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Predicting the B0
s −B̄0

s width difference ∆Γs relies on the heavy quark expansion and on hadronic
matrix elements of ∆B = 2 operators. We present the first lattice QCD results for matrix elements
of the dimension-7 operators R2,3 and their linear combinations, R̃2,3, using nonrelativistic QCD
for the bottom quark and a highly improved staggered quark (HISQ) action for the strange quark.
Computations use MILC ensembles of gauge field configuations with 2 + 1 + 1 flavors of sea quarks
with the HISQ discretization, including lattices with physically light up/down quark masss. We
discuss features unique to calculating matrix elements of these operators and analyze errors due to
series truncation, discretization, and quark mass dependence. Finally we report the first Standard
Model determination of ∆Γs using lattice QCD results for all hadronic matrix elements through
O(1/mb).
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I. INTRODUCTION

Oscillations of neutral mesons into their antiparticles
have been important phenomena in the study of quark
flavor. This flavor-changing, neutral mixing is absent in
the Standard Model (SM) at the classical level; appear-
ing at one-loop level it is suppressed by two powers of
Fermi’s constant GF relative to hadronic and quark mass
scales. A few observables are, to a high level of preci-
sion, sensitive only to short-distance physics. Within the
Standard Model predictions for these are reliably cal-
culable because the dominant contribution comes from
top-quark loops; there is no significant contribution from
intermediate-state hadronic physics. Prime examples
are: in the mixing of strange mesons K0 − K̄0, the
indirect CP-violating ratio ϵK and, in beauty mesons
B0

d,s−B̄0
d,s, the the mass differences (equivalently, the os-

cillation frequencies) ∆Md,s. Precise experimental mea-
surements of these, together with accurate Standard
Model predictions, constitute stringent tests of the SM
description of quark flavor.

Beyond these observables are others, where contribu-
tions from hadronic intermediate states must be included.
For example, mixing in neutral charm mesons D0 − D̄0

has significant long-distance contributions due to differ-
ing flavor structure from K0 and B0 mixing. Predictions
for heavy meson and baryon lifetimes also require theo-
retical treatment of long-distance effects.

The B0
s − B̄0

s width difference ∆Γs is another example
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and is the focus of this paper. Unlike the mass difference,
which comes from the real part of the mixing amplitude,
the width difference comes from the imaginary part of
the amplitude which, by the optical theorem, describes
the decays to real final states, primarily b → cc̄s decays.
Since we expect ∆Γs to be insensitive to new physics,
comparison between theory and experiment is a test of
the theoretical methods involved. Agreement here is a
necessary condition for trusting these methods to reliably
yield a SM prediction for quantities where new physics
could contribute more prominently, e.g. in D0− D̄0 mix-
ing.

Predicting the SM width difference ∆Γs requires the
determination of matrix elements of a nonlocal prod-
uct of effective operators H∆F=1

eff , with charm and
up quarks in the virtual loops. Direct calculation of
⟨B0

s |T {H∆F=1
eff (x)H∆F=1

eff (0)}|B̄0
s ⟩ using lattice QCD is

not presently feasible. Therefore, an additional theoreti-
cal approximation is necessary in order to obtain a Stan-
dard Model prediction for ∆Γs, namely the heavy quark
expansion (HQE). This expansion makes use of the large
b-quark mass compared to the c-quark and other scales in
the problem such as ΛQCD, and approximates the imagi-
nary part of the matrix elements above by a power series
in 1/mb, composed of matrix elements of local, ∆F = 2
operators such as those appearing in H∆F=2

eff [1]. (See
Ref. [2] for a recent review of the HQE applied to ∆Γs.)

