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The weak decay parameter α− of the Λ is an important quantity for the extraction of polarization
observables in various experiments. Moreover, in combination with α+ from Λ̄ decay it provides a
measure for the matter-antimatter asymmetry. The weak decay parameter also affects the decay
parameters of the Ξ and Ω baryons and, in general, any quantity in which the polarization of the Λ
is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4) is significantly
larger than the current PDG value of 0.642(13). In this work we make an independent estimate of
α−, using an extensive set of polarization data measured in kaon photoproduction in the baryon
resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result
is corroborated by multiple statistical tests as well as a modern phenomenological model, showing
that our new value yields the best description of the data in question. Our analysis supports the
new BESIII finding that α− is significantly larger than the previous PDG value. Any experimental
quantity relying on the value of α− should therefore be re-considered.
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INTRODUCTION

The decay parameter α− of the parity-violating weak
decay Λ→ pπ− is a result of interference between s- and
p-waves. A recent study by the BESIII collaboration [1]
reported a value of α− as 0.750 ± 0.009 ± 0.004 for this
quantity, which is significantly different from the value
quoted in the 2018 Review of Particle Physics [2] (PDG)
of 0.642± 0.013.

This newly published value of α− is some 17 % higher
than the PDG value and, since both values have uncer-
tainties at the percent level, it represents a discrepancy of
about five standard deviations. The two results are there-
fore incompatible, and so an independent estimate of this
quantity is highly desirable given that α− plays an impor-
tant role in various fields of physics. For instance, com-
paring α− with the parameter α+ of the decay Λ̄→ p̄π+

provides a test of CP symmetry for strange baryons and,
thus can potentially shed light on the matter-antimatter
asymmetry in the universe [3]. α− has also an impact
on several theoretical studies where its actual value en-
ters directly. In particular, it would affect calculations of
the weak nonleptonic hyperon decays within SU(3) chiral
perturbation theory [4–6].

Over the last 40 years there have been various exper-
iments whose results rely on the value of α−. Examples
of this are the extensive studies of the reactions p̄p→ Λ̄Λ
and p̄p→ Λ̄Σ0 + c.c. by the PS185 Collaboration at the
LEAR facility at CERN [7] that measured analyzing pow-

ers, spin-correlation parameters and spin-transfer coeffi-
cients. Recent results, such as the STAR measurement
of heavy ion collisions to study the vortical structure of
a nearly ideal liquid [8], and the ATLAS measurement of
Λ and Λ̄ transverse polarization [9] also depend on the
value of α−.

Information about other strange baryons depends on
α− through chains of successive decays. For example,
the decay parameter for Ξ is determined from the decays
Ξ → Λπ → Nππ and deduced from the product αΞα−,
which in turn affects the measured polarization data for
the reactions K−p → K+Ξ−,K0Ξ0 [10, 11] and γp →
K+K+Ξ− [12]. The decay parameter for Ω− depends
likewise on the values of αΞ, and therefore α− [2].

Another class of experiments that depends on α− is the
series of measurements of recoil polarization observables
for kaon photo- and electro-production in the baryon res-
onance region [13–17]. Fits to such observables by the-
oretical models are a crucial element in determining the
light baryon resonance spectrum [18–21], which provides
a point of comparison for theoretical approaches such as
quark models, Dyson-Schwinger or Lattice QCD calcula-
tions.

Kaon photoproduction data can be also utilized to pro-
vide a new and independent estimate for α−, as will be
demonstrated in the present work. The photoproduction
data set contained in the combination of publications
[15–17] by the CLAS collaboration, is subject to strict
constraints from spin algebra (so-called Fierz identities),
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which can be exploited to derive estimators for α− it-
self. We note that a similar strategy has been followed
once before, based on data for the reaction π−p→ K0Λ
[22]. Anticipating our result, the value for α− found in
our analysis is 0.721± 0.006, i.e. close to but noticeably
smaller than the number given by the BESIII collabora-
tion [1].

