scripts with the understanding that they are both in the z-direction. Using equation 2.11 we
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can calculate the beam polarization if we know the foil polarization and the mean analyzing
power by measuring the asymmetry.

2.3.2 Key Elements

From Equation 2.8 we can see that the magnitude of 〈Azz〉 reaches a maximum of 7/9
at θCM = 90◦ which is an important consideration when designing a Møller polarimeter.
Choosing a design which has its acceptance centered around θCM = 90◦ allows the largest
possible asymmetry to be measured. A unique challenge for this kinematic range is that
the lab scattering angles are small, θLab < 3◦ (see Figure 2.10), so a typical setup uses
magnets to separate the scattered electrons from the undeflected beam. Systems at SLAC,
MAMI, BATES and ELSA [47–53] use one magnet, either a quadrupole or dipole, which
separate the Møller scatterers from the undeflected beam but also act as energy/momentum
analyzers. The magnets function as a spectrometer by sorting the electrons according to
their momentum via the Lorentz force, e.g. electrons with lower momentum bend more.
The systems at JLab have more complex optics reach allow operation at a wide range of
beam energies, Halls B and C uses multiple quadrupoles[14, 40, 41, 54, 55] while the newly
upgraded Hall A system utilizes four quadrupoles and one dipole.

Before the scattered electron reach the detector the acceptance is generally defined at
some collimation region. This is required because in order to precisely know the mean
analyzing power the acceptance has to be well understood. The systems in Hall A and Hall
C achieve this by using movable collimators, the system for Hall C is shown in Figure 2.11.

The detection system can also be classified into two basic types, single or double arm.
In a single arm system only one of the scattered electrons are detected. These type of system
were initially used at SLAC and BATES and achieved total uncertainties of 2.7% and 6.0%
respectively. In the double arm system, both electrons are detected in coincidence which
suppresses the background, mostly due to Mott scattering. Therefore for high precision
polarimetry the double arm system is preferred.

The detectors must operate at a relatively high rate, therefore fast detectors such as
plastic scintillators are typically used. Electromagnetic calorimeters are also used, allowing
suppression of the low energy background [6]. If the detectors are segmented they can also
be used to determine the energy of the scattered electron as a function of the position
on the detector. The Hall A and C polarimeters are equipped with a calorimeters and
plastic scintillator apertures, where the main asymmetry measurement is performed with
the calorimeter.
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Figure 2.11: The Møller polarimeter in Hall C(top). Collimation region (bottom)
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The uncertainties associated with Møller polarimetry will be discussed in Chapter 4.
The largest systematic include uncertainties in target polarization, analyzing power, and
the Levchuk Effect [56]. The Levchuk effect is due to Møller scattering off of the (unpo-
larized) inner shell electrons in the target. These electrons have large binding energies, and
therefore large momentum which can change the angle that the scattered electrons emerge
from the target, which changes the acceptance of the detector. The result is that the effec-
tive target polarization is diluted, resulting in a larger measured asymmetry, and therefore
a larger measured beam polarization. The Levchuk effect has been shown to cause a 14%
effect to early polarimeters at SLAC [57] but since has been addressed in new polarimeter
designs. It will be shown that the correction is at the < 1% level for the polarimeter in
Hall A. Other systematic errors that will be addressed in Chapter 4 are dead time correc-
tions, false asymmetries, target heating, and other uncertainties that can change the mean
analyzing power like beam position, beam energy, and ill-defined geometries.

Table 2.1 is a list of Møller polarimeters at various accelerator facilitates. Much progress
has been made over the past decades at controlling the systematic errors and constructing
polarimeters that address the Levchuk effect. Technological advances in superconducting
magnets allow for brute-force targets to be more practical which reduces the uncertainties
of target polarization. With precise experimental modeling and well understood simula-
tions the analyzing power can be accurately determined. In the next chapter I will discuss
the polarimeter in Hall A and Monte Carlo simulation used.

The Hall A Møller polarimeter was first commissioned and used for experiment E93-
027, the results are shown in Figure 2.12. At the time δ p/p was 3%. In 2015, the new
target magnet and motion system was upgraded. The results for the DVCS experiment are
shown in Figure 2.13 which shows the uncertainty, δ p/p, drop from 2.2% with the tilted
target to 1.1% with the “brute-force” target.
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Figure 2.12: Result of the Hall A electron beam polarization measurements with Møller and
Mott polarimeter for experiment E-93-027. This was the first reported results for the Møller
polarimeter in Hall A. The Møller polarimeter initially reported the uncertainty (statistical and
systematic) in a polarization measurement at ≤ 3%[10]
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Figure 2.13: Polarization results before and after the upgrade. Measurements taken in Hall A
of Jefferson Lab for The DVCS experiment
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Table 2.1

Polarimeter
Beam energy
(GeV)

Arms Optics
(δP/P)syst
Target Full

SLAC[50] 48 1 D 1.7% 2.7%
SLAC[51] 16, 29 2 D 2.3% 2.4%
MAMI[47] 0.85 2 Q 2.0% 9.0%
MAMI[52] 0.85-1.5 2 D 0.6% 1.6%
Bates[48] 0.25, 0.57 1 Q 1.25% 6.0%
Bates[49] 0.87 2 Q 1.5% 2.9%
ELSA[53] 1.0 - 3.3 2 D 1.9% 2.0%
JLab, Hall A[9] 0.85 - 6 2 QQD 1.5% 1.7%
JLab, Hall A[9] 0.85 - 6 2 QQD 0.35% 0.9%
JLab, Hall B[54] 0.85 - 6 2 QQ 1.4% 3.0%
JLab, Hall C[41] (ideal) 0.85 - 6 2 QQ 0.3% 0.5%
JLab, Hall C[40] (Q-Weak) 0.85 - 6 2 QQ 0.3% 0.8%
JLab, Hall A 0.85 - 11 2 QQQD 0.3% 1.0%
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CHAPTER 3

The Hall A Møller Polarimeter
Apparatus and Modeling

This Hall A Møller polarimeter at Jefferson Laboratory was built by an international col-
laboration between University of Kentucky and the Kharkov Institute of Physics and Tech-
nology in Ukraine and was commissioned from 1997 to 1998. First measurements were
performed for experiment E-93-027 which measured the electric form factor of the proton.
At the time the beam polarization was measured to be ∼ 40% and a ∼ 3% uncertainty was
reported. Over the last 30 years many upgrades have been made in order to reduce system-
atic errors and keep up with changing conditions in the hall. The latest upgrade was a new
target motion system built by Temple University and new superconducting target holding
field magnet purchased by Jefferson Lab. The motivation for the new system was to re-
duced the systematic error associated with target polarization. The upgrade was completed
in 2015 and polarization measurements were made in 2015-2016 for The Deeply Virtual
Compton Scattering (DVCS) experiment. Further improvements on the target system were
made in 2016-2017 and installed in 2019. The polarimeter will be commissioned in March
of 2019 and aims to provide 1% polarimetry for PREX/CREX in the following months.
The current apparatus will be described in the following section.

The key elements of the polarimeter (Figure 3.1), from target to detector are

• Superconducting split coil magnet and target motion system
• Four steering quadrupoles
• Lead collimators
• Dipole
• Detector Assembly
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Figure 3.1: Hall A Møller Polarimeter at Jefferson Laboratory as modeled in Geant3. To give
the reader an idea of the aspect ratio and scale, the quadrupoles have a circular cross-section
with an outer diameter of 10 cm and the entire setup from target to detector is about 7 m long

The superconducting 5T split coil magnet is used to polarize the ferromagnetic target
foils. The magnet provides a nearly uniform field in the same direction as the incident
beam. The foils are oriented perpendicular to the field and are polarized out of plane so
that the spins of the target electrons are aligned parallel or anti-parallel to the spins of the
longitudinally polarized beam. The motion system has two degrees of freedom, it enables
users to insert one of four foils in the beamline while also providing rotational control of
the target ladder. The rotation is used to ensure that the foils are normal to the beamline
and for performing systematic tests. The angular precision is < 0.1◦.

The polarimeter is designed to accept Møller scattered electrons centered about the cen-
ter of mass angle θCM = 90◦ or equivalently electrons with energies equal to half that of
the incident electron beam. Both final state electrons are detected in coincidence thereby

33



reducing backgrounds primarily from Mott scattering off the target nucleus. The Møller
scattered electrons leave the target area and are steered by four quadrupole magnets. Typ-
ical Møller electrons of interest are scattered at an angle of less than 3◦ from the incident
beam so the magnets are required in order to steer the particles through the remainder of the
system. The optical configuration for the polarimeter is unique for each beam energy and
needs to be optimized from simulation in advance. The term “optical configuration” refers
to the set current in each of the four quadrupole magnets as well as the dipole magnet. It is
also worth noting that the configuration changes slightly depending upon the magnitude of
the target holding field.

The limiting aperture for the scattered events in the horizontal direction turns out to be
the beam pipe upstream of the dipole and the thin apertures through the dipole. A precision
vertical lead collimator just upstream of the dipole limits the acceptance in the vertical
direction.

By the time the electrons have entered the dipole a majority of the final acceptance has
been determined. The dipole field is in the horizontal direction so that the electrons are
bent downwards by the Lorentz force. The electrons are momentum analyzed by the dipole
and then exit via two thin titanium windows.

At this point the electrons have left vacuum and drift through open air until they reach
the detector box assembly. The outer layer of the assembly is a protective shielding box
made of thick lead walls with an entrance for the electrons to pass in the upstream face.
The detector package comprises two identical symmetrically placed detectors. Each side
or arm of the detector consists of two spaghetti-lead calorimeter blocks with two photo-
multiplier tubes (PMT’s) on each block for a total of 8 PMT’s. In 2010, plastic scintillator
paddles were added in front of the left and right arm detectors. Coincidence events can be
determined with and without using the paddles.

The entire polarimeter has been modeled with Monte Carlo simulations. The simulation
is required to determine the magnet settings and the acceptance of the detector. Knowledge
of the acceptance is required to determine the analyzing power which is then used in the
final polarization calculation. The Monte Carlo used is COMGEANT, which is an interface
to the Geant3 simulation package developed at CERN. It allows users to add custom geom-
etry files that are read at run time which eliminates the need for recompiling the code each
time a change is made. The package is written with FORTAN and analysis is done with
PAW style kumac files. COMGEANT has been used for the Møller polarimeter in Hall
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A since 1998 and is currently being phased out in favor of a GEANT4 simulation which
utilizes the more modern C++ computer language and the ROOT analysis framework.

In the remainder of this chapter, each component will be described in detail and its
implementation in Geant3/4.

