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Hans Günter Dosch,4 Stanley J. Brodsky,5 and Alexandre Deur1

(HLFHS Collaboration)
1Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

2Department of Physics, Duke University, Durham, NC 27708, USA
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We present a new approach motivated by the gauge/gravity correspondence and Veneziano duality
to study the spin-dependent quark distributions in the nucleon. The polarized distributions are
uniquely determined with no free parameters in terms of the unpolarized ones. The results are
consistent with the existing experimental data and agree with the perturbative QCD predictions at
large x. Particularly, we predict the sign change position, x ∼ 0.8, for the down quark polarized
distribution, which will be tested very soon in upcoming experiments.

Introduction.—Understanding how the spin of the pro-
ton originates from its quark and gluon constituents
is one of the most active research frontiers in hadron
physics [1, 2]. The main task is to determine the polar-
ized parton distribution functions (PDFs), ∆q(x), which
describe the difference of the probability density between
helicity-parallel and helicity-antiparallel quarks in a pro-
ton. Here, x is the longitudinal momentum fraction car-
ried by quarks of flavor q. PDFs represent the universal
distribution functions of the nucleon. Being determined
by the low energy scale characterizing the nucleon size
or, equivalently, the confinement scale, they are nonper-
turbative quantities. It is thus challenging to fully derive
them from first principles. However, their x-dependence
at large x and magnitude in the x → 1 limit are pre-
dicted by perturbative QCD (pQCD) [3, 4]. This impor-
tant [3, 5] and rare absolute statement of QCD predicts
the helicity retention at x ∼ 1, viz the helicity of a quark
carrying large momentum tends to match that of the par-
ent nucleon, which implies that the helicity asymmetry
∆q(x)/q(x) approaches 1 as x → 1, with q(x) being the
unpolarized PDF.

During the last decades, precise measurements of
∆q(x) became available [1, 2]. While the expected in-
crease of ∆u/u toward 1 as x → 1 was observed, ∆d/d
was found to remain negative in the experimentally cov-
ered region of x . 0.6 [6–12], with no indication of a
sign change at large x-value. Global pQCD analyses of
the experimental data extrapolated to large x also favor
negative values of ∆d/d at x ∼ 1 [13–17], as do Dyson-
Schwinger equation calculations [18]. This challenges our
confidence in understanding the large-x behavior of the
polarized PDFs.

In this letter, we present a new approach based on
light-front holographic QCD (LFHQCD) [19] and the
Veneziano duality [20] to calculate ∆q(x). This offers,
for the first time, the possibility of uniquely determin-
ing quark polarized distributions from the knowledge of

unpolarized PDFs. Our parameter-free determination of
∆q(x) provides an accurate description of the available
experimental data and agrees with the pQCD prediction
in the x→ 1 limit. Particularly, the x-value for the sign
change of ∆d/d is predicted, which will be tested in up-
coming experiments [21, 22].

LFHQCD studies hadron structures by embedding
light-front dynamics in a higher dimensional gravity the-
ory [23, 24]. It provides an effective semiclassical approx-
imation to QCD bound state equations [24–27], captur-
ing essential aspects of the strong interaction with the
confinement potential determined by the underlying su-
perconformal algebraic structure [28–30]. As a unified
framework for the study of spectroscopy and structure,
it has been utilized to calculate hadron masses and form
factors [19]. With increasing interest in parton distri-
butions, various LFHQCD-based models have been de-
veloped, mostly taking the light-front wave functions
with some modifications [31–49]. These phenomenologi-
cal extensions usually require a large number of param-
eters to accurately describe PDFs, thereby reducing the
predictive power. Recently, we introduced a new ap-
proach to derive PDFs as well as generalized parton dis-
tributions (GPDs) with LFHQCD [50]. It incorporates
Regge behaviors at small-x and inclusive counting rules
at large-x, and can simultaneously produce the nucleon
and pion unpolarized PDFs with minimal parameters,
keeping the predictive power with the universality of the
reparametrization function. Motivated by such success,
we extend here the formalism to polarized distributions,
with no additional parameters required.

