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ABSTRACT

Baryon Effective Theories and Phenomenology in the 1/Nc Expansion

(December 2017)

Ishara Priyasad Fernando, B.S., University of Colombo

Chair of Thesis Committee: Prof. José L. Goity

Chiral perturbation theory (ChPT) and the 1/Nc expansion provide systematic

frameworks to investigate the strong interaction at low energy. There are two main

focuses of this dissertation. First, analyzing the masses of baryons in the framework

of the 1/Nc expansion, using the available physical masses and masses calculated in

lattice QCD. Second, combining both ChPT and the 1/Nc expansion into a single

framework and applying it to the phenomenology of baryons with three light-quark

flavors. In the first focus, the baryon states are organized into irreducible representa-

tions of SU(6)×O(3), where the [56, `P = 0+] contains the ground state and radially

excited baryons, and the [56, 2+] and [70, 1−] contain orbitally excited states are an-

alyzed. The analyses are carried out to O (1/Nc) and first order in the quark masses.

The issue of state identifications is discussed. Numerous parameter independent mass

relations and the famous Gell-Mann-Okubo (GMO) and Equal-Spacing (ES) relations

are tested. Also, the quark mass dependence of the operator coefficients for baryon

mass is discussed. In the second focus, a small scale expansion of the combined ap-

proach is defined as the ξ-expansion, in which the power counting of 1/Nc and chiral

expansions are linked as O (p) = O (1/Nc) = O (ξ). A calculation of one-loop correc-

tions to the ground state baryon masses, vector and axial-vector currents up to O (ξ3)

is presented. Moreover, the physical and lattice QCD masses are considered in order

to understand the quark mass dependence, along with an analysis of the violations

to GMO, ES and Gürsey-Radicati (GR) mass relations, and their dependence on Nc.
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CHAPTER 1

INTRODUCTION

“Quantum Chromodynamics” (QCD) is the fundamental theory of strong inter-

action which describes the phenomenology of quarks and gluons [1–6]. Because the

strong coupling (αs) experiences a running behavior at low energy [7, 8], the pertur-

bative expansion in terms of αs is only possible at high energies. This observation

leads to the fact that quarks are always confined into bound states called hadrons at

low energies. In nature, these hadrons have been observed as either quark-antiquark

pairs (mesons) or, three-quark bound states (baryons). In order to describe the phe-

nomenology of hadrons, the so-called effective field theory approach has been estab-

lished. This allows one to perform perturbative expansion in the low energy regime

by considering hadrons as the degrees of freedom.

The starting point of the effective field theory approach was proposed by S. Wein-

berg [9] in 1979. The idea is to build the most general effective Lagrangian containing

all the possible terms associated with the symmetry principles. In this work, chiral

symmetry and the spin-flavor symmetry are combined together to build an effective

theory to explore the baryon phenomenology. One needs to extract an expansion

parameter with a power counting scheme in order to systematically expand the the-

ory up to any desired order. In Chiral Perturbation Theory (ChPT), the expansion

parameter is the momentum of Goldstone bosons divided by an energy scale. This

power counting scheme was first proposed by S. Weinberg. 1/Nc also can be used as

an expansion parameter in QCD [10], where Nc is the number of colors (experimen-

tally, Nc = 3). Because of the emergence of the spin-flavor symmetry in QCD [11–14]
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at large Nc, 1/Nc expansion has become not only a qualitative but also a quantitative

tool to describe the physical observables in powers of 1/Nc. An application of this

framework to baryons was initially done by E. Witten [15], introducing the large Nc

counting rules.

In the baryon sector, the 1/Nc expansion is implemented as an effective theory

built in terms of effective operators associated with the observable to be analyzed.

This framework has been successfully applied in the analysis of baryon masses, mag-

netic moments, axial-couplings, etc. For example, the ground state baryon mass

operator in the 1/Nc expansion satisfy several well known mass relations, namely

Gell-Mann-Okubo relations [16], Coleman-Glashow relations [17–19], and also the

spin-flavor breaking Gürsey Radicati mass-relations [20]. In the resonance domain

of the baryon spectrum, the corresponding symmetry for the excited baryons is

SU(2Nf )×O(3), where O(3) governs the spatial rotations and SU(2Nf ) is the spin-

flavor symmetry group [21]. From the group theory point of view and without any

loss of generality, low-lying excited baryons may be considered to be comprised of a

core of (Nc − 1) quarks in the ground state and one excited quark [22].

In general, spin-flavor symmetry is not exact for excited baryons even in the

Nc →∞ limit, because the spin-flavor SU(2Nf ) symmetry is broken at O (N0
c ) [21].

This is identified in the constituent quark picture by the coupling of orbital angular

momentum, which phenomenologically couples very weakly. The decoupling approach

is more convenient in analyzing the mixed-symmetric baryon excited states, which

belong to the [70, 1−] multiplet [21, 23, 24]. However, for the analysis of symmetric

states, such as baryons belonging to [56′, 0+] and [56, 2+] multiplets, there is no need

to decouple the baryon wave function into a core and an excited quark [25,26]. In this

work, ground-state baryons in the 56-plet and excited-state baryons in the [56′, 0+],
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[56, 2+] and [70, 1−] multiplets are analyzed [27] with the physical masses and masses

calculated from lattice QCD [28,29].

The main focus of this work is to combine these two effective theories: ChPT

and 1/Nc expansion into a single framework and apply it to gain insight into the

phenomenology of baryons. Notably, this is the first application to the baryon masses

and currents made out of three light-quark flavors, or the case of SU(3)flavor. Since the

two expansions do not commute [30], they are linked by considering the size of baryon

mass splittings of O (1/Nc) which is of O (p). This is called the ξ-expansion. Cal-

culations have been performed up to one-loop correction with the inclusion of both

octet and decuplet intermediate baryon states in the loop, to improve the conver-

gence of the chiral expansion [31–36]. Another remarkable feature of this combined

effective approach is it allows one to calculate the violations to the mass relations

such as Gell-Mann-Okubo (GMO) relation, Equal Spacing (ES) relation and Gürsey

Radicati (GR) relation explicitly up to O (ξ2), whereas GMO and ES relations are

exact at tree-level for any finite Nc. In addition to the application to baryon masses,

this framework has been applied in calculating the vector charges and axial-vector

couplings in the case of SU(3), and fits have been performed to lattice QCD (LQCD)

results [37, 38].

This dissertation is divided as follows. The first part includes Chapters 2-6, which

cover the 1/Nc expansion framework and its application to baryon masses. The sec-

ond part includes Chapters 7-10, which present the combined framework of ChPT

and 1/Nc and it’s applications to baryon masses and currents. Lastly, conclusions

with future perspectives are presented, followed by four appendices. Part I of the

dissertation starts with Chapter two, which is dedicated to introducing the 1/Nc ex-

pansion. The foundations and the development of the 1/Nc expansion framework
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is discussed with applications to mesons and baryons. Chapter 3 is devoted to the

baryon wave function in the large Nc limit. Starting with the description of the

structure of a baryon with three valence quarks, the generalization to Nc number of

quarks in a baryon is discussed systematically. Chapter 4 is devoted to the spin-flavor

symmetry in large Nc baryons. This gives a brief overview of the emergence of the

spin-flavor symmetry by studying baryon-meson scattering amplitudes, which leads

to a consistency condition resulting in the existence of an infinite tower of degenerate

baryon states. This chapter covers the contracted spin-flavor algebra resulting from

the large Nc consistency conditions. Also, large Nc baryon representations as well

as 1/Nc corrections to the baryon observables, such as masses and axial currents are

covered. Chapter 5 is dedicated to baryon operators in the 1/Nc expansion. In this

chapter, the fundamental building blocks of baryon operators in large Nc and the

quark operator classification are discussed in detail, followed by operator identities

which can be used to perform the operator reduction. An application to baryon mass

operators is discussed considering the SU(3)-symmetric and SU(3)-breaking limits.

Chapter 6 is dedicated to baryon masses in the 1/Nc expansion framework. This

chapter covers the work done on the “baryon spin-flavor structure from an analysis of

lattice QCD results of the baryon spectrum” [27]. Baryon multiplets including ground

states in the 56-plet and excited-states in [56′, 0+], [56, 2+] and [70, 1−] multiplets

are analyzed using 1/Nc baryon mass operators. The quark mass dependence of the

baryon states corresponding to the considered baryon multiplets and the mixing an-

gles have been addressed in this calculation. The multiplets [56′, 0+], [56, 2+] and

[70, 1−] are discussed in separate subsections, each containing a discussion of mass

operators, mass relations and fit results to the data. A summary of the fits is also

given with conclusions and discussions of the study in the last sections of Chapter 6.
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Part II of this dissertation starts with Chapter 7. It covers the foundations

of chiral perturbation theory, pedagogically organized by constructing the effective

Lagrangian for heavy baryon ChPT, including applications. The Chapters 8, 9, and 10

are dedicated to the combined effective framework of ChPT and the 1/Nc expansion.

Chapter 8 covers the building blocks of the combined framework, whereas Chapters

9 and 10 cover the application of the combined framework to ground-state baryon

masses and baryon currents, respectively. All the calculations are performed up to

one-loop correction, and fits are performed to the available physical and LQCD data

for masses, vector charges and axial-currents. The results of these analyses for baryon

masses, vector charges and axial-couplings are discussed separately at the end of

Chapters 9 and 10. The last chapter is dedicated to conclusions and discussions of

the current study, and prospectives for future research are discussed. Any analytical

or technical details related to some chapters are shown in the appendices.



Part I

BARYON MASSES IN THE 1/Nc EXPANSION

6
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CHAPTER 2

1/NC EXPANSION AS AN EFT IN QCD

2.1 Introduction

The fundamental degrees of freedom in QCD are quarks and gluons; which rep-

resent the matter-field and force-field of the strong interaction, respectively. To date,

six flavors of quarks have been discovered: up-u, down-d, charm-c, strange-s, top-t,

bottom-b. These flavors are organized into three types of families under weak inter-

actions. First family: u & d, second family: c & s, third family: t & b. Quarks

contain fractional electric charge: u, c, t quarks are +2/3, and d, s, b quarks are −1/3.