3.1 Superconducting Split Coil Magnet

The iron target is placed in a super conducting split coil magnet with the magnetic field
perpendicular to the foil’s surface and parallel to the beam line. The configuration of the
split coil magnet is approximately a Helmholtz configuration where both coils are a circle
and the spacing between then is equal to their radius. In this configuration the second
derivative of Bz(z) equals 0, therefore Bz is especially flat in the center where the target is
found. The purpose of the magnet is to magnetize/polarize the foil (out-of-plane) thereby
aligning the spins of the polarizable electrons parallel or anti-parallel to the incident beam
electron’s spin. The Geant3 simulation can implement the field by either using a field map
or a uniform field along the beam line direction. Generally a field map is used and the
uniform field option is only implemented for testing and debugging the code. The field
map is preferred because it includes the small the radial component of the field and more
accurately describes the longitudinal field. This is important because both the radial field
and the longitudinal field have an impact on the final acceptance of the detector.

The split coil magnet was mapped at JLab before it was installed in the beam line.
The purpose of the mapping was to determine if the mechanical and magnetic axes of the
magnet were the same. The longitudinal magnetic field was measured along the bore of
the magnet from z=-26 cm to z=26 cm in 0.5 cm steps. At each z location the field was
measured at 7 points along the x (horizontal) and y (vertical) axes. The magnetic center
(x,y) was then calculated at each z location by plotting Bz vs x or y, fitting the points to
a second order polynomial, and finding the location of the maximum or minimum (See
Figure 3.2 to see how the z location determines if a maximum or minimum is found). If the
magnetic axis was perfectly aligned with the mechanical axis the magnet the points would
fall on a straight line at x = 0 and y = 0. The data here can be explained by adding a tilt
and offset to each coil which is shown by the red squares in figure 3.4. The data along the
z-axis was fit to the theoretical equations for a split coil magnet from [58]. These equations
required fitting the data to determine the three parameters which were the current in the
coils, the radius of the coils and the spacing between the coils. The fit and data is shown in
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Figure 3.2: (Left) The magnetic field strength inside the bore of the split coil magnet(right).
To determine the magnetic axis of the magnet the transverse minimum or maximum at different
z locations were determined from magnetic field mapping measurements.

figure 3.3. Once the three parameters of the fit were determined, it could be used to create
field maps that included the radial components of the field. The fit is plotted in figure 3.4
where the data is represented by the green triangles. The conclusions of this study were
that the mechanical and magnetic axes were aligned at the 100µm and 0.1◦ level.

The target field also produces some undesirable effects in the polarimeter due to the
Lorentz force acting on the scattered electrons which twists the scattered electrons about
the beam axis. Note that the contribution to this effect is both from~vr×~Bz and~vz×~Br which
twist in the same direction in the central region of the magnet after the target and in opposite
directions in the outer regions where the Br component changes signs. This twisting effect
can be seen on the detector plane in Figure 3.5 after the electrons are bent downward by the
dipole magnet. Here the electrons leave the target area with an additional counter-clockwise
twist about the beam axis. Looking down the beam line from the target area, the electrons
on the left have an additional mostly downward momentum which stretches the area on the
detector which the electrons hit. On the right the twist gives and additional momentum in
mostly the upward direction which compresses the area on the detector where the electrons
hit.
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Figure 3.3: Measured data and fit of holding field magnet. Once the fit was determined the
radial component could be computed. The red line shows the radial component at 1.27 cm off
from the z-axis. The target foils are located at z=0 cm.

Figure 3.4: By including offsets and rotations to each of the coils, the magnet mapping data
could be explained. The figure on the left had one coil shifted 0.4 mm and rotated 0.25◦

and the figure on the right has both coils shifted 0.67 mm and rotated 0.23◦. Ideal coils that
were perfectly aligned would have a line at x=0 and y=0. The discontinuities are at the points
where the saddle point changes from negative to positive curvature and have essentially 0 slope
everywhere so there is no sensitivity to find a precise location in x and y.
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Figure 3.5: Coincidence and single electrons on detector at 0.95 GeV

3.2 Target Motion System

A new target motion system was required for the new split coil magnet. Two systems were
built at Temple University. The first system was installed in 2015 and took polarization
measurements through 2016 for the DVCS experiment. During a period of unpolarized
experiments in Hall A the magnet was removed from the hall and a more robust target
motion system was developed and built at Temple University. The new system is currently
installed in the Hall and will be used for future polarization measurements.

One of the challenges in designing a beam line motion system is creating motion in
the vacuum of the beam line while having the motors outside the beam line. The linear
motion is achieved by using a bellow which expands and contracts as the targets are in-
serted and removed from the beam. Rotation of the target ladder was made possible by a
rotational feed thru which uses a system of replaceable o-rings to maintain vacuum. Due to
the high torques associated with inserting an iron target into a 4T field the new motion sys-
tem (Figures 3.6 and 3.9) features some additional improvements. A power-off brake was
implemented to lock the rotation when not in use, thereby removing any unnecessary strain
to the motor. The stepping motor also features a 50:1 gear box which further decreases the
load on the motor while increasing its lifetime.
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The position and angle of the ladder is determined by a pair of string potentiometers.
As the target ladder is translated or rotated the end of the string is moved changing the
resistance of the potentiometer. This corresponds to a voltage change across the wiper of
the potentiometer which is then converted into an angle or position. The linear resolution
of the system is < 0.5mm and the angular resolution is ∼ 0.1◦.

The target ladder is shown in figure 3.7 with 1, 4, and 10 µm Fe foils installed. The
foil holders are removable to allow for foils of varying thicknesses and material (nickel or
supermendur) to be used. Two tapped holes in the main shaft where the ladder attaches
allow for removal and replacement of the ladder while not losing its absolute position
within the beamline.

The iron foils are purchased commercially, e.g. Goodfellow Corp, with a purity of
99.85% to 99.99%. The fractional uncertainty of the thickness is ∼ 10%. The foils may be
annealed, for instance the 12.5 µm Fe foil used for the DVCS polarization measurements
was annealed for 1 hour in vacuum at 930◦ C. The foils are rolled to the desired thickness
and therefore have randomly oriented crystal domains. It is assumed that a single magnetic
domain is formed when the foils are saturated out-of-plane using a 3-4 T magnetic field.
The rational behind this can be explained by a quote from An Introduction to Magnetic

Materials by Cullity and Graham[59].

Crystal anisotropy is due mainly to spin-orbit coupling. By coupling is meant
a kind of interaction. Thus we can speak of the exchange interaction between
two neighboring spins as a spin-spin coupling. This coupling can be very
strong, and acts to keep neighboring spins parallel or antiparallel to one an-
other. But the associated exchange energy is isotropic; it depends only on the
angle between adjacent spins, as stated by Equation 4.29, and not at all on the
direction of the spin axis relative to the crystal lattice. The spin-spin coupling
therefore cannot contribute to the crystal anisotropy.

The orbit-lattice coupling is also strong. This follows from the fact that orbital
magnetic moments are almost entirely quenched, as discussed in Section 3.7.
This means, in effect, that the orientations of the orbits are fixed very strongly
to the lattice, because even large fields cannot change them.

There is also a coupling between the spin and the orbital motion of each elec-
tron. When an external field tries to reorient the spin of an electron, the orbit
of that electron also tends to be reoriented. But the orbit is strongly coupled to
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the lattice and therefore resists the attempt to rotate the spin axis. The energy
required to rotate the spin system of a domain away from the easy direction,
which we call the anisotropy energy, is just the energy required to overcome the
spin-orbit coupling. This coupling is relatively weak, because fields of a few
hundred oersteds or a few tens of kilamps per meter are usually strong enough
to rotate the spins. Inasmuch as the lattice consists of a number of atomic nu-
clei arranged in space, each with its surrounding cloud of orbital electrons, we
can also speak of a spin-lattice coupling and conclude that it too is weak.

Relative magnetization measurements have been performed on the target foils using a Kerr
effect apparatus. The setup measured the amount the polarization Future measurements are
being considered such as measuring the magnetization of single crystal Fe disks relative
to a polycystalline foil to verify that saturation that the magnetization is independent of
crystal structure.

Figure 3.6: Temple University Møller Target Motion System in the design phase (2016). En-
gineered and drawn by James Wilhemi
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Figure 3.7: Møller target ladder with 1,
4, and 10 µm foils (2018)

Figure 3.8: New Møller target system
installed on the superconducting split
coil magnet(2017)

Figure 3.9: Main components of target motion system which allow rotation and translation of
the target foils. Two feed-thru’s are required since the target is under vacuum and the motors
are located outside vacuum. An additional rotational encoder was added and not shown here.
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3.3 Quadrupoles

Figure 3.10: The magnet field of an ideal quadrupole and force it exerts on a moving charged
particle[11]

Four quadrupole magnets are used to steer the Møller scattered electrons from the target
into the dipole box. Depending on the direction of the current through a quadrupole, they
can either be focusing in the horizontal direction (defocusing in the vertical direction) or
focusing in the vertical direction (defocusing in the horizontal direction). Figure 3.10 shows
an ideal quadrupole field and the force exerted on a positive charged particle traveling into
the page. At low beam energies the quadrupoles are set to focus in the horizontal direction.
At higher beam energies, where θCM = 90◦ becomes small, at least one of the quadrupoles
must be defocusing in the horizontal direction.

Initially three quadrupoles from Los Alamos National Lab were used and a custom
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made fourth quadrupole was added for the 11 GeV era upgrade. The new quadrupole, Q1,
is furthest upstream followed by Q2, Q3 and Q4. The original quads now called Q2, Q3,
and Q4, were mapped years ago at Los Alamos Laboratory. The new magnet, Q1, was
mapped at JLab along with additional limited measurements of Q2. With this information
the effective lengths of the magnets were determined along with the fields’ current depen-
dence. The current settings for these magnets must be optimized for each beam energy.
Prior studies for the 11 GeV era have produced the results shown in 3.11. These settings
were calculated for the 11GeV upgrade at JLab and although they work well at higher
energies figure 3.12 shows they are not optimized for lower beam energies (see setting at
1.1 GeV).