Matrix elements of the leading, dimension-6 operators
in H∆F=2

eff have been calculated using lattice QCD with
increasing precision, motivated by their impact on predic-
tions for ∆Md,s. Results are now available from several
groups [3–6] (see Ref. [7] for a review). The precision of
these determinations has become good enough that ma-
trix elements of higher-dimension operators are needed
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in order to reduce the SM uncertainty in ∆Γs. Current
estimates for the higher-dimension matrix elements come
from the vacuum saturation approximation. The lack of
any full QCD calculation of dimension-7 operators is a
leading uncertainty in the Standard Model determina-
tion of ∆Γs [2, 8].

In this paper, we provide results of the first com-
plete lattice QCD calculation needed for ∆Γs through
O(1/mb). The goal here is to replace order-of-magnitude
estimates based on the vacuum saturation approximation
with first principles calculations including a quantitative
analysis of errors. In this first step, we neglect O(αs)
corrections to the dimension-7 operators. Including these
corrections would involve a technically challenging per-
turbative calculation going beyond what has been done
for the dimension-6 operators [9, 10]. This improvement
is left as a future project.

We begin by setting some notation. The convention
used for the dimension-6 operators is

Q1 = (b̄αγµ(1− γ5)sα)(b̄βγµ(1− γ5)sβ) ,

Q2 = (b̄α(1− γ5)sα)(b̄β(1− γ5)sβ) ,

Q3 = (b̄α(1− γ5)sβ)(b̄β(1− γ5)sα) .

Q4 = (b̄α(1− γ5)sα)(b̄β(1 + γ5)sβ)

Q5 = (b̄α(1− γ5)sβ)(b̄β(1 + γ5)sα) . (1)

At higher order in the HQE, one needs matrix elements
of the following operators

R0 = Q2 + α1Q3 +
1

2
α2Q1

R1 =
ms

mb
(b̄α(1− γ5)sα)(b̄β(1 + γ5)sβ) =

ms

mb
Q4

R2 =
1

m2
b

(b̄α
←
Dργ

µ(1− γ5)Dρsα)(b̄βγµ(1− γ5)sβ)

R3 =
1

m2
b

(b̄α
←
Dρ(1− γ5)Dρsα)(b̄β(1− γ5)sβ) (2)

as well as the color-rearranged partners R̃1, R̃2, and
R̃3. The perturbative coefficients α1 and α2 are given
in Refs. [11–13]. Matrix elements of R0, R1, and R̃1 can
be inferred from matrix elements of Q1−5. Using Fierz
identities and neglecting terms at higher order in 1/mb

we have

R̃2 = −R2

R̃3 = R3 +
R2

2
. (3)

In our formulation, nonrelativistic lattice QCD, these re-
lations (3) hold exactly. Our task will be to compute
matrix elements of R2 and R3.

II. DESCRIPTION OF LATTICE
CALCULATION

We carry out our calculations using gauge field config-
urations generated by the MILC Collaboration [14–16].

These include the effects of 2+1+1 flavors of sea quarks
using the HISQ fermion action [17, 18]. We use five sep-
arate ensembles (see Table I). Two of the ensembles have
all of the quark masses tuned to be close to their phys-
ical values; these have lattice spacing of 0.12 and 0.15
fm. The other three ensembles span 3 lattice spacings
from 0.09 to 0.15 fm, with unphysically large light-quark
masses corresponding to pion masses of about 300 MeV.
Our use of three lattice spacings allows us to estimate
discretization errors, and the computations done with
unphysical light quark masses gives us information with
which to correct any slight quark mass mistunings.
The lattice actions used are the same as in our re-

cent study of the dimension-6 operator matrix elements
[6]. Correlation functions are computed using the HISQ
action for the strange quark; the valence quark mass is
tuned to be closer to the physical strange mass than the
value which was used for the sea strange quark. The
nonrelativistic QCD (NRQCD) action [19] is used for
the bottom quark. Table II lists the input values used
for the relevant parameters. Because the determination
of ⟨R2⟩ and ⟨R3⟩ here will have an O(αs) uncertainty
due to tree-level matching between lattice and contin-
uum regularization schemes, we only need a fraction of
the statistics used in Ref. [6]. We will occasionally refer
to Ref. [6] as the high-statistics companion to this work.
Throughout this paper we will use the abbreviated nota-
tion ⟨·⟩ ≡ ⟨Bs| · |B̄s⟩.
Let us examine a unique feature of computing ⟨R2⟩ and