Formalism.—We first briefly review the derivation of
unpolarized PDFs from the holographic expression of the
spin-non-flip Dirac form factor, F1(t), with t = −Q2

the square of transferred momentum. The contribution
from a twist-τ state, a component with effectively τ con-
stituents, in the Fock expansion of the proton state, to
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the Dirac form factor is given by [19, 51]

F1(t) = cV,τFV,τ (t) + cV,τ+1FV,τ+1(t), (1)

with

FV,τ (t) =
1

NV,τ
B
(
τ − 1,

1

2
− t

4λ

)
. (2)

The subscript V indicates the coupling to a vector cur-
rent. λ is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ρ/ω trajectory gives

√
λ = 0.534 GeV. The cV,τ

and cV,τ+1 are coefficients to be determined, NV,τ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components, Ψ+ and Ψ−,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
(
1− α(s), 1− α(t)

)
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 − α(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 −
αV (t) with the Regge trajectory [50]

αV (t) =
t

4λ
+

1

2
. (3)

This is just the ρ/ω trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the φ trajectory, which shifts the intercept to αφ(0) ≈
0.01 [54].

The GPDs at zero skewness ξ, obtained from the inte-
gral representation of B(x, y), are [50]

Hτ (x, ξ = 0, t) = qτ (x) exp[tf(x)], (4)

where the unpolarized PDF qτ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

qτ (x) =
1

NV,τ
w(x)−

1
2 [1− w(x)]τ−2w′(x), (5)

f(x) =
1

4λ
log

( 1

w(x)

)
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w′(x) > 0, (7)

w′(1) = 0, w′′(1) 6= 0. (8)

Then for a twist-τ state, the unpolarized PDF is

q(x) = cV,τqτ (x) + cV,τ+1qτ+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a γ5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,τFA,τ (t)− cA,τ+1FA,τ+1(t), (10)

where

FA,τ (t) =
1

NA,τ
B
(
τ − 1, 1− t

4λ

)
, (11)

with the subscript A indicating the coupling to an axial
current. FA,τ (t) has the same structure as FV,τ (t), but
with the Regge trajectory replaced by the axial one:

αA(t) =
t

4λ
, (12)

emerging from LFHQCD [30]. The coefficients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,τ
NV,τ

=
cA,τ
NA,τ

. (13)

Since the normalization convention is arbitrary, we set
NV,τ = NA,τ = Nτ , and therefore identify the coefficients
as cV,τ = cA,τ = cτ [55].

Following the same procedure, we express the ∆q(x)
for a twist-τ state as

∆q(x) = cτ∆qτ (x)− cτ+1∆qτ+1(x), (14)

where

∆qτ (x) =
1

Nτ
[1− w(x)]τ−2w′(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w′′(1)(1− x)2 +O

(
(1− x)3

)
, (16)

and find that qτ (x) and ∆qτ (x) have the same behavior,

qτ (x) = ∆qτ (x) =
[−w′′(1)]τ−1

2τ−2Nτ
(1− x)2τ−3 + · · · , (17)

where higher powers of (1− x) are suppressed. For both
the q(x) (9) and the ∆q(x) (14), the function is domi-
nated by the first term at large-x, unless its coefficient
cτ = 0. Then the helicity asymmetry at x→ 1 is

lim
x→1

∆q(x)

q(x)
= 1, (18)
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which supports the pQCD prediction [3, 5].
The spin-aligned and spin-antialigned distributions are

linear combinations of the unpolarized and polarized dis-
tributions written as

q↑(x) =
1

2
[q(x) + ∆q(x)], (19)

q↓(x) =
1

2
[q(x)−∆q(x)]. (20)

We find, in the large-x limit,

q↑(x)→ cτqτ (x), (21)

q↓(x)→ cτ+1qτ+1(x). (22)

The two helicity distributions tend respectively to a pure
contribution from one chiral component, Ψ+ or Ψ−, of
the bulk field solution. Eqs. (21) and (22) are referred to
as the asymptotic normalization, which can be used to
derive the same relation as in Eq. (13).

From Eq. (17), q↑(x) and q↓(x) decrease as (1−x)2τ−3

and (1−x)2τ−1, respectively. For the valence state τ = 3,
they behave as (1− x)3 and (1− x)5, which is consistent
with pQCD up to logarithm corrections [3, 4].