Figure 3.11: Suggested quadrapole settings as a function of electron beam energy https:
//hallaweb.jlab.org/equipment/moller/docs/upgrade_11gev.pdf

In the Geant3 simulation the quadrupoles are implemented as ideal quadrupoles. The
field for an ideal quadrupole is

By = Kx

Bx = Ky
(3.1)

where K is the field gradient and considered to be a constant. The effective length and field
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Figure 3.12: Results when using the solution in Figure 3.11 to determine quadrupole settings
at various nominal beam energy settings

at the pole tip of the magnet are the only parameters required by the simulation. Figure
3.13 shows mapping data taken with a Hall probe for the new Q1 magnet. The effective
length was calculated by integrating the field along the length of the magnet and dividing
it by the field at the center (Ze f f =

∫
Bdl/Bcenter). Similar measurements were performed

for the other quadrupoles.
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Figure 3.13: Determination of the effective length used in the simulation from mapping mea-
surements [12]

3.4 Dipole Box

The next region in the spectrometer is the dipole. The Møller electrons enter the dipole
region through two openings ∼2.3 cm wide. Two vertically adjustable collimators deter-
mine the height of the openings which can be set from 0.0cm to 4.0cm The settings of the
quadrupoles kinematically select which electrons will pass through the two openings. The
entrance to the dipole vacuum box (with beam pipe removed) is shown in Figure 3.14 where
you can see the ConFlat flange, movable collimators and magnetically shielded beam pipe
for the undeflected beam. The dipole vacuum box is 11 cm wide and contains an additional
steel box 6 cm wide and centered in the vacuum box. There is a 2.295 cm wide gap on either
side of the center box where the electrons travel through the magnetic field which is in the
horizontal direction. The electrons are bent downwards and leave the dipole box through
two 16 cm x 2.36 cm 100 µm thick titanium windows. Immediately after the dipole exit
there is lead shielding (Figure 3.15) containing two slits for the electrons to travel through.
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Figure 3.14: Dipole entrance and collimators
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Figure 3.15: Lead shielding at dipole exit
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3.5 Detector Box

The main detectors are located inside a box made of lead shielding. The shielding box is
modeled in the simulation as a 74 cm x 94.2 cm x 122.4 cm lead box with a wall thickness
of 22 cm. On the upstream face of the box there is a 13 cm x 28 cm entrance window for
the electrons to travel to the detector. The calorimeter is located inside the lead box and is
modeled as eight blocks with each face measuring 9 cm x 7.5 cm and 30 cm long. In front
of the calorimeter, on beam right and beam left, are two scintillator paddles each 4 cm wide
and 31 cm high. Geant3 simulates the signal (energy deposited) in the calorimeter. Hits on
the detector may be determined in the simulation by looking at the end of the tracks, the
signal deposited in the calorimeter, or hits in the calorimeter.

Figure 3.16: Detector Box in Geant3
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3.6 Geant3 Simulation

3.6.1 Physics Processes

Various process can be turned on or off in the Geant3 package. They include

• Decay in flight
• Multiple Scattering
• Nuclear Fission induced by a photon
• Muon-nucleus interactions
• Continuous Energy Loss
• Photoelectric Effect
• Compton Scattering
• Pair Production

• Bremsstrahlung

• Rayleigh Effect

• δ -ray Production

• Positron Annihilation

• Hadronic Interactions

• Light Absorption

• Synchrotron Radiation

Simulations of the Møller polarimeter have all processes turned on but contributions
from multiple scattering, energy loss, and synchrotron radiation dominate over the other
processes.

In order to save computational time only Møller scattering events are generated. The
user specifies the beam energy and the θ and φ range to generate events. Events in θ are
generated by weighting them according to the Møller cross section as seen in Figure 3.17.
Events are generated wide enough to cover the entire acceptance of the detector.

Other important parameters that may be entered into the simulation are beam position,
beam spot size, collimator opening, electron beam momentum uncertainty (δ p/p), target
thickness, and the target electron momentum. The effects of these parameters on rates and
analyzing power will be discussed in section 4.

3.6.2 Statistical Error

The simulation outputs the number of coincidence pairs of electrons that reached the detec-
tor and the mean analyzing power, 〈Azz〉. The statistical error associated with each of these
quantities is approximated by running the simulation many times with a different random
seed each time. Figure 3.18 is a histogram of the number of coincidence pairs and 〈Azz〉
which were calculated each time the simulation ran for 100k generated Møller pairs. For
100k events, the coincidence pairs were 17,670± 120 and 〈Azz〉= 0.7386±0.0003 approx-
imately following counting statistics. This is a fractional uncertainty in 〈Azz〉 of 0.04%. For
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Figure 3.17: Geant3 Møller weighted generator for 65◦ ≤ θCM ≤ 115◦. Electron pairs that
were accepted by the detector are in the filled area labeled coincidence.

the systematic studies in Chapter 4, where high precision was required, 500k events were
generated at each setting. 500k events gives a fractional uncertainty in〈Azz〉 of∼ 0.015% as
expected from counting statistics which is reflected in the error bar on the plots to follow.
The error of the coincidence pairs, which are proportional to the rates in the detector, are
< 1%.

3.6.3 Data Comparison

In April of 2015 an optics scan of the Møller polarimeter was performed at a beam energy of
2.056 GeV. The current in three quadrupoles and the dipole were varied and data runs were
taken at each setting. The data collected provided an opportunity to compare the results
with simulation and the comparison can be seen in Figure 3.19. The general trend in rates
between simulation and data agree. The spectrometer is tuned at Q1=0.38 kG, Q2=1.68 kG,
Q3=0.54 kG and dipole=3.03 kG. One can understand the fall off at lower quad current
as events are no longer properly focused and fail to make it though the dipole aperture.
These events are either clipped at the dipole entrance or hit the walls of the dipole vacuum
box inside the dipole. The disagreement between the data and simulation at these lower
fields is still being investigated. One attempt to explain the differences was to incorporate
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Figure 3.18: Coincidence pairs detected and Azz from simulation for 100k generated events.
Each run of the simulation was done with a different random seed in order to approximate the
statistical error.
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quadrupole field maps in GEANT4 which included higher multipole contributions to the
field however this did not resolve the disagreement. The geometry in simulation was also
carefully checked and when the possible the individual elements were measured to ensure
an accurate model of the experimental setup.
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Figure 3.19: 2015 optics scan at 2.056 GeV and Geant3 comparison (Q3 is turned off). Note
that the single point in the Q1 scan at 0.6 kG is suspect.

3.6.4 Geant4 Comparison

A Geant4 simulation is currently under development in a collaboration with Syracuse Uni-
versity, Temple University and Jefferson Lab. Extensive comparisions between the ever-
improving Geant4 simulation and Geant3 simulations have been made which have allowed
the Geant4 package to reach a mature state.

Initial comparisons made use of virtual planes placed at numerous places in the simu-
lated polarimeter apparatus. This allowed the electrons to be tracked as they moved through
the polarimeter. Figure 3.20 shows the electrons as they travel down the beam pipe after
leaving the solenoid. Here we were concerned with how the target magnet twists the elec-
trons as they leave the target area.. The upper image is from Geant4 and the lower image
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is Geant3. Here the color scale is θCM (energy) and applies to the right hand side electrons
(the left side is reversed so the “red” electrons on the left pair with a “red” on the right).
Since Møller scattering involves two identical electrons, the simulation generates left and
right pairs. In this simulation the tagged angle and energy belong to the right hand electron
which always has a left-hand partner whose energy and angle are a precise function of the
right hand electron. After good visual agreement was made (which was not the case at
first), we did a numerical study. This was accomplished by ray tracing where we gener-
ated events at a specific θ and φ angle and recorded the (x,y) as they crossed the virtual
planes. Figure 3.21 shows the positions of ten rays compared after the target magnet. The
differences between the positions in the two simulations were found to be < 50µm in the
quadrupole region and at 100µm at the dipole exit. These results are shown in 3.22. The
spatial agreement between the simulations is smaller than the uncertainty in position of any
component (magnet, detector, collimator) therefore at the level we are concerned with.

The most important requirement for the simulation is to provide a precise value for
〈Azz〉. A comparison between Geant4 and Geant3 was made for a beam energy of 2.2GeV
and an optics tune developed for CREX. Figure 3.23 shows the difference in 〈Azz〉 between
the simulation is 0.03%.
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Figure 3.20: Geant3(bottom)/Geant4(top) Comparison. Tracking the electrons through the
quadrupole region of the beam pipe. Color scale is θCM for RHS electrons
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Figure 3.21: GEANT3 vs GEANT4 ray tracing comparison at split coil target magnet exit.
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Figure 3.22: Geant3(bottom)/Geant4(top) ray tracing comparison. (Top)Magneta dashed lines
indicate locations of virtual planes. (Bottom) Difference in position at planes between two
simulations
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Figure 3.23: Geant3(bottom)/Geant4(top) Comparison. (Top) Azz at beam energy of 2.2 GeV.
(Bottom) Difference in number of electrons in each Azz bin.
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CHAPTER 4

Uncertainities in Møller Polarimetry

The systematic and statistical errors that contribute to the overall uncertainty in the final
result of Hall A Møller polarimeter will be the focus of this chapter. Since the beam polar-
ization we are measuring is

Pbeam =
A

P f oil · 〈Azz〉
(4.1)

the uncertainties in the measured asymmetry, A, the target polarization, P f oil and the mean
analyzing power 〈Azz〉 can be found individually and then added in quadrature to obtain
our final result δP

P . The error budget table for the MOLLER experiment, which is the
most challenging near-term goal, is shown in Table 4.1. The statistical error in the mea-
sured asymmetry is the easiest to reduce by taking long enough data runs. Dead time and
false asymmetry corrections will also effect the measured asymmetry and will be described
and evaluated. However, the target polarization and analyzing power ultimately drive the
magnitude of the final overall uncertainty. The precision to which we know the target po-
larization will be discussed and factors that contribute to it, such as target heating, angular
momentum versus spin contributions, target angle and high field corrections. The system-
atic error in the analyzing power will be analyzed with Geant simulations. To determine
δAzz
Azz

, the sensitivities of all factors that affect the acceptance of the detector must be stud-
ied. These include contributions from beam position, quadrupole field strengths, and any
uncertainty in the geometry of the experimental set-up that could contribute to a change
in the analyzing power. Finally the Levchuck correction, a correction stemming from the
non-neglible energies of unpolarized bound inner shell electrons, which will also contribute
to δP

P the will be presented and the methods used to calculate it.
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Table 4.1: Error budget from MIE proposal to DOE for MOLLER experiment [17]

Systematic Effect Proposed Error Strategic Approach

Target Polarization 0.25% Demonstrate saturation vs B and tilt angle
Analyzing Power 0.20% Accurate spectrometer simulation
Levchuk Effect 0.20% Simulation with atomic modeling
Target Heating 0.05% Match data to heating calculation
Deadtime 0.10% Confirm “zero dead time” w/ FADC
Background 0.10% Measurements with beam
Others 0.10% see text
Total 0.42%

4.1 Statistical Errors

Although Møller polarimetry uncertainties are dominated by systematic errors, I will start
by addressing the statistical errors in an asymmetry measurement.

The measured Møller scattering asymmetry, A, is defined as

A =
N+−N−
N++N−

(4.2)

where N+ and N− are the number of events for the + and - helicity states respectively
in one asymmetry measurement. The beam helicity is flipped at a fixed rate and the
total number of events in a given state is summed. That is N. Typically an asymmetry is
measured in what is termed a ”quartet pattern” where two + and two - states are included
in either a -++- or a +–+ pattern. This pattern guarantees the cancellation of any first order
drifts in time. The uncertainty, δA, in one measurement is

δA2 = (
∂A

∂N+
δN+)

2 +(
∂A

∂N−
δN−)2 (4.3)

Since
∂A

∂N+
=

2N−
(N++N−)2 and

∂A
∂N−

=
−2N+

(N++N−)2 (4.4)

Equation 4.3 becomes

δA2 =
4

(N++N−)4 (N
2
−δN2

++N2
+δN2

−) (4.5)
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If we let Ns be the total number of events in a single asymmetry measurement

Ns = N++N− (4.6)

and assume δN±2 = N± then the uncertainty becomes

δA2 =
4

N4
s

(
N2
−N++N2

+N−
)

(4.7)

It should be noted that the assumption δN±2 = N± only holds if the variance of N±
follows ordinary Poisson statistics. To test this assumption I will show that the outcome of
this statistical approximation agrees with experimental data.

