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Abstract. This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss
opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear
structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix
elements, the interplay with models of nuclei is discussed. This program of lattice-QCD calculations is
relevant to current and upcoming neutrino experiments, becoming increasingly important on the timescale
of LBNF/DUNE and HyperK.

Executive Summary

In 2018, the USQCD collaboration’s Executive Commit-
tee organized several subcommittees to recognize future
opportunities and formulate possible goals for lattice field
theory calculations in several physics areas. The conclu-
sions of these studies, along with community input, are
presented in seven whitepapers [1,2,3,4,5,6]. This whitepa-
per covers the role of lattice QCD in neutrino-nucleus scat-
tering, motivated principally by neutrino oscillations.

Neutrino-nucleus scattering experiments provide a wealth
of information on neutrino masses and flavor mixing, on
nucleon and nuclear structure, and on non-standard inter-
actions between neutrinos and ordinary matter. To inter-
pret these experiments cleanly, the key problem is to re-
construct the incident neutrino energy. The nuclear rem-
nant is not, in these experiments, detected. It is there-
fore impossible to reconstruct the neutrino energy without
modeling the nucleus in some way. This problem is com-
plex, because it spans a range of energies—from hundreds
of keV to a few GeV—that probe all aspects of the target
nucleus.

The presence of many energy scales implies that a vari-
ety of theoretical techniques must work in concert. A con-
venient, organizational framework is nuclear many-body
theory, which takes nucleonic properties as inputs. In this
whitepaper, we discuss how these nucleonic properties can
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be obtained directly from the QCD Lagrangian using nu-
merical simulations of lattice gauge theory. Although lat-
tice QCD cannot settle every question in neutrino-nucleus
scattering, it is reasonable to demand that our under-
standing of these processes be consistent with QCD. In
many cases, the most straightforward route to the needed
QCD knowledge is lattice QCD.

In this whitepaper, we discuss several calculations that
should, as they mature, be incorporated into nuclear the-
ory and neutrino event generators. A very important and
very feasible example is the axial form factor of the nu-
cleon. Lattice QCD has a notable history of calculating
this and related observables, and calculations with full
control of the systematic uncertainties are now coming
of age. Here, “full control of systematic uncertainties” im-
plies that a complete error budget is provided. The axial
form factor is relatively straightforward: completely anal-
ogous calculations of vector form factors are possible with
the same (indeed, overlapping) computational effort. The
vector form factors have been measured in electron-proton
and -neutron scattering, so an apt crosscheck is close at
hand. Experience from form factors in meson physics sug-
gests a simple, model-independent way to transmit the
output of lattice QCD to event generators and, thus, anal-
ysis of experimental data.

Form factors of nucleons are only the beginning. Fu-
ture oscillation experiments span beam energies such that
computationally more demanding information is required.
Just at the nucleon level, transition form factors to multi-
body final states are needed. For an inclusive data set,
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the object of interest is the nuclear hadron tensor, which
can be obtained by combining the nucleonic hadron ten-
sor from lattice QCD with a nuclear spectral function. In
the deep inelastic region, new ways of computing parton
distribution functions in lattice QCD are an exciting de-
velopment. A further emerging component of lattice QCD
consists of calculations of the properties of small nuclei—
up to 4He today and to 6Li with exascale computing—can
be used to test nuclear many-body theory and provide
information via chiral effective theories to pin down the
nuclear physics.

Lattice-QCD calculations with nucleon and nuclei are
more challenging than the corresponding ones for mesons,
because of unavoidable technical challenges that increase
with the number of quark lines. Consequently, to perform
the requisite calculations, improvements in methodology,
algorithms, and software will be essential. Even assuming
continuing ingenuity on those fronts, much of the work
will require exascale computing resources. As in the past,
a combination of high-capability and high-capacity com-
puting will be needed. The former is needed for timely so-
lution of mature problems, while the latter is necessary for
developing feasible techniques for the challenging calcula-
tions, before making the jump to supercomputer centers.

1 Introduction

Along with the first observation of the Higgs boson and
the mounting evidence for dark matter, the discovery that
neutrinos change flavor is one of the major advances in
particle physics over the past twenty-five years. The dis-
covery hinged on studies of neutrinos produced at the
upper edge of the earth’s atmosphere [7] and also ex-
plained a deficit in electron neutrinos from the sun [8].
These findings prompted an accelerator-based experimen-
tal program in Europe, Japan, and the United States, to
make more accurate measurements of, for example, the
squared mass differences. The increase in precision and
sensitivity expected in future experiments raises the ques-
tion whether the theoretical description of the relevant
experiments must be further refined to exploit the new
measurements to the fullest. In particular, as future, ambi-
tious, long-baseline neutrino-oscillation experiments such
as LBNF/DUNE [9] and HyperK [10] have come into fo-
cus, the quantification of uncertainties from the hadronic
and nuclear physics of the detectors have become increas-
ingly relevant. To this end, the lattice-QCD community
has identified a set of feasible calculations that will be
of special relevance. This program is described in this
whitepaper.

An important goal of the experimental neutrino-physics
program is to test the three-neutrino paradigm of the
Standard Model. In this context, the Standard Model must
be extended to allow for lepton flavor change. The sim-
plest choice consistent with the standard gauge symme-
tries is to introduce a set of right-handed neutrino fields.
Then lepton-flavor mixing and neutrino masses arise in
the same way as in the quark sector, namely through
Yukawa couplings to the Higgs field with a nonvanishing

vacuum expectation value. To couple to the Higgs and left-
handed-lepton doublets, the right-handed neutrino fields
have to be gauge singlets. But then no symmetry principle
forbids a mass term connecting neutrinos to themselves
(i.e., of the kind first noted by Majorana [11]), in contrast
to the Higgs-generated Dirac mass term, which connects
neutrino to antineutrino. The lack of direct evidence for
right-handed neutrinos suggests that in this scenario the
Majorana mass M might be very large. If one supposes
that the neutrino Yukawa couplings are not much differ-
ent from light quarks or charged leptons, the propagating
neutrinos have mass close to M and to mν ≈ y2v2/2M ,
where y is a Yukawa coupling and v is the vacuum expec-
tation value of the Higgs field. This mass hierarchy, known
as the see-saw mechanism, provides a possible explanation
of the tiny size of neutrino masses [12,13,14]. For exam-
ple, if M is a grand-unified mass scale around 1015 GeV,
then mν . 0.03 eV (for y . 1).

This theoretical framework means that the three-neutrino
paradigm can be tested by measuring the neutrino mass-
squared differences and the mixing angles and CP vio-
lating phases of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix [15,16,17]. As in the case of the
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing ma-
trix [18,19], the PMNS has three mixing angles. If the
Majorana mass term appears, the PMNS matrix has three
CP -violating phases instead of one as in the CKM ma-
trix. The mixing angles and the CKM-like CP -violating
phase can be measured in oscillation experiments, while
the extra phases and the Majorana nature of neutrinos can
be probed via the neutrinoless double-beta (0νββ) decay
of certain nuclei. For lattice-QCD calculations relevant to
0νββ, see the companion whitepaper “The Role of Lattice
QCD in Searches for Violations of Fundamental Symme-
tries and Signals for New Physics” [3]; here, the focus is
on lattice-QCD research that will impact the oscillation
experiments.

Oscillation experiments measure the energy spectrum
of a neutrino beam after it has travelled a certain baseline
distance. Unfortunately, neutrino beams have a wide en-
ergy spectrum, as shown in Fig. 1, so the center-of-mass
energy of a collision is not known. In contrast, quark-
flavor experiments, for which lattice QCD has been cru-
cial, study decays of strange, charmed, or b-flavored hadrons
of precisely known mass. Here, the energy of the incident
neutrino must be inferred from measurements of the final
state. The targets in neutrino experiments are medium- to
large-sized nuclei, such as 12C, 16O, or 40Ar, the remnants
of which are not, in practice, be detected. That means
that the mapping between final-state measurements and
the initial energy inevitably requires theoretical knowledge
of the neutrino interaction with the struck nucleus.

