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We generalize the celebrated heavy quark expansion to nonlocal QCD operators. By taking non-
local heavy-light current on the light-cone as an example, we confirm that the collinear singularities
are common between QCD operator and the corresponding operator in heavy quark effective theory
(HQET), at the leading power of 1/M expansion. Based on a perturbative calculation in operator
form at one-loop level, a factorization formula linking QCD and HQET operators is investigated
and the matching coefficient is determined. The matching between QCD and HQET light-cone dis-
tribution amplitudes (LCDAs) as well as other momentum distributions of hadron can be derived
as a consequence.

Hadrons are multi-scale strong interaction systems.
Heavy hadron—the hydrogen atom of strong interac-
tion, plays an unique role of understanding and examin-
ing quantum chromodynamics (QCD). When one of the
quarks in a hadron is heavy comparing with strong in-
teraction scale, i.e., M � ΛQCD, the hard scale M is ex-
pected to disentangle from the infrared scale. This leads
to the heavy quark effective theory (HQET) [1–3], which
has proved an effective approach of studying heavy flavor
hadrons, especially in B-meson physics. For a review of
HQET, see Refs. [4, 5].

The HQET action can be derived by expanding the
QCD action in series of the inverse powers of M , which
is known as the heavy quark expansion (HQE). The HQE
for local composite operators is also extensively explored.
For example, consider the heavy-light axial-vector cur-
rent q̄γµγ5Q, its HQE gives

q̄γµγ5Q = C(M,µ)q̄γµγ5hv +O(1/M), (1)

where q̄ is light quark, Q is the heavy quark field in QCD,
while hv is the heavy quark field in HQET, with veloc-
ity index v. A matching coefficient C(M,µ) is intro-
duced due to the different ultraviolet (UV) behavior of
the full and effective theories. The matching coefficient
can be calculated in perturbation theory, while the in-
frared physics is only enclosed in the operators. This
relation holds at operator level, so the matching equa-
tion as well as the matching coefficient are independent
of hadron states.

Even in local field theories, one can construct not only
local composite operators, but also nonlocal operators.
In QCD and its effective theories, the nonlocal oper-
ators are crucial for understanding inner structure of
hadrons. One important type of such operators are the
bilocal quark operators q̄(z)[z, 0]ΓQ(0), in which the two
quark fields are located on the light-cone (i.e., z2 = 0 but
z 6= 0), with µ being the renormalization scale that de-
fines the operator. The parton momentum distributions
in a hadron, e.g., parton distribution functions (PDFs)
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and light-cone distribution amplitudes (LCDAs), are de-
fined through the matrix elements of light-cone opera-
tors. These distributions are indispensable ingredients
for QCD factorization theorems. For example, for many
B-meson exclusive decay processes, the decay amplitude
can be factorized in terms of hard scattering kernel and
B-meson LCDAs [6–12], where the B-meson LCDAs are
defined by the matrix elements of heavy-light operators
on the light-cone in HQET [13]. The other case is that
the two parton fields are separated off the light-cone. The
space-like operators attract lots of attentions in the past
few years, thanks to the development of large momen-
tum effective theory [14, 15] and many other approaches
designed for accessing parton physics from lattice cal-
culation, e.g., pseudo-PDFs [16, 17] and lattice cross-
sections [18, 19].

When the heavy quark mass M � ΛQCD, analogous to
local operators, the bilocal operators are also expected to
be factorized into hard functions and HQET bilocal op-
erators. The matching for the first inverse moment of
LCDAs in QCD and HQET was derived in Ref. [20].
A factorization theorem for LCDAs was proposed re-
cently [21], which connects B-meson LCDAs defined in
QCD and HQET, based on the perturbative calculation
on the LCDAs of heavy-light mesons [22]. In this work,
we will focus on the operators instead of the momen-
tum distributions, because factorization holds at opera-
tor level, taking matrix elements and Fourier transforms
are irrelevant for establishing a factorization theorem.

The goal of this work is to derive the HQE for nonlocal
QCD operators, or in other words, the nonlocal general-
ization of Eq. (1). Without loss of generality, we will
study the HQE for the nonlocal heavy-light current in
which two quark fields are separated on the light-cone,
similar discussions might be easily generalized to other
nonlocal operators. Based on the factorization formula in
the operator form, the factorization for B-meson LCDAs
and other structure functions can be naturally derived.