At small-x, w(x) has a linear x-dependence: w(x) ∼ x.
The ∆q(x) decreases faster than the q(x) with decreasing
x, and the helicity asymmetry behaves as

∆q(x)

q(x)
∼ x 1

2 , (23)

where the exponent 1/2 is given by the difference between
the intercepts of the vector and axial Regge trajectories
(3) and (12), and will be shifted by a negligible amount
if u and d quarks mass corrections are included. When
x→ 0, the helicity asymmetry goes to zero,

lim
x→0

∆q(x)

q(x)
= 0, (24)

which indicates that the helicity correlation between a
quark and its parent nucleon disappears. This result is
a natural expectation [3], because the constituents and
the nucleon have infinite relative rapidity for x ∼ 0. It is
confirmed by experimental data [56].

Numerical results.—Up to now, all results are derived
for arbitrary twist-τ components without any specific
choices for the coefficients cτ or for w(x) as long as the
general boundary conditions are fulfilled. For quantita-
tive results of the polarized distributions, the cτ values
are needed. We determine them via the Dirac form fac-
tor. If only valence states are considered, we can express
the Dirac form factors of u and d quarks as

Fu1 (t) = c3,uFV,3(t) + (2− c3,u)FV,4(t), (25)

F d1 (t) = c3,dFV,3(t) + (1− c3,d)FV,4(t), (26)

where the quark number sum rule has been applied with
Nτ = B(τ − 1, 1/2) normalizing FV,τ (0) to 1. Beyond

the valence state of the proton, sea quark constituents
are encoded in higher Fock states with additional quark-
antiquark pairs. In this work, we truncate the Fock
expansion of the nucleon state up to only one quark-
antiquark pair, which is a twist-5 state. As a simplifying
procedure to include the sea quark contributions we can
add to Eq. (25) and Eq. (26) the terms,

c5,u/dFV,5(t)− c5,u/dFV,6(t), (27)

which assumes that the quark number sum rule is satu-
rated by the contribution from the valence quarks. Fur-
thermore, one can also include the intrinsic strange con-
tribution as in Ref. [54]. We consider the three situations:
i) only the valence state contribution; ii) including the
contribution from the uū and dd̄ pairs; iii) also including
the contribution from the intrinsic strange sea, by taking
the results from our previous work [54]. Matching the
Dirac form factor with a recent extraction [57], we fix
the coefficients, as listed in Table I.

TABLE I. Coefficient values fixed by matching the recent elec-
tromagetic form factor extraction result [57]. The parame-
ter a in Eq. (31) is fixed by the first moment of unpolarized
valence quark distributions for each case. The last column
gA,min is the isovector axial charge with minimal sea. The
meaning of the labels is explained in the text.

Label c3,u c3,d c5,u c5,d a gA,min

i 1.782 0.066 — — 0.407 0.867
ii 1.793 0.062 −0.559 −0.516 0.480 0.879
iii 1.794 0.060 −0.492 −0.447 0.471 0.881

Since electromagnetic form factors only measure the
difference between quark and antiquark contributions,
namely cτ,u ≡ uτ − ūτ and similarly for the d quark,
adding equal terms to uτ and ūτ does not modify the
form factor, they cannot be uniquely separated. How-
ever, a lower boundary can be derived from the positivity
bounds q↑(x) ≥ 0 and q↓(x) ≥ 0. With the asymptotic
relations (21) and (22), this requirement is fulfilled by
the minimal sea contribution,

ū(x)min = c5,uqτ=6(x) if c5,u ≥ 0, (28)

ū(x)min = −c5,uqτ=5(x) if c5,u < 0, (29)

and similarly for d̄. This constraint is stronger than that
utilized in Ref. [54], where only the sum q↑(x)+q↓(x) ≥ 0
is required.

Since the sea quark distributions are not separately
constrained by electromagnetic form factors, one needs
other physical observables that are sensitive to the quark
and antiquark contributions individually to determine
them separately. Instead of attempting a full separa-
tion, which is beyond the purpose of this work, we use
the axial sum rule,

gA = (∆u+ ∆ū)− (∆d+ ∆d̄), (30)
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to constrain the non-minimal sea quark.
The value of the isovector axial charge gA = 1.2732(23)

is precisely determined by the neutron weak decay [58].
As shown in Table I, its values evaluated with a minimal
sea component, gA,min, are smaller than the experimental
value. To in the value of gA with the minimal shift uτ →
uτ + δτ,u, ūτ → ūτ + δτ,u and similarly for the d-quark,
implies a positive shift δτ=5,u and/or δτ=6,d. Therefore,
we satisfy the sum rule by the shift δτ=5,u and δτ=6,d, and
take the variation between them as part of the theoretical
uncertainty.
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FIG. 1. Polarized distributions of the isovector combina-
tion x[∆u+(x)−∆d+(x)] in comparison with NNPDF global
fit [15] and experimental data [6–10, 12]. Three sets of param-
eters, see Table I, are determined from the Dirac form factor
and unpolarized valence distributions. The bands represent
the variation with different approaches to saturate the axial
sum rule. The blue dashed curve shows the result with only
valence state contribution.