Consistency with QCD is a clearly desirable charac-
teristic of nuclear models used to deduce the connection
between final and initial states. Thus, it makes sense to in-
corporate lattice QCD as soon as results with full, reliable
error budgets are available. As discussed in more detail in
Ref. [21], the nuclear models rely in part on properties
of the nucleon as inputs. Many of these quantities can be
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calculated in lattice QCD in the near term, with the preci-
sion depending on the quantity. Of course, single-nucleon
calculations are not in themselves enough. Calculations of
the properties of multi-nucleon systems must be developed
concurrently and, once mature, also incorporated into the
nuclear modeling.

The theory behind neutrino-nucleus collisions is com-
plex because it spans a range of energies that probe all
aspects of the target nucleus. Nuclear excitation energies
are, typically, dozens of keV, while the average binding en-
ergy is 8.6 MeV (in 40Ar), and the typical Fermi motion
of a nucleon is around 250 MeV. In the regime relevant to
oscillation experiments, the energy transfer to the nucleus
ranges between ∼200 MeV and the neutrino energy itself,
although much of transferred energy is carried off by nu-
cleons and pions, rather than the nuclear remnant. Thus,
it is a challenge to arrive at a comprehensive approach to
the entire problem. Most approaches start with nuclear
many-body theories, in which the nucleus is described by
a nuclear wave function of a collection of interacting nu-
cleons; see, for example, Ref. [22,23]. It is at this point in
the analysis that nucleon-level matrix elements enter. One
should bear in mind, however, that single-nucleon physics
is not enough: multi-body effects are needed for scatter-
ing events that knock out two (or more) nucleons. Even in
nuclear spectroscopy, three-body potentials improve the
agreement with observed nuclear levels [24,25,23]. Often
these calculations use phenomenological potentials, but ef-
fective field theory (EFT) offers a direct connection to
QCD [26,27,28,29]. Chiral EFTs are, however, limited to
a kinematic range where the momenta are small relative to
the chiral symmetry breaking scale Λχ ∼ 700 MeV. Even
then, the reliability of the application of nuclear EFT to
large atomic number systems, such as argon, requires sig-
nificant development, testing, and, eventually, verification.
These issues are further intertwined with the constraints
of how event generators [30,32,36,33,35] and detector sim-

Fig. 1. Energy spectrum of the neutrino beam for several ex-
periments. In particular, most of DUNE’s beam lies in the
range 1 GeV < Eµ < 7 GeV. Courtesy Laura Fields [20].

ulations are implemented. Inconsistencies arise in the cur-
rent approach where, for example, the axial form factor of
the nucleon is extracted from νA scattering data assum-
ing one nuclear model and then used in event generators
employing another.

A central goal of nuclear theory in this arena should
therefore be to define a path forward that allows for a
quantified nuclear uncertainty to be presented for exper-
iments such as DUNE and HyperK. Achieving this is a
challenging task and will require input and constraints
from lattice QCD in order for it to be successful. In ad-
dition to the single- and few-nucleon amplitudes noted
above, it will be valuable to compute directly the prop-
erties of small nuclei. At present, calculations involving
nuclei up to 4He are possible. In addition to being inter-
esting in their own right, such lattice-QCD calculations
of few nucleon systems can be used to constrain low en-
ergy constants (LECs) in the EFTs. This approach has
already been applied to static quantities, such as mag-
netic moments. A next step will be to work with matrix
elements of electroweak currents, to build up effects asso-
ciated with two- and higher-body contributions, as well as
more complex contributions such as pion production. In
combination with experimental constraints from eA scat-
tering, and neutrino scattering on light nuclear targets,1

it is hoped a robust uncertainty can be determined.
To study neutrino oscillations, we are interested in the

processes

ν`A→ `−X, ν̄`A→ `+X, (1)

where A denotes the nucleus and X the combination of all
final-state hadrons including the remnant of the nucleus.
The charged weak current responsible for these interac-
tions has the well-known V − A structure. Properties of
the vector current can be inferred from electromagnetic
scattering, up to isospin corrections (which are negligi-
ble for the needed precision; see Sec. 4). On the other
hand, because the weak charge of the proton is so small,
Qpw = 0.0719±0.0045 [38], at the energies of interest, only
neutron-neutrino (and proton-antineutrino) scattering is
sensitive to the axial current. These circumstances offer
the possibility of testing lattice-QCD methodology with
the vector current before relying on it for the axial cur-
rent.

The quantity needed to describe the strong-interaction
side of the scattering depends on the energy transferred.
At the lowest energies, the only possibility is coherent
elastic scattering via the weak neutral current, with X =
A [39,40]. Coherent neutrino-nucleus interactions have re-
cently been observed for the first time [41]. As the energy
increases slightly, the excitation spectrum of A is traced
out: X = A∗. The needed quantities are matrix elements
between different nuclear levels. In lattice QCD, one would
have to simulate the whole nucleus directly, which is cur-
rently feasible only for nuclei much smaller than those in
the cesium-iodide detector of Ref. [41].

1 Indeed, recent discussions of future experiments with deu-
terium or hydrogen targets [37] hinge on noting the utility of
nucleon-level amplitudes in nuclear many-body theory.
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At high enough (but still low) energy, a single nucleon
can be knocked out. At its heart, the scattering is

ν`n→ l−p, ν̄`p→ l+n, (2)

with the initial and final-state nucleons in the nuclear en-
vironment. Such scattering off of a constituent in a bound-
state without extra particles is known as quasielastic. Then
nuclear many-body theory requires single-nucleon matrix
elements of the form 〈p(p′)|Jν |n(p)〉, between a neutron
of momentum p and a proton of momentum p′ (or the
p→ n counterpart for antineutrino beams). These matrix
elements are straightforward to calculate in lattice QCD;
see Sec. 2. If pions can be produced, the final state can
be a ∆(1232) resonance, an excited nucleon N∗, or a two-
body state Nπ. In the experiment, these all end up as Nπ
so their amplitudes interfere. In fact, lattice QCD can pro-
vide not only the associated transition matrix elements, in
the idealization of the resonance as a stable particle (e.g.,
〈∆+|Jν |n〉), but also enough information to describe the
full multi-hadron nature of the final state (at least up to
further inelasticities); see Sec. 3. The quasielastic and reso-
nance regions overlap, because the kinetic energy of Fermi
motion is a bit larger than the pion mass. This overlap
is illustrated with experimental data in Fig. 2. Another
contribution in this region arises from many-body nuclear
dynamics, for example, when the probe interacts with
pairs of correlated nucleons. This contribution is described
by “two-body currents” (see Refs. [43,44] and references
therein). Now a further set of matrix elements is needed,
namely of the form 〈NN |Jν |NN〉. This contribution is
significant because of correlated pairs in the nuclear wave
function and is often referred to the two-particle–two-hole
(2p-2h) contribution [45,46,47,48,49]. Note that in QCD
language, the same current is employed; the two-body na-
ture is in the initial and final states.

Once the energy is high enough to produce several pi-
ons, it is not possible to enumerate every final-state had-
ron. In this case, however, lattice QCD can be used to
compute nucleon and nuclear structure functions. In high-
energy physics, structure functions are most familiar in
deep-inelastic scattering, where the operator-product ex-
pansion (OPE) can be used. Lattice-QCD calculations can
be used to determine the moments of the parton distribu-
tion functions (PDFs) that enter in the deep-inelastic re-
gion, and indeed extraction of the full dependence of PDFs
on the longitudinal momentum fraction, x, is becoming
possible [50]. Moreover, the definition of structure func-
tions is very general. Lattice QCD may be an ideal way
to compute them in the so-called shallow-inelastic region
with energy above the resonance region but insufficient for
the OPE; see Sec. 3.

