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The deuteron form factors are calculated using two model wave functions obtained from the 2007
CST high precision fits to np scattering data. Included in the calculation are a new class of isoscalar
np interaction currents which are automatically generated by the nuclear force model used in these
fits. If the nuclear model WJC2 is used, a precision fit (χ2/datum h 1) to the Sick Global Analysis
(GA) of all ed elastic scattering data can be obtained by adjusting the unknown off-shell nucleon
form factors F3(Q2) (discussed before) and F4(Q2) (introduced in this paper), and predicting the
high Q2 behavior of the neutron charge form factor GEn(Q2) well beyond the region where it has
been measured directly. Relativistic corrections, isoscalar interaction currents, and off-shell effects
are defined, discussed, and their size displayed. A rationale for extending ed elastic scattering
measurements to higher Q2 is presented.

I. INTRODUCTION

A. Background

This work is the last in a series of papers [1–3] (re-
ferred to as Refs. I, II, and III) that present the fourth
generation calculation of the deuteron form factors using
what is sometimes called the Covariant Spectator Theory
(CST) [4–6]. The third generation, done by Van Orden
and collaborators in 1995 [7], calculated the form factors
from a variation of model IIB (originally obtained from
a 1991 fit to the np database [8], with an improved fit
giving χ2/datum ' 2.5 [7]) already provided an excel-
lent description of the deuteron form factors. The cur-
rent calculation is needed only because a better CST fit
to the np database was found in 2007. This fit, with a
χ2/datum ∼ 1, included momentum dependent terms in
the kernel and requires a completely new treatment. For
a brief review of the previous CST history of calculations
of the form factors, see the introduction to Ref. I. For a
more comprehensive survey of the field see several recent
reviews [9–11].

The CST, in common with other treatments based on
the assumption that NN scattering can be explained by
the ladders and crossed ladders arising from the exchange
of mesons between nucleons [6, 12], treats nucleons and
mesons as the elementary degrees of freedom, with the in-
ternal structure of the nucleons and mesons treated phe-
nomenologically. This means that, in particular, the elec-
tromagnetic form factors of the nucleons that are bound
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into a deuteron are not calculated, but must be obtained
from direct measurements of electron-nucleon scattering.
If the form factors cannot be measured directly, they can
be treated as undetermined functions that can be fixed
by fitting the theory to electron-deuteron (ed) scattering
data.

In common with the 1991 fit that lead to model IIB,
the new fit to the 2007 np data base [13, 14] was ob-
tained using the CST two body equation (sometimes
called the Gross equation) with a one boson exchange
(OBE) kernel. However, we found that a high precision
fit (with χ2/datum ∼ 1) could be obtained only if the
NNσ0 vertices associated with the exchange of a scalar-
isoscalar meson, denoted σ0, included momentum depen-
dent terms in the form

Λσ0(p, p′) = gσ0
1− νσ0

[
Θ(p) + Θ(p′)

]
(1.1)

where νσ0
is a parameter fixed by fitting the NN scatter-

ing data, p and p′ are the four-momenta of the outgoing
and incoming nucleons, respectively, and the Θ are pro-
jection operators

Θ(p) =
m− /p

2m
, (1.2)

which are non-zero for off-shell particles, and hence are
a feature of both the Bethe-Salpeter and CST equations.

Two high precision models were found with somewhat
different properties. Model WJC1 (originaly designated
WJC-1), designed to give the best fit possible, has 27
parameters, χ2/datum ' 1.06, and a large νσ0

= −15.2.
Model WJC2 (originaly designated WJC-2), designed to
give a excellent fit with as few parameters as possible,
has only 15 parameters, χ2/datum ' 1.12, and a smaller
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FIG. 1. Diagrammatic representation of the current operator of the Covariant Spectator Theory with particle 1 on-shell (the on-shell
particle is labeled with a ×). Diagrams (A), (B+), and (B−) are the complete impulse approximation (CIA), while (C) is the interaction

current term. Note that both particles are off-shell in the initial state in diagram (B+) and in the final state in diagram (B−).
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FIG. 2. Using the consequences of current conservation the diagrams in Fig. 1 can be transformed into the three diagrams shown above.
Diagram (A) is unchanged, the two diagrams diagrams (B±) of Fig. 1 are combined into the single diagram (B), and the interaction current

contributions of Fig. 1C are distributed to diagrams (A(2)) and parts of the (B) diagram, as discussed in the text. Off-shell nucleon lines
are thicker than on-shell lines. Diagram (B) represents the sum of two diagrams, one with particle 1 off-shell in the initial state and one

with particle 1 off-shell in the final state (in this case Γ̂BS and Γ would be interchanged in the diagram), collectively represented by the

single diagram with a thick line for particle 1.

νσ0
= −2.6. Both models also predict the correct tri-

ton binding energy (see Figs. 12 and 13 of Ref. [13] and
Ref. [15]). The deuteron wave functions predicted by
both of these models [14] have small P-state components
of relativistic origin, and the normalization of the wave
functions includes a term coming from the energy depen-
dence of the kernel, which contributes −5.5% for WJC1
and −2.3% for WJC2.

This momentum dependence of the kernel implies the
existence of a new class of np isoscalar interaction cur-
rents that will contribute to the electromagnetic interac-
tion of the deuteron, leading to the need for this fouth
generation calculation. These currents were fixed in Ref.
I, and used to predict the deuteron magnetic moment
(Ref. II) and the quadrupole moment (Ref. III). This pa-
per completes this series of papers by calculating the de-
pendence of the form factors on the momentum transfer

of the scattered electron, Q2.
In the process of fitting the ed data, we are able to

determine two off-shell nucleon form factors and predict
the high momentum behavior of the neutron electric form
factor, GEn(Q2), beyond the region where it has been
measured. These and other major conclusions of this
paper are discussed in detail in Sec. VI below.

B. Organization of the paper

This paper is organized into six sections, with most of
the theoretical details moved to the Appendices. The rest
of this section describes the ingredients of the calculation
as simply as possible, with emphasis on the important off-
shell nucleon current. A more complete discussion can be
found in the Appendices and in Refs. I–III. The major re-
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sults are described in Sec. II, which gives predictions that
are extracted from the ed measurements. Sec. III shows
how the individual deuteron form factors are built up
from the different theoretical contributions, and Sec. IV
discusses the size and importance of relativistic effects.
The results for the deuteron static moments are reviewed
in Sec. V, and finally I draw major conclusions in Sec. VI.
The reader eager to get to the conclusions may jump to
Sec. VI, and backtrack as needed to fill in the many miss-
ing details.

Seven appendices summarize many details needed for a
precise understanding of this paper. Appendix A reviews
the theoretical definitions of the deuteron form factors,
deuteron current and deuteron wave and vertex func-
tions, and examines how the arguments of the amplitudes
are shifted by the relativistic boosts that enter into the
calculation of the form factors. Appendix B derives the
form of the nonrelativistic deuteron charge form factor,
GC , in momentum space. Appendices C and D discuss
some details of the extraction of the nucleon form fac-
tors from the theory, and Appendices E and F describe
some theoretical transformations that facilitate the calcu-
lations. Finally, Appendix G discusses some errors that
were found in Ref. II.

C. Diagrammatic form of the deuteron current

In CST when a OBE kernel is used to describe the NN
interaction, the two-body current is given initially by the
four diagrams shown in Fig. 1. Here, by convention, it
is assumed that particle 1 is on-shell (I could have cho-
sen particle 2 to be on-shell with corresponding changes
in the diagrams), and the necessary (anti)symmetry be-
tween the two particles is contained in the kernel, which
is explicitly (anti)symmetrized. In these diagrams the
deuteron structure is represented by a vertex function,
Γ, in which particle 1 is on shell and particle 2 off-shell,
and a vertex function ΓBS in which both particles are off-
shell. The vertex function Γ is calculated directly from
the deuteron bound state equation and ΓBS can be cal-
culated from Γ.

I showed in Ref. I how the current operator shown
in Fig. 1(C) can be re-expressed using an effective ver-

tex function Γ(2) and a subtracted vertex function Γ̂BS.
When this is done, diagram 2(A(2)) and parts of 2(B)
include the interaction current contributions originally
included in diagram 1(C). The new diagram 2(B) not
only includes part of the interaction current, but is also
a generic way of combining the two diagrams 1(B±). The
three diagrams of Fig. 2 are completely equivalent to the
five diagrams shown in Fig. 2 of Ref. I and Fig. 1 of Ref. II
(but the labeling of the momenta in the B± diagrams dif-
fers from the choice here).

Diagrams 2(A) and 2(A(2)) describe the interaction of
the photon with particle 2, allowing particle 1 to be on-
shell in both the initial and final state. The internal

momenta are

k = {Ek,k} ≡ k̂
p± = P± − k , (1.3)

where P+ (P−) are the four-momenta of the outgoing
(incoming) deuterons, and the hat symbol over a four-
vector means that the four-vector is on-shell. Diagram
2(B) describes all the interactions of the photon with
particle 1, so that both particles must off-shell in either
the initial or in the final state. Here the internal momenta
are

k̃ = {k0,k}

p̃ = P± − (k̃ ± 1

2
q) . (1.4)

The final (initial) nucleon is on shell when k0 = E+ (E−),
with

E± =

√
m2 +

(
k± q

2

)2

. (1.5)

D. Strong form factor h and the bound nucleon
current

In this section I describe two central features of the
CST calculation of the deuteron observables and form
factors from the diagrams in Fig. 2. These are (i) the
presence of a strong nucleon form factor, h, and (ii) the
structure of the bound nucleon current, which depends
on four form factors: not only the usual Dirac and Pauli
form factors F1 and F2, but also two off-shell form fac-
tors F3 and F4. The first of these, F3, has been discussed
extensively in previous work, but F4 has never been in-
troduced before and is a major new feature of this paper.

1. The strong nucleon form factor h(p)

In all strong, nonperturbative theories of hadronic
structure there is a need to include form factors that
cut off high momentum contributions and provide con-
vergent results. In the CST-OBE models studied so far,
the form factors at the meson-NN vertices are assumed
to be products of strong form factors for each particle en-
tering or leaving the vertex. This means that for each nu-
cleon of momentum p entering or leaving a vertex, there
is a universal strong nucleon form factor h(p) (a function
of p2 only) present at that vertex. This form factor is
normalized so that when p = p̂ (so that p is on shell),
h(p̂) = 1.

Because it is universal, the strong form factor associ-
ated with each external nucleon line can be factored out
from the NN scattering kernel giving

V (k, k′;P ) = h(k)h(p)Ṽ (k, k′;P )h(k′)h(p′) , (1.6)

where k (k′) are the four-momentum of the outgoing (in-

coming) particle 1, Ṽ is the reduced kernel and, for both
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primed and unprimed variables, p = P − k. Note that
the expression for the kernel is written allowing for the
possibility that any (or all four) of the particles could
be off-shell. Similarly, removing the strong form factors
from the vertex function gives a reduced vertex function

Γ̃BS , where

Γ̂BS(k, P ) = h(k)h(p)Γ̃BS(k, P ) . (1.7)

Since h(p) is included in the kernel, and h(k̂) = 1
when particle 1 is on-shell, the dependence of the re-
sults on variations of h(p) when particle 1 is on-shell has
already been studied in the fits to the NN scattering
and presents nothing new. However, when electromag-
netic current conservation is imposed, the presence of
h(p) leads to a modification of the nucleon current. This
h dependence is a new feature of the relativistic theory
that is interesting to study. In addition, when particle 1

is off-shell, so that k 6= k̂, the dependence of the calcu-
lation on h(p) for k0 − E 6= 0 is another feature of the
relativistic theory that is new.

I will report on some of these effects later in Sec. III;
for now I only want to highlight existence of the strong
form factor h, because its presence drives the discussion
of the bound nucleon current.

2. Structure of the bound nucleon current

Using interactions that depend only on ∆, the mo-
mentum transfer by the interacting particles, Feynman
showed a long time ago that current conservation could
be proved if the off-shell bound nucleon current satisfied
the Ward-Takahashi (WT) identity

qµ j
µ
0 (p′, p)= e0

[
S−1(p)− S−1(p′)

]
, (1.8)

where S(p) is the propagator of a bare nucleon, which in
my notation (with the i’s removed) is

S(p) =
1

m− /p− iε
. (1.9)

When a strong nucleon form factor is present, the in-
teractions in a one boson exchange (OBE) model will
be of the form h(p)V (∆)h(p′), and can be made to de-
pend only on ∆ if the strong nucleon form factors coming
from the initial and final interactions that connect each
propagator are moved from the interactions to the propa-
gators connecting them. Since each propagator connects
two interactions, the new (dressed) nucleon propagator
then has the form

Sd(p) = h2(p)S(p) . (1.10)

Now a similar proof of current conservation is possible
[16] provided a reduced current jµR(p′, p), is constructed

jµ(p′, p) = h(p′)h(p)jµR(p′, p) , (1.11)

and required to satisfy a generalized WT identity

qµ j
µ
R(p′, p)= e0

[
S−1
d (p)− S−1

d (p′)
]
. (1.12)

There are many solutions to (1.12). The one I use in
this paper is

jµ(p′, p) = e0 f0(p′, p)

[
Fµ1 + F2(Q2)

iσµνqν
2m

]
+e0 g0(p′, p)Θ(p′)

[
Fµ3 + F4(Q2)

iσµνqν
2m

]
Θ(p) (1.13)

where f0, g0 are (uniquely determined) off-shell functions
discussed below, e0 = 1

2 is the isoscalar charge, the off-
shell projection operator Θ was defined in (1.2),

Fµi = [Fi(Q
2)− 1]γ̃µ + γµ

= Fi(Q
2)γ̃µ +

/qqµ

q2
, (1.14)

and the transverse gamma matrix is

γ̃µ = γµ − /qqµ

q2
, (1.15)

with q = p′− p. Except for the addition of the new form
factor F4, this is precisely the current that has been used
in all previous work.

3. Uniqueness of the bound nucleon current, and the
principle of balance

The longitudinal parts of the current (1.13) are largely
determined by the generalized WT identity (1.12). Still,
as (1.14) displays, the important physics contained in the
form factors F1 and F3 is purely transverse, and the lon-
gitudinal part that is constrained by the WT identities
will not contribute to any observable since it is propor-
tional to qµ which vanishes when contracted into any con-
served current or any of the three polarization vectors of
an off-shell photon. The form factors themselves are com-
pletely unconstrained by current conservation, except for
the requirement that F1(0) = F3(0) = 1 (with the real
normalization set by e0). This is as it should be; the
structure of the nucleon should not be fixed by the gen-
eral requirement of current conservation.

Similarly, the transverse Pauli-like terms F2 and F4

are completely unconstrained, and there are may other
off-shell terms that we could add to the current. What
principal is to constrain these?

In Ref. I, I introduced the principles of simplicity and
picture independence in an attempt to limit possible con-
tributions. I found that, using current conservation and
these principles, all contributions from the structure of
the meson-nucleon vertices could be expressed in terms
of the nucleon structure F1 alone; no new interactions,
such as the famous ρπγ interaction current, needed to be
added. However, these arguments placed no constraint
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on the F2 term. Clearly it must be included because
the free nucleon cannot be described without it, but the
choice of whether or not to multiply the F2 term by f0 is
not dictated by these principles. Similarly, I emphasize
that the introduction of F4 is not required by the princi-
ples of simplicity or picture independence. To justify the
introduction of F4 and to explain the use of the same f0

for both F1 and F2, and the same g0 terms for F3 and
F4, a new principle is needed.

The new principle will be referred to as the principle
of balance between Dirac and Pauli interactions. The
principle states that whenever a Dirac-like charge term
(F1 and F3 in this case) is required, a similar Pauli-like
term (F2 and F4) will be included. This ensures that
the off shell current, expressed in terms of the F3 and F4

from factors, could also be expressed in terms of off-shell
charge (Goff

E ) and magnetic (Goff
M ) form factors, without

a constraint on the structure of either (except for the
previously discussed constraint F3(0) = 1).

4. Properties of f0 and g0

The simplest solution to (1.12) is

f0(p′, p) =
h′

h

[
m2 − p2

p′2 − p2

]
+
h

h′

[
m2 − p′2

p2 − p′2

]
g0(p′, p) =

4m2

p′2 − p2

[
h

h′
− h′

h

]
. (1.16)

where I use the the shorthand notation h = h(p) and
h′ = h(p′). Both f0 and g0 are symmetric in p′, p, and
important limits are

f00(p2) = lim
p′2→p2

f0(p′, p) = 1 + 2a(p2)(m2 − p2)

f01(p2) = lim
p′2→m2

f0(p′, p) = lim
p′2→m2

f0(p, p′) =
1

h

g00(p2) = lim
p′2→p2

g0(p′, p) = −8m2a(p2) (1.17)

where

a(p2) =
1

h

dh

dp2
. (1.18)

E. Definitions of deuteron observables

Precise definitions of the deuteron form factors will be
reviewed in Appendix A. For an understanding of the
results to be presented in Sec. II, it is only important
to review that electron-deuteron scattering is described
by three independent deuteron form factors [9, 10]: GC
(charge), GM (magnetic), and GQ (quadrupole). De-
noted generically by GX (with X = {C,M,Q}). These
form factors are a sum of products of isoscalar nucleon
form factors, Fi(Q

2) (where the subscript s labeling these

as isoscalar will be omitted throughout this paper for
simplicity), and body form factors, DX,i(Q

2), so that

GX(Q2) =

4∑
i=1

Fi(Q
2)DX,i(Q

2) (1.19)

It is important to realize that the theory presented in this
paper calculates the body form factors only; the nucleon
form factors must be obtained from another source.