The mass of a quark is just a parameter in the Lagrangian of the theory. The quark

masses cannot be measured directly because they are not observed physically, this

is due to the phenomena called “confinement”. Confinement is the property where

quarks tend to bind themselves so strong at low energies into “hadrons”, although

at very high energies quarks tend to interact less. They are determined indirectly

through their influence on hadronic properties. The quark mass parameter behaves

like a coupling constant in quantum field theory, depending on the momentum scale

and the renormalization scheme to render finite values for the quark masses. In this

work, the considered quark masses values were evaluated using the dimensional regu-

larization method with the modified minimal subtraction (or MS) scheme. The three

quark flavors, up-u, down-d, strange-s quarks are identified as “light quarks”, and

charm-c, top-t, bottom-b quarks can be identified as “heavy quarks” by comparing

their masses in Table (2.1).
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Table 2.1. Quark masses in the MS renormalization scheme at a scale of µ = 2 GeV.

Quark flavor: up down charm strange top bottom

Mass: 1.5-4 MeV 4-8 MeV ∼1.25 GeV ∼100 MeV ∼175 GeV ∼4.25 GeV

Electric charge: +2/3 -1/3 +2/3 -1/3 +2/3 -1/3

Quarks carry an additional quantum number called, “color”. The color quantum

number was initially suggested by Greenberg, et al. [5]. Color serves as the charge of

QCD. The behavior of the color charge is very different than the electric charge. The

electric charge is a scalar quantity in the sense that the total charge of an electric

system is simply the algebraic sum of individual charges, whereas the color charge is

a quantum vector charge (a concept similar to spin angular momentum in quantum

mechanics). The total color charge of a system must be obtained by combining the

individual color charges of the constituents according to group theoretic rules (anal-

ogous to combining angular momenta in quantum mechanics).

Gluons are the quanta of the color field that binds quarks into baryons and mesons.

Chromodynamics is then a theory like electrodynamics, but with eight gluons instead

of a single photon. As the gluons themselves carry a color charge, they can directly

interact with each other. Theories in which field quanta may interact with each other

are called non-Abelian. The local non-Abelian SU(3)color symmetry describes the

interactions among quarks and gluons. Local SU(3)color symmetry transformations

leave the theory invariant, which leads QCD to be identified as a “gauge” theory.

Quarks behave asymptotically free at very short distances (at high energy), and they

are confined to colorless hadrons at large distances (at low energy).
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The phenomenology of quarks and gluons is described by the QCD Lagrangian,

LQCD =

Nf∑
f=1

ψ̄cα,f (x)
(
iγµDcc′

µ −mfδ
cc′
)
ψc
′

α,f (x)− 1

4
GaµνGµνa , (2.1)

where ψcα,f (x) and ψ̄cα,f (x) represent the quark and anti-quark fields with Dirac

index (α), color index (c), flavor index (f), and Nf the number of flavors. The

covariant derivative Dµ = ∂µ − igAµ includes the dynamics of quarks and their

coupling to gluons, whereas the gluon field-strength tensor Gµν(x) = i
g
[Dµ, Dν ] =

∂µAν − ∂νAµ − ig[Aµ, Aν ] describes the dynamics of gluons. Since Gµν(x) is also an

element of the SU(3)color algebra, one can write Gµν(x) = Gaµν(x)T a. Gluons are

flavor-blind and each gluon field Aaµ(x) is associated with its generator T a in the

fundamental representation of SU(3). The generators of SU(3)color T
a = λa/2 with

a = {1, ..., 8}, and λa are the Gell-Mann matrices. One can show that only the

color-trace form of GµνGµν which is GaµνGµνa can appear in the Lagrangian. The non-

Abelian nature of SU(3)color and the nonlinear self-interacting gluon fields, make the

Lagrangian more complicated than Quantum Electrodynamics (QED).

9. Quantum chromodynamics 39

They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M

2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [381],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

January 6, 2017 18:42

Figure 2.1. Summary of measurements of αs as a function of the energy scale Q [39].
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To understand the dynamical properties of QCD, one necessarily has to under-

stand the behavior of the strong coupling constant as a function of distance. QCD

has two distinct properties: asymptotic freedom and confinement [40]. Asymptotic

freedom means that the strong coupling becomes small in very high energy reactions.

This is due to the phenomenon called anti-screening, in which the charge is small at

short distances, and grows at larger distances [40]. In non-Abelian gauge theories,

the existence of asymptotic freedom depends on the gauge group and the number of

flavors of interacting particles. The asymptotically free behavior in QCD was first

discovered by David Gross, Frank Wilczek and David Politzer [7, 8]. This strange

behavior of αs has been verified in high-energy experiments to very high precision, as

illustrated in Fig. (2.1) .

Asymptotic freedom implies that the theory becomes simple at short distance or

high energy, while the coupling becomes very strong at large distances or low and

intermediate energies. Therefore, the fundamental fields (i.e. quarks and gluons), do

not appear in the physical spectrum as asymptotic states [40]. All physical states with

finite energy appear to be color singlet combinations of quarks and gluons, which are

always confined at rather short distances of order 1 fm. This phenomena is known

as color confinement, which means that the force between quarks does not diminish

as they are separated [40]. This implies that in the low energy regime of QCD, the

degrees of freedom are no longer quarks and gluons, but rather color singlet hadrons.

The idea of generalizing the SU(3) color gauge theory to SU(Nc) gauge theory

was initially proposed in 1974 by ’t Hooft [10], introducing Nc number of colors.

The expectation of this approach was to solve the theory with the color gauge group

SU(Nc) at large Nc limit (Nc → ∞), and to have qualitatively and quantitatively

close results to the Nc = 3 theory. Therefore in SU(Nc) QCD, we have Nc number
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of quark colors for each flavor, and N2
c − 1 number of gluons, where three colors for

each quark flavor and eight gluons in SU(3)c QCD is a special case. ’t Hooft realized

that 1/Nc is a hidden expansion parameter, which can be used to implement a per-

turbative expansion in powers of 1/Nc to QCD at low and high energies.

In 1979 E. Witten [15] applied the 1/Nc framework for mesons as well as for

baryons. He derived that mesons become free and non-interacting at large Nc, be-

cause the meson-meson coupling scales as O (1/Nc). Therefore, QCD becomes a

weakly coupled theory for mesons at large Nc. One may be puzzled about how a

theory with Nc → ∞ can approximate the theory with Nc = 3. It has been proven

that the results are in good agreement with experiment, if one considers the next

to leading order terms in the 1/Nc expansion. In order to understand the large Nc

limit, one has to first identify the 1/Nc order of quark-gluon diagrams. Then, one can

introduce hadrons in large the Nc limit and study their interactions.

2.2 Feynman diagrams for large Nc

“Planar diagrams” are a special class of Feynman diagrams identified by ’t Hooft

[10], as the dominant diagrams in the 1/Nc expansion. In large Nc QCD, there are

Nc possible colors for the quark fields during processes. The “double line notation”

replaces the gluon gauge field Aaµ by a double line corresponding to a tensor field

(Aµ)ij, where the indices i, j belong to the fundamental representation of the color

group SU(Nc). This is illustrated in Fig. (2.2), where the gluon field has one upper

index like the quark field qi and one lower index like the anti-quark field qj. Each line

represents Nc number of colors. Therefore, the sum over all intermediate states gives

large combinatoric factors, and leads to the suppression of contributions from some
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Feynman diagrams.

i

j

Figure 2.2. Double line notation of a gluon field.

Let’s consider the gluon vacuum polarization diagram with its double line repre-

sentation (see Fig. (2.3)). The color quantum number of the initial and final states

are specified, but the intermediate state has a loop specified by an index k which

gives Nc possibilities, leading to a combinatoric factor Nc for this Feynman diagram.

Therefore in the limit Nc →∞ the diagram is infinite.

i

j

i

j

k

i

j

Figure 2.3. Gluon-vacuum polarization.

In order to have a finite limit for the gluon vacuum polarization, one can rescale the

coupling constant g of the large Nc QCD lagrangian as [10,15],

g → g0√
Nc

(2.2)

where g0 is a new coupling fixed in the large Nc limit, known as the ’t Hooft cou-

pling. Therefore, considering both rescaled coupling and the color combinatoric factor

together lead to Nc independence,

(
g0√
Nc

)2

Nc = g2
0 (2.3)
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to the order of the Feynman diagram in Fig. (2.3). With this rescaling scheme, the

quark-gluon and three-gluon vertices are of order 1/Nc and four-gluon vertices are of

order 1/Nc (see Fig. (2.4)).

g0/
√

Nc

g0/
√

Nc
g2

0/Nc

Figure 2.4. Quark-gluon, three-gluons and four-gluons vertices.

Now we can focus on a couple of examples of determining the 1/Nc order of a given

Feynman diagram. Let’s consider the two-loop diagram given in Fig. (2.5). There are

four vertices
(
1/
√
Nc

)4
, and two internal loops ( each contributing with a factor of

Nc ). Therefore the order of the two-loop contribution to the gluon propagator is(
1/
√
Nc

)4 × N2
c = 1. Similarly, the three-loop contribution to the gluon propagator

(see Figure (2.6)) is
(
1/
√
Nc

)6 ×N3
c = 1, since there are six vertices and three inter-

nal loops. Therefore in general, m-loop contribution to the gluon propagator will be(
1/
√
Nc

)2m×Nm
c = 1, also independent of Nc. In other words, adding an extra gluon

to a given planar diagram while preserving it’s planar nature, would only creates an

additional two interaction vertices with one closed color loop giving a contribution(
1/
√
Nc

)4 ×N2
c = 1 to the overall diagram.
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Figure 2.5. Two-loop diagram.

Figure 2.6. Three-loop diagram.

However, this is different for non-planar diagrams. For instance, in the diagram

in Fig. (2.7) has six vertices and one closed color loop where the overall order is(
1/
√
Nc

)6 × Nc = 1/N2
c , which leads to be suppressed at large Nc limit. Also, it is

possible to show that the maximum contribution from a non-planar Feynman diagram

would be of order 1/N2
c so they vanish in the large Nc limit [15].

Figure 2.7. A non-planar diagram.

Figure 2.8. An internal-quark-loop diagram.
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One may want to consider a quark loop as in the Fig. (2.8). Since the color indices

for the initial and final state are specified, there will be no combinatoric factor con-

tributions, but each vertex contributes with a factor of 1/
√
Nc and the overall order

is 1/Nc which also vanishes at large Nc limit. If one wants to consider an internal

quark loop as represented in Fig. (2.9) also vanishes at large Nc limit since it is of

order
(
1/
√
Nc

)6 ×N2
c = 1/Nc.

Figure 2.9. A quark-loop inside a gluon loop.

Let’s summarize the large Nc counting rules for Feynman diagrams :

• Planar gluon insertion doesn’t affect the order of the diagram since it is of O (1).

• Non-planar gluon line insertion leads to suppress the diagram by a factor of

1/N2
c .