In summary, then, the goals for lattice QCD for neu-
trino oscillation physics are to calculate matrix elements
of the form

〈f |Jν |i〉, 〈f |J†µJν |i〉, 〈f |O|i〉, (3)

where the initial and final states are single nucleons, two
nucleons, nucleons with a pion (including resonances), or

small nuclei. In the last case, O denotes an operator ap-
pearing in the OPE, or a bilocal, spatially-separated oper-
ator arising in the calculation of PDFs. The lattice-QCD
calculations of these and related matrix elements have a
long history, motivated principally by the desire to under-
stand nucleon and nuclear structure. For a broad survey,
see our companion whitepaper “Hadrons and Nuclei” [4].

Recall that lattice QCD calculates hadronic correla-
tion functions, which contain information about the masses
and matrix elements of interest; the information is ex-
tracted by fitting the behavior of the correlation functions
in (Euclidean) time. Several technical difficulties make
baryon calculations more difficult than the correspond-
ing calculations for mesons. First, statistical errors on
baryon correlation functions are larger and more poorly
behaved in time [54,55,56]. Second, it has proven more
difficult, in practice, to disentangle matrix elements of the
ground-state baryons from that of their excitations [57,
58,59]. Last, the dependence of baryon properties on the
light quark mass (used in the simulation) is less well de-
scribed by the low-energy EFT of pions and baryons. All
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Fig. 2. Cross sections vs neutrino energy (top) or antineutrino
energy (bottom), showing the relative contributions of the un-
derlying processes quasielastic scattering, resonance produc-
tion, and deep-inelastic scattering [42].
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these difficulties can be addressed with more computing.
The signal-to-noise problem can clearly be attacked with
higher statistics. It can also be mitigated by choosing more
sophisticated operators to create and annihilate baryon
states; this method is also the way to better filter out the
excited states. Finally, more computing also enables sim-
ulations with lighter and even physical quark masses [51,
52,60].

The rest of this whitepaper is organized as follows. In
Sec. 2, we discuss calculations that are relatively straight-
forward. These include nucleon form factors, which are
needed to describe quasielastic scattering, and moments of
PDFs, which are needed in the deep-inelastic region. We
discuss the form factors in considerable detail, because
the time to incorporate these results into event genera-
tors is soon or, arguably, now. In particular, having the
correct slopes for the form factors is crucial to gaining
quantitative control of the cross section. More challenging
calculations are covered in Sec. 3. This class of problems is
large and varied: transitions to resonances and multibody
states, calculations for shallow- and deep-inelastic scat-
tering, and the vector and axial matrix elements of small
nuclei. Section 4 turns to calculations that are far enough
beyond that state of the art that new ideas or comput-
ing facilities greater than exascale are needed. Foreseeable
computing needs are covered in Sec. 5, noting the separate
needs for both capability and capacity computing.

2 Straightforward calculations

The most straightforward matrix elements to calculate
are those with one stable hadron in the initial state, and
one or none in the final state. Here we focus on the ma-
trix elements of electroweak currents, 〈N |Jµ|N〉, which
directly enter neutrino-nucleon scattering, and matrix el-
ements of local operators, 〈N |O|N〉, where O appears in
the operator-product expansion of two J currents, which
arise in the analysis of deep-inelastic scattering.

2.1 Nucleon form factors

As discussed in Sec. 1, neutrino-nucleon scattering, Eq. (2)
is a key process even though the target is a nucleus. The
V − A charged current of interest is J+

µ = ūγµ(1 − γ5)d.
The matrix element for n → p can be decomposed into
Lorentz covariant combinations of momentum and spin,
multiplied by form factors [61]:

〈p(p′) | J+
µ | n(p)〉 = ū(p)(p′)

[
γµF

CC
1 (q2)+

iσµν
qν

2MN
FCC
2 (q2) +

qµ
MN

FCC
S (q2) +

γµγ5F
CC
A (q2) + γ5

qµ
MN

FCC
P (q2) +

γ5
(p′ + p)µ
MN

FCC
T (q2)

]
u(n)(p), (4)

where MN = (Mp+Mn)/2, q = p′−p and ū and u are as-
sociated spinor factors. FCC

1 (q2), FCC
2 (q2), FCC

A (q2), and

FCC
P (q2) are known as the Dirac, Pauli, axial, and induced

pseudoscalar form factors, respectively. The induced scalar
and tensor form factors, FCC

S (q2) and FCC
T (q2), are sup-

pressed by G parity violation; they are known as second-
class currents [62]. For neutral-current processes, addi-

tional form factors FEM,N
i and FNC,N

i are needed: the
charged-currents are all isovector, but the neutral currents
contain an isoscalar contribution as well. Here, N denotes
either a proton p or neutron n.

Because the up- and down-quark masses are so similar,
isospin violation can be neglected and, thus, the charged-
current form factors of the vector current (i.e., Dirac and
Pauli) can be related to their electromagnetic counter-
parts, up to small corrections from isospin violation. The
Dirac and Pauli form factors are usually re-expressed as
electric, GE(q2) = F1(q2) + q2F2(q2)/(Mn + Mp)

2, and
magnetic, GM (q2) = F1(q2) + F2(q2), form factors (even
for CC and NC). Expressions relating the differential neutrino-
nucleon cross section to the form factors can be found, for
example, in Refs. [63,42].

Most neutrino scattering experiments are performed
in a kinematic region of a few GeV, so tracing out the
full q2 dependence is possible and desirable (see below).
Below 1 GeV it is convenient to focus attention on the
intercepts Fi(0) and (conventionally normalized) slopes

r2E ≡ 6
dGE
dq2

∣∣∣∣
q2=0

,

r2M ≡
6

GM (0)

dGM
dq2

∣∣∣∣
q2=0

,

r2i ≡
6

Fi(0)

dFi
dq2

∣∣∣∣
q2=0

, (5)

for i ∈ {A,S, T , P}. The quantities ri are usually called
“radii”, although the neutron’s r2E is negative.

A precise knowledge of the charged-current versions of
these quantities is essential for determining the neutrino-
nucleon cross section. The intercepts and slopes of GCC

E
and GCC

M are well determined from electromagnetic pro-
cesses and isospin relations. Further, the intercept FCC

A (0) =
gA = −1.2723(23) is known from neutron β decay [64].
The axial coupling gA has been calculated in lattice QCD,
although it will be some time before it can be computed
with comparable precision to experiment. Nevertheless,
it is an extremely important benchmark, and once the
lattice-QCD precision becomes competitive with experi-
ment, the result could clear up some puzzles surrounding
neutron-decay measurements (see below).

On the other hand, the axial-charge radius-squared r2A
is less well known. Historically, the axial form factor has
been fit to the so-called “dipole” form:

FA(q2) =
gA

(1− q2/m2
A)2

, (6)

such that r2A = 12/m2
A. Experiments report this “ax-

ial mass”, mA, so a comparison of reported values il-
lustrates the current status. It has been extracted from
quasielastic scattering on deuterium targets, finding (e.g.)
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mA = 1.02(3) GeV [65], and from pion electroproduction,
finding mA = 1.08(4) GeV [66,67]. More recent experi-
ments find larger values: mA = 1.20(12) GeV at K2K [68],
mA = 1.27(15) GeV at MINOS [69], and even mA =
1.35(17) GeV at MiniBooNE [70], in neutrino charged-
current quasielastic scattering with water, iron, and mineral-
oil targets, respectively. With two-particle-two-hole cor-
rections, however, NOMAD [71], with a Kevlar target,
finds mA = 1.05(6) GeV and MINERvA [72,73], with a
carbon target, finds the quasielastic cross section to be
compatible withmA = 0.99 GeV. Note that all of these de-
terminations of mA assume a nuclear model for the target
material, which is not the same among the various collab-
orations. Moreover, nuclear modeling uncertainties typi-
cally come only from varying parameters of their choice
model, not from studying comparisons among different
models.