The deuteron form factors can be measured by the
analysis of three independent experiments. Two of these
can be obtained from the unpolarized elastic scattering
of electrons from the deuteron. In one photon exchange
approximation, this elastic scattering is given by

dσ

dΩ
=
dσ

dΩ

∣∣∣∣∣
NS

[
A(Q2) +B(Q2) tan2(θ/2)

]
(1.20)

where

dσ

dΩ

∣∣∣∣∣
NS

=
α2E′ cos2(θ/2)

4E3 sin4(θ/2)
= σM

E′

E
=

σM

1 + 2E
md

sin2 1
2θ
,

(1.21)
is the cross section for scattering from a particle without
internal structure (σM is the Mott cross section), and θ,
E,E′, and dΩ are the electron scattering angle, the inci-
dent and final electron energies, and the solid angle of the
scattered electron, all in the lab system. The structure
functions A and B, which can be separated by comparing
unpolarized measurements in the forward and backward
directions, depend on the three electromagnetic form fac-
tors

A(Q2)= A(GC) +A(GM ) +A(GQ)

= G2
C(Q2) +

8

9
η2G2

Q(Q2) +
2

3
ηG2

M (Q2)

B(Q2)=
4

3
η(1 + η)G2

M (Q2) , (1.22)

where

η =
Q2

4M2
d

. (1.23)

To further separate GC and GQ, the polarization of the
outgoing deuteron can be measured in a separate, analyz-
ing scattering. The quantity most extensively measured
is

T̃20 = −
√

2
y(2 + y)

1 + 2y2
(1.24)

where

y =
2ηGQ
3GC

. (1.25)

Note that the structure function B depends only on
GM , and T20 depends on y, both of which are linear
in the the nucleon form factors. However, the structure
function A is quadratic in the nucleon form factors.
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II. FITS TO THE DEUTERON OBSERVABLES

A. Introduction

All results for the deuteron form factors depend on the
off-shell nucleon form factors F3(Q2) and F4(Q2). How-
ever, except for the sole requirement that F3(0) = 1,
these form factors are completely unknown, and it is ap-
propriate to use the deuteron form factor data to deter-
mine them. The first step, determining F3 and F4, in
done in Sec. IIB below.

I have found that the most efficient way to do this is
to use the data from GM (determined directly from B)

and T̃20 [actually y from Eq. (1.25)]. Both GM and y are
linear in F3 and F4, so a solution is straightforward and
it is easy to determine the errors in F3 and F4 from the
errors in GM and y. Details are given in Appendix C.

The data are scattered, and to do this efficiently it
would first be necessary find a smooth fit to all the data.
Fortunately, Sick has produced a Global Analysis [11, 17]
(referred to as the GA in this paper) where he reanalyzed
all of the data starting from the detailed records. I will
use his GA for a representation of the data. Once F3

and F4 have been determined, the data (that is, the Sick

GA) for B and T̃20 is exactly reproduced, as shown in
Sec. IIC.

Note that T̃20 determines only the ratio of the inde-
pendent form factors GC and GQ, not their size. The

third observable, A, can vary even when B and T̃20 are
fixed. This is studied in Sec. IID, where it is shown that
GEn can be adjusted to give the correct A (fortunately,

B and T̃20 are very insensitive to GEn, so that this de-

termination of GEn does not alter the fits to B and T̃20).
The predictions for GEn made by each model is discussed
in Sec. IID, where it is shown that model WJC1 fails at
this point, but model WJC2 works very well. Finally, us-
ing the predicted F3 and F4 and various models of GEn,
Sec. IIE presents the deuteron form factors and compares
them to Sick’s GA.

In order to keep the number of figures to a minimum,
the reader is warned that some of the early figures will
show results for models that will not be introduced until
later in the discussion. To help with this, all of the mod-
els that will be used are summarized in Table I. Models
1A and 2A are a starting point; their input is the same
as the successful VODG calculation (except I never have
any ρπγ interaction current). Model VODG used the
GK05 prediction of GEn, and in the absence of any pre-
vious knowledge, assumed a standard dipole for F3 and
F4 = 0. Then, models 1B and 2B replace F3 and F4 by
the solutions found in Sec. IIB, giving precise fits to B

and T̃20. Finally, models 2C and 2D show the results of
using models for GEn based on the predictions given in
Sec. IID, and cannot be understood until that section is
studied.

TABLE I. Summary of theoretical models discussed in this
paper. All models listed in the table have no ρπγ exchange
current, except for model VODG. The model GK05 is dis-
cussed in Ref. [18] and shown in Fig. 11.

Name Deuteron GEn F3 F4 color line

VODG* IIB GK05 dipole 0 black long-dash

VODG0 IIB GK05 dipole 0 black 2 dash-2 dot

1A WJC1 GK05 dipole 0 blue short-dash

2A WJC2 GK05 dipole 0 red short-dash

1B WJC1 GK05 F3(1) F4(1) blue 2 dash-2 dot

2B WJC2 GK05 F3(2) F4(2) red 2 dash-2 dot

2C WJC2 CST2 F3(2) F4(2) red long dash-dot

2D WJC2 CST1 F3(2) F4(2) red thick solid

*Model VODG includes a ρπγ exchange current calculated
using the Rome 2 ρπγ form factor [19].

B. Predictions for the off-shell nucleon form factors

As mentioned in the Introduction, the off-shell form
factors can be found by simultaneously fitting them to
the GA data points forGM and T20 (which is independent
of GM ). Each GA point has its own error that I use to
estimate the errors in the fitted values of the form factors.
The results obtained from Models WJC1 and WJC2 are
shown in Figs. 3 and 4. Each red and blue point in the
figure is the (simultaneous) solution for F3 and F4 at
each GA point, which extend out to Q= 7 (fm)−1 =
1.379 (GeV) (limited my the measurements of T20).

On the same figures I also show the values obtained
by fitting F3 separately to GM (solid black diamonds)
or T20 (half filled black diamonds) under the assumption
that F4 = 0. The fact that these fits differer substantially
shows that it is not possible to obtain a good fit to the
GA data without including a nonzero F4.

Note that the form factors are largely undetermined at
Q & 1.4 GeV, and also at small Q where the errors in
the fitted form factors are large. In order to have results
for all Q, and especially beyond the range where data
for T20 exists, I chose smooth curves that fit the points
in the range 0.5 & Q & 1.3 GeV, where they are well

TABLE II. Parameters for the fits to F3 and F4 with
Q in GeV. Here Fi(X) ≡ Fi(WJCX).

F3(1) F3(2) F4(1) F4(2)

a −30.905 1.3508 −29.467 −1747.8

b 457.66 4.0568 1141.0 2395.0

c −1401.7 0 −2422.0 0

d 1618.9 −137.69 404.21 −3370.4

e 1.2323 0.6131 1.1115 1.0004
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FIG. 3. Results for Model WJC1 (left panel) and Model WJC2 (right panel). Both panels show F3(Q2) (small red circles) and F4(Q2)

(small blue squares) obtained by simultaneously fitting to Sick’s GA for GM and T20. Only the error bars obtained from the errors in
Sick’s GM are shown, reflecting the fact that the requirements to fit GM are far more stringent than those necessary to fit T20. (Note

that F4 for Model WJC2 is four times larger than shown in the figure.) The panels also show the results for F3 fitted to GM (solid black

diamonds), or to T20 (half filled black diamonds) when F4 = 0. The smooth black curve is the dipole model and the red and blue curves
are the fits discussed in the text.
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FIG. 4. Same results as shown in the right panel of Fig. 3, but
on a bigger scale which allows a fuller picture of the form factors

at smaller Q. (Note that F4 is four times larger than shown in the

figure.)

constrained. The generic models used for F3 and F4 are

F3(Q2) =
1 + aQ2 + bQ4 + cQ6 + dQ8

(1 + eQ2)n

F4(Q2) =
aQ2 + bQ4 + cQ6 + dQ8

(1 + eQ2)9
(2.1)

where n = 7 for WJC1, n = 9 for WJC2, and the other
parameters are given in Table II. The asymptotic limits
of these form factors are

lim
Q2→∞

F3 =
const

Q2n−8
∼

{
Q−6 WJC1

Q−10 WJC2

lim
Q2→∞

F4 =
const

Q10
, (2.2)

and note that I have constrained

lim
Q→0

F4 = aQ2 . (2.3)

Finally, I point out that the models for those form factors
are real analytic functions with cuts in the complex q2

plane along the positive real axis. For the model WJC2,
these cuts start at

q2 = −Q2 = 1/e =

{
1.63 GeV2 F3(2)

1.00 GeV2 F4(2) .
(2.4)

Both cuts start near or above the the 7mπ threshold, con-
firming that they are short range effects. Similar results
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FIG. 5. Data for the magnetic structure function B(Q2) compared

to Sick’s GA (small solid black circles). The function fitB (dashed
green line) is shown for comparison. The data are Stanford-65 [20],

Mainz-81 [21], Saclay-85 [22], Bonn-85 [23], SLAC-90 [24, 25], and

JLab-89 [26, 27]. The high Q tail of Model 2B (c.f. Table I), used to
construct the high Q tail of fitB , is the red dashed line connected

to red squares.

hold for Fi(1). I have not investigated the dispersion
relations that these functions satisfy.

C. Fits to B(Q2) and T20(Q2)

With the off-shell form factors determined, I now con-
firm that the fits to B(Q2) and T20(Q2) do indeed agree
with the Sick GA. (The fits to GM , related to B, will be
shown later when the other form factors are discussed.)
This is also an opportunity to compare the results for
Models WJC1 and WJC2 with the previous successful
calculation of Van Orden et al.[7], which is refered to as
VODG. The various models under discussion in this and
the following sections are defined in Table I, and will be
referred to by the simple names given in the table.

I begin by showing the data for B(Q2) in Fig. 5. The
rapid variation of B with Q makes it difficult to see how
the theory compares with data, so I have scaled every-
thing by the simple fit function

fitB =0.4 exp(−2.2Q/0.197)

+0.7× 10−6 exp(−0.35Q/0.197) (2.5)

where Q is measured in GeV, and the tail was adjusted
to be near an expected secondary maximum in B. The
results of dividing both data and predictions by this func-
tion are shown in Fig. 6. This figure also shows how the
various theoretical models shown in Table I compare with

the experimental data and the Sick GA. Fig. 7 shows how
the models and Sick GA compare with the experimental
data for T20.

Study of the curves in Figs. 6 and 7 show that mod-
els 1A and 2A, with the same assumptions as VODG
(standard dipole for F3, F4 = 0, and GK05 nucleon form
factors) are both successful at low Q . 1 GeV, but 1A
seriously overshoots B at higher Q and 2A undershoots
B already at about Q ' 0.5. Model VODG overshoots
B a little near Q ∼ 1 GeV (this will be more clearly dis-
played when we show GM below), but the discrepancy
is smaller than either Models 1A or 2A. VODG gives a
better explanation than either models 1A and 2A.

As expected models 1B and 2B, that use the appro-
priate F3 and F4 for each model, do indeed give excel-
lent agreement with the B(Q2) structure function and
T20(Q2) over the entire region where the GA exists. Note
that the size of the ρπγ exchange current used by VODG
can be inferred from the differences between VODG0 and
VODG and is smaller than the effects arising from F3 and
F4, particularly for model WJC2.

Finally, the figures show the important result that the
best models, 2C and 2D that have not yet been intro-
duced, are practically indistinguishable from 2B in the
region of the GA fit. Their significance will be discussed
in the next section.

D. Predictions for A(Q2) and GEn(Q2)

To complete the picture, Fig. 8 shows the data and
predictions for A(Q2) similar to those shown for B(Q2)
in Fig. 5. This figure shows nicely how A(Q2) falls as
an exponential over many decades. As was the case or
B, comparing theory to data on such a curve obscures
all but huge differences. To see differences of a factor of
2 or 3, the A structure function is scaled by the simple
function

fitA = 0.2 exp(−1.5Q/0.197) (2.6)

(where Q is measured in GeV), and Figs. 9 and 10 show
these scaled results, which play a role in our discussion
of A similar to that played by Fig. 6 in our discussion
of B. To emphasize the differences at large Q, Fig. 10 is
the same as Fig. 9, but with the scales expanded.

Figs. 9 and 10 show that all theoretical models give
an excellent description of A at Q . 0.7 GeV. However
(excluding models 2C and 2D for now) none of the models
do very well describing the GA significantly above Q ∼
0.7 GeV. VODG does the best (with the ρπγ exchange
current playing a decisive role), model 2B is not far off,
but models 1A and B, and 2A all depart substantially
from the GA and are clearly unacceptable. This means
that even when the two unknown off-shell form factors
F3 and F4 are adjusted to fit B and T20, Model WJC1
disagrees with the data for A by such a large amount that
it cannot be repaired, as discussed in the next section.
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FIG. 6. The same data for the magnetic structure function B(Q2) shown in Fig. 5, Sick’s GA, and various theoretical predictions all scaled

by the function fitB , Eq. (2.5). Both panels show the data, the GA, and Model 2D (thick red solid line). The left panel also shows Models
1A (blue short-dashed line),1B (blue double dashed-dotted line), VODG (black long dashed line) and VODG0 (black double dashed-dotted

line). The right panel shows Model 2A (red short-dashed line), 2B (red double dashed-dotted line), 2C (red long dashed-dotted line) and
2D (thick red solid line). Models 2C and 2D are nearly indistinguishable (see some differences in the other plots).
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FIG. 7. The data for T20 compared to Sick’s GA (black dots) and the same theoretical models labeled as they were in Fig. 6 and Table
I. The data are Bates-84 [28], Novosibirisk-85 [29, 30], Novosibirisk-90 [31], Bonn-91 [32], Bates-94 [33, 34], NIKHEF-96 [35], NIKHEF-99

[36], JLabC-00 [37], Novosibirisk-01[38], and Bates-11 [39].

Note that model 2B does well out to Q ∼ 1.4 GeV,
but dips below the data in the region from 1.5 . Q . 2.2
GeV. This is a region where the nucleon charge form
factor, GEn is unknown, and hence this calculation can
be used to predict GEn in this region.

Models 2C and 2D will be discussed below, and the
failure of any of the models to describe A at the highest
values of Q will be discussed in the Conclusions.

The values of GEn required to bring each model into
agreement with the GA points for A(Q2) are shown in

Fig. 11. The GA fits to A(Q2), shown Figs. 9 and 10,
extend out to Q & 1.576 (GeV) = 8 (fm)−1, well beyond
the region where B(Q2) is known. However, since A is
quadratic in GEn (but only one root is acceptable; see the
discussion in Appendix D), there is no guarantee that a
real solution can be found at each point. It is remarkable
that real solutions do exist except at the highest values
of Q. I found that there were no solutions for Model
WJC1 at the 3 highest GA points (Q ≥ 2.319 GeV), and
for WJC2 at the 5 highest GA points (Q ≥ 2.216 GeV).
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FIG. 8. Data for the structure function A(Q2). The function fitA

(linear green dotted line) is shown for comparison. The theoretical
curves are model 2D (red line and three black lines) as discussed in

the text. The data are HEPL-65 [20], Orsay-66 [40], CEA-69 [41],

DESY-71 [42], SLAC-75 [43], Mainz-81 [21], Bonn-85 [23], Saclay-
90 [44], JLabA-99 [45], and JLabC-99 [46].

The errors shown are determined by the GA errors in A
only; at high Q the theory depends on the extrapolations
obtained from the fits F3(i) and F4(i) (where i = 1, 2),
and hence are subject to additional errors I have not tried
to estimate.

Here we have a very different situation from our pre-
vious study of F3 and F4. Measurements of GEn from
free neutrons using recoil polarization, [47]–[52] are com-
pletely independent of any theory of the deuteron, and
those from a polarized deuteron target, [53]–[55], are al-
most as clean. All of these measurements are shown in
Fig. 11, and I chose to focus only on them because they
are insensitive to deuteron theory. For a recent review
of the experimental data, see Ref. [56]; many other mea-
surements exist.