In QCD, a gauge invariant nonlocal light-cone operator
composed by a light quark field and a heavy quark field
can be expressed as q̄(z)[z, 0]ΓQ(0), where q̄(z) denotes
the light-quark with mass m, and M is the mass of the

heavy quark field Q(0), [z, 0] ≡ P exp[igs
∫ 1

0
dλz ·A(λz)]
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is a Wilson line located on the light-cone. The position
of light quark is z = z−n, with n being a unit light-cone
vector, n2 = 0. Γ is a certain Lorentz structure. For the
sake of simplicity, we consider a special case O(z, 0) ≡
q̄(z)[z, 0]/nγ5Q(0), which corresponds to the leading twist
LCDA of B-meson. The corresponding HQET operator

is denoted as Õ(z, 0; v) ≡ q̄(z)[z, 0]/nγ5hv(0), where hv
is the heavy quark field in HQET, related to the large
component of Q under M → ∞ limit, v (v2 = 1) is
the velocity vector of heavy quark. hv is constrained by
/vhv = hv and equation of motion v ·D hv = 0.

When the heavy quark mass M is large, the heavy
quark and QCD Lagrangian can be expanded in series of
1/M . The full heavy quark field Q is expressed by the
effective heavy quark field hv as (see, e.g., Refs. [4, 5])

Q(x) = e−iMv·x
(

1 +
i /D⊥
2M

+ . . .

)
hv(x), (2)

where Dµ
⊥ ≡ Dµ−vµv ·D, with D denoting the covariant

derivative. At tree level, since there is no interaction, we
immediately have

O(z, 0)(0) = Õ(z, 0; v)(0) +O
(

1

M

)
, (3)

with the help of Eq. (2). The operators with superscript
(0) denotes the un-corrected operators.

If the radiative corrections are included, however, HQE
will generally modify the UV behavior. Taking M →∞
in radiative correction of O(z, 0) cannot be reduced to
O(z, 0; v) when ultraviolet (UV) singularities exist, then
a matching is needed. Because the matching is related to
hard scale M , the matching coefficient can be evaluated
in perturbation theory. When the interaction is included,
the position of quarks will be generally shifted, which
means that HQE of O(z, 0) will be a superposition of
O(ᾱz, βz; v), with 0 < β < ᾱ < 1. The HQE formula
proposed in this work is

O(z, 0, µ) =

∫ 1

0

dα

∫ ᾱ

0

dβ C(α, β, t,M, µ, µ̃;αs)

· Õ(ᾱz, βz, µ̃; v) +O
(

1

M

)
, (4)

where t ≡ v · z − i0, ᾱ ≡ 1 − α. C(α, β, t,M, µ, µ̃;αs) is
the matching coefficient, which can be evaluated in per-
turbation theory. To confirm the matching formula and
evaluate the matching coefficient, one should first calcu-
late the radiative corrections of both QCD and HQET
operators.

Since the nonlocal operator is defined in posi-
tion space, it is natural to perform calculation in
coordinate-representation. Furthermore, the coordinate-
representation calculation can be done in operator form.
We work inD = 4−2ε dimensions so that the UV and soft

singularities are regularized in dimensional regularization
(DR). The light-quark mass m serves as the regulator for
the collinear (mass) singularity.

The radiative corrections to operator O(z, 0) involve
UV singularity, so the operator should be renormalized
first. Here we adopt the modified minimal subtrac-
tion (MS) scheme. The renormalization group equation
(RGE) for O(z, 0, µ) is [23]

µ2 d

dµ2
O(z, 0, µ) =

∫ 1

0

dα

∫ ᾱ

0

dβ V (α, β)O(ᾱz, βz, µ),

(5)

and

V (α, β) =
αsCF

2π

(
δ(β)

[ ᾱ
α

]
+

+ δ(α)

[
β̄

β

]
+

+ 1− 1

2
δ(α)δ(β)

)
+O(α2

s) (6)

is the Balitsky-Braun evolution kernel, where the plus
distribution is defined by∫ 1