The uneasy agreement of these results can be removed
by switching to a model-independent parametrization of
FA(q2) [61]. For example, a reanalysis of 1980s deuterium

bubble-chamber data [74] finds
√

12/r2A = 1.01(24) GeV.
These data are chosen because the nuclear model of the
deuteron is under relatively good control. The main con-
clusion of Ref. [74] is that introducing only one free param-
eter with a qualitatively acceptable but conceptually in-
correct shape, as in Eq. (6), leads to gross underestimates
of the uncertainty, even when the fit quality is high.

Figure 4, from Ref. [75], shows the dependency of νn
quasielastic cross section on Eν , assuming r2A is known
with 20% uncertainty. As one can see, this quantity affects
the both the normalization and fall-off of the cross section,
which are needed, respectively, to determine the mixing
angle and mass difference in an oscillation. Furthermore, a
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Fig. 4. Electric (top) and isovector axial (bottom) form factors
of the nucleon vs Q2 = −q2. Data from Ref. [82,91].

lattice-QCD calculation with 20% uncertainty (compared
to 50% in Ref. [74]) is an important milestone, because
then the r2A uncertainty becomes subdominant, at least
until other uncertainties have been reduced.

The lattice-QCD community has been pursuing the
calculation of the nucleon form factors for a long time. A
representative set of recent work can be found in Refs. [76,
77,78,79,80,81,82,83,84,85,86,87,88,89,90] Significant im-
provements have been made to investigate the quark-mass,
finite-volume, and finite-lattice-spacing dependence, and
the effects of excited-state contamination in the correla-
tion functions. With these technical and algorithmic ad-
vances, lattice QCD can calculate not only the isovector
contribution but also the computationally more demand-
ing isoscalar and strange-quark contributions, which are
needed for neutral-current processes, discussed below.

Sample lattice-QCD calculations [82,91] of the nucleon
isovector electric and axial form factors—GE and FA—
are shown in Fig. 4. Eight different 2 + 1 + 1-flavor HISQ
ensembles generated by the MILC collaboration [52,53]
with lattice spacings in the range 0.06–0.12 fm and pion
mass in the range 130–310 MeV are employed. In this cal-
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Fig. 5. Status of lattice-QCD calculations of gA , together
with non-lattice determinations, from Ref. [93]. Filled green
(unfilled red) lattice-QCD results have (in)complete error bud-
gets. The violet line in the upper panel is the PDG average of
the results in the bottom panel, in which the scale is blown up
by a factor of 10.

culation, excited-state contamination is controlled via a
three-state fit. The results are in good agreement with the
experimental data for the nucleon electromagnetic form
factor GE(q2) On the other hand, the axial form fac-
tor is not as steep as experimental determinations with
mA ≈ 1 GeV [92], yet is compatible with MiniBooNE’s
mA ≈ 1.35 GeV [70]. Despite the many laudable aspects
of Ref. [82], a full and robust accounting of all system-
atics involved in these lattice-QCD calculations has not
yet been feasible. Reliable confrontation with precise ex-
perimental data for GE—and, hence, a solid prediction
of FA—requires an increase in computational resources to
overcome the technical obstacles to nucleon matrix ele-
ments, discussed in Sec. 1.

The status of lattice-QCD calculations of gA and r2A
is shown in Figs. 5 and 6, respectively. Fig. 5 [93] shows
that lattice-QCD calculations of gA are currently far less
precise than the results from neutron β decay.2 Note, how-
ever, that bottle and beam experiments measuring the
neutron lifetime yield values of gA that differ by 3σ. For
example, a 2015 bottle measurement[98] leads to gA =
1.2749(11), while a 2013 beam measurement leads to gA =
1.2684(20) [99]. It would be interesting to know the an-
swer from lattice QCD. The precision required depends
on whether the (average of several) calculation(s) lands
between the two neutron-lifetime values or outside the in-

2 The color code here is adapted from the Flavor Lattice
Averaging Group [94,95,96], as specified in the Appendix of
Ref. [97].
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Fig. 6. Status of lattice-QCD calculations of r2A, together with
non-lattice determinations, adapted from Ref. [75] with per-
mission. As discussed in the text, the error bars on r2A from
dipole fits are underestimated and the two small lattice-QCD
error bars stem from incomplete error analyses, critiqued be-
low. The references from top to bottom are as follows: “νd
and eN → eN ′π (dipole)” [65], “νd (z exp.)” [74], “Mu-
Cap this work” [75], LHPC [78] (NB: one lattice spacing and
Mπ = 317 MeV), ETMC [79] (NB: no strange sea and a small
volume such that MπL < 3), CLS [80], PNDME[81].

terval. In the latter case, at least percent-level precision
is needed, which is likely to be achieved with three years
(assuming sustained computing support). If lattice QCD
lands in the middle, 0.3% precision is needed. In this sce-
nario, we would also need 1+1+1(+1)-flavor ensembles,
since the isospin symmetry would play an important role
at such precision; it would take 5–10 years to account for
full systematics.3

Figure 6[75], for r2A, shows significant problems: the
analysis with the z expansion [74] debunks the uncertainty
estimates of determinations predicated on the dipole form.
The model independent results (red; between the horizon-
tal lines) illustrate the best estimate of r2A without such
strong assumptions. One should bear in mind that the “ex-
perimental” determinations all make assumptions: with-
out new muon capture [75] or νd and ν̄p experiments [37],
for which the assumptions are mild or nil, it seems nearly
impossible to improve the situation via experiment. On
the other hand, lattice gauge theory can provide an ab
initio result from QCD. Indeed, lattice QCD is beginning
to play a role, but another generation of calculations is
needed before fully definitive results with uncertainties

3 Note that the normalization of the matrix element can be
blinded with an multiplicative offset [100], to guard against
analyst bias. The results in Fig. 5 have not, however, employed
this technique.
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small enough to make an impact on cross section calcula-
tions are achieved.

For the full energy range of LBNF/DUNE, it will be
necessary to trace out the full q2 dependence of the form
factors. It is imperative to use a model-independent parametriza-
tion based on general analytic properties. In the complex-
q2 plane, the vector (axial) form factors have a cut starting
at q2 = tcut ≡ 4M2

π (q2 = tcut ≡ 9M2
π) and extending to

∞ on the real axis. The cut lies outside scattering kine-
matics q2 < 0 but nevertheless prevents a useful series
expansion in q2 around the origin. A rigorous way to pro-
ceed is to introduce a conformal mapping that maps the
cut to the unit circle [101,102]:

z(t) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (7)

where the parameter t0 can be chosen to center the q2

range of interest on z = 0; in general, spacelike q2 → −∞
maps to z → 1. An expansion of the form

F (z) =
∑
k

akz
k (8)

thus has an expansion parameter |z| < 1. Moreover, uni-
tarity in quantum mechanics ensures that the series is
uniformly convergent on this interval. In fact, unitarity
leads to bounds on the coefficients ak that the dipole form,
Eq. (6), violates [61].

In practice [61,103,104,105], the z expansion converges
after a few terms. Because on the nonlinear mapping, even
an intercept and slope in z give a form factor with a phys-
ical shape (i.e., similar to those shown in Fig. 4). As lat-
tice data improve, more and more terms will become re-
solvable. As in CKM physics [104,105], lattice-QCD pa-
pers can provide the coefficients, their uncertainties, and
their correlations; several lattice-QCD calculations of FA
do the same [79,80,78,81]. Finally, code for taking such
z-expansion input is included in the GENIE event gen-
erator [33] module for the axial form factor, and work is
underway to extend this to the vector form factor channel.