⟨R3⟩. In the rest frame of the heavy quark, only the tem-
poral component of the following bilinear is important at
1/mb order

1

m2
b

(b̄α
←
DρΓD

ρsα) = ± 1

mb
(b̄αΓD0sα) +O

(
1

m2
b

)
(4)

where the sign is determined by whether the temporal
derivative acts on an outgoing heavy quark or an in-
coming heavy antiquark. Γ represents either γµ(1 − γ5)
(R2) or 1 − γ5 (R3). Using the equation of motion
for the strange quark, and neglecting contributions of
O(ms/mb),

R̂2,3 = ± 1

mb
(b̄αΓγ0γ ·Dsα)(b̄βΓsβ) (5)

and similarly for ˆ̃R2,3. From this we that, in order to
implement the derivative operator, the calculation of the
associated three-point correlation functions will require
new strange quark propagators with point-split inversion
sources at the operator location. We use a symmetric
difference operator in each of the spatial dimensions as
the source for the inversion of the HISQ Dirac matrix
on Coulomb-gauge-fixed configurations. Note we use a
hat on an operator when we wish to call attention to the
4-quark operator computed directly on the lattice, in dis-
tinction to a linear combination such as a renormalized,
matched, or subtracted operator.
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TABLE I: Parameters of the MILC nf = 2 + 1 + 1 HISQ
configurations used. Masses listed are sea quark masses. Lat-
tice spacing determined using the Υ splittings, as in Table I
of [20]; errors are statistical, NRQCD systematic, experiment
respectively.

Label a/fm aml ams amc N3
s ×Nt #

VC5 0.1474(5)(14)(2) 0.013 0.0650 0.838 163 × 48 1020
VCp 0.1450(3)(14)(2) 0.00235 0.0647 0.831 323 × 48 1000
C5 0.1219(2)(9)(2) 0.0102 0.0509 0.635 243 × 64 1052
Cp 0.1189(2)(9)(2) 0.00184 0.0507 0.628 483 × 64 1000
F5 0.0873(2)(5)(1) 0.0074 0.037 0.440 323 × 96 1008

TABLE II: Valence quark parameters, with c2 = c3 = 1.

Ensemble amval
s amb u0L c1 = c6 c4 c5

VC5 0.0641 3.297 0.8195 1.36 1.22 1.21
VCp 0.0628 3.25 0.819467 1.36 1.22 1.21
C5 0.0522 2.66 0.834 1.31 1.20 1.16
Cp 0.0507 2.62 0.834083 1.31 1.20 1.16
F5 0.0364 1.91 0.8525 1.21 1.16 1.12

As discussed below, we will also need matrix elements
of the dimension-6 operators Q̂1 and Q̂2. At no addi-
tional cost, we recompute these here and check that they
agree with the high-statistics study [6].

III. FITTING CORRELATION FUNCTIONS

In order to determine the energies and amplitudes as-
sociated with the meson creation and annihilation op-
erators, we perform multi-exponential Bayesian fits [21].
The fit functions for the two-point and three-point func-
tions are, respectively,

C2pt
ab (t) =

N2pt−1∑
i=0

Xa,iXb,ie
−Eit − (−1)t/aYa,iYb,ie

−Eo
i t

(6)

and, abbreviating terms containing any Y parameters,

C3pt
ab (t, T ) =

N3pt−1∑
i,j=0

Xa,iVnn,ijXb,je
−Eite−Ej(T−t) + osc.