For the universal reparametrization function w(x), we
take the same form as in [50],

w(x) = x1−x exp[−a(1− x)2], (31)

with the parameter “a” fixed with the first moment of
unpolarized valence quark distributions. One can in
principle adopt any parametrization form that fulfills
the boundary conditions (7) and (8), and the predictive
power is kept by the universality of w(x) for all PDFs.
For comparison with measurements, we evolve the distri-
butions from 1.06 GeV, which is the matching scale sug-
gested by the study of the strong coupling constant [59].
As shown in Figs. 1-3, our numerical results are in good
agreement with the global fit [15] and measurements [6–
10, 12]. The isovector combination ∆u+ − ∆d+, where
u+ and d+ stand for u + ū and d + d̄, is the distribu-
tion relevant to the axial charge sum rule (30). In Fig. 1,
the dashed blue curve is the contribution from the va-
lence state only, and the difference with the full results,
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FIG. 2. Polarized distributions of u, d, ū, and d̄ in comparison
with NNPDF global fit [15] and experimental data [10, 12].
The bands have the same meaning as in Fig. 1.
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FIG. 3. Helicity asymmetries of u + ū and d + d̄ compared
with measurements. The bands and symbols have the same
meaning as in Fig. 1.

cases I, II and III, which include saturation of the ax-
ial sum rule is noticeable. This is consistent with the
analysis of the Pauli form factor in [60], which demon-
strates the significance of the sea quarks in describing
spin-related quantities. For each single flavor, shown in
Fig. 2, the variation of the results with three sets of co-
efficients is large, because the sea quark coefficients are
not well constrained by the procedure discussed above.
Furthermore, the truncation of the Fock state up to five-
quark states allowing only one pair of sea quarks may
potentially result in greater theoretical uncertainties for
each individual flavor. The axial sum rule provides an
important constraint but still leave some flexibility, like
adding the same term to uū and dd̄. Since the goal of this
letter is to introduce a new approach to study polarized
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PDFs, we leave this issue to future more detailed investi-
gations. Importantly, the critical region for the upcoming
Jeffersom Lab spin program [21, 22] is the large-x region,
which is dominated by the valence state and is thus much
less affected by the variation of the sea. As observed in
Fig. 3, the results with three sets of coefficients are quite
consistent in the large-x region. As we have analytically
demonstrated above, our approach supports the pQCD
prediction that the helicity asymmetry approaches 1 at
large-x limit and follows the power behavior (1− x)2. In
particular, the d-quark helicity change is robustly pre-
dicted around x ∼ 0.8.

Summary.—We present a new approach to study the
spin-dependent quark distributions. Our analytic result
is consistent with the pQCD large-x behavior. It also
supports the pQCD prediction of the helicity retention
at x ∼ 1, which is not indicated by existing data and
is challenged by Dyson-Schwinger equation calculations,
particularly for the d-quark. With all parameters fixed
by the nucleon Dirac form factor and unpolarized quark
distributions, our results of polarized distributions agree
with existing data. In the large-x region, where the va-
lence state dominates, we find the d-quark helicity flips its
sign around x ∼ 0.8, regardless of the procedure used to
include the sea quark contribution. This prediction will
be tested soon [21, 22]. The analytic behavior at large-x
and the agreement with existing data consolidates our
confidence in the pQCD predition, which can be imple-
mented in global analysis such as in Ref. [61]. In addi-
tion, the relation between the unpolarized and polarized
distributions also sheds light on a possible simultaneous
global fit of unpolarized and polarized PDFs.
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sions. This work is supported in part by the U.S. De-
partment of Energy, Office of Science, Office of Nuclear
Physics under contracts No. DE-AC05-06OR23177 and
No. DE-FG02-03ER41231.
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[27] G. F. de Téramond and S. J. Brodsky, Light-Front Holog-
raphy: A First Approximation to QCD, Phys. Rev. Lett.
102, 081601 (2009).
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