• Insertion of an internal quark loop leads to suppress the diagram by a factor of

1/Nc.

As a conclusion, planar Feynman diagrams which contain the minimum number of

non-planar gluons and internal quark loops will be the most important diagrams in

large Nc limit.

Let’s consider matrix elements of quark bilinears. For example, the two-point

function 〈J(x)J(y)〉 of a current correlation function J , where J(x) creates a meson

at point x and annihilates the meson at point y. In free field theory, a two-point
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function is represented by closed loop as shown in Fig. (2.10(a)), which is order Nc in

color. There are arbitrary planar gluon insertions possible as shown in Fig. (2.10(b)),

which would not affect the Nc order. However the diagrams in Fig. (2.11) are also

planar, and are of order 1/Nc, which leads to suppression by a factor of 1/N2
c compare

to the diagrams in Fig. (2.10). Therefore, the leading order dependence of Nc of quark

bilinear matrix elements is governed by not only the planarity but also the fact that

quark lines are at the edge.

(a) (b)

Figure 2.10. Two-point correlator 〈JJ〉 of O (Nc). (a) Free field correlator. (b) Cor-
rections to free field correlator.

(a) (b)

Figure 2.11. Non-leading corrections to the two-point correlator 〈JJ〉. Diagram (b)
is the double line notation of diagram (a).

2.3 Large Nc mesons

The main motivation of discussing mesons is some results in the expansion of

mass operator of baryons depend on the baryon-meson scattering. Large Nc meson

states are color singlet bound states consist of quark and an anti-quark. Therefore
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the composite meson operator can be written as, [41].

1√
Nc

Nc∑
i=1

q̄iq
i , (2.4)

where, the summation over Nc possible colors gives an order
√
Nc to the meson state.

i

i

j

j

k

k

Figure 2.12. Intermediate state contributing to 〈JJ〉.

Let’s consider creation and annihilation of a meson. This process is associated

with matrix elements of operator J(x) which correspond to quark bilinear such as q̄q

or q̄γµq. Consider the Fig. (2.12), which illustrates a two-point function of a quark

bilinear. If we cut the diagram in a typical way, then we have an intermediate state

with one quark, one anti-quark and two gluons. So, if one consider the color structure,

then the intermediate state,

q̄iA
i
jA

j
kq
k (2.5)

is a color singlet, which is a one meson in the confining theory. This is true when we

have planar diagrams for the two-point function with only a single quark loop running

at the edge. Because if we look at possible non-planar diagrams like in Fig. (2.11),

then the intermediate state is a product of two color singlet states,

q̄iA
i
jq
jAlmA

m
l . (2.6)
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These intermediate states can be interpreted as one meson q̄iA
i
jq
j and one color singlet

gluon bilinear AlmA
m
l . As we discussed, non-planar diagrams are suppressed in the

large Nc limit.

Therefore, meson states are one-particle intermediate state of a two-point function

of J ,

J(k)J(−k) =
∑
n

〈0|J |n〉2
k2 −M2

n

(2.7)

where, J creates a meson with amplitude 〈0|J |n〉 which propagates with a propagator

1/(k2 −M2
n), also we sum over all possible intermediate (color singlet) meson states

to obtain the two-point function. We need to determine the Nc order of the matrix

element 〈0|J |n〉 which determines the dependence in Nc in the right hand side of

Eq. (2.7). The leading order two-point function is order Nc, and all planar diagrams

with quarks at the edges have the same order. Therefore, the matrix element 〈0|J |n〉

which corresponds to the meson decay constant is of order
√
Nc.

fM ∼ 〈0|J |n〉 ∼ O
(√

Nc

)
(2.8)

Now, consider a typical three point function as in Figure 2.13. E. Witten [15] illus-

trated systematically how to obtain the order of the three meson vertex. But if we

use the fact that each meson creation/annihilation is order
√
Nc, then we can simply

obtain the three meson vertex is of order 1/
√
Nc, because the diagram is of order Nc.

√
Nc

√
Nc

√
Nc

1/
√

Nc

Figure 2.13. The dominant three meson diagram. The diagram on right hand side is
in double line notation of the diagram on left hand side.

Therefore, for an n-point function the n-meson vertex is,
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(
√
Nc)

n ×
(

1

Nc

)n−2

= Nc (2.9)

of order 1/Nn−2
c . Let’s summarize the properties of large Nc mesons.

• The meson decay constant fM (eg: pion decay constant fπ) is of O
(√

Nc

)
.

• The meson mass is of O (N0
c ).

• The amplitude of meson decay in to two mesons is of O
(
1/
√
Nc

)
.

• The n-meson coupling is of O (1/Nn−2
c ).

2.4 Large Nc baryons

In large Nc picture, baryons are colorless bound states which consist of Nc valence

quarks, anti-symmetric in color indices. In order to form the color singlet state, these

color indices of the Nc quarks are contracted with the SU(Nc) invariant ε-symbol.

εi1i2i3...iNcq
i1qi2qi3 ...qiNc (2.10)

The number of colors Nc must be odd, because the baryon state has to be a fermionic

bound state. At leading order, a large-Nc baryon can be represented using Nc valence

quark lines. There are arbitrary number of planar and non-planar gluon exchanges

between quark lines at higher orders in 1/Nc. For example, the interaction between

two quarks by exchanging one gluon is of order 1/Nc because each quark gluon vertex

is of order 1/
√
Nc. But the interaction of a quark with all the rest Nc−1 quarks adds

coherently to give an interaction energy per quark which is order N0
c .
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The baryon mass is of orderNc. Because the number of quarks in a largeNc baryon

grows with Nc, baryons become infinitely heavy in the large Nc limit (Nc →∞).

MBaryon = O (Nc) (2.11)

The size and the shape of a baryon is independent of Nc. Because of the confinement

property of quarks, the size of a baryon is fixed by the scale of Λ−1
QCD ≈ 1 fm. Thus,

the quark density of a baryon increases with Nc. E. Witten [15] realized the applica-

bility of the Hartree approximation since the average potential for each quark will be

the same, in the large Nc limit of a baryon.

According to Witten’s large Nc power counting, the key properties of large Nc

baryons can be summarized as follows.

• Baryon mass is of O (Nc)

• Baryon size is of O (N0
c )

2.5 Meson-baryon coupling

Studying the meson-baryon couplings is very important to explain the interac-

tions at low energy QCD. Gervais with Sakita [11], and Dashen with Manohar [12]

performed a pioneering study on meson-baryon couplings, and they independently

discovered the spin-flavor symmetry of meson-baryon couplings at the large Nc limit.

A detailed discussion on this spin-flavor symmetry of baryons is given in Chapter 4.
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(a) (b)

Figure 2.14. (a) meson coupling to same quark line. (b) meson coupling to two dif-
ferent quark lines.

Using the knowledge of determining the Nc order of planar diagrams, one can

think about the Nc order of meson-baryon couplings. Let’s consider the two dia-

grams given in Fig. (2.14). In diagram Fig. (2.14(a)), a meson is coupled to a single

quark line of the baryon, with Nc possibilities. Therefore, the meson wave function’s

normalization factor 1/
√
Nc combines with the factor of Nc corresponds to the num-

ber of quark lines will combine together determine that the order of a meson-baryon

coupling is O
(√

Nc

)
. Now, consider the case where meson is coupled to two different

quarks with an exchange of a gluon between those quark lines (see Fig. (2.14(b))).

Each quark-gluon vertex is O
(
1/
√
Nc

)
, each meson wave function has a factor of

1/
√
Nc and there are N2

c possibilities of selecting two quarks. Therefore, generally

the order of the meson-baryon coupling is O
(√

Nc

)
.

(a) (b)

Figure 2.15. Baryon meson scattering of O (N0
c ).
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Let’s consider the scattering process of baryon + meson→ baryon + meson shown

in Figure (2.15). There are four quark-gluon vertices giving a factor of
(
1/
√
Nc

)4
.

Then the sum over the color indices c′, c, c′′ give a factor of (Nc)
3. Also, a factor of(

1/
√
Nc

)2
comes from two meson wave functions. Therefore, the order of the diagram

is, (
1√
Nc

)4

(Nc)
3

(
1√
Nc

)2

= 1.
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CHAPTER 3

THE BARYON WAVE FUNCTION IN LARGE NC

3.1 Introduction

In the simple quark-shell model picture, the general form of a baryon wave function

can be written as,

Ψ = ψspatialψspinψflavorψcolor. (3.1)

As the baryons are fermions, the total wave function of a baryon has to be antisym-

metric under the permutation of quarks. Since nature requires that the ψcolor has to

be SU(Nc) singlet (or colorless) because of the color confinement, then the color part

leaves the remaining part of the wave function to be always symmetric. In this work,

only the ordinary baryons with quantum numbers provided by Nc valence quarks of

u, d, s flavors are considered.

The objective of this chapter is to give an idea about the combined role of the

group theoretical contribution and the Hartree approximation of the complete baryon

state. Since the real physical QCD is the theory when Nc = 3, the second section of

this chapter will focus on the structure of baryon states with three quarks. In the third

section, the idea will be generalized into the case of Nc number of quarks. Also, the

third section is more focused on the ψspatial part considering the Hartree approximation

for non-relativistic and relativistic limits. Then the fourth and fifth sections illustrate

about the ground state baryons and excited state baryons respectively.
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3.2 Baryon wave function for three quarks

Since, the baryon wave function can be decomposed as in Eq. (3.1), let’s consider

the spin-flavor part and the spatial part separately.

3.2.1 The spin-flavor part (ψspinψflavor) of three quarks

Each quark can be labeled using two possible spins (↑ and ↓ ) and six possible

flavors (u, d, s, c, t, b). Since this study is more focused on the standard hadrons

(baryons and mesons consisting of light quarks), let’s take only u, d, s quarks in to

the discussion. Therefore, each quark in a baryon has six degree of freedoms which

can be denoted as, u ↑, u ↓, d ↑, d ↓, s ↑, s ↓. This corresponds to SU(6) spin-flavor

symmetry group. Therefore the direct product for three quarks, according to the

Young tableaux can be represented as follows,

⊗ ⊗ = ⊕ ⊕ ⊕
6 6 6 56 70 70 20

(3.2)

where the dimensions 56,70,20 of the irreducible representations (irreps.) are in-

dicated with each diagram. 56 is symmetric, 70’s are mixed-symmetric and mixed-

antisymmetric respectively, and 20 is antisymmetric under permutations of quarks

[20]. Therefore the light baryons belong to these multiplets in the SU(6) spin-flavor

representation.