(7)

In practice, we fit to energy differences for all but the
ground state energy E0. TheX and Y parameters are the
amplitudes for meson creation/annihilation. The labels a
and b run over the 3 types of smearings used with the Bs

meson interpolating operators, a local operator and two
Gaussian-smeared operators with different widths [22].
The Vnn,ij are parameters related to the matrix elements
of 4-quark operators. Not all fit parameters are well-
constrained by the data, so we introduce Bayesian priors
as we described in detail in Ref. [23].

We take the two-point functions from earlier studies of
B(s) decay constants [20, 22]; these were obtained with 16
time sources on each gauge-field configuration, allowing
precise determination of the ground state energies and
decay amplitudes. Given that our determinations of the
matrix element of R2,3 will have O(αs) truncation errors,
we do not need such high statistics. The three-point cor-
relators in this work come from using just 2 times sources
on each configuration. One consequence of this difference
in statistical accuracy is that a good fit requires more ex-
ponentials in (6) than in (7). In fact we observed that
if N3pt is too large, the many poorly determined Vnn,jj

can spoil the fitter’s convergence.
The best approach in this case is to use chained [24],

marginalized fits [25]. The high-statistics two-point func-
tions are fit using N2pt = 5. The resulting E0 and Xa,0,
central values and errors, are used as priors for the fits to
the three-point functions. Excited state contamination
is accounted for in the three-point functions by incorpo-
rating noisy estimates using the results of the two-point
fits, then fitting usingN3pt = 1. This is akin to cancelling
excited-state contamination by dividing three-point func-
tions by appropriate two-point functions.

IV. DISCUSSION OF SUBTRACTION

The prediction of a matrix element of a higher dimen-
sion operator using lattice NRQCD is complicated by
mixing with lower dimension operators [26]. The pres-
ence of the lattice cutoff a means that the matrix el-
ements ⟨R̂2,3⟩ will contain contributions from ⟨Q̂i⟩ of
the order O(αs/(amb)). We have used lattice pertur-
bation theory to determine the perturbative coefficients
ξij which cancel this mixing at one-loop level. Matrix
elements of the subtracted operator,

Rsub
i = R̂i − αV ξijQ̂j , (8)

will have power-law mixing cancelled through O(αs). For
the numerical value of the strong coupling constant, we
use αV (2/a) (Table I of [22], inferred from the work of
[27, 28]). The coefficients ξij have not been calculated
before. The procedure is a straightforward extension of
Ref. [10], in particular Sec. IV.B. In this instance the
derivative acts on the light quark propagator instead of
the heavy quark propagator. Numerical values are tabu-
lated in Table III.

Fig. 1 illustrates the effect of the subtraction (8). The
fact that the matrix element of the subtracted operator
is 50-70% of the unsubtracted operator shows that this
subtraction is significant. This is of comparable size to
the mixing seen in the 1/mb contributions to the B and
Bs decay constants [26, 29] and matrix elements ⟨Qj⟩
[30]. It is notable that, at least at O(αs), the size of the
subtraction is independent of a over the range of lattice
spacings used.

While we perform separate fits to the correlation func-
tions associated with each R̂2,3 and Q̂i in order to study
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TABLE III: Coupling constant [22] and perturbative coefficients used in (8), for the values of amb used on each ensemble.

Coeff VC5 VCp C5 Cp F5
αV (2/a) 0.346 0.343 0.311 0.307 0.267

ξ21 −0.1311 −0.1327 −0.1557 −0.1573 −0.2004
ξ22 0.0092 0.0093 0.013 0.0133 0.0225
ξ31 −0.0331 −0.0334 −0.0392 −0.0397 −0.0508
ξ32 −0.2829 −0.2864 −0.3404 −0.3449 −0.451
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FIG. 1: Ratios of subtracted to unsubtracted matrix ele-
ments plotted vs. 1/amb. Within the range of parameters
used, the size of the subtraction is independent of amb.

the relative contributions to the subtracted matrix ele-
ments, for the main results we perform fits to linear com-
binations of three-point functions so that the subtracted
matrix element is directly extracted from the fit. This
allows correlations to be propagated straightforwardly.