Although not crucial to neutrino oscillations, the same
experiments study weak neutral-current interactions of
the Z boson and, possibly, non-Standard bosons [106,107].
The corresponding Dirac and Pauli form factors can be
obtained from the proton and neutron electromagnetic
form factors and the strange-quark contribution (acces-
sible in parity-violating elastic electron-scattering experi-
ments [108]) as

FNC
i =

(
1
2 − sin2 θW

)
(F em,p
i − F em,n

i )−
sin2 θW (F em,p

i + F em,n
i )− 1

2F
s
i , (9)

where i ∈ {1, 2}. Using the most recent z-expansion fit
to nucleon electromagnetic form factors [109] and a new
lattice-QCD calculation of strange-quark form factors [110],
one can see that the strange-quark contribution increases
the neutral-current Pauli form factor, FNC

2 (q2), by about
3.1% and 2.5% at q2 = 0 and q2 = −0.1 GeV2, respec-
tively. Although the strange-quark contribution is small,

the coefficients ( 1
2−sin2 θW) and sin2 θW suppress the two

combinations of nucleon electromagnetic form factors in
Eq. (9), such that the strange-quark sea makes an impor-
tant contribution to FNC

2 (q2) at low q2.
Similarly, assuming isospin symmetry and the absence

of second-class currents, one can relate the neutral-current
axial form factor to the charged-current axial and strange-
quark axial form factors [111,112]:

FNC
A = 1

2 (−FCC
A + F sA). (10)

It has been shown [113,114] that the effect of Pauli block-
ing becomes very significant in the region 0 < −q2 .
0.2 GeV2. Therefore, a precise lattice-QCD calculation of
FNC
A (q2) is required for a precise estimate of the neutral-

current (anti)neutrino-nucleon scattering cross section.
Finally, we note that quasielastic neutrino and antineu-

trino scattering would be sensitive to the presence of the
second-class currents, FS and FT in Eq. (4), characterized
by a different G-parity to the standard vector and axial
currents of the Standard Model. The search for such cur-
rents has long been pursued in the β-decay experiments
and in muon-capture experiments, but the measurement
of polarization observables in the quasielastic scattering
both of nucleons and of hyperons has been shown to be
sensitive both to G invariance and to T -invariance [115].
Lattice QCD can contribute to these tests through cal-
culations of induced scalar and tensor currents, including
calculations of transition form factors to the rest of the
SU(3) baryon octet (Λ and Σ as well as p and n), such as
those in Refs. [116,117].

2.2 Moments of parton density functions

Lattice QCD can be used to calculate matrix elements of
other operators besides the electroweak currents. An im-
portant class of operators are those that appear in the
operator-product expansion of two currents. Their matrix
elements are related to the moments of structure func-
tions in deep-inelastic scattering. For a full discussion, see
the USQCD companion white paper “Hadrons and Nu-
clei” [4]. Here, applications to neutrino physics are dis-
cussed.

In 2001, the NuTeV collaboration determined the on-
shell weak mixing angle, sin2 θW ≡ 1 − m2

W /m
2
Z , to be

0.2277±0.0013stat±0.0009syst [118] in deep-inelastic neu-
trino scattering off iron. This result is 2.7σ discrepant from
the current world average of other experiments, 0.22343±
0.00007 [64]. This discrepancy, which is known as the “NuTeV
anomaly”, has no universally accepted explanation, al-
though many possibilities have been raised [119,120,121,
122,123,124].

One suggestion that may account for part of the anomaly
is the strange-antistrange parton asymmetry [125,126],
〈x〉s− =

∫
dxx [s(x)− s̄(x)], where s(x) (s̄(x)) is the (anti-

)strange parton distribution function, as a function of par-
ton momentum fraction x. A global analysis of several ex-
perimental data sets gives 〈x〉s− ≈ 0.0018 [127], which
is consistent with a 2006 NuTeV analysis of dimuon pro-
duction [128]. The global analysis does not, however, find
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a tight constraint: the authors of Ref. [127] present the
range −0.001 < 〈x〉s− < 0.005 at 90% confidence level.

In view of the uncertainty in 〈x〉s− from global fitting,
a first-principles lattice-QCD calculation is clearly war-
ranted. There is, however, no local operator which cor-
responds to 〈x〉s− . Instead, one can calculate the third
moment from the local operator s̄γµDνDλs which corre-
sponds to 〈x2〉s− =

∫
dxx2(s(x)− s̄(x)). Assuming s(x)−

s̄(x) changes sign only once, 〈x2〉s− should give the same
sign as that of 〈x〉s− . This quantity can also be used to
constrain the x-dependent distribution, but since it is ex-
pected to be small, calculations will require significant re-
sources.

3 Challenging calculations

In this section, calculations that are computationally more
difficult than the form factors in Sec. 2 are discussed. That
said, the conceptual formalism underlying these calcula-
tions is well established, and pilot calculations provide
some idea of how more complete calculations can be car-
ried out. More complicated final states in the resonance
regions (Sec. 3.1), the shallow inelastic region (Sec. 3.2),
and the deep inelastic region (Sec. 3.3) are discussed, as
are calculations of the axial charge, and related quantities,
of small nuclei (Sec. 3.4).

3.1 Transition form factors: resonances and multibody
final states

Neutrino scattering above the pion-production threshold
constitutes the resonance region, where the scattered nu-
cleon is excited into resonances, beginning with the∆(1232).
To describe the data in this regime thus requires a quan-
titative knowledge of the N → ∆ and N → N∗ tran-
sitions, mediated through an external current. Because
these hadrons are unstable, they can also be viewed as
a nucleon with one or more pions, which are the only
hadrons composed of the light u/d quarks stable under
the strong interaction.

Lattice QCD has a long history of calculations of the
transition form factors to the ∆, treating it as stable. Both
the vector current [130,131], and the axial current [132]
have been studied with unphysically large quark masses,
such that M∆ at these quark masses lies below the Nπ
threshold. These calculations are useful benchmarks for
comparisons with non-lattice approaches that neglect the
two-body nature of the resonance. Although not as rig-
orous as the methods discussed below, this “quick and
dirty” approach may be timely, for example, providing
qualitative input to understand better the MiniBooNE
low-energy backgrounds from ∆→ Nγ [133].

Because of the finite volume and Euclidean signature,
calculations with two-body states in lattice QCD are con-
ceptually and computationally more difficult [134,135,136]
than the calculations discussed in Sec. 2. For example, the
Lüscher method [134,135] relating energy shifts at finite

volume to infinite-volume momentum-dependent phase shifts
has been used to study the ρ meson [137,138,139,140,
141], as well as I = 2 ππ phase shifts [142,143,144,145,
146] from first principles. The theoretical framework for
understanding the transition to multihadron states from
Euclidean-space lattice QCD calculations have been fur-
ther developed over the past several years. Notably, the
formalism has been extended both to inelastic scatter-
ing [147,148,149,150,151] with several two-body channels,
and to three-body scattering [152,153,154,155,156,157],
and there have now been several computational applica-
tions of these advances [158,159,160,161].

A quantitative understanding of resonance production
entails extending the formalism to encompassing transi-
tions mediated through external currents, corresponding
here to both vector and axial currents. The needed formal-
ism to two-body final states, and for arbitrary spin, has
now been developed [129]. The applications have largely
focused on the meson sector. To cite an example bear-
ing some similarity to W ∗n → ∆ in neutrino scatter-
ing, the γ∗π → ρ transition has been computed in lat-
tice QCD [162,163], providing the first rigorous calcu-
lation of the transition form factor to an unstable had-
ron, illustrated in Fig. 7. In addition, methods to extract
resonance-to-resonance transitions, for example, γ∗ρ →
ρ, via lattice calculations of two-to-two transition am-
plitudes, in this case γ∗ππ → ππ, have been developed
[164,165]. This opens the possibility for calculations of
two-body currents, that is, matrix elements of the form
〈NN |Jµ|NN〉 needed for two-nucleon knockout.