We can eliminate N+ and N− using equations 4.2 and 4.6 and deriving the relations

N− =

(
1−A
1+A

)
N+ = αN+ (4.8)

N+ =
Ns

1+α
(4.9)

where α = 1−A
1+A . Equation 4.7 can be rewritten as

δA2 =
4

N4
s

(
αN3

++α
2N3

+

)
=

4
N4

s

(
α

(1+α)3 N3
s +

α2

(1+α)3 N3
s

)
=

4α

(1+α)2
1
Ns

(4.10)

For small asymmetries α ≈ 1. A typical value of A for a polarimetry run is 0.055 which
corresponds to α = 0.896 and 4α

(1+α)2 = 0.997. Therefore we can neglect the factor with α

and write the uncertainty simply as

δA≈ 1√
Ns

. (4.11)

To check this result we can apply equation 4.11 to data. Figure 4.1 plots the measured
asymmetry for run #16159 and figure 4.2 is a tabulated analysis of the same run. The run
was 3 minutes and 55 seconds long. Inside the red boxed area are the coincidence and
accidental rates measured in rate/cycle where cycle refers to a single helicity state window.
The accidental rate accounts for coincidences that occur that are not from a single Møller
scattering event. The accidental rate is determined by delaying the signal in one arm of the
detector and comparing the delayed signal to the original non-delayed signal to see how
many coincidences are found. Since one asymmetry measurement consists of four cycles
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(two N+ and two N−) we should multiply those numbers by four to get the total number of
events in one helicity quartet. Putting this into equation 4.11 gives

δA =
1√

4(3099.7)−4(33.1)
= 0.009029 (4.12)

The σ of the gaussian fit in figure 4.1 is 0.009095 . Equation 4.11 gives a better than
1.0% agreement with data and therefore we can conclude that the statistical uncertainties
are dominated by normal counting statistics.

Figure 4.1: Asymmetry measurement for run 16159. Each entry corresponds to one quartet or
two N+ and two N− cycles

The uncertainty after Nc measurements, or the standard deviation of the mean, σM is

σM =
δA√

Nc
=

1√
NcNs

=
1√
N

; (4.13)

Where we let N be the total number of events in the run. Run #16159 consisted of 1684
measurements, applying equation 4.13

σM =
δA√

Nc
=

0.009√
1684

= 2.2×10−4; (4.14)

The fractional uncertainty in the final result is

σM

〈A〉
=

2.2×10−4

5.5×10−2
= 0.40% (4.15)
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Figure 4.2: Output of analysis script for run 16159

The coincidence rate r, the number of events N and time t are simply related by

N = rt (4.16)

Using equations 4.13 and 4.16 we can determine the time required to reach a certain
precision as a function of rate.

t =
1

〈A〉2 r
(

σM
〈A〉

)2 (4.17)

Figure 4.3 shows equation 4.17 plotted for three different values of the relative uncer-
tainty. Rearranging equation 4.17 allows us to plot the statistical error as a function of time
and this is shown in figure 4.4 for three different coincidence rates.

From figures 4.3 and 4.4 we see that a statistical fractional uncertainty of 0.5% can
be reached in less than five minutes for rates greater than 40 kHz. To reach 0.2%, a data
run could be from 15 - 30 minutes depending on the coincidence rates. For experiments
requiring a statistical uncertainty of less than 0.1% the data runs may be as long as 90
minutes (60 Hz rate) but with a higher rate could be as short as 60 minutes (90 Hz rate).
To give the reader an idea of the typical rates during a Møller run, figure 4.5 shows the
coincidence rates for a number different runs in 2016 for beam energies from 4.4 GeV to
11 GeV.
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Figure 4.3: Time required to reach level of relative uncertainty versus coincidence rate.
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Figure 4.5: Coincidence rates for various runs in 2016 during DVCS
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4.2 Dead Time Corrections

After a data acquisition (DAQ) system registers an event, it is incapable of recording an-
other event for a short period of time. This is referred to as the dead time, τ . As a result of
the dead time, the measured rates are smaller than the actual rates and a correction needs to
be applied. The probability that an event will occur during the dead time, assuming Poisson
statistics, is 1− e−Rτ for a given rate, R. Therefore the measured rate is [60]

RM = R(1− (1− e−Rτ)) (4.18)

In the limit of Rτ � 1, which is true for these measurements as we will see, Equation 4.18
becomes

RM = R(1−Rτ). (4.19)

This result allows us to write the rates for the two different helicity states as

R±M = R±(1−R±τ) (4.20)

The fact that the dead time correction factor Rτ depends on rates is essential, since it results
in different correction factors for different helicity states. Therefore, when we form the
asymmetry by taking the ratio of rates, this factor doesn’t cancel out:

AM =
R+

m−R−m
R+

m +R−m
' A(1−Rτ), (4.21)

where Am and A are the measured and the physical asymmetries respectively. As we can see,
dead time goes into the asymmetry directly as a first order correction, so it is an important
systematic effect and needs to be understood thoroughly. [60]

In 2010, the dead time of the discriminator was measured to be ∼ 20 ns [61]. The
measurement was made by sending a train of two pulses from a pulse generator into the
discriminator. The time between the two pulses was reduced until the discriminator only
output one pulse. The dead time of the programable logic unit (PLU) was measured in a
similar fashion and was found to have a negligible dead time. These measurements give us
insight to the approximate size of the dead time correction we can expect in a typical mea-
surement, (20 ns)(100 kHz) = 0.2%. However dedicated runs are usually taken to measure
the dead time correction using LEDs that are installed in both arms of the calorimeter. The
LED’s emit light at a known frequency and the pulses are counted as the beam current
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is varied. As the current, therefore the rates, are increased the dead time correction also
increases. This can be seen in Figure 4.6. The slope of the fit gives the dead time of the
system, here 16.8ns. The uncertainty in the correction can be found by the error in the fit
of the slope, for this run it was 0.03%. Therefore a reasonable uncertainty to assign in the
dead time correction is 0.05%.

Figure 4.6: Data from dedicated LED pulser runs to determine dead time correction

4.3 False Asymmetries

When performing an asymmetry measurement an experimentalist must be aware of how to
treat false asymmetries. In experiments where asymmetries are constructed from helicity
flipping in a polarized beam one has to be certain that it is only the helicity that is changing
but in practice this can be very difficult to control. For instance the beam’s position, angle,
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energy and current could change when the helicity is flipped which would lead to a helicity
correlated beam asymmetry. For precision parity violation experiments, even the presence
of the electronic logic signal that indicates the helicity state of the beam into the DAQ can
introduce a large false asymmetry and for this reason the signal is often delayed several
cycles to cancel out the effect.

Suppose you have two identical experiments for which you are performing an asymme-
try measurement. In the first experiment there are no helicity correlated differences in the
beam and you measure an asymmetry A. In the second experiment suppose the beam po-
sition’s or current is changing between helicity states which cause an additional difference
in the measured rates and you measure an asymmetry A′. Let N± be the actual difference
in counting rates from the physics process being measured and δ be the difference in rates
due to the helicity correlated beam position or current. We can write A′ as

A′ =

(
N++ δ

2

)
−
(

N−− δ

2

)
(

N++ δ

2

)
+
(

N−− δ

2

) = A+
δ

N++N−
= A+

δ

N̄
(4.22)

Where N̄ is the average rate. As an example suppose the beam position varied by
0.2 mm between helicity states. From Figure 4.27 we can see that a 0.2 mm shift in beam
position can lead to a change of in rates of 1%. A helicity correlated beam position dif-
ference of 0.2 mm would lead to a 1.0% false asymmetry correction that would need to
be accounted for in the final result. A helicity correlated beam position of this size is not
likely, because the position differences for parity experiments are expected to be controlled
at the submicron level near the target in the Hall (see pages 241-242 of [7]) but one can
imagine how multiple smaller helicity correlated variables could effect the overall mea-
sured asymmetry. The current plan to address false asymmetries is to use a copper foil in
the target ladder to explicitly measure the “null asymmetry” and bound all sources of false
asymmetries.

4.4 Target Polarization

Future demands of Moller polarimetry at JLab requires beam polarization measurements
with a precision of better than 0.5% and the precision that which we know the target polar-
ization plays a crucial role. We strive to know this value, which is the fraction of electrons
that contribute to the asymmetry, to better than 0.25%. The value frequently cited in the
polarimetry literature is 0.08043 ± 0.00015 (±0.19%). This meets our requirements on
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Table 4.2: Foil polarization from [14]

Effect Ms[µB] Error Ref.

Spontaneous Magnetization (T →0,B→ 0) 2.2160 0.0008 [62]
Saturation Magnetization (T = 294K,B=1T) 2.177 0.002 [63]
High Field Corrections 0.0059 0.002 [15]
Orbital contribution (using g’) 0.0918 0.0033 [64]

precision, however the value is taken from a 1997 NIM paper by deBever et al.[14], which
includes references and sources dating as far back as the 1920’s and overlooks some ap-
proximations that add an additional uncertainty to the final result. To follow is a summary
of the path taken to reach the cited value while bringing attention to some concerns that
exist. I will also examine newer methods and more recent findings.

The foil polarization value is the fraction of electrons contributing to the observed
asymmetry in Moller scattering. The polarization is found from the magnetization which
changes with different applied fields and temperatures and the final polarization is also
determined by splitting the total magnetization into its spin and orbital contributions. In
Bever’s 1997 NIM paper[14], there is a section which explains how and where the different
values are found. Here they are tabulated:

The first line of the table is the saturation magnetization in the limit of temperature and
external field going to 0, also referred as the spontaneous saturation. The value is from
a 1968 paper[62] which calculates the mean value from five other works: Weiss and For-
rer(1929), Peschard(1925), Pauthenet(1952), Danan(1958), and Meyer and Herr(1966). In
all these works the magnetization was measured at temperatures exceeding 0 K and extrap-
olated to 0 K. The experimental method used was the Weiss and Forrer axial extraction,
also called the ballistic method [65], which places small bulk samples in a known applied
magnetic field (up to 3T) and then the sample is suddenly extracted and the change in flux
is measured.

In 1971 Crangle and Goodman published The Magnetization of Pure Iron and Nickel[13]
which included results from their own measurements of magnetization on small bulk iron
samples. Instead of using the axial extraction method they used a force method. They
placed the samples in stong magnetic field gradients and measured the force exerted by the
sample. Their results support the accuracy of the previous works for the magnetization at
0 K and 293 K. The paper also gives table of values for the spontaneous magnetization
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as a function of temperature from 0 K to 1023 K. Crangle’s and Goodman’s results agree
very well, but with much less precision with the Weiss and Forrer axial extraction method
experiments (see Figure 4.8).