We must estimate the uncertainty due to not knowing
the O(αs) MS-to-lattice matching of the R operators nor
the O(α2

s) contributions from the dimension-6 operators.
Both of these are suppressed by a power of αs compared
to matrix elements of the two terms in (8). Therefore,
we include these truncation errors in our results by mul-
tiplying our results by a noisy estimator

⟨Ri⟩ = ⟨R̂i − αV ξijQ̂j⟩(1 + αV δamb
) (9)

where δamb
= 0 ± 1 is a Gaussian-distributed random

variable, one for each of the 3 lattice spacings.

V. CHIRAL-CONTINUUM FIT, SYSTEMATIC
ERRORS

Our calculations include numerical data obtained with
all quark masses tuned close to their physical values. In
order to include some data with unphysically large values
for the up/down sea quark masses, we assume an analytic
dependence on these masses. We also parametrize dis-
cretization errors, e.g. due to the gluon and staggered
fermion actions, in powers of (aΛQCD)

2. Results pre-

0.02 0.062 0.092 0.122 0.152

a2/fm2

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

〈R
〉/

(f
B
s
M

B
s
)2

〈R3〉 ml/ms = 1/5

〈R3〉 ml/ms = 1/27

〈R3〉 fit result

〈R2〉 ml/ms = 1/5

〈R2〉 ml/ms = 1/27

〈R2〉 fit result

FIG. 2: Matrix elements of R2 and R3 plotted against lat-
tice spacing squared. The solid error bars indicate statistical
errors only; the dashed errors include the uncertainty due to
truncated terms in the weak coupling expansion. The green
stars correspond to fit results with a = 0 and the physical
pion mass.

sented here come from fits to

⟨Rj⟩
f2
Bs

M2
Bs

=β
[
1 + d2(aΛQCD)

2 + d4(aΛQCD)
4

+ cs,val1 xs + csea1 (2x′ℓ + x′s)
]
, (10)

where sea quark mass dependence is parametrized by
x′ℓ = M2

π/(2Λχ)
2 and x′s = (2M2

K − M2
π)/(2Λχ)

2, with
Λχ = 1 GeV. We use the lattice masses aMπ and aMK

tabulated in [16]. For the valence strange quark xs =
M2

ηs
/(2Λχ)

2, the ηs being a fictitious flavor-nonsinglet
s̄s pseudoscalar meson, which is nevertheless well-defined
in chiral perturbation theory. Values for aMηs

on these
ensembles [31] are used to parametrize the difference be-
tween the input valence strange quark mass and the phys-
ical one, using for the “physical” value Mηs

= 685.8(4)
MeV [32]. We assume Gaussian priors of 0± 1 for the fit
parameters, except for d2, which we take to be 0± 5. In
the fits, we find |d2| ≈ 2.5± 2.0.
As one would expect, any sensitivity of the Bs−B̄s ma-

trix elements to the light sea quark mass is much smaller
than our uncertainties. The slight mistunings in the sea
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TABLE IV: Results for bag factors. The right column uses
MBs = 5.36688(17) GeV [33] and mpow

b = 4.70(10) GeV [12].

Operator k B′
k Bk

R2 0.27(10) 0.89(38)

R̃2 0.27(10) 0.89(38)
R3 0.33(11) 1.07(42)

R̃3 0.35(13) 1.14(46)

or valence strange quark masses are not large enough to
give a nonzero result for cs1 parameters. Including terms
quadratic in the x variables has no effect on the fit. Sim-
ilarly, we obtain d4 consistent with zero. Within errors
the data is completely consistent with a mild a2 depen-
dence and no quark mass dependence.