If we considered only the spin degree of freedom of quarks, then the baryons

(three-quark spin states) can be represented in irreps. of the SU(2) subgroup:

1

2
⊗ 1

2
⊗ 1

2
=

3

2

S

⊕ 1

2

MS

⊕ 1

2

MA

, (3.3)
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where S,MS,MA labels correspond to symmetric, mixed-symmetric and mixed-anti-

symmetric representations respectively. Also it can be represented In (2S+1) notation

combined with the Young tableaux:

⊗ ⊗ = ⊕ ⊕
2 2 2 4 2 2

, (3.4)

where, 4 represents the total spin 3/2 and 2’s represent the total spin 1/2 multiplets.

Considering only the flavor degree of freedom, it is the SU(3) representation.

⊗ ⊗ = ⊕ ⊕ ⊕
3 3 3 10 8 8 1

(3.5)

Therefore one can decompose the SU(6) multiplets into the SU(3)flavor×SU(2)spin

representations by following the rules for combining the states of different permutation

symmetries [42] to visualize the spin and flavor contributions separately.

56 = 10⊗ 4 ⊕ 8⊗ 2

70 = 10⊗ 2 ⊕ 8⊗ 4 ⊕ 8⊗ 2 ⊕ 1⊗ 2

20 = 8⊗ 2 ⊕ 1⊗ 4 (3.6)

Also we can write down the SU(2) spin wave functions and the SU(3) flavor wave

functions [42] for baryons as given in Tables (3.1), (3.2) and (3.3).
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Table 3.1. Symmetric flavor states of three quarks : baryon decuplet.

Baryon φS

∆++ uuu

∆+ 1√
3

(uud+ udu+ duu)

∆0 1√
3

(udd+ dud+ ddu)

∆− ddd

Σ+ 1√
3

(uus+ usu+ suu)

Σ0 1√
3

(uds+ dus+ usd+ sud+ sdu+ dsu)

Σ− 1√
3

(sdd+ dsd+ dds)

Ξ0 1√
3

(uss+ sus+ ssu)

Ξ− 1√
3

(dss+ sds+ ssd)

Ω− sss

Table 3.2. Mixed-symmetric flavor states of three quarks : baryon octet.

Baryon φM,S φM,A

P − 1√
6

(udu+ duu− 2uud) 1√
2

(udu− duu)

N 1√
6

(udd+ dud− 2ddu) 1√
2

(udd− dud)

Σ+ 1√
6

(usu+ suu− 2uus) − 1√
2

(usu− suu)

Σ0 − 1√
12

(2uds+ 2dus− sdu− sud− usd− dsu) − 1√
2

(usd+ dsu− sdu− sud)

Σ− 1√
6

(dsd+ sdd− 2dds) − 1√
2

(dsd− sdd)

Λ0 1
2

(sud− sdu+ usd− dsu) 1√
12

(2uds− 2dus+ sdu− sud+ usd− dsu)

Ξ0 − 1√
6

(uss+ sus− 2ssu) − 1√
2

(uss− sus)

Ξ− − 1√
6

(dss+ sds− 2ssd) − 1√
2

(dss− sds)

Table 3.3. Antisymmetric flavor state of three quarks : baryon singlet.

Baryon φA

Λ 1√
6

(sdu− sud+ usd− dsu+ dus− uds)



27

For example, consider the ∆+(uud) with spin Sz = 1
2
| ↑↑↓〉. The totally symmetric

SU(6) wave-function can be written as [42] :

1

3

∣∣∣∣∣∣
u ↑ u ↑ d ↓ + u ↑ d ↑ u ↓ + d ↑ u ↑ u ↓

+u ↑ u ↓ d ↑ + u ↑ d ↓ u ↑ + d ↑ u ↓ u ↑
+u ↓ u ↑ d ↑ + u ↓ d ↑ u ↑ + d ↓ u ↑ u ↑

〉
, (3.7)

where the SU(2)⊗ SU(3) decomposition is:

1√
3
|uud+ udu+ duu〉 1√

3
| ↑↑↓ + ↑↓↑ + ↓↑↑〉 . (3.8)

3.2.2 The spatial wave function of three quarks

According to QCD, a baryon is a color singlet object with three quarks and gluons.

The exact picture of the interaction among these quarks and gluons is complicated

and still an open question. In the chiral limit, quarks are massless. Because of the

effect of spontaneous symmetry breaking of the QCD vacuum, quarks are dressed

themselves by the quark-antiquark pairs (sea quarks) and gluons. Therefore, quarks

acquire an effective mass of order ΛQCD through these non-perturbative mechanisms.

These effective quarks are the elementary excitations of the QCD vacuum, and they

are identified as “constituent quarks” with the quantum numbers of an elementary

quark.

The Hamiltonian of constituent quarks according to the simple quark-shell model
can be written as,

H =
Nc∑
i=1

Ti + Vi , (3.9)

which assumes the non-relativistic approximation. Ti is the kinetic energy and Vi is

the potential energy due to the average confinement potential of the ith quark in the

baryon. This Hamiltonian will affect only the ψspatial part of the total wave function,

while the ψspin⊗ψflavor part generates the spin-flavor baryon multiplets corresponding

to the SU(2Nf )⊗O(3) group theoretical representation. Also note that the number
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of quarks in the baryon is governed by the ψcolor part.

The spatial wave-function has two components namely, the radial and orbital

components. Also, the spatial part of the baryon can be obtained using the varia-

tional principle with the Hartree-Fock approximation (Approximating ansatz to the

Schrödinger equation of the baryon using symmetric quark wave functions, then the

quark wave functions can be obtained by the variational principle). This approxima-

tion is exact in large Nc limit. Therefore, let’s consider the non-relativistic picture of

a baryon.

Simply, one can consider solving the Schrödinger equation for a single quark by

assuming a central three dimensional harmonic oscillator potential for the purpose of

illustration, (
p2

2m
+

1

2
mω2r2

)
ψ = Eψ. (3.10)

The energy eigevalues are

E =

(
2k + l +

3

2

)
~ω , (3.11)

where, l is the orbital angular momentum quantum number and k = {0, 1, 2, ...}

is associated with the number of nodes in the radial wave-function. Therefore the

general form of the spatial wave-function can be written as [43]

ψnlm = N (αr)lL
l+1/2
k (α2r2) exp−α

2r2/2 Y m
l (θ, φ) (3.12)

where α2 = mω, n = 2k + l, L is a Laguerre polynomial and the normalization

constant N is given by,

N =
2α3k!√

π
(
k + l + 1

2

) (
k + l − 1

2

)
· · · 3

2
× 1

2

. (3.13)
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Now, the shell-model Hamiltonian for three quarks at positions rj(j = {1, 2, 3})

interacting through the harmonic oscillator potential is,

H =
∑
j

p2
j

2m
+

1

2
mω2r2

j , (3.14)

so that the baryon spatial wave-function is obtained as a product of three independent

quark wave-functions. The color component of the total wave function is integrated

out, so that the spatial and the spin-flavor components have to have the same sym-

metry property in order for the spatial-spin-flavor part to be in a totally symmetric

state. If the Jacobi coordinates R, λ, ρ are introduced to neglect the center of mass

motion,

R =
1√
3

(r1 + r2 + r3) ,

λ =
1√
6

(r1 + r2 − 2r3) , (3.15)

ρ =
1√
2

(r1 − r2) ,

then the Hamiltonian can be re-written in the form [43],

H =
P 2

6m
+

3

2
mω2R2 +

[
1

2m

(
p2
λ + p2

ρ

)
+

1

2
mω2

(
λ2 + ρ2

)]
(3.16)

where, P, pλ, pρ are canonically conjugate momenta to R, λ, ρ respectively. The eigen-

function to this Hamiltonian may be written in the form,

Ψ = χ(R)ϕ(λ)φ(ρ) (3.17)

where χ, ϕ and φ are one-body harmonic oscillator wave-functions. The first part

χ(R) describes the center-of-mass motion and it is constrained to be held in the

ground state, whereas the excitations of the center-of-mass are referred to as being

“spurious”. Since we require the overall wave function (except the color part) to be
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symmetric, a spatial wave-function of symmetric, mixed symmetric or anti-symmetric

type must combine with the 56, 70 and 20 spin-flavor SU(6) multiplets, respectively.

Also, the parity of the wave function is,

P = (−1)` , ` =
∑
i

li (3.18)

where li is the angular momentum of ith quark. Therefore one can label the baryon

multiplets [X, lP ] which are corresponding to SU(6) ⊗ O)(3) irreducible representa-

tion, where X is the dimension of SU(6).

The lowest level is n = 0 and it is the ground state, where all three quarks are

in s-wave (0s)3 state. Since the orbital part is completely symmetric (lP = 0+), this

is identified as [56, 0+]. This 56 multiplet in the SU(6) representation can be de-

composed into an octet and a decuplet as discussed in the previous section. The first

excited level is when n = 1, where one of the quarks is excited to its p-wave and the

other two quarks remain in the s−wave, In this (0s)2(0p) configuration with lP = 1−,

it is possible to form both symmetric and mixed symmetric spatial wave-functions.

However, the symmetric wave function is a spurious state (because it corresponds

to the configuration in which the quarks are in the ground state but the center-of-

mass motion is in the (0p) state [43]) since it is proportional to the center-of-mass

coordinate R. On the other hand the mixed symmetric spatial wave function is non-

spurious. Therefore, the first excited state n = 1 belongs to the [70, 1−] multiplet.

The n = 2 level is more complicated and it has three possible spatial wave func-

tions which are degenerate in energy, namely (0s)2(1s), (0s)2(0d) and (0s)(0p)2. The

possible spurious states (the center-of-mass motion) can be eliminated by taking ap-

propriate linear combinations of shell-model wave functions and they are given in the
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Appendix B of Faiman et al [43].

As a result, the baryon multiplets which are corresponding to a symmetric repre-

sentation of SU(6) ⊗ O(3) can be constructed using their SU(3)-flavor, SU(2)-spin

and O(3)-orbital components as just illustrated.

3.3 Generalization to large Nc with the Hartree picture

The generalization of the baryon wave-function from three quarks to Nc quarks

was originally done by E. Witten et al. [15]. As described in the previous chapter,

large Nc picture of a baryon is a color singlet state consist of Nc quarks. Therefore

the baryon number for large Nc baryons becomes,

B =
Nc

3
(3.19)

where for the physical case Nc → 3 and the baryon number of a quark becomes 1/3.