Figure 4.7: Magnetization of Fe from [13] using force method

Once the spontaneous magnetization is determined, it needs it to be corrected for higher
temperatures which lowers the magnetization. The temperature dependence can be approx-
imated by Bloch’s Law [66]:

M(T ) = M(T = 0)(1−a 3
2
T

3
2 ). (4.23)

This equation is valid for temperatures far below the Curie temperature. For better agree-
ment with experimental data, terms with higher orders of T may also be included and whose
coefficients have been determined[67].

The temperature corrected saturation magnetization is given in the second line of the
table, which is cited from a 1982 paper by C.D. Graham[63]. Graham states This paper col-

lects and summarizes the available literature values for the room temperature saturation
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magnetization of nickel and iron in an attempt to decide the best values to use for cali-

brating equipment for magnetic measurements. His magentization data is shown in Figure
4.8.

Figure 4.8: Iron magnetizations from Graham. Colored bars represent the values used in [14]

In addition to a temperature correction, the saturation magnetization needs to be ad-
justed for relatively high applied magnetic fields. The high field correction is listed in the
third line of Table 4.2. At higher fields two correction terms are needed:

Ms(B,T ) = Ms(0,T )+a(T )
√

B+b(T )B. (4.24)

The term proportional to
√

B accounts for spin waves while the term proportional to B
describes the response of conduction electrons. The corrections are at the 0.5% level at 4
Tesla which translates to a < 0.01% uncertainity in the final target polarization value. The
work cited is from Pauthenet’s 1982 paper which studied spin waves along specific crystal
axes[15]. His fit to experimental data is shown in Figure 4.9.

Once the saturation magnetization is calculated for high fields and temperature, the spin
and orbital contributions to the magnetization need to be separated. A good reference to
the procedure was done by Reck and Fry of General Motors in 1969[64]. They used the
magnetomechanical ratio g′ from G.G. Scott (1962)[68] and a total magnetization value of
2.175± 0.01 from Weiss and Forrer, and Peschard. The approximate expression for the
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total magnetization Mt , spin magnetization Ms, and orbital magnetization Mo is

Mo

Mt
=

(2−g′)
g′

(4.25)

Ms

Mt
=

2(g′−1)
g′

(4.26)

4.4.1 Compilation of World Data on Magnetization and g’

In a new study (2017) at Temple University by Don Jones [16], the world data on iron and
nickel was collected in an attempt to obtain the most precise value for the magnetization of
the Møller target foils. The study also addressed some concerns with previous works. One
concern was the approximation of the electron spin factor, gsp = 2.00231930436182(52)
being exactly equal to 2 in Equations 4.25 and 4.26. The equations in the more precise
form are

Mo

Mt
=

(gsp−g′)
g′(gsp−1)

(4.27)

Ms

Mt
=

gsp(g′−1)
g′(gsp−1)

(4.28)

which is a 0.11% decrease in the spin contribution to the magnetization. A similar approx-
imation was made when the magnetization was converted into units of the Bohr magneton,
µB. Here a factor of gsp/2 led to another error of 0.1%.

Another concern was the high field correction done in [14] which used Pauthenet’s
correction but with the applied field, H instead of the internal field, Hi. The two are related
by

H = Hi +
4πM

ρ
(4.29)

where ρ is the demagnetization factor which is determined by the shape of the material.
For a foil oriented normal to the magnetic field direction, the demagnetization factor is
approximately 1 and the demagnetizing field 4πM (in cgs units) is equal to the saturation
magnetization or about 2.2 T for Fe. This results in a relation between H and Hi for an
Fe foil normal to the magnetic field and above saturation as Hi = H− 2.2 T. At H = 4 T,
well above the saturation for Fe, Hi ≈ 1.8 T. The high field correction in Table 4.2 over
estimates the correction by using the applied field.
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The compilation of the world data on Fe is shown in Figure 4.10 along with theoretical
fit from [15] in Figure 4.11. The compiled data on nickel, another possible target material
is shown in Figure 4.12. The data compiled was for magnetization measurements done
at near room temperature conditions thereby eliminating the need to extrapolate data to
0 K then back up to room temperature. The data was also carefully selected taking into
consideration the quality of the data, the different demagnetization factors of the samples
used, and the purity of the sample.

The study also compiled the available data on g′ and the the spectroscopic g-factor, g.
The two are related by Kittle-Van Vleck equation,

1
g′
+

1
g
= 1 (4.30)

and provides a nice cross check. An error-weighted fit of the two quantities provide a
precise agreement when using Equation 4.30. The compiled data is shown in Figure 4.14
and 4.13.

The results of the Don Jones’ study are summarized in Figure 4.15.

4.4.2 Target Angle Dependence

In 1948 Stoner and Wohlfarth published A Mechanism of Magnetic Hystersis in Heteroge-

neous Alloys. Their calculations were for prolate spheroids with different demagnetization
factors for the equitorial and radial directions. This is the behavior we expect the target
polarization to follow as the angle of the foil changes with respect to the magnetic field di-
rection. Figure 4.16 shows how the hysteresis curves change for different foil angles close
to 90◦. With an applied field of 3T, a 3◦ misalignment of the target foil would lower the
magnetization of the foil by 1%, well above our desired uncertainty . Therefore, having the
ability to rotate the target foil allows for both precise positioning of the foils and the ability
to study the dependence of the target foil angle on the magnetization of the target.

4.4.3 Target Heating

The thermal energy deposited from the electron beam can raise the temperature of the
target considerably which in turn lowers the magnetization. In order to determine the rise
in temperature a CFD calculation was done and shown in Figure 4.17. The calculation
was for a 10µm Fe foil with a 10 inch diameter under a 2 µA heat load. It was assumed
that the target ladder was an infinite heat sink. Here the foil temperature increased 35 K.
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The calculation also showed that the temperature increase is approximately independent of
target thickness and linear with beam current. Using the temperature corrections described
in [67], a correction is determined and shown in Figure 4.18 for Fe and Ni foils.

4.4.4 XMCD analysis

X-ray Magnetic Circular Dichroism (XMCD), together with the associated sum rules, al-
lows for an element specific determination of the spin and orbital magnetic moments of
various compounds[69]. By taking the difference between two X-ray absorption spectra
from a magnetized sample when using left or right circularly polarized photons an XMCD
spectrum is constructed. In a collaboration with Alexander Gray’s group at Temple Uni-
versity, we performed an XMCD analysis on an amorphous pure iron foil and a permendur
foil (49% Fe , 49% Co, 2% V), each foil was 20 µm thick. Both of these foils are potential
targets for a Moller Polarimeter. The study was performed in order to investigate the possi-
bility of performing precision magnetization measurements with X-rays. The XMCD data
was taken at the Advanced Light Source, Lawrence Berkley National Lab. The analysis,
results and future opportunities are described in this section.

The data consisted of an X-ray Absorption Spectrum(XAS) and an asymmetry spectrum
for each element in each sample (Co and Fe in permendur and Fe in iron foil). The XAS
was the average intensity of both left and right circularly polarized X-rays(lcp and rcp).
The asymmetry(asym) was defined as asym = rcp−lcp

2∗Avg ∗ 100. From these two spectra, an
XMCD spectrum was created which was the difference between the two circular X-ray
polarization absorption spectrums. The sum rules, which provide access to the orbital and
spin components of the magnetization, were applied to the XAS and XMCD to obtain the
orbital magnetic moment, the spin magnetic moment and the ratio morb

mspin
. The sum rules are

as follows[70]:

morb =−
4q
3r

(10−n3d) (4.31)

mspin =
(6p−4q)

r
(10−n3d)(1+

7〈Tz〉
2〈Sz〉

)−1 (4.32)

with r as the integral of the XAS, p as the integral of the first peak (L3) in the XMCD,
and q as the total integral of both peaks (L3 +L2) in the XMCD. n3d refers to the number
of 3d electrons(10− n3d is the number of 3d holes). The values used are 6.61 for Fe and
7.51 for Co which are from theoretical calculations[70]. In this analysis we will neglect the
7〈Tz〉
2〈Sz〉 term for the present time which is small, -0.4% for bcc iron and -.26% for hcp Co[70]
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according to first principle band calculations. The term has also been shown to average
to 0 in “powder” samples[71]. Dividing the above two equations allows the calculation of
the ratio morb

mspin
which does not depend on n3d and requires only the XMCD spectrum to be

integrated.
morb

mspin
=

2q
9p−6q

(4.33)

The integrated spectra and the application of the sum rules are shown in Figures 4.19.
In order to integrate the XAS, a step function was created to act as a lower integration

value (black lines in Figure 4.19). The height of the upper and lower flat portions were
chosen to coincide with the spectra beginning and ending values. The middle flat portion
was chosen to be 2/3 of the difference between the upper and lower flats in agreement with
the quantum degeneracy of the states. The flats were connected by a quarter sine wave.
Further analysis is required to determine the dependence of the step function parameters
on the sum rule results. The entire XMCD data was shifted vertically before applying the
sum rules. This was done in order to guarantee that the integral would settle to a constant
value. This is depicted in Figure 4.20. The location of where to take the p and q values was
somewhat arbitrary. The q value (the integral of both peaks) at first appeared to level off
after the shift was applied however even small changes in q significantly effect the results.
The p value is to be taken after the L3 peak which is also not well defined. Figure 4.21
shows how the ratio changes with the p and q locations.

The iron spectra lacked a single pronounced L2 and L3 peak. This was due to the
presence of iron oxides on the surface. Since the electron yield XMCD technique probes
only the first several nanometers of the foil the oxide on the surface contributed to a large
part of the signal. Several approaches were taken to analyze the oxide. In the first, the
spectra were fit to two Voigt functions. Figure 4 shows the fit which did not improve our
final results. For the second approach, data was digitized of existing iron oxide spectra.[72]
Then the individual oxide spectra were fit to the iron foil spectrum. The fit is shown in
Figure 4.23 and indicates that the signal had a relatively large oxide component.

The table below summarizes the results from Figure 4.19 and the magnetization val-
ues that are currently being used to determine the polarization at JLab. These reference
values are also frequently cited in other papers by the solid state community. It should be
noted that the magnetization values are for saturated samples, which is not the case for our
samples at 0.5T. Figure 4.24 shows our results compared with a recent (2016) paper[73] in
which the sample was a 110 Fe film (20 µm) at various field strengths.
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Material Mo(
µB

atom) Ms(
µB

atom) MT (
µB

atom)
Mo
Ms

Co in Permendur 0.1745 2.1476 2.3221 8.12%
Co reference(Saturated) 0.147 1.52 1.66 9.7%

Fe in Permendur 0.1115 1.4293 1.5408 7.81%
Fe Foil 0.0234 0.3746 0.3980 6.23%

Fe reference(Saturated) 0.092 2.08 2.17 4.4%

Table 4.3: Summary of results with referenced values coming from [18]

It is still to be determined if the sum rules can provide the precision required to ver-
ify or better the current values of spin and orbital magnetic moment in iron and other 3d
transition metals. Since the ratio, morb/mspin does not depend on n3d this seems the most
promising. Knowing this ratio, gives us g

′
which can be compared to earlier works. Several

experimental factors can be made to improve results.