Our main results are for the pair of matrix elements

⟨Bs|R2|B̄s⟩ = −(0.18± 0.07)f2
Bs

M2
Bs

(11)

⟨Bs|R3|B̄s⟩ = (0.38± 0.13)f2
Bs

M2
Bs

(12)

or for the linearly dependent color-rearranged operator
matrix elements

⟨Bs|R̃2|B̄s⟩ = (0.18± 0.07)f2
Bs

M2
Bs

(13)

⟨Bs|R̃3|B̄s⟩ = (0.29± 0.10)f2
Bs

M2
Bs

. (14)

At the accuracy with which we work, these results can be
interpreted as the MS-scheme results at the scale µ2 =
mb, with an uncertainty included to account for the fact
that the lattice-continuum matching is tree-level.

It is sometimes convenient to include a numerical fac-
tor which arises from the vacuum saturation approxima-
tion (VSA). We define B′-factors as follows:

B′R2
= −3

2

⟨Bs|R2|B̄s⟩
f2
Bs

M2
Bs

, B′
R̃2

=
3

2

⟨Bs|R̃2|B̄s⟩
f2
Bs

M2
Bs

B′R3
=

6

7

⟨Bs|R3|B̄s⟩
f2
Bs

M2
Bs

, B′
R̃3

=
6

5

⟨Bs|R̃3|B̄s⟩
f2
Bs

M2
Bs

. (15)

The “unprimed” bag factors Bi which are equal to 1 in
the VSA include a mass factor such that [1]

B′i =

[
M2

Bs

(mpow
b )2

− 1

]
Bi . (16)

These Bi are the ones taken in recent phenomenological
estimates [2, 8, 12] to be 1.0±0.5 in the absence of a QCD
calculation. We tabulate numerical results of our work in
Table IV. It turns out that the VSA expectation is a rea-
sonable back-of-the-envelope estimate. (Note that while
the bag factors depend on the definition of mpow

b , the B′-
factors do not.) Our results replace the rough estimates
with a lattice QCD computation with all uncertainties
quantified.

The matrix elements determined in Ref. [6] al-
low determination of the remaining 3 matrix elements
B′R0

= − 3
4 ⟨Bs|R0|B̄s⟩/(fBs

MBs
)2 = 0.32(13), B′R1

=
3
7 ⟨Bs|Q4|B̄s⟩/(fBsMBs)

2 = 1.564(64), and B′
R̃1

=
3
5 ⟨Bs|Q5|B̄s⟩/(fBs

MBs
)2 = 1.167(46).

VI. ∆Γs IN THE STANDARD MODEL

Our results permit the first lattice determination of
∆Γ1/mb

, the power-law corrections to ∆Γs. Recently
there has been an investigation of scale and scheme de-
pendence of the leading term in ∆Γs, where it has been
proposed to include corresponding uncertainties as fol-
lows [13]

∆Γs = [1.86(17)B1 + 0.42(3)B′3]f
2
Bs

+∆Γ1/mb
(17)

in the MS scheme. Taking fBs
= 0.2307(12) GeV from

Ref. [34] and weighted averages of B1 = 0.84(3) and B′3 =
1.36(8) from Refs. [5, 6] – the 4% correlation between
them is negligible – yields a result for the leading order
contribution, ∆ΓLO

s = 0.114(9) ps−1.
The 1/mb contribution to ∆Γs can be expressed as a

linear combination of the matrix elements of the R oper-
ators, times perturbative coefficients γk [1, 12]. Writing

∆Γ1/mb
= −2Γ̃12,1/mb

cosϕ12, we have

Γ̃12,1/mb
=

G2
F f

2
Bs

MBs
m2

b

24π

∑
k

γk(z̄)B
′
Rk

. (18)

Here k is an index that runs over the 4 operators in (2)
plus the 3 color-rearranged operators. The γk(z̄) are re-
lated to the gk(z̄) of [12] by the numerical coefficients re-
lating the matrix elements to the B′ factors; additionally
γ1 and γ̃1 include a factor of m̄s(m̄b)/m̄b(m̄b) ≈ 0.019.
The functions gk(z̄) depend on z̄ = (m̄c(m̄b)/m̄b(m̄b))