DETERMINATION OF α− FROM KAON
PHOTOPRODUCTION DATA

Following Ref. [23], the relative intensity distributions
of events for γ+p→ K+Λ reactions in which there is no
polarization of the beam or target, but where the decay
products of the Λ are measured, is

1 + α− cos θyP. (1)

If the photon beam is circularly polarized we have

1 + α− cos θyP + (α− cos θxCx + α− cos θzCz)P
γ
C , (2)

and if the photon beam is linearly polarized the distribu-
tion is

1 + α− cos θyP − {Σ + α− cos θyT}P γL cos 2φ

− {α− cos θxOx + α− cos θzOz}P γL sin 2φ.
(3)

The Oj ∈ {Ox, Oz, T, Cx, Cz, Σ, P} represent the po-
larization observables, the direction cosines cos θx,y,z rep-
resent the angle of the decay proton in the Λ rest frame
and φ is the angle between the reaction plane and the
photon polarization axis. Together with α−, the degrees
of circular and linear polarizations, P γL and P γC , enter as
“calibration” parameters. The three expressions (1), (2)
and (3) represent the measurements [15], [16] and [17]
respectively.

Assuming that the angles θx,y,z, φ are measured accu-
rately, the extraction of the polarization observables Oj is
possible only if the calibration parameters {α−, P γC , P

γ
L}

are known. The equations (1), (2) and (3), show that the
extraction of Ox, Oz and T requires the product α−P

γ
L ,

Cx and Cz require α−P
γ
C , whilst Σ and P require P γL and

α−, respectively.

The spin algebra of pseudoscalar meson photoproduc-
tion results in several constraints among all 15 polar-
ization observables, known as Fierz identities after the
method used in [24] to derive them. Two of these connect
the observables measured by the CLAS collaboration:

O2
x +O2

z + C2
x + C2

z + Σ2 − T 2 + P 2 = 1 (4)

ΣP − CxOz + CzOx − T = 0 . (5)

If all observables in equations (4) and (5) are measured
then these Fierz identities can be used to estimate the

calibration parameters. The published experiments esti-
mate the uncertainties in P γC and P γL as systematic uncer-
tainties, so we have some prior knowledge of their values,
giving the opportunity to estimate α−.

The CLAS data span a range of energies W and scat-
tering angles θ. Distributions of observables in {W, cos θ}
are then used to study light baryon resonances. In the
present work, we can simply treat the measured data as
an ensemble of observations, each of which are related to
α−.

There is a common region in {W, cos θ} space among
the three measurements [15], [16] and [17], which is
spanned by the 314 points reported in [17]. Denoting
by Oi ≡ O(Wi, cos θi) the set of observables at kinematic
point i ≡ {Wi, cos θi}, we have {Ox, Oz, T, Σ, P}i; i =
1, ..., 314 from [17]. We use Gaussian process prior (GP)
inference [25] with maximum a posteriori (MAP) optimi-
sation of covariance function hyperparameters to model
the Cx, Cz observation uncertainties. A second het-
eroscedastic GP is used, incorporating the mean of the
GP uncertainty model as observation variance, to inter-
polate with the data reported in [16], using the GPML
package [26] to obtain the values of Cx and Cz (and their
variances) at the points {Wi, cos θi}.

Statistical Analysis

With these data, the following Fierz values can be de-
fined:

F (1)
i =a2l2

(
O2
x,i +O2

z,i − T 2
i

)
+ a2c2

(
C2
x,i + C2

z,i

)
+ l2Σ 2

i + a2P2
i , (6)

F (2)
i =al [ΣiPi − Ti − ac(Cx,iOz,i − Cz,iOx,i)] , (7)

where a(= αPDG
− /α−), c and l represent relative system-

atic correction factors in the calibration parameters for
circular and linear photon beam polarization. We use the
convention that caligraphic symbols denote random vari-
ables (RVs). At a given kinematic point i, the observables
Oj,i; j = 1, . . . , 7 are assumed independent, normally dis-
tributed RVs, Oj ∼ N [µj , σ

2
j ] that take on values Oj .

The Fierz RVs F (1,2) take on values f (1,2) and µj , σ
2
j are

the reported CLAS measurements. The use of the Fierz
identities to determine a, l, c poses a series of statistical
challenges that are summarized below; the Supplemental
Material [27] provides the in-depth derivation of these re-
sults, supported by numerical tests using synthetic data.

1. The parameters a, l, c scale the µj but also the un-
certainties σj themselves which potentially leads to a
problem related to, but not identical to, the d’Agostini
bias [28, 29]. Our results are free from bias in this re-
spect.