Witten realized that the divergent behavior of perturbation theory does not mean

that a large Nc limit for baryons does not exist, but only that the baryon mass is of

O (Nc). Because one can write down an expression for the baryon mass,

MB = NcM +NcT +
1

2
N2
c

(
1

Nc

V

)
(3.20)

where M is the quark mass, T is the kinetic energy of a quark and the last term

corresponds to the overall average potential term since the interaction between one

quark pair is of O (1/Nc) and there are N2
c /2 quark pairs in the baryon.

Determining the large Nc limit for baryons is more subtle because of the combi-

natoric factors of Nc contributions from the planar diagrams leads the lowest order
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diagram to diverge at large Nc. It is easy to see the divergent behavior of pertur-

bation theory associated with the propagation of a Nc-quark state in a given time

t. Because the amplitude exp−iNctf(g,M) can be expanded in powers of the strong

coupling g, each successive term in the expansion will be more divergent in Nc [15],

where f(g,M) is some function of the strong coupling and quark masses. In order

to overcome this issue Witten considered the Hamiltonian and path integral meth-

ods in the limit of heavy quarks. Because if the quarks are very heavy, then the

non-relativistic Schrödinger equation with a Coulomb type potential can be used to

describe the Nc-quark state regardless of the size of the Nc. Thus, the Hamiltonian

can be written as,

H = NcM +
∑
i

− ∇
2
i

2M
− g2

Nc

∑
i<j

1

xi − xj
(3.21)

where, the minus sign in the last term explains the attractiveness of the interaction.

Although this Hamiltonian is not entirely realistic, one can extract some qualitative

results that are valid for the case when quarks are not so heavy. An important remark

is that the last term in Eq. (3.21) should not be considered as of O (1/Nc) since there

is a combinatoric factor 1
2
N2
c when the sum over quark pairs is performed.

Witten et al. [15] described the large Nc limit using the Hartree approximation.

The logic behind this approximation as follows : although the large Nc interaction

between any pair of quarks is of O (Nc), the total potential experienced by one quark

is of O (1). Therefore, each quark in the large Nc baryon interacts with the average

potential produced by the other Nc−1 quarks with strength of O (1/Nc). The Hartree

approximation becomes exact in the large Nc limit.
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Let’s consider the ground state. The wave-functions are totally symmetric under

the simultaneous interchange of coordinate and spin-flavor indices due to color anti-

symmetrization. Since the Hartree potential is spin-flavor independent, the large Nc

ground state baryon wave-function can be written as [44],

Φ(x1, ξ1; ...;xNc , ξNc) = χS (ξ1, ..., ξNc)
Nc∏
i=1

φ(xi) (3.22)

where φ(xi) is l = 0 quark wave-function with its position xi of the ith quark, and

χS (ξ1, ..., ξNc) is a symmetric tensor of rank Nc in the spin-flavor space corresponding

to the quantum numbers ξi. The most straight-forward method to determine φ is

the variational principle associated with the time-independent Schrödinger equation.

Also, the variational functional for Nc-quark system 〈Φ|H −E|Φ〉 can be considered

as 〈Φ|H−NcE|Φ〉, since the total energy E is equivalent to NcE , where E is the energy

per quark. Therefore substituting the ansatz (Eq. (3.22)) in 〈Φ|H −NcE|Φ〉 gives,

〈Φ|H −NcE|Φ〉 = Nc

[
M +

∫
d3x
∇φ∗∇φ

2M
+
g2

2

∫
d3xd3y

φ∗φ(x)φ∗φ(y)

|x− y|

−E
∫
d3xφ∗φ(y)

]
. (3.23)

Therefore the variational equation (or Hartree equation) for this case is,

− ∇
2

2M
φ(x)− g2φ(x)

∫
d3y

φ∗φ(y)

|x− y| = Eφ(x) (3.24)

and the ground state baryon corresponds to the lowest value of E . Then the ansatz in

Eq. (3.22) has to be generalized for the case of the time-dependent Hartree approxi-

mation

Φ(x1, ξ1; ...;xNc , ξNc ; t) = χS (ξ1, ..., ξNc)
Nc∏
i=1

φ(xi, t) (3.25)

which is associated with the variational principle from the time-dependent Schrödinger

equation. If the ansatz in Eq. (3.25) are exact in the large Nc limit, then instead of
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varying the quantity ∫
dt

〈
Φ

∣∣∣∣H − i ∂∂t
∣∣∣∣Φ〉 (3.26)

with respect to Φ, one can vary only with respect to φ. Therefore, one can obtain

the time-dependent Hartree equation:

− ∇
2

2M
φ(x, t)− g2φ(x, t)

∫
d3y

φ∗φ(y, t)

|x− y| = i
∂

∂t
φ(x) . (3.27)

This equation has many solutions including the simple form :

φ(x, t) = φ0(x) exp−iEt

when the baryon at rest, and the Galilean-boosted form :

φ(x, t) = φ0(x− vt) exp(iMv.x) exp(−iEt− 1
2
iMv2t)

when the baryon is moving with uniform velocity v. Therefore, one can obtain solu-

tions for the time-dependent Hartree equation by integrating it using some arbitrary

initial data for φ(x, 0). However, the Hartree approximation is exact in the large Nc

limit. And the corrections to the true Hamiltonian are suppressed by the sub-leading

orders of 1/Nc.

The large Nc picture of the excited baryon consist of n quarks (of O (N0
c )) in the

excited state, while the rest of Nc − n quarks (of O (Nc)) remain in the ground state

(“core”) [21, 23, 25], where n � Nc. This is called the “decoupling picture”. These

core quarks can be described by the same wave functions which are totally symmet-

ric in both spatial and spin-flavor, corresponding to the baryon ground state. The

states with only a single quark in the excited state (when n = 1) belong to spin-flavor

either symmetric or mixed-symmetric states. The totally symmetric representation
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is given by a row of Nc boxes, while the mixed-symmetric representation is given by

Nc−1 boxes in the first row and one separate box in the second row (representing the

excited quark) in Young tableaux. Note that, both symmetric and mixed-symmetric

representations contain Nc boxes in total. These excited states correspond to totally

symmetric states can be represented as [44],

ΦS(x1, ξ1; ...;xNc , ξNc) =
1

2
√
Nc

χS (ξ1, ..., ξNc)
Nc∑
j

(
Nc∏
i 6=j

φ(xi)

)
ψ(xj) (3.28)

and the wave function for the mixed-symmetric state can be represented as,

ΦM(x1, ξ1; ...;xNc , ξNc) =
1√

Nc(Nc − 1)

∑
i 6=j

[(
Nc∏
k 6=i,j

φ(xk)

)
φ(xi)ψ(xj)χM (ξ1, ..., ξNc)

−i↔ j] , (3.29)

where, χM is the irreducible rank Nc mixed symmetry tensor, and ψ(x) represents

the wave-function of the excited quark.

The generalization to arbitrary Nc of a symmetric state is trivial and unique as

shown in Fig. (3.1). But the generalization of the mixed-symmetric state is not trivial

and unique. This subtlety was solved by Matagne & Stancu [45] by considering the

Jacoby coordinates for a system of Nc particles.

ẋNc =
1√
Nc

Nc∑
t=1

xt (3.30)

ẋs =
1√

s(s+ 1)

(
s∑
t=1

xt − sxs+1

)
(3.31)

The center of mass coordinate given in Equation (3.30) is the basis vector for the

symmetric representation [Nc], and the internal coordinates given in Equation (3.31)

form an invariant subspace for the mixed-symmetric representation [Nc − 1,1]. A

detailed study by Matagne & Stancu [45] suggested that the only possible solution
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for the excited states is the irreducible representation [Nc − 1,1] of the permutation

group SNc . Note that this solution is reduced to the mixed-symmetric irreducible

representation [21] when Nc = 3 (see the Young diagram generalization).

So, we can generalize the ψspatial part of the baryon wave-function by large Nc

Hartree approximation. On the other hand the spin-flavor structure of large Nc

baryons (with Nf quark flavors) exhibits the SU(2)spin ⊗ SU(Nf )flavor symmetry and

a detailed discussion is given in the next chapter. The only requirement is ψspatial ⊗

ψspin⊗ψflavor has to be symmetric under the interchange of the corresponding indices

between any two quarks.

3.4 Ground state baryons in large Nc

Let’s consider the ground-state baryons. All the Nc quarks are populated in the

ground state (s-wave). One can represent the ground state of the large Nc baryon

using a Young diagram with Nc boxes, as shown in Figure (3.1). The baryon spin

can vary from S = 1/2 to S = Nc/2, where Nc is an odd number. Since each quark

contains two possible spin projections and Nf possible quark flavors, then the large

Nc spin-flavor structure of ground state baryons correspond to the totally symmetric

representation of the SU(2Nf ) group.

Nc︷ ︸︸ ︷
...

Figure 3.1. Young diagram for the symmetric representation of large Nc baryon.

In the case of two quark flavors (Nf = 2), the spin-flavor wave function trans-

forms like totally symmetric SU(4) representation which can be decomposed into



37

SU(2)spin ⊗ SU(2)flavor. The baryon tower contains states with

S = I =
1

2
,
3

2
, ...

Nc

2
. (3.32)

In the case of three quark flavors (Nf = 3), the spin-flavor wave function trans-

forms like totally symmetric representation of SU(6) which can be decomposed into

SU(2)spin ⊗ SU(3)flavor. This can be written in terms of Young diagrams as given in

Equation (3.33) [46] where each Young tableaux consist of Nc number of boxes in

total.

Nc︷ ︸︸ ︷
... =

(
...

, J =
1

2

)
⊕
(

...
, J =

3

2

)
⊕

⊕...⊕
(

... , J =
Nc

2

)
(3.33)

Notice that, when Nf > 3, the dimension of the flavor representation of the baryon

spin-flavor tower grows with Nc. This can be understood by studying the flavor weight

diagrams for each spin ranging from 1/2 to Nc/2. The flavor weight diagrams for spin

1/2 and spin 3/2 cases are shown in Figures (3.2) and (3.3).

1 1
1 2 1

1 2 2 1
1 2 2 2 1

1 2 2 2 2 1
1 2 2 2 2 2 1

1 2 2 2 2 2 2 1
1 2 2 2 2 2 2 2 1

1 2 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1

Figure 3.2. Weight diagram for the SU(3) flavor representation of the spin 1/2
baryons. The long side of the weight diagram contains 1

2
(Nc + 1) weights.