Thus, the theoretical underpinnings for understanding
resonance production in νN → ∆, N∗, and Nπ, are there-
fore largely in place. Calculations of multihadron states
containing baryons are complicated by the extra com-
plexity of the systems relating to the increased number
of quarks, by poorer signal-to-noise ratios, and by the
larger number of open channels. Even so, the first ab ini-
tio determination of ∆(1232) resonance parameters ap-
peared in 2017 [166], albeit for a simulation with quark
masses corresponding to a pion mass of 280 MeV, yield-
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Fig. 7. The upper and lower panels show the γ∗π+ → π+π0

and l = 1 elastic ππ scattering cross sections, respectively, as a
function of ππ energy, with the ρ resonance clearly visible [129].
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ing a ∆-N -π coupling in agreement with phenomenolog-
ical determinations. As the invariant mass of the system
increases within the resonance regime and the pion mass
is decreased to its physical value, however, inelastic pro-
cesses and three- and higher-body final states become rel-
evant. Further theoretical work is needed to encompass
transitions to three or more particles, and further develop-
ment of efficient algorithms is needed to evaluate the larger
number of Wick contractions that increasingly dominate
the computational cost of the calculation. The interplay
between theoretical methods and practical algorithms is,
of course, ideally researched on high-capacity computing
facilities.

3.2 Hadron tensor for shallow and deep inelastic
scattering

At higher energies, more and more pions are produced
and a full theoretical description of any given final state
becomes impractical. One can, however, study the sum
over all final states via the optical theorem and consider
forward matrix elements of the product of two currents.
Whereas nuclear many-body theory decomposes the low-
multiplicity cases into products of nuclear wavefunctions
and nucleon (and Nπ, . . . ) form factors, here one can de-
compose the nuclear hadron tensor, 〈A|J†µJν |A〉, into a
spectral function [167,168,169,170,171,172,173,174] and
the nucleon hadron tensor, 〈N |J†µJν |N〉.4 A recent devel-
opment in lattice QCD is to calculate this quantity from a
four-point correlation function. This approach is especially
appealing in the region, sometimes called shallow inelas-
tic, between the resonances and deep-inelastic scattering,
where no other theoretical tool holds much promise [21].

The Euclidean hadronic tensor [179,180,181,182,183,
184,185,186] can be decomposed in terms of structure
functions that are related to their Minkowski counter-
parts through a Laplace transform. Thus, to obtain the
desired structure functions, an inverse Laplace transform
is needed, an ill-posed problem that arises in many fields.
Three approaches to this problem are the maximum en-
tropy method (MEM) [181], the MEM with a prior to sta-
bilize the fit for Bayesian reconstruction (MEM-BR) [184],
and the Backus-Gilbert method [186]. These three nu-
merical approaches have been studied recently [187]. The
Backus-Gilbert method yields a single broad peak in the
energy spectrum from lattice data with 20 points in Eu-
clidean time. With both the MEM and MEM-BR, the
elastic peak and the resonance peak are resolved, with
the MEM-BR producing sharper peaks and a more stable
reconstruction. Given the test lattice spacing of 0.12 fm,
there is no excitation spectrum above 2 GeV and, thus,
no strength in the spectral weight above the resonance
region. For a finer lattice with spacing 0.04 fm, the spec-
tral weight up to 5 GeV is accessible. Even though it may
still not be sufficient to resolve the individual resonances,
the fact it can cover both the resonance and the shallow

4 The derivation of spectral functions of nuclear matter and
finite nuclei is discussed in Refs. [175,176,177,178].

inelastic scattering regions makes the lattice hadronic ten-
sor calculation a promising theoretical tool to address the
total cross section of the neutrino-nucleus scattering over
a wide range of energy transfers up to 5 GeV.

The hadron tensor can also be computed for deep-
inelastic scattering. In this case, the calculation needs to
be able to access the kinematic region where Q2 > 4 GeV2

and energy transfer ν > 5 GeV where the higher-twist con-
tributions are suppressed. The Euclidean correlation func-
tion can also be analyzed with the OPE, along the lines of
the suggestion for calculating the shape function of the in-
clusiveB-meson semileptonic decay rate [182]. In addition,
using a fictitious heavy-quark propagator between the cur-
rents to calculate moments has been proposed [183]. A re-
lated approach is also discussed in Ref. [185]. Unlike the
approaches discussed in the next subsection, the hadron-
tensor approach to deep-inelastic scattering does not need
to match to the infinite-momentum frame.

3.3 Parton densities for neutrino deep-inelastic
scattering

The parton distribution functions (PDFs) will be impor-
tant inputs in the upcoming precision neutrino-physics ex-
periments, particularly at large Bjorken x and at the high-
est energies of the DUNE beam, ∼ 4–5 GeV. For these
kinematics, current global-fit PDFs either suffer greatly
from the theoretical uncertainty in their nuclear treatment
or rely mainly on extrapolation from intermediate x.

Direct calculation of the Bjorken x dependence of had-
ron structure in lattice QCD has only recently become
possible thanks to the development of the large-momentum
effective theory (LaMET) [188], which introduces a large
momentum P to connect Euclidean lattice QCD to the
desired Minkowski distributions.5 This framework has al-
lowed the first direct lattice-QCD computations of the x
dependence of parton distributions [195]. Further devel-
opments spurred on by these developments include that
of pseudo-PDFs [196,197], and that of matrix elements of
gauge-invariant current-current correlators [198,199]. In
these new approaches, valence- and sea-quark structure
can be disentangled, which leads to the possibility of us-
ing lattice-QCD calculations to directly compare with ex-
periments on large-x structure in SoLID at Jefferson Lab,
with sea structure in Drell-Yan experiments at Fermilab or
with data from a future electron-ion collider. In addition
to the hadron-tensor method described in the previous
subsection, these new approaches and numerical investi-
gations thereof are described in detail in the companion
whitepaper “Hadrons and Nuclei” [4].

The lattice-QCD effort so far has focused on isovec-
tor combinations of PDFs, that is, the difference between
the up and down distributions. A recent joint lattice-QCD
and global-fitting community report [50], an effort led by
USQCD members, demonstrated that a calculation of the

5 See Refs. [189,190,191] for critical discussions of this ap-
proach and also Refs. [192,193,194] for the subsequent rebuttal
of this criticism.
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isovector proton PDF at the 12% level for x ∈ [0.7, 0.9]
can impact our knowledge of the PDF at x near 1 by more
than 20%. This kinematic region is relevant for neutrino
experiments, and such precision should be feasible in the
near term. In addition, as crosscheck of nuclear theory in
this region, exploratory calculations of nuclear PDFs will
become available; see Sec. 3.4. Such precision is already
relevant to neutrino-nucleon scattering at 4–5 GeV. Fur-
ther, it allows a crosscheck of the nuclear-theory treatment
and of the systematic uncertainties of nuclear PDFs.

Neutrino DIS can be important for determining the
strange quark and antiquark parton distributions. Cur-
rently, no calculation of the Bjorken-x dependence of the
strange PDF has been done with lattice QCD, due to nu-
merical limitations, but there are USQCD proposals to in-
vestigate s(x)− s̄(x). On the other hand, the nucleon sea
flavor asymmetry ū(x)− d̄(x) has been studied [200]. Un-
fortunately, the uncertainties in the quasi-PDF approach
are currently much larger than those from experimen-
tal/phenomenological extraction.