2. For a typical term in the calculation of the Fierz val-
ues, the new RV Y = βOjOj′ , where β is some com-
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bination of a, l, c, the probability distribution function
(pdf) of Y contains a β-dependent normalization con-
stant. This induces a bias for the pdfs of a, l, c and the
normalization constant has to be removed. A similar sit-
uation is discussed in Ref. [30].

3. For the first Fierz identity, the naive guess based on
Eq. (4), E[F (1)] = 1, is only correct in the limit σj → 0.
The pdf of each summand in Eq. (6) follows a scaled,
non-central χ2 distribution with E[O2

j ] = µ2
j + σ2

j and,

accordingly, E[F (1)] = ∆f 6= 1. Although there ex-
ists no closed form for the distribution of F (1), namely
p(1)(f (1)|a, l, c), the quantity ∆f can easily be calcu-
lated because expectation values add, E[β1O2

j±β2O2
j′ ] =

β1(µ2
j + σ2

j ) ± β2(µ2
j′ + σ2

j′) (analogously for variances).

For F (2), E[OjOj′ ] = µjµj′ with j 6= j′ and there is no
such shift so that the Fierz identity reads E[F (2)] = 0.

For each kinematic point i, we obtain

pi(Oi|a,l,c) ∝ p(1)(f
(1)
i =∆fi|a,l,c) p(2)(f

(2)
i =0|a,l,c),

(8)
where Oi = ∪7

j=1Oj,i symbolizes the data set at point
i. As there is no closed form for these distributions they
can be estimated by sampling: For fixed a, l, c, the Fierz

values f
(1,2)
i,k are calculated from random sample k of the

Oj,i and then binned around ∆fi and 0, respectively.

4. We found that the non-linearities of the problem are
small for this particular case as discussed in the Supple-
mental Material [27]. One can, therefore, partially lin-
earize the problem and construct a Gaussian likelihood
for each kinematic point i,

pi(Oi|a, l, c) ∝ exp

−(f (1)
i − 1

σF(1)
i

)2

−

(
f

(2)
i

σF(2)
i

)2
 (9)

where the f (1,2) are calculated according to Eqs. (6,7)
with the Oj replaced by their means µj (i.e. the mea-
sured values reported in the literature) and expressions
for σF(1,2) given in the Supplemental Material [27]. This
probability is thus an expression of how far away from
the Fierz constraints the combination of the Oj is.

As data for different energies and scattering angles are
independent, the combined likelihood can be written as
the product

P(O|a, l, c) =
1

Z

n∏
i=1

pi(Oi|a, l, c) (10)

where O = ∪ni=1Oi symbolizes the entire data set and Z
is a normalization constant (see item 2.).

Even with the two Fierz identities as constraints, a, l,
and c are highly correlated, and priors on P γC and P γL are
required. Systematic uncertainties in the experiments are
quoted as numbers, which we denote as δC and δL, but
there is no universal prescription to code this information
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FIG. 1. Posterior densities for α−, given different priors for
the beam polarization calibration constants P γC and P γL . The
histograms show the result of the MCMC sampling of the
marginalized posterior densities while the solid lines repre-
sent a direct scan of the posteriors. For clarity, the results
corresponding to the double width uniform priors for P γC and
P γL are omitted. Dark grey vertical bands represent statisti-
cal uncertainty; the additional light grey bands on the BESIII
result represent systematic uncertainty.

as a pdf. To check the robustness of the method we used
four different priors P(l, c): 1) Gaussian: l, c ∼ N (1, δ2

c,l);
2) Uniform: l, c ∼ U(1−δl,c, 1+δl,c); 3) Double Uniform:
l, c ∼ U(1− 2δl,c, 1 + 2δl,c); and 4) Fixed: l = c = 1. We
take δl = 0.05 and δc = 0.02 as representative values,
according to the systematic errors estimated in Refs. [16,
17]. U represents a uniform pdf. The posterior density is

P(a, l, c|O) ∝ P(O|a, l, c)P(l, c) . (11)

The posteriors corresponding to the choice of priors were
explored using a Markov Chain Monte Carlo (MCMC)
implementation (emcee [31]). As there were only three
parameters to be determined we were also able to scan di-
rectly across the parameters a, c and l to validate the re-
sults of the MCMC. The results for α− were obtained by
marginalizing over l and c. Both methods were checked
by applying them to synthetic data that had been scaled
appropriately by a “wrong” value of α−.