0

du

[
ū

u

]
+

T (u) ≡
∫ 1

0

du
ū

u
[T (u)− T (0)], (7)

with T (u) denoting a test function. It indicates that
under renormalization, the nonlocal operator will get
mixed with all the operators of the same type but with
smaller separation between two quarks. By taking the
forward hadron-to-hadron or meson-to-vacuum matrix
elements and performing Fourier transform, this equation
will be reduced to the nonsinglet part of the Dokshizer-
Gribov-Lipatov-Altarelli-Parisi equation for PDFs [24–
26], or the Efremov-Radyushkin-Brodsky-Lepage equa-
tion for LCDAs [27–29], respectively [30]. Recently the
evolution of light-cone operators are known up to three-
loops [31–34].

The renormalized operators including radiative correc-
tion can be generally expressed as

O(z, 0,µ)ren. =

∫ 1

0

dα

∫ ᾱ

0

dβ K(α, β,m,M, µ;αs)

·O(ᾱz, βz)(0) + higher twist operators. (8)

Here the operators that vanished by equation of motion
are also eliminated. The function K(α, β,m,M, µ;αs) is
a series in αs

K(α,β,m,M, µ;αs) = K(0)(α, β)

+
αsCF

2π
K(1)(α, β,m,M, µ) +O(α2

s), (9)

with K(0)(α, β) = δ(α)δ(β). The one-loop term can be
calculated in coordinate-representation. The result reads



3

K(1)(α, β,m,M, µ) = δZ δ(α)δ(β) +

[
ᾱ

α
ln

µ2

α2u2
0M

2
H

]
+

δ(β) +

[
β̄

β
ln

µ2

β2ū2
0M

2
H

]
+

δ(α)

+
2u0ū0 + (αu0 − βū0)(u0 − ū0)− (αu0 − βū0)2

[(αu0 − βū0)2]1+εIR
Γ(1 + εIR)

(
µ2

IRe
γE

M2
H

)εIR
+ ln

µ2

M2
H(αu0 − βū0)2

, (10)

where MH ≡ m + M , and u0 ≡ m/MH , µ and µIR

are the renormalization and soft scales, respectively,
γE is the Euler–Mascheroni constant, (αsCF /2π)δZ =√
ZOS

2,qZ
OS
2,Q − 1, ZOS

2,q and ZOS
2,Q are the MS subtracted

on-shell renormalization constants for q and Q, respec-
tively. The second term in Eq. (10) is from the inter-
action between light quark and Wilson line, while the
third term is from heavy quark—Wilson line interaction.
The last two terms are from light quark—heavy quark
interaction. Note that there is a scheme dependence on
the treatment of γ5 in DR: one is the naive DR scheme
that γ5 anti-commutes with all γµ [35]; another choice is
the ’t Hooft-Veltman scheme [36, 37], in which γ5 anti-
commutes with γµ for µ = 0, 1, 2, 3 but commutes with γµ

for µ = 4, · · · , d− 1. Without loss of generality, we sim-
ply adopt naive scheme in this work. We also note that
εIR is not expanded at this stage, because the existence of
soft singularities located at α = β = 0. Such expansion
is only safe when the soft singularities are isolated (e.g.,
by introducing plus-prescriptions for the integrals).

Our result in Eq. (10) is valid for arbitrary m and M .
To compare with previous result on LCDA for mesons
with non-equal quark masses (e.g., K and Bc), one can
sandwich the operatorO(z, 0, µ) between vacuum and the
lowest Fock state, then Fourier transform to momentum
space. By recalling Eq. (8), this is equivalent to a convo-
lution between K and δ(x− ᾱu0−βū0). With the kernel
given in Eq. (7), and eliminating the contribution from
decay constant, we will arrive at the result for LCDA,
which was firstly calculated by Bell and Feldmann [22]
and later further explored in NRQCD re-factorization
approach [38, 39]. Another special case is u0 = 1/2, i.e.,
m = M , then Eq. (10) describes the one-loop correction
to the operator with equal quark masses, which can be
used to mesons like π0 and ηc, etc.