Fig. 11 shows that the solution for GEn for Model
WJC1 is in serious disagreement with the form factor
measurements from free neutrons. There seems to be
no way to repair model WJC1; for this reason I did not
study the predictions for model WJC1 further.

In contrast, the solution for GEn from model WJC2 is
in good agreement with the free data. To study various
possibilities, I decided to represent GEn by the general
functional form

Gmodel
En (Q2) =

aQ2(1 + bQ2 + cQ4 + dQ6)

(1 + eQ2)
6 , (2.7)

which goes like Q−4 at large Q, and has cuts only for

TABLE III. Parameters for the GEn models using
Eq. (2.7), with Q in GeV.

GK05 CST1 CST2

a 0.4779 0.4930 0.4930

b 0.5798 16.254 0.5532

c 1.8452 −27.849 0.6805

d 0.4045 33.710 0.6861

e 0.8628 1.5836 0.7904

TABLE IV. Parameters for the scaling functions given
in Eq. (2.8), with Q2 in fm−2.

GC(n = 1) GM (n = 2) GQ(n = 3)

a1(n) 0.6743 0.5149 0.4980

a2(n) 0.0693 0.2912 0.0559

a3(n) 0.0084 0.0013 0.00008

b0(n) 1.8478 1.8422 1.2732

b1(n) 0.4185 0.5252 0.2956

b2(n) 0.1557 0.1749 0.0963

b3(n) 0.0321 0.0204 0.0194

positive q2, required if it is to be represented by a dis-
persion relation. This functional form is so flexible that
it can describe GK05 and two additional models of po-
tential interest. The parameters used for these three
models of GEn are given in Table III. Model CST1 is
a very good representation of the solution obtained from
A, while model CST2 follows GK05 up to the highest Q2

points (Mad03,Pla05) and then tracks CST1 at higher
Q2. All three of these models are shown in Fig. 11.

It turns out that both B and T20 are very insensitive
to GEn, so our choice of a new GEn different from GK05
will not disturb our previous fits to B and T20 (this can
be confirmed by noting that the left panels of Figs. 6 and
7 show almost no differences between models 2B, 2C,
and 2D in the regions where they were used to obtain F3

and F4). Hence the only effect of choosing a new GEn
is an improvement in A, and as Fig. 10 showns, model
2D (with GEn represented by model CST1) provides an
excellent fit to the data (except at the highest points – to
be discussed in the Conclusions), while model 2C (with
GEn represented by model CST2) is almost as good, and
this GEn tracks GK05 in the region where GEn has been
measured. Final conclusions will be drawn in Sec. VI.

Predictions for the three form factors GC , GM , and
GQ are shown in the next subsection.

E. Predictions for the deuteron form factors

I now can complete the discussion by presenting the
three deuteron form factors and comparing them to Sick’s
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FIG. 9. The same data for the structure function A(Q2) shown in Fig. 8, Sick’s GA (small black solid circles), and various theoretical

predictions all scaled by the function fitA, Eq. (2.6) (and all drawn with the same line style used in Figs. 6, 7 and Table I). Both panels
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FIG. 10. The right panel of Fig. 9 with expanded scales.

GA, which has been determined in the region Q . 1.4
GeV.

In order to better see the details, all form factors are
normalized to unity at Q = 0, and divided by scal-
ing functions with the same functional form as used in
Ref. [11]:

ScaleGn(Q2) =

3∑
i=0

ai(n) exp(−bi(n)Q2) (2.8)
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FIG. 11. Experimental data for GEn and ”data,” with errors, for

GEn determined by fitting to Sick’s GA points for A. The errors
were obtained from the errors in A quoted by Sick. Solutions WJC1
are the blue points with smaller values of GEn; those for WJC2 are
the red points. The small open circles at the highest momenta are
points at which there is no solution for GEn. The models shown

are GK05 (solid black line), CST1 (solid green line with the bump
at at small Q), and CST2 (brown dashed line following GK05 at
small Q and CST1 at larger Q). The experimental data are Ede94

[47], Her99 [48], Ost99 [49], Gla05 [50], Mad03 [51], Pla05 [52],
Pas99 [53], Zhu01 [54], and War04 [55].
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FIG. 12. Predictions for the three deuteron form factors for models VODG, VODG0, 1A, 1B, and 2D (with lines as in the previous
figures) compared to the GA.
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FIG. 13. Predictions for the three deuteron form factors for models 2A-2D (with lines as in the previous figures) compared to the GA.

where

a0(n) = 1− a1(n)− a2(n)− a3(n) (2.9)

ensuring that ScaleGn(0) = 1. In order to scale the large
Q behavior of the form factors, I found it necessary to
refit the coefficients, and the values I use in this paper
are given in Table IV.

The scaled deuteron form factors are shown in Figs. 12
and 13. In the figures I display all of the cases studied
in the previous sections, even though the models 2C and
2D are the only ones that are in quantitative agreement
with the Sick GA.

Note that model VODG predicts all of the form fac-
tors within 1-2 standard deviations over the entire range.
Model 2B, designed to agree precisely with B and T20,
gives an exact description of GM over the entire range
(as expected) but fails to provide a precise explanation
of GC and GQ. In the region 1 . Q . 1.4, both −GC
and GQ are too large, so that their ratio, measured in
T20, is correct. Only models 2C and 2D give a precise
explanation of all form factors.

I call attention to the contributions of the F3 and F4

form factors which are easy to see on these plots. Since

F3 cannot be zero (because of the constraint F3(0) = 1)
the best way to isolate the size of these contributions is
to compare models 1A and 1B, or 2A and 2B, shown re-
spectively by the short dashed and double dash-dot lines
(blue for WJC1 and red for WJC2). The figures show
that that there is little difference at Q . 0.6 GeV, ex-
cept that model 2A fails to describe GM even at quite

TABLE V. The χ2/datum for the predictions of
models 2C and 2D compared to Sick’s GA. The
first point at Q=0.001 fm−1 has been excluded.

nbr of points 2C 2D

GC 28 3.613 0.116

GM 32 0.713 0.763

GQ 28 1.920 0.446

A 44 6.440 0.774

Atail 5 125.1 116.5

B 34 1.130 1.131

T20 28 0.127 0.131
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TABLE VI. The χ2/datum for the prediction of model 2D

compared to the published data for A,B, and T̃20.

A(Q2) number χ2/d T20(Q2) number χ2/d

HEPL-65 5 2.53 Bates-84 2 0.13

Orsay-66 4 1.63 Nuovo-85 2 0.78

CEA-69 18 3.01 Nuovo-90 2 0.83

DESY-71 10 0.71 Bonn-91 1 0.55

SLAC-75 8 1.61 Bates-94 3 2.50

Mainz-81 18 7.36 NIK-96 1 1.02

Bonn-85 5 20.18 NIK-99 3 0.70

Saclay-90 43 2.77 JLabC-00 6 0.86

JLab-A 16 4.59 Nuovo-01 5 3.14

JLab-C 6 2.87 Bates-11 9 0.94

All 131 3.98 All 34 1.29

A(Q2) ranges B(Q2)

Q ≤ 0.6 GeV 64 3.82 Stan-65 4 1.08

Q > 0.6 GeV 67 4.14 Mainz-81 4 2.87

3 largest 3 21.83 Saclay-85 13 0.75

Bonn-85 5 1.07

JLab-89 6 2.06

SLAC-90 9 2.28

All 41 1.56

TABLE VII. Physical quantities that enter into a calculation
of the deuteron form factors

Γ = S−1Ψ Relativistic vertex function (with particle 1
on-shell); contributes to all diagrams shown in
Fig. 2; solution of a two-nucleon CST equation
using the OBE kernel

Γ(2) = S−1Ψ(2) Relativistic wave function (with particle 1
on-shell); generated by interaction currents

of type V (2) which arise from the momentum
dependence of the boson couplings to particle
2; calculated by iterating the CST equation

once using the kernel V (2); diagram 2(A(2))

Γ̂BS = Γ̃− Γ̃(1) Subtracted vertex function (with both particles

off-shell); the Γ̃
(1)
BS subtraction arises from the

interaction currents V (1) coming from the
momentum dependence of the boson couplings
to particle 1; calculated by iterating the CST
equation once using the subtracted kernel

V − V (1) with both particles off-shell in the
final state; diagram 2(B)

F3 and F4 Form factors describing the off-shell nucleon
current; diagram 2(A)

small Q.
Table V shows how closely models 2C and 2D predict

Sick’s GA (using Sick’s error bars). Except for few points
in A at the highest Q (the tail), the fits are excellent,
of comparable quality except of GC , GQ and A, where
model 2D provides a more accurate prediction than 2C.

Table VI shows the χ2/datum for the published data
compared to model 2D. Note that the CST prediction
is in reasonable agreement with the data for B and T20,
but that there are large discrepancies with the data for
A(Q2), even for Q ≤ 0.6 GeV, and that the measure-
ments at the three largest Q points (JLabA) are in sig-
nificant disagreement with the perdiction (but the dis-
agreement is not as large as with the Sick GA). I will
discuss this further in the Conclusions

III. PHYSICAL INSIGHTS

In this section I study the size of various partial con-
tributions to the form factors. The study is limited to
model 2D, which gives the best fit to the Sick GA. Be-
fore discussing the individual contributions, it is helpful
to briefly identify the ingredients of the theory.

A. Physical quantities of the theory

The physical quantities that I will focus in in this sec-
tion are summarized in Table VII. They are: (i) vertex
functions Γ and Γ(2) when one particle is on-shell, (ii)

the subtracted vertex function Γ̂BS for both nucleons off-
shell, and (iii) the new off-shell nucleon form factors F3

and F4 already discussed extensively above. To make
the presentation simple, I postpone all precise definitions
until Appendix A.

B. Study of the isoscalar interaction currents

The isoscalar interaction currents (IC) produce the in-
teraction current vertex function Γ(2) generated by V (2)

and giving rise to diagram Fig. 2(A(2)), and the subtrac-

tion terms Γ̃(1) generated by V (1) and discussed in Ref. I.
The behavior of these terms is shown in Fig. 14.

Fig. 14 shows that both IC’s make significant contribu-
tions to GC , even at low Q. For the other form factors,
GM and GQ, their contributions are quite small at low
Q, but are still important for Q & 0.5 GeV (for GM ) and
Q & 1 GeV (for GQ). These interaction currents are a
significant part to the overall theoretical picture.

C. Off-shell effects

What are off-shell effects? This discussion must be
approached carefully or serous misunderstandings may
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tained from Eq. (3.4).

emerge. For example, in the CST one nucleon is always
off-shell in intermediate states; this is the way the CST
creates virtual intermediate states and, at the same time,
preserves four-momentum conservation. In conventional
quantum mechanics, the particles are always on-shell, but
the virtual intermediate states do not conserve the total
energy of the particles. It can be shown that these two
approaches are largely equivalent, with the CST having
the advantage that it is relativistically covariant, and the
disadvantage that it must learn how to describe off-shell
particles (with their accompanying antiparticle compo-
nents). In the context of the discussion of NN scatter-
ing, for example, the role of the virtual antiparticles is
an interesting off-shell effect. However, in the context of
ed scattering, I will look only at new effects that did not
already arise in NN scattering.

The unique off-shell effects that are studied here are
the contributions that arise when both nucleons are off-

shell. These are the contributions from the vertex func-
tions Γ̂BS, which take us outside the usual boundaries of
the CST. The need to discuss the physics of two nucleons
off-shell does not arise in the discussion of three-nucleon
scattering [15, 57–59] but does arise in the discussion of
ed scattering and electron-triton scattering [60, 61]. How
should these effects be defined so that they give us useful
insight into the physics of this theory?

Only diagram 2(B) requires particle 1 to be driven off-
shell. In the Breit frame, P± = {D0,± 1

2qz}, with qz = Q.
When the incoming (outgoing) particle 1 is on-shell, the
outgoing (incoming) particle 1 will have four-momentum

k̃± = {Ẽ∓, k̃±
1

2
qz} , (3.1)

where

Ẽ± =

√
m2 +

(
k̃± 1

2
qz
)2
. (3.2)

This particle is off-shell with an energy k̃±0 = Ẽ∓ 6= Ẽ±. I
find it convenient to describe this extra degree of freedom
by the parameter x10, which is defined as the ratio of the
off-shell energy to the on-shell energy. In this case the
ratio is

x±10 =
k̃±0
Ẽ±
→ Ẽ∓

Ẽ±
=

√√√√E2
k̃
∓ k̃zQ+ 1

4Q
2

E2
k̃
± k̃zQ+ 1

4Q
2
≡ ζ±, (3.3)

which is always positive. The maximum of x−10 (x+
10)

occurs when k̃z = k̃ (or −k̃), k̃ = kmax, and solving for
kmax gives

xmax
10 =

√
m2 + (kmax + 1

2Q)2

m2 + (kmax − 1
2Q)2

→ 1

2m
(
√

4m2 +Q2 +Q) , (3.4)

and the minimum is 1/xmax
10 . This shows that as Q in-

creases, the particle 1 (either incoming or outgoing) is
forced further and further off-shell.
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FIG. 16. The invariants uv and wv defined in Eq. (??) for the favored model WJC2, shown as a function of x10 for four fixed momenta:

k = k(1) ' 0.527 MeV (blue long dashed lines), k = k(10) ' 84.0 MeV (blue short dashed lines), k = k(23) ' 450.3 MeV (red dot-dashed
line), and k = k(32) ' 960.8 MeV, where k(n) is the nth gauss point in the mapped grid of 60 points. The values of x10 when particle 2

is on shell are shown for k(10) (solid blue circle), k(23) (solid red diamond), and k(32) (solid black square).
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FIG. 17. Study of the off-shell effects defined in the text.

While this is useful for our understanding, what we re-
ally want is the result in the rest system of the deuteron,
so (3.4) must be transformed to the rest system. This is
discussed in detail in Appendix A 3. The results for both
(3.4) and the relativistically correct result xBmax

10 , given
in Eq. (A31), are shown in Fig. 15. Note that the boost
effects are significant.

The invariants that describe Γ̂BS depend on the two
variables k and x10 (with x10 = 1 when particle 1 is
on shell). As shown in Fig. 15, for studies of the form
factor below Q ' 3 it is sufficient to know the off-shell de-

pendence of the invariants that describe Γ̂BS in the range
1.9 & x10 & −0.3. This behavior is shown in Fig. 16, with
uv and wv related to the largest deuteron wave functions

u and w by

uv(k, x10) = [(1 + x10)Ek −md]u(k, x10)

wv(k, x10) = [(1− x10)Ek −md]w(k, x10) . (3.5)

The other wave functions are much smaller.
To obtain the off-shell behavior, the wave functions are

iterated once using the fully off-shell kernel, as shown in
Eq. (A12b). I found that the resulting wave functions
were much smother at low momentum if the small one
photon exchange term was removed from the iterating
kernel, and all of the results presented in this paper were
calculated in this way. This is partly justified by the ob-
servation that keeping the “last” one photon exchange
could be regarded as including one higher order effect
in αγ while ignoring others, and may not even be con-
sistent. In any case, it introduces a small inconsistency:
when the on-shell wave functions are iterated without the
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last one photon exchange, the normalization is changed
slightly. To obtain the original normalization, the results
for WJC1 are multiplied by 0.9962 and those for WJC2
by 0.9954.

The point on the curves where particle 2 is on-shell is
given by

xex
10(k) =

md − Ek
Ek

, (3.6)

which depends on k. This point is marked by the small
solid black squares (for k = 960.8 MeV), red diamonds
(k = 450.3 MeV), and blue circles (k = 84 MeV) along
the x axis in the panels of Fig. 16. These points are inter-
esting because the two-body NN bound state equation
depends on vertex functions defined only at x10 = 1 and
x10 = xex

10(k); values of the vertex functions at all other
values of x10 have not played any role in previous fits
to the NN data.. The off-shell dependence of elastic ed
scattering depends on values of the vertex functions de-
termined theoretically, but never tested experimentally .

The size of these effects is shown in Fig. 17. In each
panel the black dotted line is a calculation using the pa-
rameters of model 2D with x10 = 1 in the (B) diagrams,
and the thick red solid line is the full model 2D with x10

free to vary as the kinematics dictates (as shown previ-
ously). As discussed in Appendix A 4 [and Eq. (??)], the
contribution from Fig. 2(B) decomposes into a contri-
bution multiplied by the projector Θ(−k) that vanishes
when particle 1 is on-shell (referred to as the C contribu-
tion) and a remainder (referred to as the B contribution,
distinguished from the total by the absence of the paren-
theses):

Γ̂BS(k, P ) = Γ(k, P )︸ ︷︷ ︸
B

−Γoff(k, P ) 2Θ(−k)︸ ︷︷ ︸
C

, (3.7)

The C contribution (labeled by the blue long dashed lines
in the figure) is quite small, but still of great interest be-
cause it depends on invariants that do not exist when one
of the particles is on-shell. The largest off-shell contri-
butions come from the B terms (dash-dotted blue lines),
which make a significant contribution to all the form fac-
tors, especially GC and GM .