RESULTS

The results for the marginalized posteriors for α− with
the measured CLAS data are depicted in Fig. 1, and the
mean and standard deviation of the marginalized pdfs
are reported in Tab. I.

The means of the posteriors are all consistent with each
other. Whilst this is not an exhaustive sensitivity check,
the range of priors chosen reflects quite different assump-
tions. This therefore suggests that the estimated value
for α− does not dependent sensitively on the choice of
prior.
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The Gaussian priors for c and l give unrealistic mean
values of c and l in the posterior pdf that are 3-4 standard
deviations from 1.0, their nominal values. This is pos-
sible since a normal distribution is technically non-zero
over an infinite domain. Results reported by experiments
imply that the range of values defined by the quoted sys-
tematic uncertainties should contain the possible values
of calibration parameters with high probability, without
specifying the form of a pdf. Whilst normal pdfs are of-
ten assumed for systematic uncertainty they are perhaps
not appropriate in this case.

The use of uniform pdfs as priors for P γC and P γL rep-
resents another extreme, where the implication is that
the true values must lie within a given range. We take
two variants: a uniform range defined by the size of the
systematic uncertainties, and a uniform distribution of
double this range. A final extreme assumption is that
there is no systematic error, and that c = l = 1.

We make the assumption that the uniform prior for c
and l between the quoted systematic uncertainties rep-
resents the most realistic assumption, so we quote the
mean value of this variant (0.721) as our result, together
with the standard deviation (0.006) of the pdf of α− as
the statistical uncertainty, and a systematic uncertainty
of ± half the range of values 1

2 (0.727 − 0.717) = 0.005.
We denote this value by αCLAS

− below.
The Supplemental Material [27] provides a more de-

tailed representation of the results in a, l, c space.

Refits with the Jülich-Bonn model

To cross-check the results obtained in the previous sec-
tion and to estimate the impact of a new value of α−
in calculations that employ data such as the ones from
Refs. [15–17] as input, we use the Jülich-Bonn (JüBo)
framework. This is a dynamical coupled-channel ap-
proach that aims at the extraction of the nucleon res-
onance spectrum in a combined analysis of pion- and
photon-induced hadronic scattering processes. In the
JüBo approach, the Fierz identities are fulfilled by con-
struction. A detailed description of the model can
be found in Refs. [32] and [33]; the photoproduction
data of the ηp and K+Λ final states were included re-
cently [20, 34], among them the measurements of the
differential cross section and several polarization observ-
ables in KΛ photoproduction by the CLAS Collabora-
tion [15–17].

In order to estimate the impact of a different value for
α− in the JüBo model, the polarization observables T ,
Ox and Oz from Ref. [17], Cx and Cz from Ref. [16] and P
from Ref. [15] are scaled by this value, i.e. multiplied by
(αPDG
− /αBESIII

− ) or by (αPDG
− /αCLAS

− ) and a refit of a sub-
space of free parameters of the model is performed. The
data included in the refit are limited to those that are
contained in the energy range defined by the measure-

Source Value Prior Assumption PLγ , PCγ

PDG 0.642 ± 0.013
BES III 0.750 ± 0.009 ± 0.004

CLAS

0.719 ± 0.013 N (1.0, 0.052), N (1.0, 0.022)
0.721 ± 0.006 (?) U(0.95, 1.05), U(0.98, 1.02)
0.727 ± 0.007 U(0.90, 1.10), U(0.96, 1.04)
0.717 ± 0.004 Both fixed at 1.0

0.721 ± 0.006 ± 0.005 Summary of our result

TABLE I. Summary of results. The result marked (?) repre-
sents the most realistic prior on P γC and P γL .

Observable χ2/n (Refits)
(# data points) α− = 0.642 0.75 0.721

dσ/dΩ (421) [15] 1.11 1.03 0.95
Σ (314) [17] 2.55 2.61 2.56
T (314) [17] 1.75 1.74 1.69
P (410) [15] 1.84 1.66 1.62
Cx (82) [16] 2.15 1.72 1.34
Cz (85) [16] 1.58 1.83 1.62
Ox (314) [17] 1.44 1.53 1.51
Oz (314) [17] 1.34 1.58 1.49

all (2254) 1.67 1.66 1.59

TABLE II. χ2/data point of the Jülich-Bonn refits for differ-
ent values of α−. The value of α− = αPDG

− = 0.642 corre-
sponds to the refit to unscaled data, α− = 0.75 correponds
to the BES-III result [1] and α− = 0.721 uses the data-driven
result of this study as input for the refit.

ment in [17]. Note that also the statistical data errors
entering the χ2 are scaled.