The numbers denote the multiplicity of the weights [47].
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1 1 1 1
1 2 2 2 1

1 2 3 3 2 1
1 2 3 4 3 2 1

1 2 3 4 4 3 2 1
1 2 3 4 4 4 3 2 1

1 2 3 4 4 4 4 3 2 1
1 2 3 3 3 3 3 2 1

1 2 2 2 2 2 2 1
1 1 1 1 1 1 1

Figure 3.3. Weight diagram for the SU(3) flavor representation of the spin 3/2
baryons. The long side of the weight diagram contains 1

2
(Nc−1) weights.

The numbers denote the multiplicity of the weights [47].

These flavor representations reduce to the baryon octet and decuplet when Nc = 3.

For arbitrary Nc, the familiar spin 1/2 octet and spin 3/2 decuplet can be identified

with the states at the top of each flavor representation, if the number of strange

quarks Ns is of O (1) (not O (Nc)). Also, the hypercharge Y of baryon states at the

top of the flavor weight diagram is given by,

Y = B + S =
Nc

3
+ S (3.34)

where, B is the baryon number and S is the strangeness (S = −Ns) of O (1).

3.5 Excited state baryons in large Nc

The large Nc picture of excited baryons is based on a picture similar to the quark-

shell model, where the baryon is split into a symmetric core and an excited quark. If

the spin-flavor dependence of the interactions are neglected, then the excited baryon

spectrum contains degenerate spin-flavor towers. But, these orbital excitations of

the single quark break the spin-flavor SU(2Nf ) symmetry in the large Nc limit, to

the leading order in the 1/Nc expansion and first order in perturbation theory (in

αs) [44]. Therefore, the excited baryons can be classified in multiplets of the group
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SU(2Nf )×O(3), because the zeroth order breaking in the 1/Nc expansion turns out

to be small in the large Nc limit. For the case of Nf = 3, the excited baryons belong

to the SU(6)×O(3) representation.

The spectrum of the p-wave baryons (l = 1) can be obtained in a similar way using

the symmetry properties. In the real world with Nc = 3 the spin-flavor wave function

of the l = 1 light baryons (Nf = 3) transforms according to the mixed symmetry

representation 70 of SU(6). Its decomposition into spin-flavor multiplets is,

=

(
10, S =

1

2

)
⊕
(

8, S =
3

2

)
⊕
(

8, S =
1

2

)
⊕
(

1, S =
1

2

)
.

(3.35)

The generalization to arbitrary Nc for the case of SU(6) with three flavors can be

obtained by adding additional boxes to the first line of the Young diagram, as a

product of SU(6) representations.

Nc−1︷ ︸︸ ︷
... ⊗ =

Nc︷ ︸︸ ︷
... ⊕

Nc−1︷ ︸︸ ︷
...

(3.36)

The decomposition of the symmetric representation on the left-hand side is already

known from Figure (3.1). Subtracting from the product on the left-hand side the

representations of SU(3)⊗SU(2) corresponding to the symmetric representation can

be obtained [46].
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Nc−1︷ ︸︸ ︷
...

=

(
....... , S =

1

2

)
⊕
(

.......
, S =

1

2
,
3

2
,
5

2

)

⊕
(

.......
, S =

1

2
,
3

2

)
⊕
(

....... , S =
1

2
,
3

2

)
⊕ ...

⊕

 Nc︷ ︸︸ ︷
... , S =

Nc

2
− 1

 ⊕


Nc−1︷ ︸︸ ︷
...

, S =
Nc

2
− 1,

Nc

2


(3.37)

The multiplets are labeled as [X, `P ], where X represents the dimension of the

irreducible representation of the spin-flavor group SU(2Nf ), and `P indicates the

orbital angular momentum ` of the multiplet with its parity P . For Nf = 3 with

` = {0, 1, 2} cases, the excited baryon states correspond to [56, 0+], [70, 1−] and

[56, 2+] multiplets in the SU(6)×O(3) representation. Although the [56, 0+] multiplet

is identified as the ground state, but it is also identified as a multiplet which contains

the radial excitations of the ground state s-wave baryons (Roper multiplet). Therefore

the spin-flavor wave function transforms as a totally symmetric representation of

SU(6), which can be decomposed into SU(2)spin ⊗ SU(3)flavor. The large-Nc Young

tableaux representation is the same for the [56, 0+] Roper multiplet baryons as in

56-plet ground state baryons.
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CHAPTER 4

SPIN-FLAVOR SYMMETRY IN LARGE NC BARYONS

4.1 Introduction

An important advance in large Nc was made with the discovery of the existence of

a spin-flavor symmetry for large Nc baryons by Gervais and Sakita [11, 13] and later

by Dashen and Manohar [12,14], from the study of pion-nucleon scattering process in

the limit Nc → ∞. That means, baryons satisfy a contracted SU(2Nf )c spin-flavor

algebra where Nf is the number of flavors. The contracted spin-flavor symmetry of

baryons implies that, the ground-state baryons form an infinite tower of degenerate

states when Nc → ∞. This contracted spin-flavor symmetry emerges from consis-

tency conditions on baryon-meson scattering amplitudes in order for the theory to

be unitary at Nc → ∞ limit. One can use the SU(2Nf ) algebra, because the alge-

bra used in the quark-shell model is SU(2Nf ) is equivalent to SU(2Nf )c in the limit

Nc → ∞ [48]. The spin-flavor symmetry of large Nc baryons is broken at O (1/Nc),

thus the degenerate baryon states split at O (1/Nc). At finite Nc, the spin-flavor

structure of baryons is given by the 1/Nc corrections to the large Nc limit. Since

the consistency conditions constrain the form of sub-leading 1/Nc corrections, one

can make definite predictions at sub-leading orders by calculating matrix elements of

operator products of the baryon spin-flavor generators.

There are two natural ways to study the spin-flavor algebra of baryons for large

Nc [49]. Both approaches are associated with constructing solutions to the large Nc

consistency condition. First approach uses the irreducible representations of the con-

tracted group SUc(2Nf ) at the limit Nc → ∞ [50], while the second approach uses

the quark operators [12, 49, 50]. The first approach is closely related to the Skyrme
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model [51], and the second approach is closely related to the non-relativistic quark

model. The spin-flavor structure of the baryon states from the non-relativistic quark

model and the Skyrme model are identical in the Nc →∞ [52] limit. The second ap-

proach gives an intuitive picture of baryons as quark bound states without assuming

either the non-relativistic quark model is valid or the quarks in the baryons are non-

relativistic. Thus, the 1/Nc counting is simply related to quark Feynman diagrams.

This chapter is organized as follows : In the next section, large Nc consistency con-

ditions are discussed. The third section is about the contracted SU(2Nf )c spin-flavor

algebra. In the fourth section, the large Nc baryon representations are introduced.

Finally in the fifth section, the 1/Nc corrections to the large Nc consistency condition

are discussed with applications.

4.2 Large Nc consistency condition

(a) (b)

π(k, a) π(k′, b) π(k, a) π(k, b)

Figure 4.1. Dominant diagrams for pion-nucleon scattering amplitude.

Witten [15] showed that the baryon-meson scattering amplitudes at fixed energy

is of O (1) by applying the large Nc power counting rules. This was explicitly dis-

cussed in chapter 2, by considering the two cases; incident and emitting pions are

coupled to the same quark, and incident and emitting pions are coupled to different

quarks with a gluon exchange between those two quarks (see Fig. (2.15)). Consider

the dominant diagrams for the pion-nucleon scattering, as shown in Figure (4.1). At
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low energy, baryon acts as a heavy static source for the scattering of mesons since

the baryon mass is O (Nc). The large Nc counting rules show that the axial vector

coupling gA of a baryon is O (Nc), and the pion decay constant Fπ is of O
(√

Nc

)
.

Thus, the baryon-meson vertex gAq/Fπ grows as O
(√

Nc

)
, where q is the meson

momentum. Therefore, the total scattering amplitude grows as O (Nc) and violates

unitarity unless there are cancellations among the O (Nc) baryon-meson scattering

diagrams.

Let’s consider the baryon-meson scattering amplitude at low energy. In the large

Nc limit, the baryon-meson coupling can be studied in the rest frame of the baryon

because of its static behavior compared to the meson. Since mesons are identified

as the pseudo-scalar Goldstone bosons of Chiral symmetry breaking, they are deriva-

tively coupled to the axial vector current of the baryons. In general, the baryon-meson

coupling is written as the baryon axial vector current matrix element times the deriva-

tively coupled meson field,

∂µπ
a

Fπ
〈B′|q̄γµγ5T

aq|B〉. (4.1)

where, a represents the flavor index of the meson and µ is the space-time in-

dex. Because, the baryon is infinitely heavy compared to the meson in the large Nc

limit, the time component of the axial current between two baryons vanishes at rest.

Thus, the baryon-meson coupling reduces to static-baryon coupling. The axial vector

current matrix element simplifies to its space components

〈B′|q̄γµγ5T
a|B〉 → 〈B′|q̄γiγ5T

a|B〉 = gANc〈B′|X ia|B〉 (4.2)

where the axial coupling constant gA and the matrix element 〈B′|X ia|B〉 are O (N0
c ).

Therefore, the total amplitude for baryon-meson scattering process B(p)+πa(E, k)→

B′(p′) + πb(E, k′) at fixed meson energy E is given by [50],

A = −iN
2
c gA
F 2
π

kik′j

E
〈B′|[Xjb, X ia]|B〉 (4.3)
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by considering the dominant baryon-meson scattering diagrams, shown in Fig. (4.1).

The matrix element of the commutator [Xjb, X ia] appears in the above expression

from the relative minus sign between those two diagrams in Fig. (4.1), because the

intermediate baryon propagator in Fig. (4.1 (a)) is off-shell by energy E, whereas

the intermediate baryon propagator in Fig. (4.1 (b)) is off-shell by energy −E. The

product of the spin-flavor generators (X’s) sums over all possible baryon intermediate

states. Since Fπ is O
(√

Nc

)
and the total scattering amplitude is O (1), the matrix

element 〈B′|[Xjb, X ia]|B〉 has to satisfy the condition:

[Xjb, X ia] 6 O (1/Nc) . (4.4)

The spin-flavor generators X ia of these baryon intermediate states can be expanded

in powers of 1/Nc.

X ia = X ia
0 +

1

Nc

X ia
1 +

1

N2
c

X ia
2 + · · · (4.5)

Therefore in-order to satisfy unitarity, the baryon-meson couplings are constrained

by the condition:

[X ia
0 , X

jb
0 ] = 0 , (4.6)

[11–14], which is identified as the large Nc consistency condition at the leading order

in the 1/Nc expansion. Thus in the large Nc limit, only the intermediate baryon

states which are degenerate with initial and final baryons contribute to the scattering

amplitude at leading order in 1/Nc.