The calculations are sensitive to off-shell effects at all
values of Q.

D. Size of the F3 and F4 contributions

The size of the F3 and F4 contributions was addressed
in Fig. 13; Fig. 18 shows these effects in more detail.
Both F3 and F4 make comparable contributions. It is
interesting to note that the F4 contribution plays a very
important role in correcting the failure of model 2A at
low Q. In this case the F3 and F4 contributions are in-
dividually quite large and tend to cancel each other.

E. Accuracy of the RIA

In the absence of isoscalar interaction currents, the rel-
ativistic impulse approximation (RIA) was originally de-
fined to be twice the contribution from diagram 2(A).
The interest in this approximation arose from the idea
that symmetry (the CST equations are explicitly sym-
metrized to ensure that NN scattering satisfies the gen-
eralized Pauli principle exactly) should allow one to get
the full result from the electromagnetic scattering from
only one of the nucleons (multiplied by a factor of 2). If
this were true, after adding interaction currents the re-
sults from diagrams 2(A)+ 2(A(2)) should equal the re-
sults from 2(B), so that the full result would come from
either of these alone, or their average, which emerges if
we take 1/2 the sum of the contributions from the lower
and upper half plane.

The contributions from diagrams 2(A)+ 2(A(2)) and
2(B) are compared in Fig. 19. The contributions from
2(B) is given in two parts: the B and C contributions dis-
cussed in Eq. (3.7). The B contributions (labeled with
the blue dot-dashed line) and the explicitly off-shell C
contribution. The sum of these contributions, the total
from diagram (B), is the long dashed blue line. The av-
erage of the two long dashed lines (black and blue) is the
total result for model 2D.

I conclude from this figure that the RIA disagrees the
the magnetic form factor even at low Q, but that it works
reasonably well at low momentum transfer for the two
charge form factors. In any case, it is not good enough
to be a replacement for the full theory, as was hoped at
one time.

IV. RELATIVISTIC EFFECTS

Some in the electron scattering community still be-
lieve that relativistic effects are small in electron deuteron
scattering and that it is possible to use deuteron wave
functions calculated from the Schrödinger equation to
study ed elastic scattering. Casper and I argued over
50 years ago [62] that relativistic corrections were impor-
tant when using deuteron scattering data to draw precise
conclusions, and in this section I will review this issue in
detail.

I focus only on the observables GC and A at small Q2,
where it might be assumed that a nonrelativistic calcu-
lation would be reliable. The nonrelativistic theory for
GC gives

GNR
C (Q2) =

∫ ∞
0

dr
[
u2(r) + w2(r)

]
j0(τ0)

=
1

2

∫ ∞
0

k2dk

∫ 1

−1

dz

×
[
u(k+)u(k−) + P2(k̂+ · k̂−)w(k+)w(k−)

]
(4.1)

where τ0 = 1
2rQ, u and w are the S and D state wave
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FIG. 18. Study of the sensitivity of the form factors F3 and F4. All curves use the predicted CST1 for GEn. Both black curves set
F4 = 0 and F3 6= 0: the black dotted curves use a dipole form for F3 while the black dot-dashed lines uses model F3(2). The heavy red

line is the result of adding the contributions from F4(2) to the black dot-dashed lines and gives the best model 2D. The blue dot-dashed

lines, which show the size of the F4(2) contributions by themselves, are given for reference.
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contribution to ΓBS, defined in Eq. (3.7). The heavy solid red line is model 2D as shown in previous figures.
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functions, and

k± = k± 1

4
q

k2
± = k2 ± 1

2
z kQ+

Q2

16

k̂+ · k̂− =
16k2 −Q2

16k+k−
. (4.2)

[Beware that the k± defined above differs significanty

from the k̃± defined in Eq. (3.1).] This momentum space
nonrelativistic result emerges naturally from the nonrela-
tivistic limit of the CIT. This is a very general feature of
this theory, and provides an excellent starting point for
the study of relativistic effects. To get the right limits,
one must be very careful to use the correct nonrelativis-
tic transformations: argument shift (A13c) for the (A)
diagram and (A21) for the (B) diagram. Both the (A)
and (B) diagrams give exactly the same nonrelativistic
limit, a limit where the RIA is accurate.

The size of various contributions, scaled by the non-
relativistic expression (4.1), is shown in the left panel of
Fig. 20. The blue dashed line replaces the nonrelativistic
argument shifts that appear in (4.1), and were derived
in (A13c), with the fully relativistic ones (A13b). Note
that this effect alone accounts for about a 4% correction
at Q ' 0.4 GeV, about eight times the size of the error
in the Sick GA. The blue solid line shows the result ob-
tained from the full calculation of GC if only u and w
wave functions are included. At Q ' 0.4 this produces
a discrepancy of almost 10% with the nonrelativistic cal-
culation. All changes after this begin to go beyond rel-
ativistic kinematics. Adding the vt and vs terms moves
the result to the red dot dashed line, and adding the C
contributions from the (B) diagram moves the total to
the red short dashed line, both small effects. A bigger
change occurs when we add in the A(2) diagram and all
contributions from the F2 nucleon form factor, bring the
result to red longer dashed line. Finally adding the con-
tributions from the off-shell form factors F3 and F4 brings
us to the final result for model 2D, the heavy solid red
line. The green short dashed line is the function

Gfit
C = 1− Q2

1.5
− Q4

2
, (4.3)

which gives a rough estimate of the size of all of the
effects.

The size of the relativistic argument shift alone is
about 4 times smaller than the total shift, or about Q2/6,
comparable to the result Q2/8 that Casper and I found
over 50 years ago. For comparison, the recoil effect of the
deuteron itself is very much smaller

1

D0
= 1− Q2

8m2
d

' 1− Q2

32
. (4.4)

Because the kinematics and the relativistic shifts in the
arguments of the wave functions (that add up to the solid
blue line in Fig. 20) can explain only about 1/2 of the

TABLE VIII. Separate contributions to the deuteron static
moments from the diagrams shown in Fig. 2.

A Total from diagram (A) with
full f00, g00 given in Eq. (1.16)

A0 Diagram (A) with f00 = 1, g00 = 0

A−A0 Total h dependence from diagram (A)

A2 Diagram (A(2)), calculated using

Eq. (A12a) with the interaction V (2)

B, C The two parts of diagram (B) [the B and C terms in

the decomposition (3.7)] with Γ̂BS calculated
using Eq. (A12b)

B0, C0 The two parts of diagram (B) with k0 fixed

at Ek in Γ̂BS , but not in h(p)

Bh, Ch The dependence of h(p) on k0 − Ek in the
two parts of diagram (B)

B0−Bh, Removes the dependence of h(p) on k0 − Ek from
C0−Ch B0 and C0, leaving k0 = Ek everywhere (on-shell)

on-shell A0 + B0− Bh + C0− Ch; z2
` terms, Refs. II

0.286 (1+Q∆
NR +QRc +QP +Qχ), Ref. III

h A−A0+ Bh + Ch; a`z
2
` terms, Ref. II;

0.286Qh′ , Ref. III

V (2) A2; z`z
(2)
` terms, Ref. II; 0.286 QV2 , Ref. III

off-shell B−B0 + C −C0; z`ẑ` terms, Ref. II;
0.286 (QV1 +Qint), Ref. III

(includes the V (1) current)

TOTAL A+A(2)+B+C

total shift, it is clear that an accurate theoretical inter-
pretation of the data requires the use of a relativistic
theory, even at the smallest values of Q2.

The right panel of Fig. 20 shows theory and data for the
structure function A, all scaled by (GNR

C )2. The red dot-
dashed line is G2

C of model 2D while the thick solid line is
the full calculation of A using all form factors from model
2D. The panel shows that the other contributions to A
coming from G2

M and G2
Q begin to become important at

Q & 0.2 GeV.

V. THE STATIC MOMENTS

The form factors at Q2 = 0 give the charge, magnetic,
and quadrupole moments in units reported in Eq. (A4).
Using the exact equations, there is no need to expand
the analytic results around Q2 = 0 as we did in Refs. II
and III. However, comparison of the two different calcu-
lations uncovered some errors in Ref. II, and I now find
that the new value for the magnetic moment predicted
by model WJC2 is in precise agreement with the mea-
sured result. In addition the new, more accurate values
of the quadrupole moment differ from the experimental
values by over 1%, with no significant difference between
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the predictions of the two models, in disagreement with
the conclusions of Ref. III.

Various contributions to the static moments are de-
fined in Table VIII. Here, in order to provide details that
may be of use to future investigators, I also report some
contributions that I did not study in the previous refer-
ences. Tables IX – XI compare the results obtained from
the exact form factors with the results obtained from the
approximate expansions reported in Refs. II and III (and
for the magnetic moment, in Appendix G).

A. Charge and magnetic moment

In Ref. II I conjectured that the errors in the expan-
sions should be about 0.002. As shown in Table IX, the
calculations of the charge agree to better than this, but
the magnetic moment presents a more complicated pic-
ture. I originally found such large disagreements with the
expansions for the magnetic moment reported in Ref. II
that I redid them and found the corrected results given
in Appendix G. Table X shows that the new expansion
disagrees with the exact results by about 0.002 for sev-
eral terms but there are discrepancies as large as 0.007
(0.7%) with others. I believe that the major source of
this discrepancy is the expansion of the nucleon kinetic
energy

Ek
m
' 1 +

k2

2m2
− k4

8m4
+ · · · (5.1)

Since k4 terms were dropped, the discrepancy could be as
large as 0.007 if the terms conspire to make the coefficient
of the k4 term of the order of unity (and not 1/8) and the
mean momentum of the nucleon is about 300 MeV. In any
case, the expansions are not as reliable as I expected. The
remarkable new result is that the magnetic moment for
model WJC2 is in very good agreement with experiment,
differing by only 0.07%.

B. Quadrupole moment

The comparison of the quadrupole moment with the
expansions reported in Ref. III does not fare much bet-
ter. Here I originally estimated the error to be about
0.2% or a δQ of 0.0006, and a comparison with Table
XI shows that this seems to be accurate for the small
terms, but fails for the largest terms with an error of
about 0.002, or about 1% (similar to that found for the
magnetic moment). However. since all terms seem to
have similar signs and magnitudes, there is no reason to
expect an error as I did for the magnetic moment, and I
did not recalculate the expansions given in Ref. III. The
new conclusion here is that the two models have similar
quadrupole moments, differing by about 1.5% from the
experimental result.

TABLE IX. The contributions to the deuteron charge (or nor-
malization). Since Ch = 0 it is not shown.

Quantity WJC1 WJC2

1B Ref. II 2D Ref. II

on-shell (k0 = Ek) 1.0547 1.055 1.0231 1.023

h dependence 0.0245 0.025 0.0176 0.018

V (2) current −0.0228 −0.023 −0.0111 −0.011

off-shell (k0 6= Ek) −0.0562 −0.057 −0.0297 −0.030

TOTAL 1.0002 1.000 1.0000 1.000

2 × A0 1.0547 1.055 1.0231 1.023

2 × (A−A0) 0.0245 0.025 0.0176 0.018

2 × B 0.9693 — 0.9835 —

2 × C −0.0025 — −0.0021 —

2 × B0 1.0816 — 1.0428 —

2 × C0 −0.0025 — −0.0021 —

2 × Bh 0.0245 0.025 0.0176 0.018

TABLE X. The contributions to the deuteron magnetic mo-
ment, µd = mGM (0)/md (in nuclear magnetons) The experi-
mental value is 0.8574.

Quantity WJC1 WJC2

1B App G 2D App G

on-shell (k0 = Ek) 0.8985 0.8812 0.8643 0.8630

h dependence 0.0123 0.0145 0.0112 0.0092

V (2) current −0.0156 −0.0167 0.0004 0.0000

off-shell (k0 6= Ek) −0.0289 −0.0170 −0.0180 −0.0129

TOTAL 0.8663 0.8620 0.8580 0.8594

error 0.0089 0.0046 0.0006 0.0020

error (%) 1.04% 0.48% 0.07% 0.23%

2 × A0 0.9155 0.8646

2 × (A−A0) 0.0141 0.0158

2 × B 0.7193 0.7163

2 × C 0.1150 −0.1183

2 × B0 0.7904 0.7553

2 × C0 0.1017 0.1154

2 × Bh 0.0145 0.0093

2 × Ch −0.0039 −0.0026

C. Rms radius

The rms radius of the deuteron is, by definition,

R2
rms = −6

d

dQ2
GC(Q2) . (5.2)
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TABLE XI. The contributions to the deuteron quadrupole
moment Qd = m2

dGQ(0) (in fm−2). The experimental value
is 0.2859(6).

Quantity WJC1 WJC2

1B Ref. III 2D Ref. III

on-shell (k0 = Ek) 0.2831 0.285 0.2815 0.284

h dependence 0.0011 0.000 0.0007 0.000

V (2) current −0.0009 −0.001 −0.0002 0.000

off-shell k0 6= Ek −0.0014 −0.005 − 0.0003 0.000

TOTAL 0.2820 0.279 0.2817 0.284

error −0.0039 −0.007 −0.0042 −0.0019

error (%) − 1.38% −2.4% −1.49% −0.7%

2 × A0 0.2825 0.2815

2 × (A−A0) 0.0014 0.0008

2 × B 0.2835 0.2829

2 × C −0.0017 −0.0016

2 × B0 0.2863 0.2836

2 × C0 −0.0017 −0.0016

2 × Bh 0.0009 0.0006

2 × Ch −0.0001 −0.0000

TABLE XII. Contributions to the deuteron radius for model
2D. The experimental value of 2.130(10) fm is taken from
Ref. [63]. The last row of the table is model 2D with
dGC/dQ

2 = −19.36 (GeV)−2.

Approximation R2
rms (GeV)−2 Rrms fm

NR 116.1 2.122
NR with (A) shift 117.0 2.131
All u,w 116.6 2.128
add vt, vs 116.7 2.128
add C terms 116.7 2.128

add A(2) and F2 116.3 2.124
add F3 and F4 116.2 2.123

The values of R2
rms (in GeV−2) and Rrms (in fm) are

shown in Table XII. Note that the corrections from the
relativistic effects discussed in Sec. IV are very small.

Perhaps it is interesting to see how a linear fit to the Q2

dependence of the form factor might affect how the ra-
dius would be extracted from experimental data. Fig. 21
shows four fits, with parameters listed in Table XIII, to a
set of theoretical points calculated using model 2D. The
large variation in the derivative, c2, shows how difficult
it is to get the slope at Q2 = 0 from the fits. Using the
10 points seems to be less reliable than the four lowest
points, and it is a surprise to me that the quadratic fit
to the lowest points, which is completely unreliable at
higher Q2, gives a c2 closest to the derivative.
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FIG. 21. Study of the dependence of the deuteron charge form

factor on Q2 at very small Q2. The two red dashed lines are linear

and quadratic fits to the lowest four points represented by red dots
surrounded by a red circle, all at Q2 < 0.1. The solid black lines

are (indistinguishable) quadratic and cubic fits to all the red dots,

including 6 beyond beyond Q2 = 0.1. The black dots are the Sick
GA.

TABLE XIII. Fitting parameters for the four curves of the form
f(Q2) =

∑n=3
n=1 cnQ

n shown in Fig. 21. Recall that direct cal-
culation of the derivative gave c2 = −19.36.

4 points 4 points 10 points 10 points
c2 −17.667 −19.202 −15.701 −18.318
c4 0 293.13 106.05 229.76
c6 0 0 0 −1372.6

VI. CONCLUSIONS AND DISCUSSION

A. Major new results

This is the first time the deuteron form factors have
been calculated using models WJC1 and WJC2, which
give precision fits to the np data base with χ2/datum
≈ 1. These models use a kernel with a dependence on
the momentum of the off-shell particle and therefor re-
quire isoscalar interaction currents in order to conserve
the two-body np current. At first it seems that the exis-
tence of these currents would make it impossible to make
any unique predictions for the form factors, but I showed
in Ref. I that using principles of simplicity and picture
independence it is possible to all but uniquely fix these
currents in terms of the already determined parameters
of the np models. These results fixed the currents at
Q2 = 0, and I show here that the exact calculations of
the static moments of the deuteron, calculated without
adjustable parameters (assuming F4(0) = 0), give very
good predictions. [If F4(0) 6= 0 its effect on the magnetic
moment is much larger than the quadrupole moment,
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justifying the choice F4(0) = 0.]