Going to larger nucleon boost momenta P with high
statistics is key to reducing several systematic uncertain-
ties in these quasi- and pseudo-PDF approaches [4], espe-
cially for the antiquark distribution and small Bjorken x.
However, this poses several computational challenges. First,
large momentum translates into large (aP )n, and there-
fore, ensembles with increasingly smaller lattice spacings a
are needed. Given the need to keep the spatial size of the
box sufficiently large to avoid significant finite-volume ef-
fects, which may be enhanced for some nonlocal matrix
elements [201], this increases the computational cost. Sec-
ond, as the momentum becomes larger, the signal-to-noise
ratio degrades, even when using methods such as “mo-
mentum smearing”[202], designed to enhance the contri-
bution of the lowest-lying state in correlation functions at
nonzero three-momentum, thereby increasing the number
of measurements that need to be made. Third, the excited-
state contributions themselves become more significant at
higher momenta both through the greater number of con-
tributing states arising from the reduced symmetries at
nonzero momentum, and through the relative compres-
sion of the energy spectrum. This requires either calcula-
tions at many source-sink separations, or the use of the
variational method with an expanded basis of operators.
Finally, one must address the inverse problem involving a
Laplace, Fourier, or Mellin transform of a certain class of
position-space matrix elements. For example, in the case
of quasi- and pseudo-PDFs, spurious oscillations can be in-
troduced when Fourier transforming the “Ioffe” time vari-
able. Several methods of advanced reconstructions have
been analyzed to overcome this challenge [203] and clearly
further research is needed here. Thus, calculations of the
precision that the neutrino program demands requires a
significant commitment of computational resources.

3.4 Axial currents in light nuclei

An important challenge for lattice QCD is to extend the
calculations of the axial properties of the nucleon to the

more complex systems of nuclei. Just as for the nucleon,
knowing nuclear matrix elements of axial currents and of
quantities relevant in deep-inelastic scattering on nuclei
are high priorities in the lattice-QCD community. Over
the last decade, first studies of a range of nuclear proper-
ties have been performed, and calculations of the requisite
axial structure of light nuclei are eminently feasible in a
five-year timeframe.

Nuclear effects in neutrino-nucleus scattering are im-
portant, extremely nontrivial, and not simply related to
those in electron-nucleus scattering. For example, Gamow-
Teller transitions in nuclei [204,205,206], which flip spin
and isospin of the nucleus, are poorly described in most
simple nuclear models, with deviations of as much as 25%
from naive expectations based on simply scaling from the
single-particle n→ peν̄ transition. Once sophisticated nu-
clear wave functions and many-body axial currents [207,
208] are used, however, agreement with the data is reached [209].
At higher energies, state-of-the-art Green-function Monte-
Carlo (an exact many-body method) calculations [210,
211] show that neutrino response functions describing scat-
tering on nuclei such as 12C have effects from two-body
currents at the 20% level, particularly in the transverse
response.

In the last few years, USQCD collaboration members
have performed lattice-QCD calculations of A = 2, 3 axial
transitions in the forward limit using unphysically heavy
quark masses corresponding to Mπ ∼ 800 MeV [212,213,
214]. This work, in which the Gamow-Teller contribution
to tritium β-decay and the rate of the pp → deν̄ fusion
process were extracted, demonstrates that the calculations
relevant to constrain neutrino interactions with light nu-
clei can be performed. While nuclear effects in the axial
matrix elements of two- and three-body systems are found
to be at the few percent level, the lattice-QCD calcula-
tions were able to resolve the relevant effects by isolating
the intrinsically two-body contributions. Pursuing these
calculations at the physical quark masses and controlling
all sources of systematic uncertainties in them will require
exascale computing resources. Beyond these forward limit
calculations, extensions of this approach to enable calcu-
lations of the form factors of light nuclei from nonforward
transition matrix elements are underway. Calculations in-
volving multiparticle final states are also necessary but
challenging: a theoretical understanding of the simplest in-
elastic channels is presented in Ref. [164]. For high-energy
neutrino-nucleus scattering in the deep-inelastic regime,
lattice-QCD calculations of the moments of the relevant
parton distributions in nuclei will be useful in constraining
nuclear effects in a very different kinematic regime.

While these calculations do not directly address the
particular nuclear targets for DUNE and other neutrino-
scattering experiments, they are useful in constraining the
low-energy constants and meson-exchange currents that
enter nuclear-chiral-EFT axial currents [207,208]. Such
matchings are already underway for spectroscopy [215,
216,217] and electromagnetic interactions [218] at unphys-
ical values of the quark masses, and the machinery neces-
sary to undertake this at the physical quark masses is be-
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ing developed. As well as studies of currents, lattice-QCD
calculations of nuclei and other systems such as three and
four neutron systems will provide input into the three-
body forces in nuclear EFTs, particularly those aspects of
these forces that are challenging to access experimentally.

4 Extremely challenging calculations

Looking further into the future, we can foresee the need for
calculations that go far enough beyond the current state
of the art that it is hard to know when or whether they
will be possible.

4.1 Electromagnetic and isospin-breaking effects

Going beyond the leading order, calculations of nucleon
matrix elements must incorporated the neglected contri-
butions from both QED and from strong isospin breaking
(SIB). There are two possible approaches for completing
these tasks, which can be generally classified as being per-
turbative and nonperturbative. Perturbative calculations
make use of existing isospin-symmetric and QCD-only lat-
tice ensembles to compute the desired matrix elements.
The QED effects are computed with explicit vector cur-
rent insertions and some scheme for the virtual photon
lines. Similarly, the SIB effects are included via scalar
current insertions that allow for expansion in quark mass
about the isospin-symmetric point. For nucleon matrix el-
ements, perturbative calculations require five-point corre-
lation functions as well as disconnected diagrams and and
pose a significant challenge to pursue.

Nonperturbative calculations make use of gauge en-
sembles that include explicit sea effects for QED and SIB.
These are SU(3) × U(1) gauge field ensembles with the
up and down quark masses tuned to their physical val-
ues. Rather than being restricted to a perturbative expan-
sion of photon fields, these calculations include combined
gluon, photon, and quark loops to all orders. While these
calculations are likely to be cheaper than the perturba-
tive calculations mentioned above, they also have techni-
cal difficulties that must be overcome. The most challeng-
ing of these difficulties is likely to come from finite size
effects. Since photons mediate a long range force, calcu-
lations including QED will be sensitive to the size of the
lattice. Many computations on lattice ensembles with dif-
ferent volumes will be necessary to quantify and remove
this systematic effect.

4.2 Axial currents in heavier nuclei

A holy grail for neutrino-nucleus scattering is controlled
QCD calculations of the axial form factors, resonance tran-
sition form factors, and nuclear PDFs for 40Ar, the tar-
get nucleus in DUNE and several other experiments. As
yet, exponentially hard challenges must be overcome in or-
der for meaningful lattice-QCD calculations of such heavy

nuclei. Both the factorial growth complexity of many-
body contractions and the exponentially degradation of
the signal-to-noise ratio are currently impede to progress
on this front. Since lattice-QCD studies of nuclei are rel-
atively new, it is not unlikely that new algorithms will
definitively alter this picture (algorithms involving ma-
chine learning and quantum computation [219] may dra-
matically improve the situation),6 but at present it is re-
alistic to assume that direct lattice-QCD calculations of
argon will not occur in a timeframe relevant for the coming
long-baseline experiments.

Perhaps more realistically, significant tests of nuclear
EFT frameworks beyond the few-body sector would be
enabled by lattice-QCD calculations of the spectrum and
axial structure of an intermediate nucleus such as 12C.
Aspects of coherent scattering off nuclei will also be ad-
dressed by such calculations. While still challenging, a
number of groups are investigating ways to perform the
relevant contractions and studying improved ways to ex-
tract signals from noisy multi-baryon data through opti-
mization methods [220] or improved estimators [221,56,
222,223,224]. For carbon targets, experimental scattering
data exists and comparison of lattice-QCD calculations
with this will help understand the systematics of the A
dependence of nuclear EFT approaches and assess the re-
liability of the extrapolations to argon.