4.3 Contracted spin-flavor algebra

According to the leading order at large Nc, the consistency condition in Eq. (4.6),

the generators X ia of the baryon axial current matrix elements commute in the large

Nc limit. Collectively, this consistency relation between the amplitudes X ia with

the algebra for spin operators Si and flavor operators T a lead to the contracted spin

flavor algebra for large Nc baryons. Therefore in the Nc → ∞ limit Si, T a and
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X ia generators form the contracted spin-flavor symmetry group SU(2Nf )c with Nf

flavors [49,50,53].

[Si, T a] = 0 [T a, T b] = ifabcT c

[Si, Sj] = iεijkSk [T a, X ib
0 ] = ifabcX ic

0

[Si, Xja
0 ] = iεijkXka

0 [X ia
0 , X

jb
0 ] = 0

(4.7)

It’s useful to compare the contracted spin-flavor SU(2Nf )c algebra with the ordinary

spin-flavor SU(2Nf ) algebra, with Nf light quark flavors.

[Si, T a] = 0 [T a, T b] = ifabcT c

[Si, Sj] = iεijkSk [T a, Gib] = ifabcGic

[Si, Gja] = iεijkGka [Gia, Gjb] = i
4
δijfabcT c + i

2Nf
δabεijkSk + i

2
εijkdabcGkc

(4.8)

The link between the contracted and ordinary spin-flavor algebra for large Nc baryons

is given by rescaling the Gia and taking the limit,

X ia
0 = lim

Nc→∞

Gia

Nc

(4.9)

which is considered as a Lie algebra contraction [48]. This contraction only affects

the commutator [Gia, Gjb]. Nevertheless, dividing [Gia, Gjb] by N2
c and taking the

Nc →∞ limit reproduce the large Nc consistency condition. Therefore, one can work

with the ordinary SU(2Nf ) algebra rather than the contracted spin-flavor algebra in

the limit of large and finite Nc.

4.4 Large Nc baryon multiplets

The irreducible representations of the contracted spin-flavor SU(2Nf )c algebra

contains the baryon representations of large Nc QCD. These irreducible representa-

tions were classified by Dashen et al. [49] using the theory of induced representations.

Because, induced group representations provide a complete classification of all ir-

reducible representations of a semi-direct product of a compact Lie group and an

Abelian group, and those irreducible representations are induced by the irreducible
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representations of the Abelian group. The contracted spin-flavor SU(2Nf ) algebra

in the large Nc limit is a semi-direct product of an SU(2)spin ⊗ SU(Nf ) Lie algebra

generated by Si and T a, and an Abelian algebra generated by X ia from the large Nc

consistency condition in Eq. (4.6). The eigenvalues of the generators X ia
0 can be used

to label the states. Since the Abelian property, all states are obtained by applying

spin and SU(2Nf ) transformations to the highest-weight state (reference state) of the

corresponding irreducible representation.

The standard reference state for irreducible representations of large Nc baryons

is,

X ia
0 = δia =

1 0 0
0 1 0
0 0 1

 , (4.10)

where, i = 1, 2, 3 and a = 1, 2, 3 represent the rows and columns of the 3× 3 matrix

[53]. This reference state is invariant under transformations of a SU(2) little group

generated by the grand spin ( ~K),

~K = ~S + ~I (4.11)

which specify the representation of the SU(2) little group to label the states. There-

fore, the irreducible representation can be completely specified by the states |X ia, K, k〉,

using the Abelian coordinate X ia and representations |K, k〉 of the SU(2) little group.

The basis states |X ia, K, k〉 diagonalize the baryon axial vector currents but are not

eigenstates of definite spin and iso-spin. Thus, these states need to be projected on

to states that diagonalize spin and iso-spin since baryon states have definite spin and

iso-spin. The new basis states |S, Sz, I, Iz;K〉 do not diagonalize axial-vector cur-

rents, and leads to having off-diagonal matrix elements which connect baryons with

different spin and iso-spin.
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For a given value of K, one can consider all possible spin and iso-spin represen-

tations for large Nc baryons, as an infinite towers of (S, I) states. The baryon spin

can vary from 1/2 to Nc/2, where Nc is always an odd number. For example when

Nc = 3, the possible baryon spins are S = 1/2 and S = 3/2.

• The irreducible representation with K = 0 that implies S = I contains an

infinite tower of state (S, I).

(
1

2
,
1

2

)
,

(
3

2
,
3

2

)
,

(
5

2
,
5

2

)
, · · · (4.12)

• The irreducible representation with K = 1/2 corresponds to an infinite tower

of states (S, I).

(
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2
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)
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• The irreducible representation with K = 1 contains an infinite tower of states

(S, I).
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,
1
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)
,

(
1
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)
,
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)
,

(
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2

)
,
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,
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)
,

(
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)
,

(
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)
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• The irreducible representation with K = 3/2 forms an infinite tower of states

(S, I). (
1

2
, 1

)
,

(
1

2
, 2

)
,

(
3

2
, 0

)
,

(
3

2
, 1

)
,

(
3

2
, 2

)
,

(
3

2
, 3

)
, · · · (4.15)

For different K values, the spin and iso-spin quantum numbers of the baryon

states can be identified with the physically known baryon octet with spin S = 1/2

and decuplet with spin S = 3/2 in QCD, if the quantum number K is related to the

number of strange quarks Ns in baryons by, K = Ns/2. For example,
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• K = 0 tower contains strangeness zero nucleon (1/2, 1/2) and delta (3/2, 3/2)

states

• K = 1/2 tower contains strangenessNs = −1 baryon states, Λ(1/2, 0), Σ(1/2, 1),

and Σ∗(3/2, 1)

• K = 1 tower contains strangenessNs = −2 baryon states, Ξ(1/2, 1/2),Ξ∗(3/2, 1/2)

• K = 3/2 tower contains strangeness Ns = −3 baryon state, Ω(3/2, 0).

The other states correspond to baryons that exist for Nc → ∞ but not for Nc = 3

[50,53].

This observation of towers of possible (S, I) baryon states reveals the existence

of an infinite number of intermediate baryon states as Nc → ∞ which are degener-

ate with the initial and final baryon state as required by the large Nc consistency

condition. These states reflects to the cancellations between the dominant diagrams

for the baryon-meson scattering as a requirement for the scattering amplitude to be

unitary, according to the large Nc power counting by Witten.

4.5 1/Nc corrections

1/Nc corrections to SU(2Nf ) symmetry at finite Nc were studied by deriving the

next to leading order large Nc consistency conditions in the 1/Nc expansion using the

static baryon matrix elements [12,14,50], such as baryon masses and axial couplings.
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4.5.1 1/Nc corrections to axial currents

π(k, a) π(k′, b) π(k′′, c)

Figure 4.2. B + π → B + π + π scattering amplitude.

1/Nc corrections to the axial couplings X ia are determined through obtaining a

consistency condition by considering the scattering process B + π → B + π + π, as

showed in Fig. (4.2). According to Witten’s large Nc power counting each baryon-pion

vertex is O
(√

Nc

)
leads to each individual diagram to be O

(
N

3/2
c

)
. The scattering

amplitude for this process is proportional to

N3/2
c [X ia, [Xjb, Xkc]] (4.16)

times kinematic factors of O (1), which violates the unitarity. Since one can expect

that the double commutator is of O (1/N2
c ), thus the total amplitude is at most

O
(
1/
√
Nc

)
[14, 48, 53] with summing over all possible tree level diagrams yields a

constraint

N3/2
c [X ia, [Xjb, Xkc]] 6 O

(
1/
√
Nc

)
. (4.17)

Using the consistency condition [X ia, Xjb] = 0 and substituting the expanded form of

the axial coupling X ia in Eq. (4.5) in to the constraint give the large Nc consistency

condition

[X ia
0 , [X

jb
1 , X

kc
0 ]] + [X ia

0 , [X
jb
0 , X

kc
1 ]] = 0 (4.18)

for X ia
1 . The only solution to this consistency condition is X ia

1 ∝ X ia
0 . This was

verified by an explicit calculation of the matrix element of X ia in Ref. [50]. Thus one
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can re-write X ia as

X ia = X ia
0 +

c

Nc

X ia
0 +O

(
1/N2

c

)
+ · · · , (4.19)

where c is an unknown constant. This shows that O (1/Nc) corrections are propor-

tional to the lowest order value X ia
0 , and the 1/Nc corrections to the axial coupling

starts at O (1/N2
c ). The overall normalization factor (1 + c/Nc) can be absorbed into

gA in Eq. (4.2) by rescaling gA → gA(1 + c/Nc), thus there are no parameters for the

axial current at O (1/Nc). X
ia can be re-written as,

X ia = X ia
0 +O

(
1

N2
c

)
, (4.20)

so that all baryon-pion couplings are determined up to O (1/N2
c ).

This result is valid for any baryon spin tower with fixed K, where the number

of strange quarks in the baryon is given by 2K. Therefore the pion couplings can

be identified as the matrix elements of X ia
0 , and the expression for the axial current

matrix elements in the large Nc limit is given by,

〈S′, S′3; I ′, I ′3;K|Aia|S, S3; I, I3;K〉 = Ncg(K)(−1)2S′+S−I′−K√(2S + 1)(2I + 1)

×
(

1 I I ′

K S′ S

)(
1 I I ′

I3 a I ′3

)(
S 1 S′

S3 a S′3

)
(4.21)

where g(K) is an unknown coupling constant for a given K sector [50, 54]. g(K)

can be written as,

g(K) = g0 + g1
K

Nc

+ g2
K2

N2
c

+ · · · (4.22)

where gi’s are K-independent coefficients. The first term is O (1) and it is K-

independent, which implies SU(3) flavor-symmetry of pion-baryon couplings at the

leading order. The second term is of O (1/Nc) and linear in K, and the coefficient
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g1 is calculable in SU(3) flavor-symmetry limit [50]. The ratios of pion-baryon cou-

plings within a given K baryon tower has corrections of O (1/N2
c ), while the ratios

of pion-baryon couplings between towers with two different K values can have 1/Nc

corrections that are linear in K. Higher order corrections to baryon axial vector cur-

rent can be calculated by considering the process B+ π → B+nπ, where n > 2 [53].

All the above has been discussed only by analyzing tree level diagrams. The dis-

cussion including one-loop corrections is presented in chapter 10 in the case Nf = 3

the chiral corrections to the axial currents reveal that SU(3) breaking effects are not

suppressed by factors of 1/Nc. Thus, the assertion above is only true in the strict

SU(3) symmetry case.