In addition, I believe that this is the first time anyone
has obtained a precision fit to all of the deuteron elastic
scattering data (where precision in this case also means
χ2/datum ≈ 1). I immediately qualify this remark: such
a fit would be impossible without using the Global Anal-
ysis of Ingo Sick. To obtain this Global Analysis, Sick
reanalyzed all for the data for the invariant functions
A(Q2), B(Q2), and the polarization transfer function
T20(Q2). My fit is actually to the Sick GA; as I have
discussed briefly above, direct fits to the published data
cannot give such a low χ2 because the published data is
not consistent to this level (recall Table VI). These issues
deserved to be reviewed by other scientists.

A third major new result is a prediction for the neu-
tron charge form factor, GEn(Q2), in the region Q2 & 2
(GeV)2 where it has not been measured experimentally
(see Fig. 11, and model CST1 in Table III).

The last new result I want to highlight is the determi-
nation of two new off-shell nucleon form factors F3(Q2)
and F4(Q2), defined in Eqs. (1.13) and (1.14). These new
form factors can contribute only when both the incoming
and the outgoing nucleon is off-shell, and thus contribute
only to the diagram Fig. 2(A) where this is possible. The
form factor F3, known for a long time, cannot be zero
because current conservation requires F3(0) = 1. Form
factor F4 (new to this paper and one of many that can
appear in the most general expansion of the off-shell nu-
cleon current), is purely transverse and hence cannot be
constrained by current conservation in any way. How-
ever, balance between the on-shell form factors F1(Q2)
and F2(Q2) provides an ab initio argument for includ-
ing F4: since F3 is required to complement F1, it is not
a stretch to argue that F4 should be included to com-
plement F2, even though neither F2 nor F4 can be con-
strained by current conservation. The data will deter-
mine these form factors; as it turns out F2 can directly
measured by electron nucleon scattering, while F4 can
only be measured by electron scattering from a compos-
ite nucleus, the deuteron being the simplest.

In this paper model WJC2 uses the Sick GA at inter-
mediate Q2 to predict the form factors F3 and F4. The
data is insensitive to precise values of F4 at low Q2 (I as-
sumed F4(0) = 0, a value that would likely emerge from
a comparison of the static moments, but not investigated
here) and there is insufficient data at Q2 & 2 (GeV)2 for
a prediction, so I adjusted fits so that the large Q2 behav-
ior of these form factors would be small. These introduce
small uncertainties which I cannot estimate. The reason
for not using the model WJC1 to extract F3 and F4 was
discussed in Sec. II D.

Table XIV gives numerical values for the 12 model 2D
body form factors DX,i(Q

2) introduced in Eq. (1.19).
The reader may use these to extract her own nucleon
form factors from the data.

B. Assessment

For this assessment I return to an issue I raised in
Ref. I: can the CST make predictions? Stated more force-
fully: if I obtain a precision fit to the three independent
sets of deuteron data for A, B, and T20 by adjusting an-
other set of three independent functions F3, F4, and GEn,
in what sense does this provide any understanding? I will
discuss this issue in 4 parts:

(i) First, the independent functions are multiplied by a
body form factor, and hence are constrained by the val-
ues of the body form factor itself, which depends on the
np dynamics of the WJC models. If the body form fac-
tors are small or have the “wrong” sequence of signs for
GC , GM , GQ, this will prevent the independent functions
from giving a desirable fit to all three form factors.

(ii) Next, the predictions for the static deuteron mo-
ments are absolute; they are free of any parameters (be-
cause GEn(0) and F3(0) are known, and I constrain
F4(0) = 0). The low Q2 behavior of A, B, and T20

(Figs. 9, 6, and 7, respectively) all show a complete in-
sensitivity to the independent functions for Q . 0.5 GeV.
This shows that the CST gives precise predictions for all
low Q2 observables, largely independent of the choice of
the independent functions.

(iii) Determination of the three independent functions
using model WJC1 gives values of GEn that disagree with
the data for GEn over the entire range of Q2, as shown in
Fig. 11. In this sense model WJC1 fails, allowing me to
conclude that the prediction obtained from model WJC2,
which is consistent with the data for GEn out to the high-
est Q point measured (Q ' 1.4 GeV), is not an accident,
but a real success (the body form factors for WJC2 have
the correct properties). An experimental confirmation of
the prediction for GEn at higher Q would be a further
success of model WJC2.

(iv) Finally, note that no choice of GEn can fit the GA
for A at the highest Q2 points (recall the small circles in
Fig. 11). This is either an indication that model WJC2
fails at the highest Q2, or might be an indication that
the GA is inaccurate at the highest points, a possibility
suggested by the largest JLabA measurement for A at
Q2 ' 6 GeV2. Further measurements at high Q2 would
clarify this.

C. Alternative interpretation

The central role played by the off-shell form factors F3

and F4 leads to the following question: will the physics
described by these form factors disappear in a formalism
where the nucleons are always on-shell? The answer is
“no.” The way the same physics is described in alterna-
tive formalisms is shown in Fig. 22, where for shorthand I
used Φµ = iσµνqν/(2m). The left panel shows, as an ex-
ample, the case where the one pion exchange mechanism
is the “last” interaction to be factored out of the NN
iteration kernel, and the right panel shoes how the the
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TABLE XIV. Body form factors for the model 2D, defined in Table I
Q DC1 DC2 DC3 DC4 DM1 DM2 DM3 DM4 DQ1 DQ2 DQ3 DQ4

0.001 1.003D+00 -2.611D-07 -3.334D-03 5.429D-10 1.924D+00 1.793D+00 4.994D-03 -2.247D-04 2.548D+01 -4.196D-01 -2.725D-04 -1.861D-04
0.101 8.576D-01 -2.251D-03 -3.308D-03 5.494D-06 1.654D+00 1.527D+00 4.969D-03 -2.402D-04 2.189D+01 -4.555D-01 -1.918D-04 -1.809D-04
0.201 5.988D-01 -6.042D-03 -3.232D-03 2.091D-05 1.181D+00 1.064D+00 4.869D-03 -2.844D-04 1.540D+01 -5.064D-01 -1.728D-04 -1.133D-04
0.301 3.847D-01 -8.315D-03 -3.109D-03 4.496D-05 7.963D-01 6.922D-01 4.727D-03 -3.554D-04 1.017D+01 -5.250D-01 -1.888D-04 -7.917D-05
0.401 2.354D-01 -8.443D-03 -2.945D-03 7.496D-05 5.297D-01 4.401D-01 4.537D-03 -4.483D-04 6.642D+00 -5.094D-01 -1.921D-04 -3.139D-05
0.501 1.356D-01 -6.803D-03 -2.745D-03 1.078D-04 3.511D-01 2.759D-01 4.299D-03 -5.575D-04 4.369D+00 -4.710D-01 -1.559D-04 2.607D-05
0.601 6.999D-02 -4.005D-03 -2.517D-03 1.399D-04 2.314D-01 1.696D-01 4.026D-03 -6.759D-04 2.905D+00 -4.214D-01 -1.329D-04 9.206D-05
0.701 2.753D-02 -6.161D-04 -2.271D-03 1.677D-04 1.509D-01 1.010D-01 3.723D-03 -7.969D-04 1.954D+00 -3.686D-01 -9.700D-05 1.655D-04
0.801 4.582D-04 2.934D-03 -2.014D-03 1.878D-04 9.615D-02 5.674D-02 3.401D-03 -9.133D-04 1.330D+00 -3.179D-01 -5.520D-05 2.439D-04
0.901 -1.602D-02 6.331D-03 -1.755D-03 1.975D-04 5.867D-02 2.803D-02 3.068D-03 -1.018D-03 9.156D-01 -2.720D-01 -2.272D-06 3.232D-04
1.001 -2.542D-02 9.380D-03 -1.503D-03 1.946D-04 3.276D-02 9.419D-03 2.735D-03 -1.105D-03 6.341D-01 -2.314D-01 5.797D-05 4.029D-04
1.101 -2.979D-02 1.191D-02 -1.264D-03 1.783D-04 1.502D-02 -2.510D-03 2.410D-03 -1.171D-03 4.398D-01 -1.962D-01 1.235D-04 4.774D-04
1.201 -3.084D-02 1.384D-02 -1.043D-03 1.485D-04 3.259D-03 -9.659D-03 2.100D-03 -1.213D-03 3.051D-01 -1.657D-01 1.914D-04 5.447D-04
1.301 -2.998D-02 1.518D-02 -8.456D-04 1.066D-04 -4.328D-03 -1.347D-02 1.812D-03 -1.229D-03 2.110D-01 -1.393D-01 2.594D-04 6.032D-04
1.401 -2.780D-02 1.591D-02 -6.730D-04 5.441D-05 -8.879D-03 -1.509D-02 1.550D-03 -1.220D-03 1.457D-01 -1.169D-01 3.250D-04 6.477D-04
1.501 -2.479D-02 1.610D-02 -5.266D-04 -5.290D-06 -1.119D-02 -1.529D-02 1.317D-03 -1.189D-03 1.004D-01 -9.791D-02 3.850D-04 6.793D-04
1.601 -2.191D-02 1.591D-02 -4.047D-04 -6.941D-05 -1.229D-02 -1.462D-02 1.114D-03 -1.136D-03 6.860D-02 -8.194D-02 4.353D-04 6.964D-04
1.701 -1.899D-02 1.538D-02 -3.066D-04 -1.348D-04 -1.255D-02 -1.351D-02 9.400D-04 -1.068D-03 4.652D-02 -6.873D-02 4.755D-04 6.988D-04
1.801 -1.622D-02 1.457D-02 -2.300D-04 -1.984D-04 -1.219D-02 -1.215D-02 7.941D-04 -9.879D-04 3.138D-02 -5.790D-02 5.046D-04 6.879D-04
1.901 -1.371D-02 1.360D-02 -1.723D-04 -2.574D-04 -1.149D-02 -1.070D-02 6.739D-04 -8.993D-04 2.088D-02 -4.894D-02 5.229D-04 6.649D-04
2.001 -1.154D-02 1.254D-02 -1.296D-04 -3.099D-04 -1.066D-02 -9.310D-03 5.756D-04 -8.059D-04 1.375D-02 -4.175D-02 5.296D-04 6.320D-04
2.101 -9.675D-03 1.141D-02 -9.989D-05 -3.541D-04 -9.740D-03 -7.972D-03 4.970D-04 -7.120D-04 8.848D-03 -3.585D-02 5.265D-04 5.907D-04
2.201 -8.117D-03 1.028D-02 -7.934D-05 -3.892D-04 -8.886D-03 -6.797D-03 4.337D-04 -6.199D-04 5.557D-03 -3.123D-02 5.139D-04 5.441D-04
2.301 -6.862D-03 9.182D-03 -6.584D-05 -4.148D-04 -8.079D-03 -5.735D-03 3.834D-04 -5.318D-04 3.260D-03 -2.744D-02 4.938D-04 4.942D-04
2.401 -5.746D-03 8.061D-03 -5.774D-05 -4.311D-04 -7.264D-03 -4.790D-03 3.437D-04 -4.494D-04 1.817D-03 -2.447D-02 4.681D-04 4.419D-04
2.501 -4.754D-03 6.925D-03 -5.210D-05 -4.390D-04 -6.440D-03 -3.932D-03 3.107D-04 -3.733D-04 8.937D-04 -2.206D-02 4.370D-04 3.912D-04
2.601 -3.896D-03 5.777D-03 -4.913D-05 -4.392D-04 -5.633D-03 -3.152D-03 2.847D-04 -3.060D-04 2.644D-04 -2.001D-02 4.041D-04 3.410D-04
2.701 -3.160D-03 4.668D-03 -4.683D-05 -4.331D-04 -4.874D-03 -2.440D-03 2.629D-04 -2.460D-04 -1.439D-04 -1.823D-02 3.694D-04 2.940D-04
2.801 -2.499D-03 3.589D-03 -4.483D-05 -4.211D-04 -4.160D-03 -1.814D-03 2.444D-04 -1.929D-04 -4.162D-04 -1.662D-02 3.338D-04 2.501D-04
2.901 -1.957D-03 2.602D-03 -4.285D-05 -4.056D-04 -3.538D-03 -1.287D-03 2.281D-04 -1.482D-04 -5.767D-04 -1.522D-02 2.996D-04 2.102D-04
3.001 -1.456D-03 1.665D-03 -4.031D-05 -3.870D-04 -2.955D-03 -8.248D-04 2.132D-04 -1.097D-04 -6.466D-04 -1.393D-02 2.660D-04 1.753D-04
3.101 -1.087D-03 8.782D-04 -3.741D-05 -3.671D-04 -2.502D-03 -4.903D-04 1.995D-04 -7.772D-05 -6.775D-04 -1.282D-02 2.346D-04 1.433D-04
3.201 -8.082D-04 2.024D-04 -3.415D-05 -3.459D-04 -2.130D-03 -2.430D-04 1.872D-04 -5.123D-05 -6.945D-04 -1.179D-02 2.051D-04 1.163D-04
3.301 -5.949D-04 -3.586D-04 -3.030D-05 -3.245D-04 -1.841D-03 -6.112D-05 1.748D-04 -2.929D-05 -6.672D-04 -1.095D-02 1.781D-04 9.261D-05
3.401 -4.416D-04 -8.563D-04 -2.668D-05 -3.036D-04 -1.615D-03 5.790D-05 1.635D-04 -1.184D-05 -6.497D-04 -1.019D-02 1.541D-04 7.254D-05
3.501 -3.380D-04 -1.229D-03 -2.288D-05 -2.838D-04 -1.446D-03 1.078D-04 1.529D-04 1.821D-06 -6.073D-04 -9.538D-03 1.323D-04 5.553D-05
3.601 -2.548D-04 -1.590D-03 -1.884D-05 -2.653D-04 -1.305D-03 1.403D-04 1.426D-04 1.276D-05 -5.735D-04 -8.950D-03 1.127D-04 4.119D-05
3.701 -3.003D-04 -1.760D-03 -1.476D-05 -2.474D-04 -1.289D-03 7.839D-05 1.324D-04 2.140D-05 -5.790D-04 -8.425D-03 9.546D-05 2.966D-05
3.801 -2.796D-04 -1.976D-03 -1.119D-05 -2.318D-04 -1.231D-03 5.794D-05 1.235D-04 2.756D-05 -5.466D-04 -8.003D-03 8.061D-05 1.973D-05
3.901 -2.138D-04 -2.269D-03 -7.747D-06 -2.179D-04 -1.131D-03 6.653D-05 1.146D-04 3.219D-05 -5.126D-04 -7.516D-03 6.789D-05 1.093D-05
4.001 -1.926D-04 -2.433D-03 -4.371D-06 -2.045D-04 -1.045D-03 3.904D-05 1.063D-04 3.530D-05 -4.771D-04 -7.074D-03 5.643D-05 4.836D-06
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FIG. 22. Figure showing how the use of off-shell form factors (left

panel) can generate IC diagrams (right panel). In this case the
removal of a one pion exchange interaction from the CST kernel

with off-shell form factors is equivalent to another CST calculation

with a two pion interaction current.

projection operators Θ cancel the propagators S leaving
a two-pion exchange term with an effective interaction at
the 2πNN vertex.

This correspondence mirrors that shown in Fig. 8 of
Ref. I. In that case the off-shell sigma coupling cancelled
the nucleon propagators. Here the details are very dif-
ferent, but the way in which off-shell projectors cancel

propagators reducing the effective interaction of the off
shell particle to a point interaction (modified by F3 or
F4) is the same. It is another example of the theorem
I proposed in Ref. I: a theory with off-shell couplings is
equivalent to another theory with no off-shell couplings
plus an infinite number of very complex interaction cur-
rents.

This comparison provides two further insights. First, I
showed in Ref. I that the momentum dependent couplings
in the kernel did not generate any two-pion exchange
currents, while, as the example in Fig. 22 shows, the
off-shell form factors do. Second, since the comparison
suggests the physical role for F4 is to generate two-pion
exchange currents (as well as exchange currents involving
other pairs of mesons) perhaps a more natural scale for
the Φµ factor multiplying F4 is 1/mπ (instead of 1/m
which is merely a carry over from the factors multiplying
F2). If this were the case the F4 form factor would be
m/mπ ∼ 7 times smaller that the curves shown in Figs. 3
and 4. The new F4 would be more comparable in size to
F3.
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D. Outlook

I remind the reader that model VODG provides a very
good explanation of the data for A,B, and T20. However,
the revised model IIB which is the basis of the VODG
calculation, does not give a high precision fit to the np
data. The newer high precision fits provided by models
WJC1 and WJC2, with their momentum dependent cou-
plings and accompanying exchange currents, required a
completely new calculation.

The fits to the off-shell form factors and the prediction
of a new high Q2 behavior of GEn completely fixes model
WJC2, and allows for a precise prediction, without any
free parameters, for the rescattering term in deuteron
electrodisintegration at modest energy using the CST
[64]. In addition to being important in its own right,
comparing this prediction to electrodisintegration data
would be a decisive test of the CST.