2

[35] and the leading order H∆F=1 Wilson coefficients

C
(0)
1 and C

(0)
2 (numerical values taken from Table 2 of

Ref. [13]). For the charm quark mass we use the world
average [36] of lattice results with 2 + 1 + 1 flavors of
sea quarks [28, 36–38], and for the bottom mass we use
the result from Ref. [38]. Numerical values used here
are given in Table V. Note that only the terms with B′R0

,
B′R2

, and B′
R̃2

contribute to ∆Γ1/mb
due to the smallness

of the other γk.
Our result is

Γ̃12,1/mb
= 0.0110(52) ps−1 (19)

which, given cosϕ12 = 1 to the precision relevant here,
contributes to the width difference as

∆Γ1/mb
= −2Γ̃12,1/mb

= −0.022(10) ps−1 . (20)

The uncertainty in (20) is dominated by that of ⟨R̃2⟩.
From studies of the leading ∆Γs term, we expect scale
and scheme uncertainties here to similarly be at the 10%
level, i.e. not significant compared to the present hadronic
uncertainty.
Again using fBs

from [34], the VSA estimate quoted
in Ref. [13] is ∆Γ1/mb

= −0.029(15) ps−1. Our result
(20) replaces the VSA estimates with unquenched lattice
QCD results and reduces the uncertainty on ∆Γ1/mb

.
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TABLE V: Numerical values used in this Standard Model
prediction of ∆Γ1/mb

. The quark masses and Wilson coeffi-
cients determine the γ coefficients (using z̄). Errors in these
tabulated values are much smaller than in the matrix elements
they multiply.

quantity value
m̄c(m̄c)/GeV 1.2753(65)

m̄c(m̄c)/m̄c(m̄b) 1.41
m̄b(m̄b)/GeV 4.195(14)

C
(0)
1 −0.269

C
(0)
2 1.12
γ0 0.505
γ1 0.033
γ̃1 −0.077
γ2 −0.513
γ̃2 −1.667
γ3 0.026
γ̃3 −0.060

Combining the leading term (17) with our result for
the next-to-leading term (20) we find a Standard Model
prediction for the B0

s − B̄0
s width difference

∆Γs = 0.092(14) ps−1 . (21)

The error in (21) is mostly due to the uncertainty in
∆Γ1/mb

; its variance contributes approximately 60% to
the total variance in (21). The next largest uncertainty
is due to the perturbative error in the first term of (17),
which contributes a 30% proportion of the ∆Γs variance.
The variance of B1 contributes 8% of the total.

VII. CONCLUSIONS

Since, in the Standard Model, ∆Γs is dominantly due
to processes with intrinsic charm, it is unlikely that
new physics would contribute significantly to experimen-
tal measurements. Therefore, agreement between theory

and experiment is an important test of the heavy quark
expansion. The HFLAV average of experimental mea-
surements prepared for PDG 2018 is ∆Γs = 0.088(6)
ps−1 [39]. This is in good agreement with our result (21)
with a much smaller uncertainty.

This work improves the Standard Model prediction for
∆Γs by using hadronic matrix elements computed using
lattice QCD, removing reliance on the vacuum saturation
approximation. In particular, matrix elements of the op-
erators R2 and R3 (and R̃2,3) have been computed for

the first time. The resulting uncertainty in Γ̃12,1/mb
has

been reduced compared to earlier, model-dependent es-
timates. More importantly, model dependence has been
removed.

There remains more to do in order for the theoreti-
cal prediction to match the experimental precision. The
next generation lattice calculation will require one-loop
matching of lattice to MS regularization schemes in order
to reduce the uncertainty in Γ̃12,1/mb

. At the same time
the work to determine the perturbative coefficients ap-
pearing in (17) through NNLO must be completed. First
steps have already begun [13].
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