Since the topic of this work is the matching of heavy-
light operator, what we are interested in is the M → ∞
limit. After some efforts, we arrive at

K(1)(α, β,m,M, µ)

=

(
3

4
ln
M2

m2
− 3

)
δ(α)δ(β) +

[
β̄

β
ln

µ2

β2M2

]
+

δ(α)

+

[
ᾱ

α
ln

µ2

α2m2
+

1

2
ln
ᾱ2µ2

α2m2
− 2

α
+

3

2

]
+

δ(β)

+

[
β̄

β
+ ln

µ2

β2M2

]
+

+O
(

1

M

)
. (11)

The one-loop correction to HQET operator can be cal-

culated in the same manner with QCD case. We denote

HQET operator as Õ(z, 0; v) ≡ q̄(z)[z, 0]/nγ5hv(0), and
add a tilde upon other related variables to distinguish
from the QCD ones. We adopt the MS scheme again for
renormalization. Unlike the QCD case, there is a 1/ε2UV
UV divergence. In HQET, the heavy quark is described
by a Wilson line along the v-direction. The interaction
between the v- and n-Wilson lines generates a cusp sin-
gularity, therefore light-cone singularity and cusp singu-
larity appear simultaneously and leads to the 1/ε2UV-pole.
The cusp singularity and corresponding cusp anomalous
dimension was computed at two-loop order long time
ago [40, 41] and recently has been known up to three-
loops [42, 43]. The light quark—Wilson line interaction
contributes equally to both QCD and HQET operators.
The heavy quark—light quark interaction is UV finite.

The RGE for Õ(z, 0, µ̃; v) is

µ̃2 d

dµ̃2
Õ(z, 0, µ̃; v)

=− αsCF
2π

[
ln(iteγE µ̃)− 1

4

]
Õ(z, 0, µ̃; v)

+
αsCF

2π

∫ 1

0

dα
[ ᾱ
α

]
+
Õ(ᾱz, 0, µ̃; v). (12)

If the anomalous dimension from decay constant is
counted, this evolution equation will match the RGE for
B-meson LCDA in coordinate space [44]. The RGE for
B-meson LCDA in the name of Lange-Neubert equation
was first derived in momentum space [45]. The two-loop
evolution equation was derived very recently [46].

After the UV singularities are removed, the renormal-
ized HQET operator is linked to the tree-level one by

Õ(z, 0,µ̃; v)ren. =

∫ 1

0

dα

∫ ᾱ

0

dβ K̃(α, β,m, t, µ̃;αs)

· Õ(ᾱz, βz; v)(0) + higher twist operators, (13)

where K̃(α, β,m, t, µ̃;αs) can also be expanded in series
of αs:

K̃(α, β,m, t, µ̃;αs) = K̃(0)(α, β)

+
αsCF

2π
K̃(1)(α, β,m, t, µ̃) +O(α2

s), (14)

with K̃0(α, β) = δ(α)δ(β). Our result for the one-loop
term is

K̃(1)(α, β,m, t, µ̃)
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=−
[

ln2(iteγE µ̃) +
5π2

24

]
δ(α)δ(β)

−
[

ln(iteγEm)− 1

4
ln
µ̃2

m2
+ 2

]
δ(α)δ(β)

+

[
ᾱ

α
ln

µ̃2

α2m2
− ln(iteγEαm)− 2

α

]
+

δ(β). (15)

The first term arises from the interaction between the
heavy quark and Wilson line. A similar result in which
the collinear divergence is regularized in DR was reported
in Refs. [47, 48]. In Eq. (15) the 1/ε and 1/ε2 poles
have already been subtracted in MS. We note that to
reproduce the LCDA in Ref. [22] one should perform the
Fourier transform before subtracting the 1/εi poles, dur-
ing to the ln it singularities. In contrast to QCD, the
HQET nonlocal operator is non-analytic when z → 0 be-
cause of the logarithmic and double-logarithmic depen-
dence on t, therefore can not approach to local operator
smoothly, and the local OPE does not exist [49]. The
singularities at z → 0 also lead to the 1/ω behavior in
B-meson LCDA φ+

B(ω) at ω →∞.
With the one-loop corrections to QCD and HQET op-

erators, we are now able to see how factorization formula
Eq. (4) works. Since the matching coefficient is calcula-
ble in perturbation theory, one can expand it in series of
αs

C(α, β,t,M, µ, µ̃;αs) = C(0)(α, β)

+
αsCF

2π
C(1)(α, β, t,M, µ, µ̃) +O(α2

s). (16)

At tree-level, the QCD and HQET operators are same, so
the factorization formula Eq. (4) holds and the tree-level
matching coefficient is simply C0(α, β) = δ(α)δ(β).