Finally, extending the measurements of A and partic-
ularly B or T20 to higher Q2 would yield new informa-
tion about the off-shell deuteron form factors, and per-
haps (in the absence of direct measurements) the neutron
charge form factor GEn. This paper provides the predic-
tions with which to compare experimental results. Note
in particular the CST prediction that B will flatten out
and reach a secondary maximum [recall Fig. (5)]. The
large size of B in this region may make measurements
less difficult than previously anticipated.
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Appendix A: Short review of the theory

This Appendix reviews some details of the calculations
of the deuteron form factors discussed in several previous
papers, but also includes some new analysis useful for a
detailed understanding of this paper.

1. Form factors and helicity amplitudes

The most general form of the covariant deuteron elec-
tromagnetic vector current illustrated in Figs 1 and 2 can

be expressed in terms of three deuteron form factors

〈P+ λ| Jµ |P− λ′〉

= −2Dµ

{
G1 ξ

∗
λ · ξ′λ′ −G3

(ξ∗λ · q)(ξ′λ′ · q)
2m2

d

}
−GM

[
ξ′µλ′ (ξ

∗
λ · q)− ξ

∗µ
λ (ξ′λ′ · q)

]
, (A1)

where the form factors G1, G3, and GM = G2 are
all functions of the square of the momentum transfer
q = P+ − P−, with Q2 = −q2, Dµ = 1

2 (P+ + P−)µ,
and ξ′λ′ (ξλ) are the four-vector polarizations of the in-
coming (outgoing) deuterons with helicities λ′ (λ). The
polarization vectors satisfy the well known constraints

P+ · ξλ = P− · ξ′λ′ = 0

ξ∗λ · ξρ = −δλρ
ξ′∗λ′ · ξ′ρ′ = −δλ′ρ′ . (A2)

This notation agrees with that used in Ref. [10], except
that now λ denotes the helicity of the outgoing deuteron
and λ′ the helicity of the incoming deuteron.

The form factors G1 and G3 are usually replaced by
the charge and quadrupole form factors, defined by

GC = G1 +
2

3
ηGQ

GQ = G1 + (1 + η)G3 −GM , (A3)

with η defined in Eq. (1.23). At Q2 = 0, the three form
factors GC , GQ, and GM give the charge, quadrupole
moment, and magnetic moment of the deuteron

GC(0) = 1 = G1(0) (units of e)
GM (0) = µd = G2(0) (units of e/2md)
GQ(0) = Qd = G3(0) + 1− µd (units of e/m2

d) .
(A4)

Contracting the vector current (A1) with the photon
helicity vectors

εµ0 = {0, 0, 0, 1}
εµ± = {0,∓1,−i, 0}/

√
2 (A5)

gives the helicity amplitudes, denoted by

G
λγ
λλ′ ≡ 〈P+ λ| Jµ |P− λ′〉 εµλγ . (A6)

The properties of the helicity amplitudes are discussed in
Sec. III of Ref. II, where it was shown that only three of
the possible 27 amplitudes are independent, so the form
factors can be expressed in terms of the three combina-
tions

J1 ≡ G0
00 = 2D0

(
GC +

4

3
η GQ

)
J2 ≡ G0

+− = 2D0

(
GC −

2

3
η GQ

)
J3 ≡

1

2
(G+

+0 +G−0−) = Q
D0

Md
GM , (A7)
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where the symmetrised sum in the definition of J3 is
used for convenience. To calculate the deuteron form
factors, it therefore sufficient to calculate the Jn (with
n = 1, 2, 3).

The experimental observables A, B, and T̃20 were de-
fined in terms of the form factors in Eqs. (1.22) and
(1.24).

2. Mathematical form of the current

The helicity amplitudes of the current, Jn(q), are the
sum of the three types of contributions shown in Fig. 2

Jn(q) = J An (q) + J (2)
n (q) + J Bn (q) . (A8)

The J An and J (2)
n contributions were combined in

Eq. (3.28) of Ref. II; here I find it convenient to write
them as two separate terms. Including the (B) diagrams
from Eq. (3.36) of Ref. II, all three contributions can be
written in a compact form:

J An (q)= e0

∫
k

{
f0(p+, p−)

2∑
i=1

[
Fi(Q

2)An,i(Ψ+Ψ−)
]

+
g0(p+, p−)

4m2

4∑
i=3

[
Fi(Q

2)An,i(Γ+Γ−)
]}

(A9a)

J (2)
n (q)= −e0

∫
k

2∑
i=1

Fi(Q
2)
[h+

h−
An,i(Ψ+Ψ

(2)
− ) +

h−
h+
An,i(Ψ(2)

+ Ψ−)
]

(A9b)

J Bn (q)= e0

∫
k

{[
mEk
kzQ

] 2∑
i=1

Fi(Q
2)

(
Bn,i(k0)

k0

∣∣∣
−
− Bn,i(k0)

k0

∣∣∣
+

)
− 1

m
On

2∑
i=1

Fi(Q
2)Cn,i(Γ Γ̂off)

}
(A9c)

where the integral is∫
k

=

∫
d3k

(2π)3

m

Ek
, (A10)

the operator OnX(q) = X(q)+εn3X(−q), with the phase
εn3 = (1−2δn3), and |± → |k0=E± , where E± was defined
in Eq. (1.5). The coefficient of the g0 term in Eq. (A9a)
differs from that reported in Ref. II; in includes a sum
over two off-shell nucleon form factors, F3 and F4, defined
in Eq. (1.13). The quantities A,B, and C are traces over
products of pairs of covariant wave functions (or vertex
functions), summarized in Table VII, one for the initial
and one for the final deuteron, and are multiplied by one
of the four from factors describing the interaction of the
virtual photon with the off-shell nucleon. The detailed
formulae for these traces are given in Ref. II: Eqs. (B1)
and (B2) for A, Eqs. (B6) and (B7) for B, and Eqs. (B9)
and (B10) for C. I found corrections to these formulae
that are reported in Appendix G.

The three types of wave functions or vertex functions
that enter into the traces (A9a) – (A9c) are Ψ, Ψ(2), and

Γ̂BS. The equation for the bound state wave function
with particle 1 on shell is

S−1(p)Ψ(k̂, P ) = −
∫
k′
V (k̂, k̂′;P )Ψ(k̂′, P ) , (A11)

where V is the symmetrized one boson exchange (OBE)
kernel (introduced in Ref. [13] and discussed in detail in
Ref. I) and the volume integral was defined in (A10).

The wave function Ψ(2)(k̂, P ) and the subtracted vertex

function Γ̂BS(k̃, P ) (where k̃ = {k0,k} can be off-shell)

are obtained from an iteration of the basic equation (A11)

using the kernels V
(2)

and V − V (1)

S−1(p)Ψ(2)(k̂, P ) = −
∫
k′
V

(2)
(k̂, k̂′;P )Ψ(k̂′, P ) (A12a)

Γ̂BS(k̃, P ) = −
∫
k′

[V − V (1)
](k̃, k̂′;P )Ψ(k̂′, P ) , (A12b)

where V
(1)

and V
(2)

are kernels constructed from the mo-
mentum dependence of the meson-NN vertiex couplings
to particle 1 and 2 as described in Ref. I.

The off-shell subtracted vertex function Γ̂BS is com-
posed of two parts with a different matrix structure.
These were previously defined in Eq. (3.7). The B part
of the vertex function appears in the B traces and the
C part in the C traces. (The reader is warned not to
confuse the B term in Eq. (3.7) with the total contribu-
tion to the (B) diagrams.) Note that each of the B trace
terms is singular when Q→ 0, and only through the can-
cellation of the two terms at k0 = E± is this singularity
removed. This cancellation is required by the physical
behavior of this contribution, as discussed in detail in
Sec. IIF of Ref. I. The C term vanishes when particle 1
is on-shell, and is interesting because it is a measure of
contributions from off-shell terms that do not contribute
to the on-shell two-body CST equation used to fix the
parameters of the kernel.



25

3. Relativistic effects due to shifts in the
arguments of the wave functions

The wave functions and vertex functions (referred to
collectively as wave functions in the following discussion)
that enter into the relativistic formulae have arguments
shifted by the relativistic kinematics. It is of considerable
interest in itself to study the size of these affects, and this
is the focus of this subsection.

a. Arguments for the A diagrams

As discussed in Sec. IIC of Ref. II, when one particle is
on-shell, the wave functions depend on only one variable,
which I have chosen to be k2 (the square of the three
momentum of the on-shell particle 1). When boosted
to the rest frame, this variable is denoted by R2, which
is then either the momentum of particle 1 or the relative
momentum of both particles (identical in the rest frame).
The quantity R is a function of k2, kz (the component of
k in the direction of q), and Q2.

For the A diagrams, with the momenta labeled as in
Fig. 1(A), the exact expression for this argument is [using
R2
A for rest frame values from diagram (A)]

(R±A)2 =
(P± · k̂)2

m2
d

−m2 (A13a)

= k2 ∓ kz Q
D0Ek
m2
d

+ η
(
E2
k + k2

z

)
(A13b)

→
(
k∓ 1

4
q

)2

m,md →∞ (A13c)

where (R−A)2 [(R+
A)2] is the rest frame value of R2

A ob-
tained from a moving incoming (outgoing) deuteron in
the Breit frame.

The last expression, Eq. (A13c), is the value of the rest
frame momentum (R±A)2 in the infinite mass (nonrela-
tivistic) limit, and shows that, nonrelativistically, these
momenta must be interpreted as the relative momenta,
ρ = 1

2 (k1 − k2), because before and after the collision
with the photon, the assignment of momenta that cor-
rectly describes this process is

before


k1 = k

k2 = −k− 1
2q

ρ = k + 1
4q

after


k1 = k

k2 = −k + 1
2q

ρ = k− 1
4q

(A14)

Note the reassuring fact that Eq. (A13a) gives the same

result if k̂ is replaced by the relative momentum in the
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FIG. 23. Locus of the points rz and rx = r⊥, Eq. (A17), as

a function of θ. The two closed curves and the solid round and
square reference points near rz ∼ −1 are discussed in the text. I

chose Q = 2 GeV and k = 400 MeV when the curves or reference

points depended on Q or k.

moving frame

(R±
′

A )2 =
(P± · (k̂ − 1

2P±))2

m2
d

− (k̂ − 1

2
P±)2

=
(P± · k̂)2

m2
d

− (P± · k̂) +
m2
d

4

−m2 + (P± · k̂)− m2
d

4

= (R±A)2 . (A15)

The lesson from this discussion is that the effective rest
frame momentum, (R±A)2, is the same whether or not
one starts in the moving frame from the four-momentum
of particle 1, or the relative four-momentum of the two
particles; this must be true, of course, since the two are
indistinguishable in the rest system.

To better understand the results (A13b) and (A13c), it
is useful to obtain the longitudinal and transverse com-
ponents of R±A by directly transforming the components

of k̂ = {Ek, k⊥, kz} from the moving system to the rest
system, using the relations

(R±A)⊥ = k⊥ = k sin θ

(R±A)z =
D0

md
k cos θ ∓ Q

2md
Ek (A16)

where it is easily shown that (R±A)2 = (R±A)2
⊥ + (R±A)2

z.
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In Fig. 23 I show the related components

r⊥ =
(R−A)⊥
k

= sin θ

rz =
1

k

[
(R−A)z −

QEk
2md

]
=
√

1 + η cos θ (A17)

plotted in the rx = r⊥, rz plane.
Two cases are shown in the figure. The first is the non-

relativistic limit of the boost (with η = 0). It is described
by the dashed black circle which can be described as the
locus of points swept out by the unit vector r (represented
by the dashed arrow fixed to the origin) rotating through
polar angle θ with the ẑ axis. However, the same circle is
also the locus of points swept out by R−A/k, represented
by the longer black dashed vector, with one end fixed at
the reference point (represented by the round black dot
at r0

z = −Q/(4k) = −1.25 in the figure) and the other
end following the locus of points swept out by dashed
circle. This vector, which is the rest frame momentum in
the nonrelativistic limit, divide by k, must change length
in order to track the dashed circle.

The second case shown is the solid red ellipse, which
shows the behavior of the relativistic A-type rest-frame
momentum. Because η 6= 0 (η ' 0.02835 for the pa-
rameters chosen) the curve changes from a circle to an
ellipse and the reference point (represented by the solid
red square) shifts to r0

z = −QEk/(2kmd) ' −1.359. The
vector that sweeps out the relativistic momentum R−A/k
is represented by the red arrow that connects the solid
red square reference point to the ellipse. One can see
clearly how the relativistic transformation changes the
effective rest-frame momentum; the shift in the reference
point is due to the role that the particle energy plays in
the transformation, and change from a circle to an ellipse
is due to the dilation factor in the transformation.

Fig. 23 shows the relativistic ellipse expanding in the ẑ
direction, rather than contracting. This is because we are
keeping k constant in the moving frame. To obtain this
condition, we must start from an expanded ellipse in the
rest-frame, so that when it is contracted by the trans-
formation to the moving system it will be compressed
back into a circle. Hence the transformation behaves as
expected after all. This expansion explains qualitatively
the behavior of the relativistic argument shift shown by
the dashed blue line shown in Fig. 20.

b. Arguments for the B diagrams

For the B diagrams, when both particles can be off-
shell, the wave functions can depend on an additional
variable, which was previously chosen to be the energy
of particle 1 in the moving frame, k0, which transformed
to R0 in the rest frame. The momenta are labeled in
Fig. 2(B) and following the discussion in Sec. III C, I
make the substitution

k̃±0 = x±10Ẽ± (A18)

into the momenta given in Ref. II (with the change in

notation R̃→ RB)

[R±B(k̃, x±10)]2 =

(
P± · k̃±

)2

m2
d

− k̃2
± = k̃2

⊥ + k̃2
±z

∓x±10 k̃±zQ
D0Ẽ±
m2
d

+ η[(x±10 Ẽ±)2 + k̃2
±z]

→ k̃2
⊥ + k̃2

±z ∓
1

2
x±10k̃±zQ+ x±2

10

Q2

16

=
[
k̃± 1

4
(2− x±10)q

]2
m,md →∞

R±0 (k̃, x±10) =
P± · k̃±
md

=
1

2md
[2x±10D0Ẽ± ∓ k̃±zQ]

→ x±10m+
x±10

2m

[
k̃2
⊥ + k̃2

±z +
1

8
Q2
]
∓ k̃±zQ

4m

= x±10m+
1

2m

[
x±10k̃

2 ± 1

2
k̃zQ(2x±10 − 1)

+
1

16
(5x±10 − 4)Q2

]
m,md →∞ , (A19)

where [recalling that the momenta in Fig. 2(B) are la-
beled with a tilda to distinguish them from momenta in
Fig. 2(A)]

k̃± = {x±10Ẽ±, k̃±
1

2
q}

k̃±z = k̃z ±
1

2
Q . (A20)

I prefer using the variable x10 instead of the uncon-
strained energy k0 because when particle 1 is on-shell,
x10 = 1, independent of momenta. Hence

[R±B(k̃, 1)]2 = k̃2
⊥ + k̃2

±z ∓ k̃±zQ
D0Ẽ±
m2
d

+ η[Ẽ2
± + k̃2

±z]

→
(
k̃± 1

4
q
)

m,md →∞

R±0 (k̃, 1) =
1

2md
[2D0Ẽ± ∓ k̃±zQ] ,

→ m+
1

2m

(
k̃± 1

4
q
)2

m,md →∞ . (A21)

It is easy to see that R±0 is constrained by the mass shell
condition

R±0 (k̃, 1) =

√
m2 + [R±B(k̃, 1)]2 , (A22)

as required by relativity. The condition x±10 = 1 is now
a simple, momentum independent way to specify that
particle 1 is on-shell.

In the calculation of the (B) diagram, only the values
of x±10 given in Eq. (3.3) are needed. To order 1/m2 these
are

x±10 = ζ± ' 1 +
k̃2
∓

2m2
−

k̃2
±

2m2

= 1∓ k̃zQ

m2
. (A23)
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When this is substituted into (A19), the result to order
1/m2 is

R±0 (k̃, ζ±) ' m
(

1∓ k̃zQ

m2

)
+

1

2m

[
k̃2 ± 1

2
k̃zQ+

Q2

16

]
= m+

1

2m

[
k̃2 ∓ 1

2
k̃zQ+

Q2

16

]
'
√
m2 +

(
k̃∓ 1

4
q
)2

, (A24)

showing that the mass shell condition holds to order
1/m2.