In addition, we also perform a refit of the unscaled
data. This is necessary because the solution JüBo2017
[20], which is the starting point for the refits, represents
the minimum of the global coupled-channels fit including
all 48,000 data points from different reactions. A refit
considering only the unscaled data listed in Tab. II pro-
vides a valid point of comparison for the fit to the scaled
data. We vary only parameters of the non-pole polynomi-
als [33] that couple to the KΛ final state, which amounts
to 73 fit parameters. They are adjusted to the data in a
χ2 minimization using MINUIT on the JURECA super-
computer at the Jülich Supercomputing Centre [35]. In
all three fits identical fitting strategies are applied.

The results are shown in Table II. The best χ2 is ob-
tained for the data scaled by αCLAS

− as determined in
this study, while the refit to the data scaled by αBESIII

−
returns a similar χ2 to the fit to the unscaled data
(αPDG
− = 0.642). Both are significantly worse than αCLAS

−
which corroborates our independent result. As a caveat,
the best χ2/n itself (1.59) is still too large which suggests
that for a more quantitative comparison l and c should
also be varied as before to allow for more systematic un-
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certainties, or that the model parameterization itself is
not flexible enough.

CONCLUSIONS

The decay parameter α− of the Λ is a fundamental
physical constant that is used to obtain polarization in-
formation from reactions in which the parity-violating
weak decay Λ→ pπ− occurs. Its value has recently been
thrown into dispute by a new measurement, thereby af-
fecting all results that rely on it. We have made an in-
dependent estimate of this quantity by combining an en-
semble of observables from kaon photoproduction mea-
sured at CLAS with constraints set by Fierz identities.
Our value of 0.721 ± 0.006 (statistical) ± 0.005 (sys-
tematic), clearly favours the new BESIII result of 0.750
± 0.009 ± 0.004 over the current PDG value of 0.642
± 0.013, though it differs manifestly from the former as
well.

In view of that, it is obvious that past results which in-
volve the Λ decay parameter should be revisited to ensure
that the derived quantities are in line with the new and
larger reference value of α−, considering, of course, the
present uncertainty. This applies to data from all exper-
iments where the polarization of the Λ or Ξ baryon was
measured. As a consequence, phenomenological analy-
ses of those data performed in searches for (new) excited
baryons and their properties should also be updated.
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– Supplemental Material –

Derivation of α− Extraction Method

The determination of α− and the correction factors
l, c raises statistical challenges. Additional details for the
statistical analysis in the main text are provided here. To
clarify the notation, random variables (RVs) are denoted
with calligraphic symbols (F , O, C) while the values they
can take are denoted with ordinary letters; in particular,
we use O for observables with reported µi, σi and f for
Fierz values.

Consider the measurement of observables Ci,j ; j =
1, . . . , 7 for n kinematic points (Wi, θi), i.e., i = 1, . . . , n.
We assume that all measurements of C are independent
and normally distributed at a given kinematic point, Cj ∼
N [µCj , σ

2
Cj ]. These “raw” data correspond to the actual

measurements, for example the product α−P in Eq. (1)
of the main text. In the subsequent experimental analysis
of the CLAS data, the Cj are all scaled by the (poten-
tially wrong) PDG weak decay parameter α̃− ≡ αPDG

− to
obtain Oj ∼ N [µj ≡ µCj/α̃−, σ2

j ≡ σ2
Cj/α̃

2
−] which corre-

spond to the published data and which are the quantities
entering the Fierz identities.

We determine corrections to α̃− by introducing a cali-
bration factor a = α̃−/α to scale the observables entering
the Fierz identities, Oj → aOj . The parameters a, l, c are

estimators, usually denoted as â, l̂, ĉ, but we leave out
the hats in favor of a simplified notation. For the for-
mal discussion in this supplemental material, we set the
true, unknown α− to one for simplicity. Note that, while
there are a finite number of n measurements, we have to
consider the ensemble limit m → ∞ to check for biases,
i.e., the expectation values of the parameter estimators
a, l, c for a finite number of kinematic points. To derive
the distributions of the calibration parameters a, l, c we
follow the same numbering as in the main text:

1. and 2. Bias when data errors are scaled/a-dependence
of normalization constant.