The one-loop matching coefficient can be extracted by
comparing the O(αs) terms on the both sides of Eq. (4),
the result is

C(1)(α, β, t,M, µ, µ̃) =K(1)(α, β,m,M, µ)e−iMβt

− K̃(1)(α, β,m, t, µ̃). (17)

The reason for the phase factor e−iMβt is following: the
radiative correction changes the location of heavy quark
in QCD operator from 0 to βz, then according to Eq. (2),
the heavy quark in QCD and HQET is related by a phase
factor e−iMβt at leading order of 1/M expansion, this
phase factor finally enters the matching coefficient. In
momentum representation, it turns the residue momen-
tum of heavy-quark to the total momentum.

By recalling Eqs. (11), (15) and (17), one can evaluate
the matching coefficient at one-loop level, the value reads

C(1)(α, β, t,M, µ, µ̃) = δ(β)

[
ln(iteγE ᾱµ) +

ᾱ

α
ln
µ2

µ̃2
+

3

2

]
+

+ δ(α)

[
β̄

β
ln

µ2

β2M2

]
+

e−iβMt

+ δ(α)δ(β)

[
ln2(iteγE µ̃) + ln(iteγEM)− 1

4
ln

µ̃2

M2
+

5π2

24
− 1

]
+

[
β̄

β
+ ln

µ2

β2M2

]
+

e−iβMt. (18)

One can see that the collinear divergences in QCD and
HQET operators, which are represented by lnm2, are
canceled. The matching coefficient C(1)(α, β, t,M, µ, µ̃)
is free of collinear and soft singularities, indicating that
the factorization also holds at one-loop level. By sand-
wiching the both sides of matching equation between vac-
uum and meson sates, then performing Fourier trans-
forms that demanded by the definitions of LCDAs, one
can get the matching formula for B-meson LCDAs de-
fined in QCD and HQET, which has been addressed in
Ref. [21]. However, the full result for QCD operator,
Eq. (10), can not be matched onto HQET, because the
lnm2 terms in Eqs. (10) and (15) do not match. This
indicates that the factorization only holds at the leading
power of 1/M expansion.

We also note that only the /nγ5 component of axial-
current is considered in this paper. If the analysis is per-
formed for all the components, i.e., γµγ5, Lorentz struc-

tures like zµγ5 and many others will enter the expansion
formula. HQE for a general current will be a straightfor-
ward generalization of this work.

In summary, we have generalized the heavy quark ex-
pansion to nonlocal heavy-light current on the light-cone.
Based on a perturbative calculation in operator form, we
confirm up to one-loop accuracy that the QCD nonlo-
cal heavy-light current can be matched onto the corre-
sponding HQET operator by a factorization theorem. All
soft singularities are canceled, both for QCD and HQET
operators; while the collinear singularities are common
and can be canceled between QCD and HQET operators.
The matching coefficient is determined at one-loop and
leading power of 1/M expansion, which does not involve
any infrared scale. The matching between leading twist
LCDAs defined in QCD and HQET can be derived by
taking matrix elements and Fourier transforms. The re-
sults presented in this paper might be useful to resum the
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large logarithms of Q/M and M/ΛQCD. Furthermore, if
the B-meson LCDA in QCD is calculable by lattice QCD
through large momentum effective theory, it would pro-
vide another way of accessing B-meson LCDA in HQET
comparing with Ref. [50].

The work reported in this paper can be generalized
along many directions: (a) It will be straightforward of
applying the method described in this paper to study
other heavy-light currents on the light-cone; (b) It will
be also interesting to study the heavy quark expansion
for nonlocal heavy-heavy operators; (c) In this paper the
nonlocal current is located on light-cone. A study on the
heavy quark expansion for equal-time operators would be
important for lattice simulations of heavy meson LCDAs,
through large momentum effective theory or Ioffe time

pseudo-distribution approach.
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