• Increasing the field to greater than 2.2T would allow comparison with saturation data

• Treat the sample with an acid to remove the oxide layer

• XMCD measurements on pure Co and Ni samples

• XMCD measurements in the transmission configuration would allow the full depth of
the foil to be probed but this would require a foil thickness on the nanometer scale,
the thinnest available from Goodfellows is 1µm. Alternately an iron foil could be
deposited on a substrate.
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Figure 4.9: High field dependence of magnetization. The x-axis is the internal field which is
related to the applied field according to Equation 4.29 [15]
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Figure 4.10: Work data on Fe magnetization [16]

Figure 4.11: Fit of world data for Fe [16]
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Figure 4.12: Fit of world data for Ni [16]

Figure 4.13: Fit of world data for g of Fe [16]
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Figure 4.14: Fit of world data for g′ of Fe [16]

Figure 4.15: Recommended vales for Fe Target Polarization values for Møller Polarimetry [16]
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Figure 4.16: Relative foil saturation vs applied field for various angle relative to the applied
field.
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Figure 4.17: CFD calculation of target heating by Silviu Covrig. Assumes 2 µA beam, 90 µm
spot size, on a 10 µm Fe foil with a 10 inch diameter which results in a 35 K increase in
temperature.

Figure 4.18: Correction to apply to magnetization as a function of beam current
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Figure 4.19: Analysis of XAS(left) and XMCD(right) spectrum using the sum rules
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Figure 4.20: Left: Integration(blue curve) without shift Right:Integration with spectrum shifted
vertically

Figure 4.21: mo
ms

dependence on the location of p and q
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Figure 4.22: Data fit to Voigt functions

Figure 4.23: Various oxide contributions to iron foil spectrum
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Figure 4.24: The magnetization and orbital to spin magnetic moment ratio from Mössbaurer
spectroscopy and a magnetic compton profile.Cite The purple lines show our values calculated
from the sum rules at .5T.
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4.5 Analyzing Power

The size of the asymmetry in a polarization measurement is directly proportional to the
mean analyzing power, 〈Azz〉. If the detector only accepted θCM = 90◦ electrons then the
analyzing power would be exactly 7/9. In practice however the acceptance is in a range of
θCM, usually centered at 90◦. Figure 4.25 shows the acceptance and 〈Azz〉 for a particular
tune at 2.2 GeV, the beam energy for CREX. Here 〈Azz〉= 0.7362,∼ 5% lower than 7/9, and
the θCM acceptance is ±20◦. There are many factors that effect the analyzing power and
they must be accurately simulated. In the following sections I will study the sensitivities
of the various factors including beam position, magnetic field strengths and ill-defined
geometries.
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Figure 4.25: Acceptance and analyzing power for EBEAM = 2.22 GeV . The color scale on the
left represents the number of electrons in each bin with blue being the fewest and the redder
regions being the most.

4.5.1 Beam Position

The position of the incoming beam is generally stable at the 100 µm level. Adjusting
the beam position in the simulation and plotting 〈Azz〉 as a function of position allows
the sensitivity to be quantified. Figures 4.26 and 4.27 show the dependence of the beam
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position on the rates and 〈Azz〉. Assuming a generous uncertainty of 0.2 mm in the x and y
position of the beam leads to a uncertainity in 〈Azz〉 of 0.05% and 0.08% respectively.

Figure 4.26: x beam position dependence on 〈Azz〉 and rates. The width of the green box
represents the uncertainty of the x-axis and the height the corresponding uncertainty of 〈Azz〉.

4.5.2 Beam Energy

Beam energy stability can also affect the acceptance of the detector thus 〈Azz〉. Variations
in the beam energy/momentum are expected to be at the 10−4 level. Figure 4.28 shows
the sensitivities as a 2.2 GeV beam is varied by ± 1 and 2 MeV. An uncertainty of δ p

p =

2.5×10−4 corresponds to an uncertainty in 〈Azz〉 of 0.01%.

4.5.3 Detector Geometry

The position of the detector elements contribute to the acceptance of the detector and their
precise location should be well known. JLab routinely has beam line components surveyed
by their alignment group which provides the location of various elements relative to a fixed
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Figure 4.27: y beam position dependence on 〈Azz〉 and rates. The width of the green box
represents the uncertainty of the x-axis and the height the corresponding uncertainty of 〈Azz〉.

coordinate system. The precision of these measurements are at the 100 µm level. The posi-
tion of the detector/calorimeter was measured in 2019, however most of the measurements
were made at the back of the assembly and limited measurements were done at the face of
the detector. The uncertainty of the final position of the face of the detector is estimated to
be ±2 mm. Figures 4.30 and 4.31 shows the effect of moving the detector in x (horizon-
tally) and y (vertically). An uncertainty in x of ±2 mm corresponds to an uncertainty in
〈Azz〉 of 0.01% and an uncertainty in y of ±2 mm corresponds to an uncertainty in 〈Azz〉
of 0.05%. The horizontal position is less sensitive because the detector is approximately
3 cm wider than the opening in the shielding box that the electrons pass through. However
the y position is more sensitive to changes because the bottom edge of the calorimeter is
defining part of the acceptance. The shielding box, detector and entrance are illustrated in
Figure 4.29.

The location of the entrance in the lead shielding box also can effect the acceptance.
Figures 4.32 and 4.33 shows the effects of moving the location of the entrance in x and
y. An uncertainty in x of ±1 mm corresponds to an uncertainty in 〈Azz〉 of 0.02% and an
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Figure 4.28: Beam energy/momentum dependence on 〈Azz〉 and rates. The width of the green
box represents the uncertainty of the x-axis and the height the corresponding uncertainty of
〈Azz〉.

uncertainty in y of ±1 mm corresponds to an uncertainty in 〈Azz〉 of 0.03%.

4.5.4 Collimator

The movable collimators located at the dipole entrance are sealed within the dipole vacuum
box. Two viewports enable the collimator position to be visually inspected. The vertical
gap of the collimator is adjusted by means of a manual operated dial (initially a stepping
motor controlled the motion but currently it is not in use). The opening of the collimator
now is estimated to be 3.6 cm which was estimated from photos and the known inner
radius of the viewport. The sensitivity of 〈Azz〉 is shown in Figure 4.34. An uncertainty in
the opening of 2 mm corresponds to an uncertainty in 〈Azz〉 of 0.01%.
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Figure 4.29: (Left) Coincidence electron locations on the calorimeter blocks(grey) color coded
by energy (θCM). The blue electrons are the highest energy while the red are the lowest. The red
dashed line is the outline of the opening in the lead shielding that surrounds the detector.(Right)
Side view of the calorimeter, entrance opening, and lead shielding box. The position of the
detector and entrance were separately shifted in y (up and down in figure) and x (in and out of
page) and the change in the analyzing power and rates were found.

4.5.5 Multiple Scattering

Multiple scattering in the target foil can alter the angle which the electrons exit. This effect
was studied by altering the foil thicknesses and by turning on and off the effect in the
simulation. Figure 4.35 shows only slight differences in 〈Azz〉 for different foil thicknesses
and therefore the effect can be neglected.

4.5.6 Magnetic Fields and Alignment

Geant4 studies of the split coil magnet alignment were performed by offsetting the magnet
1 mm or 1 milliradian (mr) in the x or y directions at 2.2 GeV and 0.95 GeV. The expected
tolerance for the x/y offsets are at the 0.1 mm level and for the angular allignment a few
mr. For both beam energies the combined change in 〈Azz〉 for a 1 mm x and y shift was
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Figure 4.30: x detector position dependence on 〈Azz〉 and rates.

∼ 0.15%, here the individual x and y shifts are added in quadrature. Similarly for both
beam energies the angular misalignment resulted in a change in 〈Azz〉 of 0.02%.

The current in each magnet is known within 2%. The accuracy of the model that trans-
lates these currents into actual fields is the subject of an ongoing study. In another Geant4
study the fields of the split coil magnet, quadrupoles and dipole were adjusted by 2% and
the change in 〈Azz〉 was reported. There was a 0.02% effect for all the magnets with the
exception of the dipole. A 2% change in the field of the dipole leads to a 0.2% change in
〈Azz〉.
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Figure 4.31: y detector position dependence on 〈Azz〉 and rates. The width of the green box
represents the uncertainty of the x-axis and the height the corresponding uncertainty of 〈Azz〉.

93



Figure 4.32: x detector entrance position dependence on 〈Azz〉 and rates. The width of the
green box represents the uncertainty of the x-axis and the height the corresponding uncertainty
of 〈Azz〉.
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Figure 4.33: y detector entrance position dependence on 〈Azz〉 and rates. The width of the
green box represents the uncertainty of the x-axis and the height the corresponding uncertainty
of 〈Azz〉.
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Figure 4.34: Collimator opening dependence on 〈Azz〉 and rates. The width of the green box
represents the uncertainty of the x-axis and the height the corresponding uncertainty of 〈Azz〉.
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Figure 4.35: The effects of multiple scattering for different foil thickness on 〈Azz〉 and rates.

Figure 4.36: Key elements in Geant3 simulation of Møller Polarimeter
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4.6 Radiative Corrections

Radiative corrections to the analyzing power have been calculated[74, 75], and are expected
to reduce the analyzing power in the JLab and SLAC (45GeV) Møller polarimeters by
0.2% to 1.0%[6]. The Hall A polarimeter has reported systematic errors of 0.3% due to
radiative corrections; however in the past Geant3 did not have the corrections included in
the simulations. The new Geant4 simulation includes radiative effects and the correction at
2.2 GeV is ∼ 0.3%. Therefore assuming the simulation is accurate to within 33% we can
assign an uncertainty to the correction of 0.1%. This uncertainty can be reduced as the new
simulation package is validated and further investigations are made.

4.7 Levchuk Effect

When determining the systematic errors associated with Møller polarimetry it is important
to considerer the motion of the target electrons. The target electrons being free and motion-
less is an idealization, and therefore a theory is needed in order to account for the effects
of scattering off of a moving target. The importance of this effect was discovered over
25 years ago by L.G. Levchuk and is known as the Levchuk effect. He showed that the
effect led to a ∼ 10% correction to the MIT-Bates Møller polarimeter measurements[56].
In his paper he detailed the kinematics of Møller scattering when taking into account the
intra-atomic Fermi motion of the target electrons. Shorty afterwards, Swartz et al. applied
the Levchuk effect to the Møller polarimeter at the SLAC linear collider and showed it was
a 14% effect[57]. It was determined that the Levchuk Effect could be minimized by engi-
neering polarimeters which featured a large θCM acceptance, which was one of the goals
behind the design of the Hall A Moller polarimeter at JLab[76].