These two issues can best be discussed together. Here,
we consider the inverse of a, b = 1/a 2, meaning that we
have to show for the expectation value E[b] = α̃−1

− for any
method to be unbiased so that the true α− = αPDG

− b (all
statements in the sense of pdfs, to be formalized below).
To demonstrate the issue we start with the simplest Fierz
identity, E[Oi/b] = 1, i.e., µ ≡ E[µCi ] = 1. The Fierz

2 Considering b instead of a avoids undefined expressions like
E[1/µCi ] that arise if only one kinematic point is considered.
For the problem with more than one point, one can work with
either a or b, as long as the pertinent pdfs are converted correctly
at the end.

TABLE III. Ordering of observables and pertinent combina-
tions sj of correction factors for the first Fierz identity.

Oj Ox Oz T Cx Cz Σ P

sj a2l2 a2l2 −a2l2 a2c2 a2c2 l2 a2

values are given by Fi = Oi/b and distributed as (fi =
Oi/b, b > 0),

p
(1)
Fi (fi, b) =

∫
dOi p(Oi)δ(Oi/b− fi) = b p(bfi) . (12)

The distribution of b is the conditional probability from
the expected Fierz value at fi = 1,

p
(1)
i (b)=

b√
2πµiσi

exp

[
− (1− µi/b)2

2 (σi/b)2

]
∼ p(1)
Fi (1, b), (13)

with mode at

b
(1)
i =

µCi +
√
µ2
Ci + 4σ2

Ci

2α̃−
, (14)

which is equal to α̃−1
− if and only if σCi → 0, i.e., the

obtained result is biased (even without considering the
expectation value).

Next, consider the case in which b is removed from the
normalization but still present for the scaling of σi in the
exponent,

p
(2)
i (b) =

1√
2π σi

exp

[
− (1− µi/b)2

2 (σi/b)2

]
, (15)

with mode at b
(2)
i = µCi/α̃− so that E[b

(2)
i ] = α̃−1

− . To
exclude bias, one has to consider the measurement of
at least two kinematic points, resulting in µ1, µ2, σ1, σ2.

Then, the expectation value of the mode b
(2)
12 of of p

(2)
1 p

(2)
2

is indeed unbiased,

E[b
(2)
12 ] = E

[
µC2σ

2
C1 + µC1σ

2
C2

α̃−
(
σ2
C1 + σ2

C2

) ] =
1

α̃−
. (16)

To summarize, while both µCi and σCi scale with b,
the scaling of the Fierz variable Fi = Oi/b in Eq. (12)
induces a b-dependent normalization factor which has to
be removed. This also holds true for non-Gaussian dis-
tributions and, analogously, for more than one scaling
factor. We have checked this result in numerical simula-
tions for linear Fierz identities of the form E[O/b = 1]
and E[O1/b1 +O2/b2] = 1.
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FIG. 2. Reconstruction of α̃− for Fierz identities with syn-

thetic data. The figures show p(1)(a) =
∏
i p(f

(1)
i = ∆fi|a)

and p(2)(a) =
∏
i p(f

(2)
i = 0|a) in the top and bottom row, re-

spectively. Two choices of α̃− are shown (0.55,0.85) with the
thick red lines. Different colors of the histograms represent
repetitions of the procedure to show fluctuations.

3. Non-linearity of the problem.

For the first Fierz identity given in Eq. (6) of the main
text one has to consider squares of normal distributions.
For a normally-distributed X ∼ N [µ, σ2], Y = X 2 is
distributed according to a scaled, non-central χ2 distri-
bution with one degree of freedom (NC),

pY(y) =

∞∫
−∞

dx δ(x2 − y)
1√
2πσ

exp

[
− (x− µ)2

2σ2

]

=

 exp
[
− y+µ

2

2σ2

]
cosh

[√
yµ

σ2

]
√

2πyσ
for y > 0 ,

0 else ,
(17)

with mean and variance

µY = µ2 + σ2, σ2
Y = 2σ2(2µ2 + σ2) , (18)

demonstrating that, even if α̃− has the correct value
α̃− = 1, the Fierz value F = O2 for the simple iden-
tity E[O2] = 1 will no longer have an expectation value
of one but E[F ] = µ2 + σ2 = 1 + σ2.