While x±10 is the appropriate quantity describing the
off-shell behavior in the moving frame, the quantity that
describes this in the rest frame of each state, denoted by
X±10(k̃, x±10), is defined by the relations

R±0 (k̃, x±10) = X±10(k̃, x±10)

√
m2 + [R±B(k̃, x±10)]2 . (A25)

This can be derived directly by transforming k̃±0 and Ẽ±
in Eq. (A18) to the rest frame and requiring the trans-
formation of x±10 → X±10 to maintain the equation. Note
that setting x±10 = 1 in (A25) and using the relation (A22)

gives the result X±10(k̃, 1) = 1.
It is satisfying to observe that nonrelativistic limits

of the momenta (A19) [or (??)] correctly describe the
process in which the photon is absorption on particle 1
instead of particle 2:

before


k1 = k− 1

2q

k2 = −k
ρ = k− 1

4q

after


k1 = k + 1

2q

k2 = −k
ρ = k + 1

4q .

(A26)

This is a consequence of the fact that the nonrelativistic
limit of [R±B(k̃, 1)]2 is not equal to (R±A)2.

As I did in the previous subsection, it is useful to de-
rive (A19) directly from the Lorentz boost. Starting from
the off-shell four-momentum of particle 1 in the mov-
ing frame, k̃± = {x±10Ẽ±, k̃ ± 1

2Q} (where k̃± pairs with
momenta P±), and transforming to the rest frame using

R±B = Λ∓k̃±, gives

(R±B)⊥ = k̃⊥ = k̃ sin θ

(R±B)z =
D0

md
k̃±z ∓ x±10

QẼ±
2md

R±0 = ∓Qk̃±z
2md

+ x±10

D0Ẽ±
md

. (A27)

This result for R±0 agrees immediately with (A19), and
it is also easy to show that [R±B ]2 = (R±B)2

⊥ + (R±B)2
z as

expected.
To represent the behavior of the spacial components

when particle 1 is on shell, Fig. 24 shows the behavior
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FIG. 24. Locus of the points {r̃zb+, r̃
⊥
b+} of Eq. (??) (the dashed-

line ellipse) compared to {rzb+, r
⊥
b+} of Eq. (A28) (the solid-line

ellipse, identical to the one shown in Fig. 23) as a function of θ. The
diamond reference point near rz ∼ −1 from which the magnitude

of the transformed momentum is measured, is the same for both

cases and identical to the one shown in Fig. 23. I choose Q = 2
GeV and k = 400 MeV for this example.

of the two components that enter into the (B+) diagram
when x10 = 1

rb⊥ =
1

k̃
[R+
B(1)]⊥ = sin θ

rbz =
1

k̃

[
[R+
B(1)]z −

Q

2md
(D0 − E0)

]
=
√

1 + η cos θ − Q

2kmd
(E+ − E0) . (A28)

In defining rbz, I introduced a new subtraction term de-
pending on the energy E0,

E0 ≡
√
m2 + k2 +

Q2

4
= E+(cos θ = 0) , (A29)

chosen to be independent of θ and of the correct size to
center the elliptical locus of the points {rb⊥, rbz} at the
origin

The solid red ellipse shown in Fig. 24 is the locus of

points swept out by the vector R+
B/k̃, which reaches from

the new reference point (the subtraction term) shown
as a solid red diamond located on the ẑ axis at −0.930
(for the same values Q = 2 GeV and k = 400 MeV
used in Fig. 23) to the smaller of the red ellipses, and
has a different length than the one for diagram (A). For
comparison, the ellipse for the transformation of diagram
(A) shown in Fig. 23 is the red dashed ellipse in Fig. 24.
The Lorentz transformation of the (A) and (B) diagrams
have very different behaviors, which can be traced to the
different behavior of the energies of particle 1 in the two
cases.
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I return now to the issue of how far off-shell particle 1 is
forced by the kinematics in the 2(B) diagrams. This was
already addressed nonrelativistically in Sec. III C above.
As I showed there, the relevant values of x±10, denoted ζ±,
were given in Eq. (3.3). The correct quantity is therefore

X±10(k̃, ζ±) =
R±0 (k̃, ζ±)√

m2 + [R±B(k̃, ζ±)]2

=
2D0Ẽ∓ ∓ k̃±zQ√

(2D0Ẽ∓ ∓ k̃±zQ)2 ± 8m2
dk̃zQ

(A30)

The maximum of X±10 occurs when k̃z = ∓k (I drop the
tilde at this point), giving

X±max
10 =

2D0E+(Q) + k−Q√
(2D0E+(Q) + k−Q)2 − 8m2

dk Q
(A31)

where

E±(Q) =

√
m2 +

(
k ± 1

2
Q

)2

. (A32)

As for the non-boosted case, the minimum is found by
changing k → −k (or θ = 0 to π). Also, note that

lim
md→∞

X±max
10 =

E+(Q)

E−(Q)
(A33)

which, once kmax has been found, agrees with the result
(3.4).

For each Q, this limiting function is has a maximum at
a particular value of k (which is best found numerically)
so the maximum and minimum for all k can be shown
as a function of Q only. This limiting value was already
shown in Fig. 15. The figure shows how far off-shell the
particle can be forced, even at modest values of Q.

4. Calculation of the off-shell invariant functions

The wave and vertex functions can be expanded into
scalar functions. For recent discussion of the decompo-
sition of Ψ, see Appendix A of Ref. II and Sec. III of
Ref. [14]. The wave function Ψ can be expressed in terms
of four scalar functions: the two familiar nonrelativistic S
and D-state wave functions, u (S-state), w (P-state), and
the two small P-state components of relativistic origin,vt
(spin triplet P-state), and vt (spin singlet P-state), or al-
ternatively in terms of the helicity amplitudes zρ1ρ2` (with
ρ1 = +; see the discussion below). The momentum de-
pendence of these wave functions was shown in Figs. 6
and 7 of Ref. [14].

In this subsection, I discuss a few technical details that
I found helpful in carrying out the numerical calculations.

First, instead of using the amplitudes zρ1ρ2` , where

z++
0 =

1√
6

(u+
√

2w)

z++
1 =

1√
6

(
√

2u− w)

z+−
0 = − 1√

2
vs

z+−
1 = − 1√

2
vt , (A34)

I use the realted amplitudes

yρ1ρ2` (k, k0) = δρ2z
ρ1ρ2
` (k, k0) , (A35)

where ρ = ± and δρ is related to the inverse of the nucleon
propagator Gρ for positive and negative energy nucleon
states. These propagators are

Gρ =
ρ

Ek + ρ(k0 −md)

=
ρ

Ek(1 + ρ x10)− ρmd)
≡ ρ

δρ
. (A36)

The reason for using the y’s instead of the z’s is that
the propagator appears naturally when the z’s are ex-
tended off-shell. Since G+ is singular at δ+ = 0, or at

x10 =
md − Ek
Ek

' 1− k2

m2
, (A37)

the z’s are singular at these points, and it is hard to com-
pute them numerically around these singularities. The
problem becomes critical because these singularities are
very close to x10 = 1 at small k2. These singularities
are cancelled in the amplitudes y, which are very smooth
near x10 = 1 and provide a much better input for numer-
ical solutions.

The eight invariant functions that define the Dirac-
space form of the vertex function can be expressed in
terms of the helicity amplitudes yρ1ρ2` . The results in
terms of the z’s was given in Eq. (A27) of [2]. When
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expressed in terms of the y’s the relations become

F

C0
= (Ek + k0)

[
δ−y

++
1 − m

k
δ+y

+−
1

]
−(Ek − k0)

[
δ+y

−−
1 +

m

k
δ−y

−+
1

]
k2G

mC1
= (Ek + k0)

[
δ−

(
Eky

++
0 − my++

1√
2

)
− kδ+y

+−
1√
2

]
− (Ek − k0)

[
δ+

(
Eky

−−
0 − my−−1√

2

)
+
kδ−y

−+
1√
2

]
kH

mEkC0
= −(Ek + k0) y+−

1 − (Ek − k0) y−+
1

k2I

m2C1
= (Ek + k0)

[
my++

0 − Ek√
2
y++

1 + k y+−
0

]
−(Ek − k0)

[
my−−0 − Ek√

2
y−−1 − k y−+

0

]
kK1

mEkC0
= −δ+y+−

1 − δ−y−+
1

k2K2

m2C1
= mδ−y

++
0 − Ek

δ−y
++
1√
2
− kδ+y+−

0

−mδ+y
−−
0 + Ek

δ+y
−−
1√
2
− kδ−y−+

0

kK3

m2C0
= −k y++

1 −my−+
1 + k y−−1 −my+−

1

k2K4

m3C0
=
√

2Eky
++
0 −my++

1 + ky−+
1

−
√

2Eky
−−
0 +my−−1 + ky+−

1 , (A38)

where

C0 =

√
3K

2Ekmd
C1 =

√
2 C0 (A39)

with K = π
√

2md.
It turns out that only the four amplitudes y+ρ2

` need to

be considered; the amplitudes y−ρ2` will never contribute
to the final result. The argument is in two steps. First,
when particle 1 is on-shell, k0 = Ek, and the four in-
variant functions F,G,H, I do not depend on the ampli-
tudes y−ρ2` . Next, when both particles are off-shell, only

subtracted amplitudes Ĥ, · · · K̂4 contribute, and I have
found that the subtracted amplitudes ŷ−ρ2` are numeri-
cally so small as to be nearly zero, and can be discarded
from the calculation. In this case the subtracted K̂i are
not zero, but depend only on the amplitudes ŷ+ρ2

` . I have

not looked for a proof of the relation ŷ−ρ2` = 0, which I
believe to be true.

All of the invariants are regular as k → 0, yet the
expressions for all but F show a possible singularity at
k = 0. To avoid this there must be relations between
the y’s near k = 0. To examine this, drop all of the y−ρ2`
terms, and substitute k0 = x10Ek and examine the k → 0
limits, dropping all terms proportional to k2 or higher,
since they are finite. Taking md → 2m, and using the

expansions

δ+ ' m(x10 − 1)

δ− ' m(3− x10) (A40)

gives

lim
k→0

G =
G0

k2
(1 + x10)

{
(3− x10)

[
y++

0 − y++
1√

2

]
−(x10 − 1)

k

m

y+−
1√

2

}
lim
k→0

H =
H0

k
(1 + x10) y+−

1

lim
k→0

I =
I0
k2

(1 + x10)
(
y++

0 − y++
1√

2
+
k

m
y+−

0

)
lim
k→0

K1 =
K10

k
(x10 − 1) y+−

1

lim
k→0

K2 =
K20

k2

{
(3− x10)

[
y++

0 − y++
1√

2

]
−(x10 − 1)

k

m
y+−

0

}
lim
k→0

K3 =
K30

k

{ k
m
y++

1 + y+−
1

}
lim
k→0

K4 =
K40

k2

{√
2 y++

0 − y++
1 +

k

m
y+−

1

}
. (A41)

Requiring that these seven invariants be regular at k = 0
gives conditions on the four vertex functions. Near k = 0,
and independent of x10, we require

lim
k→0

(y++
1 −

√
2y++

0 )→ a1k
2

lim
k→0

y+−
1 → a2k

lim
k→0

y+−
0 → a3k (A42)

Note that these limits are satisfied by the usual behav-
ior of the momentum space wave functions. Using the
definitions [taken from (A34) multiplied by δρ2 ] gives

y++
1 −

√
2y++

0 = −
√

3

2
wv = −

√
3

2
δ+w

y+−
0 = − 1√

2
δ−vs

y+−
1 = − 1√

2
δ−vt (A43)

which shows that the standard k` behavior of the P and
D state wave functions will satisfy the necessary condi-
tions.

Appendix B: Nonrelativistic form factor

1. Wave functions momentum space

To prepare for the discussion of the nonrelativistic form
factor, I write the nonrelativistic wave functions in the
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form

Z`m(r) =
i` z`(r)

r
Y`m(r̂)

Z`m(k) = z`(k)Y`m(k̂) (B1)

where z` a generic name for the radial wave functions,
u(` = 0) or w(` = 2), and Y`m is the spherical harmonic
with relations∫

dΩr̂ Y`m(r̂)Y ∗`′m′(r̂) = δmm′δ``′

4π

2`+ 1

∑̀
m=−`

Y`m(r̂)Y ∗`m(k̂) = P`(k̂ · r̂)

4π

2`+ 1

∑̀
m=−`

Y`m(r̂)Y ∗`m(r̂) = 1 (B2)

Note that the wave functions in coordinate space are re-
duced and the wave functions in coordinate and momen-
tum spaces are only distinguished is by their arguments

(r for coordinate space and k for momentum space). For
a discussion of the phase i`, see Eq. (3.36) and the last
paragraph of Sec. III C in Ref. [14]. This phase, which
comes from the familiar plane wave expansion, is need to
keep the z`’s real. The standard Fourier transform links
the two spaces

Z`m(r)=
1

(2π)
3
2

∫
d3k exp(ik · r)Z`m(k)

Z`m(k)=
1

(2π)
3
2

∫
d3k exp(−ik · r)Z`m(r) . (B3)

Using the familiar plane wave expansion

exp(ik · r)=

∞∑
`=0

(2`+ 1)i`j`(kr)P`(k̂ · r̂)

= 4π

∞∑
`=0

i`j`(kr)
∑̀
m=−`

Y`m(k̂)Y ∗`m(r̂) , (B4)

where j`(kr) is the spherical Bessel function, I reduce the
Eqs. (B3) to

1

(2π)
3
2

∫
d3k exp(ik · r) z`(k)Y`m(k̂) = Z`m(r) =

i`z`(r)

r
Y`m(r̂) = i`

√
2

π

∫ ∞
0

r2 drj`(kr)z`(k)Y`m(r̂)

i`

(2π)
3
2

∫
d3r exp(−ik · r)

z`(r)

r
Y`m(r̂) = Z`m(r) = z`(k)Y`m(k̂) =

√
2

π

∫ ∞
0

r2 drj`(kr)
z`(r)

r
Y`m(k̂) (B5)

Dropping the common factors gives the relations [see Eq. (A32) of Ref. II]

z`(r)

r
=

√
2

π

∫ ∞
0

k2dk j`(kr)z`(k) ,

z`(k) =

√
2

π

∫ ∞
0

r2dr j`(kr)
z`(r)

r
. (B6)

2. Derivation of the charge form factor in momentum space

The nonrelativistic charge form factor is

GNR
C =

∫ ∞
0

dr
[
u2(r) + w2(r)

]
j0(τ0) (B7)

where τ0 = 1
2Qr. For convenience I give the derivation of the momentum space expression, which is not widely known.

Each factor can be most easily be transformed to momentum space by first restoring the missing angular integrals:∫ ∞
0

r2drj0(τ0)
z2
` (r)

r2
=

1

2π

∫ ∞
0

r2dr

∫
dΩr̂ exp

[ iq · r
2

]z2
` (r)

r2
=

2

2`+ 1

∫
d3r exp

[ iq · r
2

]z2
` (r)

r2

∑̀
m=−`

Y`m(r̂)Y ∗`m(r̂)

=
2

2`+ 1

∫
d3r

∫
d3r′ δ(r− r′) exp

[ iq · r
2

]z`(r)
r

z`(r
′)

r′

∑̀
m=−`

Y`m(r̂)Y ∗`m(r̂′)

=
2

(2`+ 1)(2π)3

∑̀
m=−`

∫
d3k

∫
d3r exp

[
i(k +

1

2
q) · r

]z`(r)
r

Y ∗`m(r̂)

∫
d3r′ exp

[
− ik · r′

]z`(r′)
r′

Y`m(r̂′)
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=
2

(2`+ 1)(2π)3

∑̀
m=−`

∫
d3k

∫
d3k′ δ(k′ − 1

2
q− k)

∫
d3r exp

[
ik′ · r

]z`(r)
r

Y ∗`m(r̂)

×
∫
d3r′ exp

[
− ik · r′

]z`(r′)
r′

Y`m(r̂′)

=
2

2`+ 1

∑̀
m=−`

∫
d3k

∫
d3k′ δ(k′ − 1

2
q− k)z`(k

′)Y ∗`m(k̂′)z`(k)Y`m(k̂)

=
2

2`+ 1

∑̀
m=−`

∫
d3k z`(k 1

2
)z`(k)Y ∗`m(k̂ 1

2
)Y`m(k̂) =

1

2π

∫
d3kP`(k+ · k−)z`(k+)z`(k−) (B8)

where k 1
2

= k + 1
2q and k± was already defined in Eq. (4.2). This final result was already given in Eq. (4.1).

Appendix C: Extraction of F3 and F4 from data for
GM and T20

Here I present details of how the unknown off-shell
from factors F3 and F4 are determined from a simulta-
neous fit to the Sick GA “data” for GM and T20. To this
end recall the expansion (1.19). Dropping explicit men-
tion of the Q2 arguments, this expansion is rewritten in
a form that isolates the F3 and F4 contributions

GX = GX,0 +

4∑
i=3

FiDX,i , (C1)

where GX is the value of form factor at each Sick GA
point GX = GX(Q2

i ). A similar expansion for the pa-
rameter y of Eq. (1.25) that fixes T20 can be written

3yGC = 2η GQ →
4∑
i=3

Fiai = a0 (C2)

where

ai = 3yDC,i − 2η DQ,i i = {3, 4}
a0 = 2η GQ,0 − 3yGC,0 . (C3)

Solving Eqs. (C1) (with X →M) and (C2) (for i = {3, 4}
and j = {4, 3} 6= i) gives

Fi =
1

Dij
[a0DM,j + aj(GM,0 −GM )] . (C4)

were

Dij = aiDM,j − ajDM,i = −Dji . (C5)

Note that when y → ±∞, Fi becomes

Fi →
GC,0DM,j +DC,j(GM −GM,0)

DM,iDC,j −DC,iDM,j
, (C6)

independent of the sign of y, insuring that the Fi are
continuous at the point where T20 = −1/

√
2.