To appreciate the significance of the Levchuk effect let us first approximate the Møller
laboratory scattering angle, θLab, as was shown in [57]. The exact relationship between
θLab and the center-of-mass scattering angle θCM is

tanθLab =

√
2me

E0 +me

sinθCM

1+ cosθCM
(4.34)

where E0 is the energy of the incident (beam) electron and me is the mass of the electron.
The scattered electron’s momentum, p′ is
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p′ =
pB

2
(1+ cosθCM) (4.35)

where pB is the momentum of the incident electron. Using the small angle approxi-
mation for θLab, and assuming the target is at rest, such that the center-of-mass energy is
s0 = 2pBme then Equation 4.35 can be written as

θ
2
Lab =

1
p′pB

s0

2
(1− cosθCM) = 2me

(
1
p′
− 1

pB

)
(4.36)

However, if the motion of the target electron is considered then the center-of-mass
energy, s1, is

s1 = s0

(
1− pt · n̂

me

)
(4.37)

where pt is the target momentum and n̂ is the direction of the incident beam momentum.
Equation 4.35 is still valid for non-zero target momentum but Equation 4.36 becomes

θ
2
Lab =

1
p′pB

s1

2
(1− cosθCM) = 2me

(
1
p′
− 1

pB

)(
1− pt · n̂

me

)
(4.38)

This derivation follows the analysis in [57]. Equation 4.38 is the basis of the Levchuk
effect. The intra-atomic Fermi motion of the target electrons causes the laboratory scatter-
ing angle to be smeared by the factor

(
1− pt·n̂

me

)
. Of the 26 electrons found in Fe, two are

in the K-shell, eight in the L-shell, and 16 in the outer M and N shells with mean momenta
∼90 keV/c, ∼30 keV/c, ∼10 keV/c, and ∼2 keV/c respectively. For inner most K-shell
electrons, the angular smearing can be as large as an 18% effect (1− 90

511) when the target
momentum is parallel or anti-parallel to the beam direction.

The Levchuk effect can be greatly reduced by increasing the acceptance or decreasing
the energy granularity of the detector. The apparatus in Hall A features a larger acceptance
(>±10◦) than the early polarimeters at SLAC and MIT-BATES. Those early polarimeters
were also single arm meaning they only detected one of the two scattered electrons for
each Møller event. This technique requires having a segmented strip detectors to provide
energy resolution (the strip number is correlated to the energy of the electron) which al-
lows for the background from Mott (electron-nucleus) scattering to be supressed. This is
because Mott electrons have an energy of ∼ EBeam while Møller electrons have an energy
of∼ EBeam/2. High granularity detectors like this are more sensitive to the smearing of the
Levchuk effect. The Hall A polarimeter uses two arms and detects both Møller electron
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pairs in coincidence which allows for a low granularity detector since the timing informa-
tion allows for background suppression.

Figure 4.37 shows a top view of the Hall A polarimeter and the path of θCM = 90◦

Møller scattered electrons for the K, L, and M-shell. From the figure one can see how
the trajectory (red lines) of the particles are smeared by the Levchuk effect. The detector
acceptance for outer shell electrons is larger than the inner shells. This leads to an increase
of the effective target polarization since polarized outer shell electrons have a better chance
of reaching the detector.

Figure 4.37: θCM = 90◦ Møller scattered electron trajectories when scattered from different
atomic shells in the Hall A polarimeter. The inner shells tend to smear the angular distribution
resulting in an increase of the effective target polarization.

To calculate the correction in Geant3, the simulation is run three times, once for the K,
L, and M-shells. The outer M-shell electrons are treated as being free electrons (no target
momentum), while the inner shells have the randomly-oriented momentum distributions
of the target electrons included. Only the outer shell electrons are polarized, so a rela-
tive difference in the acceptance between inner and outer shell scattering events requires a
correction to the theoretical total polarization of the atom. If the inner shell electrons, for
example are more likely to scatter out of the acceptance due to the energy smearing, their
absence will increase the effective target polarization. As an example, suppose the simula-
tion was run for each shell and 100,000 events were generated each time. Of those 100,000
electron pairs, suppose 25,000 M-Shell coincidence pairs reached the detector while the L
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and K-shells had 24,000 and 22,000 pairs respectively. The size of the correction can be
approximated as

26NM

2NK +8NL +10NM
=

26(2500)
2(22,000)+8(24,000)+16(25,000)

= 1.02 (4.39)

or a 2% correction.
The Hall A polarimeter typically has Levchuk corrections at the few percent level. The

correction depends on the beam energy and the acceptance of the detector which is de-
termined from the magnet settings. The correction for one 2.2 GeV optical configuration
is 0.37%± 0.15%(stat.) when the system is tuned. The sign of the correction is usually
positive, which means it increases the effective target polarization thereby increasing the
measured asymmetry. However at certain magnet settings, when the system is not tuned so
that the rates are not optimized, the inner shell electrons can have a higher probability of
reaching the detector which has the opposite effect (decreases the effective target polariza-
tion). This behavior provides a unique method to test the size of the correction and should
be considered in future studies.

Figure 4.38: The Levchuk correction as a function of the magnetic field of Q2. This particular
tune is for a 2.1 GeV beam. The structure of the correction at the lower fields can provide a
check for our understanding of the effect.
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Table 4.4: Error Budget Table for Møller Polarimetry at 2.2 GeV

Source Uncertainity Effect on δPBeam
PBeam

Target Polarization 0.30% 0.30%
Beam Position (x) 0.2 mm 0.05%
Beam Position (y) 0.2 mm 0.08%
Beam Energy 2.5×10−4 0.01%
Detector Position (x) 2 mm 0.01%
Detector Position (y) 2 mm 0.05%
Detector Entrance Position (x) 1 mm 0.02%
Detector Entrance Position (y) 1 mm 0.03%
Collimator Opening 2 mm 0.01%
Split Coil Magnet Position (x/y) 1 mm 0.15%
Split Coil Field 2% 0.02%
Q1 Field 2% 0.02%
Q2 Field 2% 0.02%
Q4 Field 2% 0.02%
Dipole Field 2% 0.20%
Levchuk Effect 50% 0.20%
Deadtime 33% 0.10%
Radiative Corrections 33% 0.10%
Total 0.47%
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CHAPTER 5

Polarization Measurements with New
Brute Force Target

Figure 5.1: Beam polarization measurements before and after the upgrade of the Hall A

5.1 DVCS Results

The DVCS experiment (E12-06-114), which ran in Hall A from 2015 to 2016, required
percent level polarimetry. The experiment began with the Møller polarimeter using the
low-field tilted target. In the summer of 2015, the system was upgraded with the new
superconducting split coil magnet and Temple University target motion system. The high
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field target was used for the remainder of the experiment which allowed the overall system-
atic error to be reduce by more than a factor of 2 (See Figure 5.2). In addition to providing
numerous polarization measurements, a limited number of systematic test were performed
during each measurement.

Figure 5.2: The Møller polarimetry systematic errors during E12-06-114 which used the tilted
and brute-force target.

The final beam polarization results for the DVCS experiment are shown in Figure 5.1.
The systematic errors, reflected in the size of the error bars, were reduced after the upgrade
as a result of the smaller target polarization uncertainty with the brute-force target. Po-
larization measurements with the new target were done at beam energies of 4.4, 8.8, and
11 GeV. The results shown include a Levchuk effect and dead time correction. The rates
were normalized to beam current and accidental coincidence subtraction was applied.

One of the additional systematic tests performed during DVCS was a ”mini-spin dance”.
The orientation of the beam electron’s spins is set at the source by a device called a Wein
filter. Here the Wein angle is set which corresponds to the direction that the spins are
oriented before they are accelerated. As the electron’s are bent around the racetrack de-
sign of the facility they undergo spin precession. The size of the precession depends on
the beam energy and the number of times they go around the track and is on the order of
1000’s of a degree. Therefore the Wein angle at the source must be carefully set in order
to maximize the longitudinal polarization delivered to the experimental halls. This test is
called a ”mini-spin dance” because a normal ”spin dance” involves multiple experimental
halls doing independent beam polarization measurements simultaneously as a cross check
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of the individual polarimeters. Figure 5.3 are the results from the ”Mini-spin dance”. The
magnitude of the longitudinal polarization is a maximum for a Wein angle of −90◦.

Figure 5.3: Measured longitudinal polarization delivered to Hall A as a function of Wein angle
set at source

In order to verify target alignment a saturation test was performed by varying the split
coil magnetic field. If the target is close to 90◦ then according to the Stoner Wolfarth model,
fields from 3T to 4T should yield the same result. Figure 5.4 shows the results from the
saturation test. The error bars only include statistical uncertainties, and are relatively large
because the data runs were short due to limited beam time. Therefore it is difficult to extract
a target angle but the result does indicate that the target was at or close to saturation since,
within statistics, the measured polarization remains constant.

Quadrupole scans were performed on six separate occasions in 2016. The scans are
used as a crosscheck of the simulations since different optical configurations yield differ-
ent analyzing powers and Levchuk corrections. Ideally the different configurations would
provide the same beam polarization result when the correct analyzing power and Levchuk
corrections are applied. The results of the scans are shown in Figure 5.5. The scans in
March, April and November, within statistics, yield approximately the same result. How-
ever the remaining scans present some concerns because the point to point differences are
as large as 1.6%.
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Figure 5.4: Measured polarization as a function of the target holding field. Ideally the target
foil would be at exactly 90◦ and the foil would reach maximum polarization at 2.2T.
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Figure 5.5: Quad scans performed in 2016. The red triangles have been corrected for the
Levchuk effect.
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5.2 2019 Commisioning Run

The new Møller polarimeter was commissioned March 18th-19th, 2019 with a beam energy
of 2.14 GeV. During the two days of dedicated beam time several task were performed
which included target centering tests, target angle scans, polarization measurements with
two CREX optics solutions, and quadrupole field rate scans. The commission was done in
anticipation of the PREX/CREX experimental program which is scheduled to commence
summer of 2019. The preliminary results are presented here.