For the actual Fierz identity given in Eq. (6) of the
main text, there is no closed-form expression for the dif-
ference of NC distributions and thus the distribution of
the Fierz value F (1), namely p(1)(f (1)|a, l, c), at a given
point i, can only be obtained by sampling the set of ob-
servables Oj , calculating f (1) according to Eq. (6) of the
main text for each sample, and then bin in F (1).

On the other hand, we know from Eq. (18) that for the
true α−, l, c the expectation value has to be

∆f ≡ E[F (1)] = 1 +

7∑
j=1

sjσ
2
j (19)

to fulfill the Fierz identity, with Oj and sj specified in
Table III. The Fierz identity then imposes a condition on

ℱ (1), full

ℱ (1), Gauss

ℱ (2), full

ℱ (2), Gauss

1.14 1.16 1.18 1.20 1.22
0

10

20

30

40

50

60

FIG. 3. Reconstruction of α̃− (vertical bar) from 500 sets of
observables generated from the JüBo model. Shown are pdfs
using the first and second Fierz identities. For both cases, full,
nonlinear treatment according to Eqs. (20,23) and Gaussian
approximations according to the two terms in Eq. (9) of the
main text.

the distribution of Fierz values at each kinematic point
i:

p
(1)
i (a, l, c) = p(1)(f

(1)
i =∆fi|a, l, c) , (20)

which coincides with the first term in Eq. (8) of the main
text.

For the second Fierz identity given in Eq. (7) of the
main text, the situation is similar. The distribution of
the product of two independent Gaussian RVs, Z = XY,
cannot be written in closed form but mean and variance
can be calculated,

µZ = µXµY , σ2
Z = µ2

Xσ
2
Y + µ2

Yσ
2
X + σ2

Xσ
2
Y . (21)

Compared to the squared case discussed before, there is
no shift because E[XY] = µZ = µXµY and we simply
have

E [ΣP + ac (CzOx − CxOz)− T ] = 0 , (22)

because all Gaussian RVs enter either alone (T ) or as
products, but not as squares. Following the same argu-
ments as for the first Fierz identity one obtains

p
(2)
i (a, l, c) = p(2)(f

(2)
i =0|a, l, c) , (23)

i.e., the second term of Eq. (8) in the main text.

4. Gaussian approximation.

For the first Fierz identity, we take account of the non-
linearity of the problem because the r.h.s. of Eq. (20)
is the distribution of the Fierz value, obtained through
sampling and evaluated at f (1) = ∆f (analogously, for
the second Fierz identity).

For the given data, the pdfs of the Fierz values are
approximately Gaussian for both Fierz identities which
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FIG. 4. Posterior distribution of (α−, l, c) as in Eq. (11) of the main text using a Gaussian prior with l ∼ N (1, 0.052), c ∼
N (1, 0.022).

suggests that a sufficiently accurate (partial) lineariza-
tion of the problem might be possible. At a given kine-
matic point i, the Gaussian approximation of the first
Fierz identity, p(1)(f (1)|a, l, c), with variance σ2

F(1) , eval-

uated at f (1) = ∆f , is

p
(1)
G (a, l, c) ∼ exp

−
(

∆f −
∑
j sj(µ

2
j + σ2

j )
)2

2σ2
F(1)


= exp

−
(

1−
∑
j sjµ

2
j

)2

2σ2
F(1)

 , (24)

with σF(1) calculated from Eq. (18). Notably, all vari-
ances in the numerator of the exponent cancel and the
resulting expression is very simple. This result corre-
sponds to the first term in Eq. (9) of the main text. An
analogous approximation leads to the second term with
σF(2) calculated from Eq. (21).

Note that the a, l, c parameters still appear squared in
the first Fierz identity after the partial linearization of
Eq. (24). In general, such nonlinear problems are still bi-
ased. One can see this straightforwardly by following the
arguments that led to Eq. (16): the proof for b being un-
biased relies on the strict linear relation of parameter and
data which is not given here anymore. Non-linear bias is
usually neglected but should not be ignored. Therefore,
we will test not only the full non-linear treatment but
also the Gaussian approximation in the following through

numerical simulations. As we will find, the bias is not
large within uncertainties given our data base of around
n = 300 kinematic points.