For light nuclei, adapting the techniques discussed above
to address the Bjorken-x dependence on nuclear PDFs will
become possible as computing resources increase. While
challenging, and still in the development stage even for
the nucleon, these PDF methods will help constrain the
flavor and spin dependence of nuclear PDFs that are im-
portant for high-energy νA scattering.

5 Computing needs

As we have seen in Secs. 3 and 4, many topics pertaining
to lattice QCD for neutrino physics are still exploratory. In
those cases, computing estimates are impossible because
progress depends on innovation and flexible computing,
rather than an industrial resource. It is feasible and rea-
sonable, however, to estimate the computing needs of the
calculations discussed in Sec. 2. We do so here, focusing
on the example of nucleon form factors.

The methodology for the calculation of the axial and
the electromagnetic form factors is well established, and
data with control over statistical errors have been gen-
erated by several collaborations worldwide. Table 1 list
several of these efforts. Unfortunately, only a few include
several ensembles with strange sea quarks [87,81,84]. Even
those calculations should be pushed to smaller lattice spac-
ing and (in one case) smaller up-down quark mass. Fur-
thermore, most calculations obtain mean-squared charge
radii (rA, rE , and rM ) that are smaller than phenomeno-
logical extractions, by about 30%. To diagnose where the

6 For discussion of these novel approaches, see the companion
whitepaper “Status and Future Perspectives for Lattice Gauge
Theory Calculations to the Exascale and Beyond” [5].
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difference lies, it is crucial to improve control over system-
atic uncertainties in lattice-QCD calculations to obtain a
definitive result from QCD.

Here we base the cost estimates for achieving a 10–15%
result on two ongoing efforts within USQCD. A conve-
nient starting point is the work of PNDME collaboration
that has presented extensive results for the axial form fac-
tors [81] using the Wilson-clover formulation for the va-
lence quarks on ensembles with 2+1+1 sea quarks with
the staggered formulation. One way to avoid this “mixed
action” approach is to use staggered valence quarks [100].
Based on current running on institutional clusters at BNL
and Fermilab, we estimate 9M GPU-hours7 to carry out a
calculation on eleven ensembles, five at physical sea-quark
mass, and six with ml = 1

2 (mu+md) = 0.2ms, with lattice
spacing as small as 0.03 fm.

Similarly, a significant subset of USQCD plans on gen-
erating a suite of ensembles with Wilson-clover sea quarks.
To generate eight such ensembles, with light sea-quark
masses corresponding to pion masses of 170 MeV and
270 MeV (four ensembles each), with lattice spacing as
small as 0.05 fm. The estimate to finish generating these
ensembles is 8M GPU-hours (assuming the GPUs on Sum-
mit at ORNL). This chunk of computing will be shared
with many other projects, particularly those described in
the companion white paper “Hadrons and Nuclei” [4]. The
computation of the needed nucleon correlation functions
is estimated to require 15M GPU-hours.

These estimates set the scale for a modern calculation
of the simplest quantity needed for neutrino physics. At
the same time, comparably demanding work with small
nuclei, but not yet physical pion mass, will be needed.
Such work is necessary to understand the technical issues
facing more realistic calculations and to find better meth-
ods and algorithms. Even assuming gains from innovation,
it is hard to imagine that nuclear form factors will end up
below 10M GPU-hours. The same line of reasoning can be
applied to other calculations discussed in Sec. 3.
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5. B. Joó, C. Jung, N.H. Christ, W. Detmold, R. Edwards,
M. Savage, P. Shanahan (USQCD), Phys. Rev. (2019),
1904.09725

6. C. Lehner, S. Meinel, T. Blum, N.H. Christ, A.X. El-
Khadra, M.T. Hansen, A.S. Kronfeld, J. Laiho, E.T. Neil,
S.R. Sharpe et al. (USQCD) (2019), 1904.09479

7. Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett.
81, 1562 (1998), hep-ex/9807003

8. Q.R. Ahmad et al. (SNO), Phys. Rev. Lett. 87, 071301
(2001), nucl-ex/0106015

9. R. Acciarri et al. (DUNE) (2015), 1512.06148
10. K. Abe et al. (Hyper-Kamiokande) (2018), 1805.04163
11. E. Majorana, Nuovo Cim. 14, 171 (1937)
12. P. Minkowski, Phys. Lett. 67B, 421 (1977)
13. T. Yanagida, Prog. Theor. Phys. 64, 1103 (1980)
14. M. Gell-Mann, P. Ramond, R. Slansky, Complex Spinors

and Unified Theories (North-Holland, Amsterdam, 1979),
pp. 315–321, 1306.4669

15. B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957), [Zh. Eksp.
Teor. Fiz. 33, 549 (1957)]

16. B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968), [Zh.
Eksp. Teor. Fiz. 53, 1717 (1967)]

17. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28,
870 (1962)

18. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963)
19. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652

(1973)
20. L. Fields, private communication (2018)
21. L. Alvarez-Ruso et al. (NuSTEC), Prog. Part. Nucl. Phys.

100, 1 (2018), 1706.03621
22. O. Benhar, A. Lovato, Int. J. Mod. Phys. E24, 1530006

(2015), 1506.05225
23. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schi-

avilla, K.E. Schmidt, R.B. Wiringa, Rev. Mod. Phys. 87,
1067 (2015), and references within, 1412.3081

24. E. Epelbaum, H.W. Hammer, U.G. Meissner, Rev. Mod.
Phys. 81, 1773 (2009), 0811.1338

25. R. Machleidt, D.R. Entem, Phys. Rept. 503, 1 (2011),
1105.2919

26. S. Weinberg, Phys. Lett. B251, 288 (1990)
27. U. van Kolck, Phys. Rev. C49, 2932 (1994)
28. D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B424,

390 (1998), nucl-th/9801034
29. U.G. Meißner, Phys. Scripta 91, 033005 (2016),

1510.03230

http://www.jetp.ac.ru/cgi-bin/e/index/e/6/2/p429?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/6/2/p429?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/26/5/p984?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/26/5/p984?a=list


14 Andreas S. Kronfeld et al.: Lattice QCD and Neutrino-Nucleus Scattering

Table 1. Sample of calculations of nucleon form factors going on worldwide. In the first column, “2”, “2+1”, and “2+1+1”
all denote two equal-mass quarks for up and down; the latter two include strange and charm, respectively. The last column
indicates work in which USQCD members participate.

Sea quarks Valence quarks Nens a (fm) Mπ (MeV) Collaboration Ref. USQCD
2 Wilson-clover same as sea 11 0.06–0.08 150–490 RQCD [76]
2 TM clover same as sea 1 0.09 130 ETM [79]
2 Wilson-clover same as sea 11 0.05–0.08 190–470 Mainz (CLS) [80]
2+1 overlap same as sea 4 0.11 290–540 JLQCD [83]
2+1 domain wall [60] overlap 3 0.08–0.15 170–340 χQCD [86] X
2+1 Wilson-clover same as sea 1 0.085 146, 135 PACS [89]
2+1 Wilson-clover same as sea 11 0.05–0.09 200–350 Mainz (CLS) [87]
2+1+1 HISQ [52] Wilson-clover 8 0.06–0.12 135–210 PNDME [81] X
2+1+1 HISQ [52] domain wall 16 0.09–0.15 130–400 CalLat [84] X
2+1+1 TM clover same as sea 3 0.09–0.15 140 ETM [90] X
2+1+1 HISQ same as sea 3 0.09–0.15 135 Fermilab/MILC [100] X

30. C. Juszczak, J.A. Nowak, J.T. Sobczyk, Nucl. Phys. Proc.
Suppl. 159, 211 (2006), hep-ph/0512365
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