Assuming there are no errors other than the error δGM
in GM and δy in the y parameter, the errors in F3 and

F4 can be obtained by expanding Eqs. (C1) and (C2) to
first order, giving

4∑
i=3

δFiDM,i = δGM

4∑
i=3

δFi ai = −3δy (GC,0 + F3DC,3 + F4DC,4)

≡ −3δy b0 (C7)

with the solution

δFi = − 1

Dij
(ajδGM + 3δyDM,jb0)

→
∣∣∣∣ 1

Dij

∣∣∣∣ ( |ajδGM |+ |3δyKjMb0|
]

(C8)

where the second expression ensures that each error is
treated as a positive contribution.

Appendix D: Extraction of GEn from data for A

While it is straightforward to extract the predicted val-
ues of GEn from the data for A, it is still useful to outline
here the way in which this was done. I begin by isolating
the GEn contribution from the expansion (1.19). Drop-
ping the Q2 arguments, the new expansion is

GX = GEDX,E +GMDX,M +

4∑
i=3

FiDX,i

≡ GEJ1X + J0X , (D1)

where J1X = DX,E , J0X is defined by the expression,
and, as before, all nucleon form factors contributing to
the deuteron are isoscalar , so that here GE = GEs =
GEp +GEn. The first two on-shell nucleon form factors,
F1 and F2 are related to the nucleon electric and mag-
netic form factors in the usual way

GE(Q2) = F1(Q2)− τF2(Q2)

GM (Q2) = F1(Q2) + F2(Q2) , (D2)



32

where τ = Q2/(4m2). Hence

DX,1(Q2) = DX,E(Q2) +DX,M (Q2)

DX,2(Q2) = DX,M (Q2)− τDX,E(Q2) , (D3)

or, in terms of the calculated body form factors,

DX,E =
DX,1 −DX,2

1 + τ

DX,M =
τDX,1 +DX,2

1 + τ
. (D4)

This defines all of the coefficients in the expansion (D1).
The quadratic dependence go A on GE can now be

expressed in a compact form

A = G2
EC2 +GEC1 + C0 . (D5)

The coefficients Ci (all functions of Q2) are

C2 = J2
1C +

8

9
η2J2

1Q +
2

3
ηJ2

1M

C1 = 2J1CJ0C +
16

9
η2J1QJ0Q +

4

3
ηJ1MJ0M

C0 = J2
0C +

8

9
η2J2

0Q +
2

3
ηJ2

0M . (D6)

The solution to (D5) is

GE =
1

2C2

(√
4C2(A− C0) + C2

1 − C1

)
(D7)

where the sign of the square root was chosen to give a
positive GE when GM → 0.

The error in GE comes from both the error in A and
the errors in F3 and F4. Since F3 and F4 contribute only
to J0X , its contribution to the error is contained in the
factors

δJ0X =

4∑
i=3

δFiDX,i (D8)

which contribute the following errors to the Ci

δC0 = 2
[
J0CδJ0C +

8

9
η2J0QδJ0Q +

2

3
ηJ0MδJ0M

]
δC1 = 2

[
J1CδJ0C +

8

9
η2J1QδJ0Q +

2

3
ηJ1MδJ0M

]
. (D9)

combining these errors with the Experimental error in A
gives the following estimate for the error in GE

δGE =
δA− δC0 − δC1GE√

4C2(A− C0) + C2
1

. (D10)

With these results in hand, we find the solution for
GEn from the solution for GE by subtracting GEp, which
is also assumed to have no error. Hence δGEn = δGE as
given in (D10).

Appendix E: Redefinitions of the C traces

In Refs. II and III the arguments for the B and C traces
were chosen differently. This is inconvenient for the nu-
merical calculations performed in this paper, and can be
easily avoided by some redefinitions. Specializing to the
case when the outgoing particle 1 is on-shell, momenta
used for the B were

k̃B+ =
{
E+,k +

1

2
q
}

k̃B− =
{
E+,k−

1

2
q
}

p̃B− =
{
D0 − E+,−k

}
(E1)

while for the C traces I previously used

kC+ =
{
Ek,kC

}
kC− =

{
Ek,kC − q

}
pB+ =

{
D0 − Ek,−kC +

1

2
q
}

(E2)

where here, to avoid confusion, I labeled the k momenta
used for the C diagrams by kC , and therefore in these ex-
pressions Ek ≡ EkC . The C momenta can be transformed
into the B momenta by the simple transformation

kC → k +
1

2
q . (E3)

In this Appendix I show the effect of this transformation
on the formulae for the C traces published in Ref. II.

First, consider the argument shifts for the C traces. In
Ref. II the arguments of the Ki are shifted to

R̂2
− =

1

m2
d

[
D0Ek +

1

2
(kCz −Q)Q

]2 − (m2 + 2kCzQ−Q2)

→ 1

m2
d

[
D0E+ +

1

2
(kz −

1

2
Q)Q

]2 − (m2 + 2kzQ)

R̂−0 =
1

2md

[
2D0Ek + (kCz −Q)Q

]
→ 1

2md

[
2D0E+ + (kz −

1

2
Q)Q

]
(E4)

while the argument of the outgoing generic on-shell Z+

is

R2
+ =

1

m2
d

[
D0Ek −

1

2
kCzQ

]2
−m2

→ 1

m2
d

[
D0E+ −

1

2
(kz +

1

2
Q)Q

]2
−m2 . (E5)

If the outgoing state in the B traces has particle 1 on
shell, so that k0 = E+, these expressions are identical
to the argument shifts given in Eq. (A19), showing that
the transformation (E3) transforms the shifts for C into
those for B.

The expressions for the C traces depend on the coeffi-
cients defined in Table IX of Ref. II (some of which are
defined in Tables VI and VII of that reference). The only
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TABLE XV. These vector products used in the definitions of the Cn,i traces, originally defined in Table VI in Ref. II,
are redefined as a consequence of the transformation (E3).

a’s n = 1 (J0
00) n = 2 (J0

+−) n = 3+ (J+
+0) n = 3− (J−0−)

a+ (EkQ− 2kCzD0)/(2md) 1√
2

(kx − iky) 1√
2

(kx − iky) (EkQ− 2kCzD0)/(2md)

→ (E+Q− (2kz +Q)D0)/(2md) → (E+Q− (2kz +Q)D0)/(2md)

a− −(EkQ+ 2kCzD0)/(2md) 1√
2

(kx + iky) −(EkQ+ 2kCzD0)/(2md) 1√
2

(kx + iky)

→ −(E+Q+ (2kz +Q)D0)/(2md) → −(E+Q+ (2kz +Q)D0)/(2md)

a0 Ek → E+ Ek → E+
1√
2

(kx + iky) − 1√
2

(kx − iky)

coefficients that depend on k are the a’s, with transfor-
mations summarized in Table XV, and the coefficients
c′0, cq, and the particle 1 momentum squared, p2

+, all of
which transform to

c′0 = D0Ek → D0E+

cq = −QkCz → −Q(kz +
1

2
Q)

p2
+ = (P+ − k)2 = m2

d +m2 − 2D0Ek +QkCz

→ m2
d +m2 − 2D0E+ +Q(kz +

1

2
Q) . (E6)

Finally, the volume integral transforms to∫
k

≡
∫

d3kC
(2π)3

m

Ek
→
∫

d3k

(2π)3

m

E+
=

∫
k

Ek
E+

(E7)

where in the final expression, I return to the definition
Ek =

√
m2 + k2 used everywhere.

With these substitutions, the same four-vector k+ =
{E+,k + 1

2q} is used for both the C and B+ traces.

Appendix F: Corrected treatment of the angular
integrals when x10 6= 1

Evaluation of the he angular integrals was discussed in
detail in Appendix B of Ref. [14], but the discussion there
was not accurate for cases when x10 6= 1. In that paper
we introduced the variable x0 to scale for the off-shell
energy dependence to the relative energy, where

p0 = x0(Ep −
1

2
W ) (F1)

(c.f. Eq. (A16) of Ref. [14]). However, since the rela-
tive energy p0 can be large when p → 0, the quantity
x0 defined in this way can also become quite large, mak-
ing numerical calculations using this quantity difficult to
carry out accurately. In this paper I have chosen to scale
the off-shell energy of particle 1, using the relation

p10 = x10Ep

p20 = W − x10Ep . (F2)

It follows immediately that the relative energy, expressed
in tin terms of x10 is

p0 =
1

2
(p10 − p20) = x10Ep −

1

2
W (F3)

so that

x0 =
2x10Ep −W

2Ep −W
. (F4)

This correspondence can be used quite successfully in
many places, but for the discussion of the angular inte-
grals it is best to work directly with x10.

As an example, consider how the treatment of the di-
rect terms must be modified when the both nucleons are
off-shell. Now the the momentum transfer depends on
x10

q2(x10) = (x10Ep − Ep′)2 − p2 − p′2 + 2pp′z

= 2pp′(z0 − z) (F5)

where I assume that the initial state (with momentum
p′) has particle 1 on-shell. This momentum transfer is
zero at the critical cosine

z0 =
p2 + p′2 − (x10Ep − Ep′)2

2pp′
. (F6)

The angular integrals are strongly peaked at z = z0.
When x10 = 1, z0 ≥ 1 and approaches 1 only when
p → p′. This singularity can be handled by the meth-
ods used in Ref. [14]. However, for x10 6= 1, z0 can be
less than 1 and the angular integrals can peak inside of
the region of integration. This requires a mapping of the
type used for the exchange terms, described in Appendix
B3, Eq. (B9) of Ref. [14].

Appendix G: Errata in Ref. II

There are errors in the magnetic moment results re-
ported in Ref. II. As I did in Ref. II, here I present
the difference between the expansion of the relativis-
tic calculation and µs = 0.880 = 1 + κs to obtain the
“corrections” to the magnetic moment coming from the
relativistic calculation. Multiplying the normalization
condition by 0.880, written in the form (approximating
Ek −Md → −m and Md → 2m in the a(p2) terms)
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0.880 = (1 + κs)

∫ ∞
0

k2dk
{
u2 + w2 + v2

t + v2
s + 4a(p2)m

[
δk(u2 + w2)− 2m(v2

t + v2
s)
]

−u[δ+û]k0 − w[δ+ŵ]k0 + vt[δ−v̂t]k0 + vs[δ−v̂s]k0 − uu(2) − ww(2) − vtv(2)
t − vsv(2)

s

}
. (G1)

and subtracting this from the predictions of the (A) + (A(2)) + (B) diagrams (multiplied by 1/2) gives the following
corrections to the magnetic moment

∆µd =
∑

X=A,B

∫ ∞
0

k2dk
1

2

{
δµXNR + δµXRc + δµXh′ + δµAV2

+ δµBV1
+ δµAint + δµXP

}
(G2)

where the expression reflects the fact that the only nonzero contributions to δµV1
(δµV2

) come from the (B) [(A)(2))]
diagrams and δµBint, while not zero, is of lower order and can be dropped. The non-zero contributions are therefore

δµANR = δµBNR = −3

4
(1 + 2κs)w

2

δµARc = −
[
Ek −m

6Ek

] [
2(1 + κs)u

2 +
√

2(1− 2κs)uw − (2− κs)w2
]

δµBRc = −κs
[
Ek −m

6Ek

]
(2u2 + w2 − 2

√
2uw)

δµAh′ = −a(p2)m
{

(1 + 2κs)(3δkw
2 − 4mv2

s)− 4κsmv
2
t + 6

√
2mvtvs

}
δµBh′ = −a(p2)m

{
(1 + 2κs)

[
3δkw

2 − 2m(v2
t + 2v2

s)
]
− 8m

√
2(1 + κs)vtvs

}
δµAV2

=
3

2
(1 + 2κs)ww

(2) +
1

2
(5 + 6κs)vtv

(2)
t + (3 + 2κs)vsv

(2)
s +

√
2κs(vtv

(2)
s + vsv

(2)
t )

− m√
6

{
u(2)(v′t −

√
2v′s) + w(2)(

√
2v′t + v′s)− v

(2)
t (u′ +

√
2w′) + v(2)

s (
√

2u′ − w′)

+
1

k

[
2u(2)(vt −

√
2vs)− w(2)(

√
2vt + vs)− 3w(

√
2v

(2)
t + v(2)

s )
]}

δµBV1
= (1 + κs)

[
3w[δ+w]k0 − vt[δ−vt]k0 − 2vs[δ−vs]k0 −

√
2(vt[δ−vs]k0 + vs[δ−vt]k0)

]
δµAint = − m√

6

[
u′(vt −

√
2vs) + w′(

√
2vt + vs) +

3

k
w(
√

2vt + vs)
]

δµAP = −1

4
(5 + 6κs)v

2
t −

1

2
(3 + 2κs)v

2
s −
√

2κsvtvs

δµBP =
1

4

[
− (3 + 2κs)(v

2
t + 2v2

s) + 2
√

2(1− 2κs)vtvs

]
(G3)

Combining these terms allows us to compare then with Eq. (5.6) of Ref. II. The sums (divided by 2) are

µRc =

∫ ∞
0

k2dk

[
Ek −m
Ek

]{
− 1

3
µs(u

2 −
√

2uw +
1

2
w2) +

1

6
u2 − 5

6
√

2
uw +

1

3
w2
}

µh′ =

∫ ∞
0

k2dk a(p2)m

{
2µs

[
− 3δkw

2 + 2m(v2
t +
√

2vtvs + 2v2
s)
]

+ 3δkw
2 − 3m(v2

t +
√

2vtvs +
4

3
v2
s)

}
µV2

=

∫ ∞
0

k2dk

2

{
(2µs − 1)

3

2
ww(2) + µs(3vtv

(2)
t + 2vsv

(2)
s ) + (µs − 1)

√
2(vtv

(2)
s + vsv

(2)
t )− 1

2
vtv

(2)
t + vsv

(2)
s −m′(2)

}
µV1 =

∫ ∞
0

k2dk µs

{
3

2
w[δ+w]k0 −

1

2
vt[δ−vt]k0 − vs[δ−vs]k0 −

1√
2

(vt[δ−vs]k0 + vs[δ−vt]k0)

}
µint = − m

2
√

6

∫ ∞
0

k2dk

{
u′(vt −

√
2vs)− w(

√
2vt + vs)

′ +
1

k
w(
√

2vt + vs)

}
µP =

∫ ∞
0

k2dk

{
−µs

(9

8
v2
t +
√

2vtvs +
5

4
v2
s

)
+

1

4
vt(vt + 5

√
2vs)

}
(G4)

Note that µNR, µV2
and µint agree with Ref. II, but the

others do not. The µχ terms have been found to be
negligible and were not recalculated.
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In the process of computing the form factors, the fol-
lowing errata we discovered in the equations reported in
Ref. II:

1. Eq. (C3) should read Z̃± = Z̃ − (Ek − k0)Z̃k0

2. Eq. (B1):

• the coefficient of the D+D− term should be
divided by an additional factor of 2

• the coefficient of the C+C− term should be
divided by an additional factor of 2m2

3. Eq. (B2):

• in the coefficient of C+A−, the term
−2b0a+b+ should be replaced by −2b0a−b+

• a closing parentheses, ), is missing from the
coefficient of the C+D− term; it belongs just
before −z+, so that the coefficient of b0 in-
cludes the b+ and a+ terms but not the z+

term

• a similar closing parentheses, ), is missing
from the coefficient of the D+C− term; it be-
longs just before −z−
• in the coefficient of C+C−, the coefficient

of (4m2 + m2
d) is (b+z− + b−z+), and NOT

(b+z− + b−c+)

4. Eq. (B.7):

• the HI terms are divided by m4 (not m2)

• in the coefficient of the F̃+F̃− term replace
(2X4−X5) by (X4−X5) and in the coefficient

of the H̃+H̃− term replace X1X5 by X1(X5 +
X4)

5. Eq. (B10):

• the GK2 terms should be divided by m2

• divide the entire trace by an extra factor of
2m (so the coefficient in front is ζB/(4m

2),
not ζB/(2m)

These errors arose when the original Mathematica for-
mula were transcribed into text. Fortunately, all of the
results of Refs. II and III are unaffected by these er-
rors because they were derived directly from the correct
Mathematica formula.
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