Simulations with Synthetic Data

The method to extract α− relies on a numerical sam-
pling procedure to construct the distributions of the Fierz
values F (1) and F (2) that are subsequently evaluated at
the respective expectation values f (1) = ∆f and f (2) = 0.
The remaining a, l, c dependence determines the distribu-
tion of these parameters. Also, for both calculations, the
a, l, c dependence of normalization factors has to be re-
moved as discussed previously. In the following tests, we
fix l = c = 1 for simplicity but we have also tested linear
Fierz identities for two correction factors (see previous
section).

First, we numerically test the method by generat-
ing synthetic data imposing different values of α̃− and
then checking whether the distribution of the recon-
structed a has its mode at a = α̃−. In Figs. 2 the
result for both Fierz identities are shown. For each
identity, values of seven observables j at 300 kinematic
points i were generated that fulfill the respective Fierz
identities. Gaussian noise was added using typical un-
certainties of the observables, i.e., {σCi |i = 1, ..7} =
{0.2, 0.25, 0.2, 0.15, 0.3, 0.25, 0.2} and {σCi |i = 1, ..7} =
{0.1, 0.2, 0.2, 0.15, 0.1, 0.15, 0.2} to first and second Fierz
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FIG. 5. Posterior distribution of (α−, l, c) as in Eq. (11) of the main text using a uniform prior with l ∼ U(0.95, 1.05), c ∼
U(0.98, 1.02).

identity, respectively. Then, two different values of α̃− 6=
1 were imposed to scale the respective observables Ci,j
leading to Oi,j from which α̃− was reconstructed. For
each of the seven observables, 200,000 events were gener-
ated. The reconstruction process was then repeated a few
times, as the experimentally measured values µCi fluctu-
ate. The results support the claim that the a = α̃− are
indeed correctly reconstructed for both Fierz identities.

Second, the method was tested by using 500 sets of
observables calculated from the JüBo model, where by
construction the observables must obey the Fierz iden-
tities. These pseudodata were then rescaled by a value
of α̃− = 1.157 and Gaussian noise of realistic size was
added to each observable. The test result is represented
in Fig. 3. Again, α̃− is reconstructed within 1-σ uncer-
tainty. Here, we also test the Gaussian approximations
from Eq. (9) of the main text together with the full, non-
linear treatment. For both identities, the differences are
much smaller than the precision of a, based on the syn-
thetic data that have similar uncertainties as the actual
data.

This numerical test also provides the opportunity to
assess the size of the different corrections applied in the
extraction method of α−: If one evaluates f (1) of the
first Fierz identity at f (1) = 1 instead at f (1) = ∆f ,
the result is a = 1.136 ± 0.007, i.e., too small by about
3σ. Including the shift of the noncentral χ2 distribution
is therefore important (see item 3). If, in addition, one
does not remove the a-dependence of the normalization

constant (see item 2), the result is a = 1.120±0.006, i.e.,
too small by more than five σ.

As demonstrated, the linearization of the problem in
form of a Gaussian approximation provides very simi-
lar results to the full nonlinear treatment, at least for
ideal data with only statistical noise. Another question is
whether both methods are also robust. In an additional
test, we have left the mean values µi,j of the data un-
changed but scaled all error bars σi,j , i.e., they no longer
represent the statistical noise. With these modified data,
the Gaussian approximations produce almost the same
distributions of a while the results using the nonlinear
method change noticeably. Therefore, all final results for
the actual data shown in the supplemental material and
main article are determined using the Gaussian approxi-
mations.

Detailed Representation of Results

Using the procedure described above we can estimate
the distribution of the Fierz values with respect to the
asymmetry parameter α− and scaling factors l, c as well
as their correlations. The latter two parameters repre-
sent an unknown systematic uncertainty on which priors
have to be imposed as explained in the main text. We
consider two extreme cases – Gaussian (l, c ∼ N (1, δ2

c,l)
and Uniform priors l, c ∼ U(1−δl,c, 1+δl,c) with δl = 0.05
and δc = 0.02. The results are shown in Figs. 4 and 5.
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