A summary 2019 of the polarization and asymmetry measurements are shown in Figure
5.6. Since the measurements were all taken with the same magnet settings the asymmetries
and polarization are identical directly proportional to each other. The data taken with the
1 /mum foil is statistically lower than the data taken with the thicker foils. The likely ex-
planation for this is because of known wrinkles in the 1 /mum which would cause target
angle misallignment of several degrees. Additional tests that could verify this explanation
could include increasing the target magnetic field to overcome the misalignment or moving
the position of the target so that the beam would be incident on a wrinkle free section of the
foil. The spread of the measurements with the 1 /mum foil is also a concern. Specifically
the first three polarization measurements which were taken consecutively with no changes
to the apparatus being made. A closer look at the data is shown in Figure 5.7. The plot on
the top shows the rates for the two different beam helicity states averaged every 4 seconds
after they have been normalized for beam current fluctuations and accidenatal subtraction
(therefore the units are somewhat arbitrary). The bottom plot is the asymmetry, also aver-
aged every 4 seconds. Current analysis efforts are searching for a correlation between the
drifting seen in the data and other beam parameters such as beam position, current or en-
ergy stability. The polarization measurements for the 4 /mum and 10 /mum are also shown
in Figure 5.6. The point to point differences here are also somewhat concerning but not
as dramatic as the 1 /mum foil. The measurements made at 2.5 T were part of the target
angle scans so the target was rotated between each measurement. After the analysis it was
learned that the target angle read back values were off by more than 1◦. This came as a
surprise since the system had been extensively tested and shown to have sub 0.1◦ precision
when controlled with an Arduino micro controller.
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Figure 5.6: Polarization measurements during 2019 commissioning. The statistically lower
polarization measured with the 1 µm foil could be a result of wrinkles or deformations in the
foil.
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Figure 5.7: (Top)Current normalized scalars averaged every 4 seconds for both helicity cycles.
(Bottom) Asymmetry averaged every 4 seconds (30Hz helicity flip rate)
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Figure 5.8: Polarization measurements while changing the target foil angle
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Figure 5.9: 2019 Dipole and Q1 Scan at 2.139 GeV. Q3 is off. Plots courtesy of Eric King.
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Figure 5.10: 2019 Q2 and Q4 Scan at 2.139 GeV. Q3 is off. Plots courtesy of Eric King.
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CHAPTER 6

Future Planned Experiments in Hall A

6.1 PREX-II and CREX

6.1.1 Operation at 02.2 GeV

The CREX experiment and the recently completed Møller polarimeter commissioning run
both use a beam energy of 2.2GeV. This section will focus on the the quadrupole set-
tings that have been developed using Geant3. Taking into consideration the optics settings
for previous Møller measurements at similar energies and to reduce the possible num-
ber of solutions when using four quadrupole magnets a phase space scan utilizing the
quadrupoles was developed as is shown in figure 6.1. Here Q3 is turned off and the other
three quadrupoles are varied in 200 gauss steps for all possible combinations of Q1, Q2
and Q4 field strengths. The color scale of the plots shows how many coincidence pairs are
detected per 1500 events simulated. Figure 6.1 shows that for any value of Q1, a suitable
value of Q2 and Q4 may be chosen as a possible optics solutions at 2.2 GeV. Several of the
more interesting solutions were studied and are summarized here.

First I present the simplest solution, one that only uses Q2 and has the other three
quadrupoles turned off. By looking at the plot where Q1 is turned off and reading the value
of Q2 when Q4 is off and the coincidences are a maximum we can see Q2=2.5kG is a
possible solution. By varying the current in Q2 we can see the effect that is has on the
rates, analyzing power, and the Levchuk correction.

6.1.2 Operation at 0.95GeV
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Figure 6.1: Coincidence pairs plotted as Q4 field vs Q2 field for various values of Q1. The
redder regions indicate higher rates and possible solutions for a beam energy of 2.2GeV.
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Figure 6.2: Q2 Quad scan at 2.2 GeV. This is a one quadrupole solution with the other
three quadrupoles turned off. Coincidence (Top), Analyzing Power(Middle), Levchuk Cor-
rection(Bottom)
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Figure 6.3: Three quadrupole 2.139 GeV solution. This solution also can be used for 2.2 GeV
(CREX). Q1=2.5 kG, Q2=0.5 kG, Q3=0 kG and Q4=1.0kG
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Figure 6.4: Phase Space Scan of Q1, Q2, and Q4 at 0.95GeV
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Figure 6.5: Higher resolution phase space scan of Q1, Q2, and Q4 at 0.95GeV
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Figure 6.6: Effect of detuning optics components on analyzing power and coincidence rates at
2.2 GeV (CREX). The ±0.5% and ±0.1% error bars on right are shown for comparison.
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Figure 6.7: Effect of detuning optics components on analyzing power and coincidence rates at
0.95 GeV (PREX). The ±0.5% and ±0.1% error bars on right are shown for comparison.

121



20− 15− 10− 5− 0 5 10 15 20
Amount Detuned (Percent)

0

2000

4000

6000

8000

10000

C
oi

nc
id

en
ce

 P
ai

rs

Q1
Q2
Q4
Dipole

Coincidence Pairs vs Magnetic Field

20− 15− 10− 5− 0 5 10 15 20
Amount Detuned (Percent)

0.76

0.762

0.764

0.766

0.768

0.77

0.772

0.774

0.776

0.778

0.78

A
na

ly
zi

ng
 P

ow
er

Q1
Q2
Q4
Dipole

Analyzing Power vs Magnetic Field

Figure 6.8: Effect of detuning optics components on analyzing power and coincidence rates at
0.95 GeV. The ±0.5% and ±0.1% error bars on right are shown for comparison. This plot is
the same as Figure 6.7 except the x-axis is in percent versus Gauss
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6.2 Polarimetry for MOLLER and SoLID

After delivering 0.8% polarimetry for CREX the MOLLER and SoLID programs will be
demanding 0.4% polarimetry. If the uncertainty in target polarization remains at 0.3% and
statistics can be limited to 0.1% then the total remaining systematic error must be < 0.25%.
The total systematic errors shown in Table 4.2, without the Levchuk correction is 0.36% but
there are several contributions to this may be further reduced with simulation and modeling
improvements. Some areas for further reduction of the systematic errors are:

• The Levchuk Effect: Table 4.2 lists the uncertainity of the Levchuk correction to
be 33% which reflects that a detailed study of the correction has not been performed.
The accuracy of the correction depends on the probability functions which determine
the momentum of the inner shell electrons. Repeating the Levchuk analysis using
delta function distributions as in [56] and using atomic momentum distributions as
in [57] will quantify the sensitivity of the correction to different models. This was
done for the SLAC polarimeter and the different models were found to change the
final polarization value by 0.2%, while the correction for that particular polarimeter
was ∼ 14%. The Levchuk correction for the Hall A polarimeter is ∼ 10x than the
SLAC polarimeter so we can expect the fractional uncertainty of the final result be
much smaller as well.

• Magnet Modeling: The quadrupoles and dipole in Geant3 have been implemented
as ideal magnets which neglect fringe fields and higher order multipole contributions
to the fields. The recent development of the GEANT4 simulation has included im-
plementation of field maps for the quadrupoles from TOSCA models. Improving the
magnetic modeling in the simulation should more accurately predict the acceptance
of the detector thus improving the agreement between simulation and data.

• Modeling in GEANT4: The modeling of the apparatus is Geant3/GEANT4 has
been carefully checked and studied but there are still some areas of uncertainty. They
are mainly in the dipole and collimator regions because detailed drawings of the
assembly to not exist. Opening the flange at the dipole entrance would allow for
the exact positions of the various elements to be measured and refined in the sim-
ulation. Measurements should include the collimator dimensions, the width of the
dipole aperature, the z-location of the solid box which divides the dipole apertures
and the various screws and other parts which make up the collimator assembly (See
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Figure 3.14). There has also been some conflicting information regarding the inner
diameter of the beam pipe which should be measured as well. Detailed drawings for
the main detector also do not exist therefore it should also be measured and docu-
mented. This is particularly important because survey measures the relative position
to the back of the detector and without knowing the length in z of the detector pack-
age makes it difficult to know with high precision the actual position of the front of
the detector (where the electrons are hitting).

• Radiative Corrections: GEANT4 includes radiative corrections which were not im-
plemented in Geant3. The implementation and modeling of the correction in the new
simulation needs to be documented and systematic studies should be performed.

• Multiple Optics Configurations: Since multiple optics configurations exist for each
beam energy, each with different analyzing powers, Levchuk corrections, and radia-
tive corrections, then using several optics solutions can provide a cross-check of the
simulation.

• Dedicated Beam Time for Systematic Studies: Dedicated beam time for Møller
polarimetry should be requested to perform quadrupole scans and target studies.
Quadrupole scans will allow for rate comparisons between simulation and data. High
precision scans will also allow for validation of the simulation since each point has
different analyzing powers and corrections. Target angle scans should be performed,
provided that there is < 0.1% angular resolution, in order to verify alignment. Target
saturation tests should be preformed by varying the target holding field and mea-
suring the asymmetry in order to verify the target is saturated. Additionally, target
position scans may be performed by varying the location of the beam on target to
ensure that the measured asymmetry does not change due to wrinkles or other imper-
fections in the foil. In order to provide 0.4% precision a systematic study program
will be necessary and beam time will need to be allocated.

• Target Polarization: Any future studies that would increase the precision of which
we know the target magnetization would be an exciting development for precision
polarimetry. Presently XMCD studies and are being discussed but achieving < 0.3%
is a challenge and no clear means of improvement is presently known.

Figure 6.9 shows the detector coincidence acceptance in maroon for a beam energy of
11 GeV (MOLLER) as well as for CREX and PREX energies for comparison. At 11 GeV,
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all four quadrupoles are used, with the first two being set to defocus in the horizontal
direction since the lab scattering angle is smaller at higher beam energies. The acceptance
of the detector is defined by the higher energy electron from the Møller pair on the face of
the inner dipole box. Figure 6.10 shows electron pairs generated in θCM from 100◦ to 115◦

and the complimentary electron from 65◦ to 80◦. The fact that the acceptance is defined
solely at the dipole face makes the acceptance less sensitivity to ill-defined geometries
further downstream.

The Levchuk correction at 11 GeV is 1.15% ± 0.10% (stat.). This correction was
produced by using the 11 GeV tune that was used on March 31st, 2016 for the DVCS
experiment. The size of the correction is approximately twice the size of the CREX/PREX
and this can be explained by the θCM acceptance being half that of CREX/PREX (see Figure
6.9 since Levchuk has shown the size of the correction is related ∆θ/θ [56].

Figure 6.9: The detector acceptance (in maroon) for MOLLER, CREX, and PREX beam ener-
gies. The color scale represents the z-location of the electron that died furthest upstream. For a
beam energy of 11 GeV (MOLLER) the acceptance is defined entirely on the dipole face. This
can be seen by the green surrounding the maroon. At CREX and PREX energies the acceptance
is also defined inside the dipole box (yellow/orange) and on the detector shielding box (red).

In conclusion with further systematic studies, in conjunction with improvements upon
the simulation, 0.4% polarimetry will be possible in order to meet the demands of future
experiments. Table 4.4 indicates the total systematic error calculated thus far is 0.47%
and ways of reducing this errors have been outlined above. However this table should be
reproduced for other beam energies, namely 11 GeV for the MOLLER experiment. At
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Figure 6.10: Electron pairs generated in θCM from 100◦ to 115◦ and the complimentary elec-
tron from 65◦ to 80◦. The high energy electrons define the coincidence acceptance at the dipole
face.

the present time it appears that there is no real show stoppers for reaching the desired
precision and with careful planning and systematic studies using simulation, the Hall A
Møller Polarimeter will be able to deliver < 0.5% polarimetry.
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