4.5.2 1/Nc corrections to baryon masses

One can derive the large Nc consistency conditions for the baryon masses by

considering the baryon mass splitting on the baryon-pion scattering amplitude [53].

The intermediate propagator for non-degenerate baryons can be written as i/(kv −

∆M), where k is the momentum of pion, v is the baryon velocity and ∆M is the

baryon mass splitting. This propagator can be expanded in powers of [∆M/(kv)] up

to O (1/Nc) since the energy of the meson (kv) is O (1) and ∆M is O (1/Nc),

i

kv −∆M
=

1

kv
+

∆M

(kv)2
+ · · · . (4.23)

Inserting this expanded version of the propagator with terms up to O (1/Nc) to

the Eq. (4.3) of baryon-pion scattering amplitude, one can see that the first term

of Eq. (4.23) reveal the leading order large Nc consistency condition in Eq. (4.6). The

second term of Eq. (4.23) in the baryon-pion scattering amplitude yields the constraint

[X ia, [Xjb,MB]] 6 O (1/Nc) (4.24)



52

where MB is the baryon mass which can be expanded as,

MB = NcM0 +M1 +
1

Nc

M2 + · · · . (4.25)

Therefore the constraint in Eq. (4.24) implies that M0 and M1 terms have to satisfy,

[X ia, [Xjb,M0]] = 0 & [X ia, [Xjb,M1]] = 0. (4.26)

The only solutions for these large-Nc consistency conditions are M0 ∝ M1 ∝ O (1)

[53]. Thus, one can see that the baryon tower is degenerate up to O (1/Nc) corrections

and the baryon mass can be written in a simple form as,

MB = Ncm0 +O (1/Nc) + · · · , (4.27)

in the SU(3) symmetric limit. 1/Nc correction to the baryon mass can be obtained by

the process B+ π → B+ π+ π, shown in Fig. (4.2). Also the constraint in Eq. (4.17)

can be re-written as

[X ia, [Xjb, [Xkc,MB]]] 6 O
(
1/N2

c

)
(4.28)

and it yields a large Nc consistency condition for 1/Nc correction to the baryon mass

in Eq. (4.25).

[X ia
0 , [X

jb
0 , [X

kc
0 ,M2]]] = 0 (4.29)

This consistency condition has solutions M2 = ~S2, ~I2 and X ia
0 X

ia
0 [53]. Since ~S2 = ~I2

and X ia
0 X

ia
0 = 3, then the only independent solution is M2 = ~S2. Thus, the baryon

mass can be can be given by,

MB = m0Nc +m2

~S2

Nc

+O
(
1/N2

c

)
+ · · · (4.30)
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including the 1/Nc correction. This implies that the leading order correction to the

baryon mass is the hyperfine splitting.

    −                      �
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Figure 8 Hyperfinemass splittings for the tower of large-Nc baryon stateswith J =
1
2 ,

3
2 , . . . ,

Nc
2 .

The J 2/Nc operator leads to a mass splitting of O(1/Nc) between baryons with spins J ⇠ O(1)
and to a mass splitting of O(1) between baryons with spins J ⇠ O(Nc). The mass splitting
between the baryon states with J =

1
2 and J =

Nc
2 is O(Nc).

which has solutions M2 = J 2, I 2, and Xia
0 Xia

0 . The operator I 2 = J 2 and the
operator Xia

0 Xia
0 = 3, so the only independent solution is M2 = J 2. Thus, the

baryon mass is given by

M = m0Nc1+ m2
1
Nc

J 2 + · · · . 45.

Figure 8 depicts the hyperfinemass splittings of the J = I =
1
2 ,

3
2 , . . . baryon

tower. For low-spin baryons with J ⇠ O(1), the hyperfine splitting J 2/Nc is
order 1/Nc, whereas for baryons with J ⇠ O(Nc), the hyperfine splitting is
order Nc with respect to the low-spin baryons. The 1/Nc expansion is under
control for baryons with fixed and finite spin and isospin when the large-Nc
limit is taken, but the expansion breaks down for baryons with spin and isospin
O(Nc).
The mass spectrum of the baryon tower with K = 0 can be related to the

mass spectra of baryon towers with different K by considering kaon-baryon
scattering (11). The masses of the different K towers are related by
M = m0Nc1+ m1K + · · · , 46.

so the baryon towers with differing strangeness are not degenerate, and the
leading mass splitting between different baryon towers is linear in strangeness.
Higher-order corrections also can be classified.

2.4.2 AXIAL COUPLINGS: NO 16 Nc CORRECTION FOR NF = 2 A consistency
condition for the 1/Nc correction to the baryon axial vector current is obtained
by considering the scattering process baryon + pion ! baryon + 2 pions,
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Figure 4.3. Hyperfine mass splitting of large Nc baryons.

For the baryons with spin O (1), the hyperfine mass splitting is O (1/Nc) and the

baryons with spin of O (Nc) have hyperfine mass splitting of O (1). Also, the hy-

perfine splitting is O (Nc) between a baryon with spin of O (Nc) and a baryon with

spin of O (1). Therefore, one can consider in general the baryon mass splitting as

proportional to ~S2/Nc. This is shown explicitly in Fig. (4.3) which shows the baryon

mass spectrum including the hyperfine ~S2/Nc mass splittings. These corrections are

only small near the bottom of the baryon spectrum. Therefore, the 1/Nc expansion

for baryons is well behaved for baryons with spin S held fixed as Nc →∞.

Studying the solution to the large Nc consistency conditions is essential for under-

standing the structure of large Nc baryons. One can directly write down the baryon

operator in 1/Nc expansion. For example, any static baryon operator for the case of
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two light quark flavors Nf = 2 can be written as,

NcP

(
X0,

S

Nc

,
I

Nc

)
, (4.31)

where P is a polynomial. The 1/Nc expansion can be extended to baryon towers with

different K by including the K/Nc operator in the polynomial P , which provides the

extension to study the SU(3) flavor symmetry breaking.
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CHAPTER 5

BARYON OPERATORS IN THE 1/NC EXPANSION

5.1 Introduction

According to the previous chapter, the 1/Nc expansion of static baryon operators

can be written in terms of operator products of the baryon spin-flavor generators.

These operator products can be linearly independent or dependent. Redundant op-

erators can be eliminated using operator identities. Each operator product appears

with its order in 1/Nc and an unknown coefficient which contains the large Nc QCD

dynamics. These unknown coefficients which correspond to static baryon observables

can be extracted by fitting to the data from experiments. Since the number of op-

erator products are finite at a given order in 1/Nc, this framework can be used as a

powerful predictive tool for baryons with finite spin and flavor.

The operator basis of the 1/Nc expansion can be constructed using two basic real-

izations of the baryon spin-flavor algebra in the large Nc limit. One is, the contracted

spin-flavor SU(2Nf )c algebra with the generatorX ia
0 , and the other one is the ordinary

SU(2Nf ) algebra with the generator Gia. These generators X ia
0 and Gia/Nc differ at

sub-leading order in 1/Nc. The operator basis with X ia
0 is equivalent to the operator

basis of large Nc Skyrme model, whereas the operator basis with Gia is equivalent to

the large Nc non-relativistic quark model. Since these operator bases parameterize

the same large Nc physics, one can chose to work with either basis according to the

convenience. Regardless of which basis is used, the operator products appear in 1/Nc

expansion with unknown dynamical coefficients. Although, the coefficients of large

Nc baryons are different from the coefficients of the large Nc Skyrme model and large

Nc quark model, but the physics description will be equivalent up to higher order
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corrections in 1/Nc than the leading order. The work by Dashen et al. [49], Luty

et al. [55, 56], Goity et al. [21, 25, 44] and Carone et al. [57] are some examples of

formulating large Nc operator products using baryon spin-flavor generators which are

interpreted as quark operators.

The outline of this chapter is the following. The second section is on the baryon

operator expansion with Nc power counting. Then the third section presents about

the quark operator classification. The fourth section contains a discussion on operator

identities derived in Dashen et al. [49]. In the last section, the 1/Nc expansion and

operator identities are applied to the baryon mass operator.

5.2 Baryon operator expansion

The Nc dependence of the operator matrix elements of baryon states and their

power counting can be obtained, using planar diagrams introduced by ’tHooft [10] and

the power counting rules by Witten [15]. Let’s consider the baryon matrix element of

a single-quark operator. This is obtained by inserting the operator on any of the Nc

quark lines as shown in Fig. 5.1(a). Since there are Nc possible insertions, one-quark

QCD operator can have a matrix element of O (Nc) at most. It is not necessarily to

be of O (Nc), since there may be possible cancellations among insertions on different

quark lines. The single gluon exchange graphs as shown in Fig. 5.1(b) have an extra

factor 1/Nc from the two gauge couplings at quark-gluon vertices. Also, diagrams

with an additional non-planar gluon exchanges are suppressed by powers of 1/Nc as

discussed in chapter 2. In general, QCD one-quark (or one-body) operator can be

identified as O1-body
QCD = q̄Γq, where Γ = {γµ, γµγ5, T

aγµ, T
aγµγ5, · · · }.
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(a) (b)

Figure 5.1. (a): single quark operator insertion. (b) : single quark operator insertion
with a one-gluon-exchange.

At leading order in the 1/Nc expansion, the QCD 1-body operator which trans-

forms according to SU(2) ⊗ SU(Nf ) representation can be written [53] as a linear

combination of n−body effective operators On and cn unknown coefficients.

O1-body
QCD = Nc

∑
n

cn
1

Nn
c

On =
∑
n

cn
1

Nn−1
c

On (5.1)

For finite Nc, the degree n falls in the range 0 < n 6 Nc. Every coefficient cn

has an expansion in 1/Nc and the leading term is O (1). On is an nth order operator

product that consists of spin-flavor generators. Since each spin-flavor generator is

accompanied by a factor of 1/Nc, the operator product On has a factor of 1/Nn
c .

There is another overall factor Nc that comes from all possible insertions of the 1-

body operator among Nc quark lines in the baryon. Analogously, one can write down

the general form of an m-body operator as,

Om-body
QCD = Nm

c

∑
n

cn
1

Nn
c

On =
∑
n

cn
1

Nn−m
c

On. (5.2)

This Nc counting is also preserved under commutation [49]. For example, the

commutator of an n−body and an m−body operator is an (n+m−1)-body operator

[On,Om] = On+m−1, (5.3)
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accompanied by a factor (1/Nn−1
c ) (1/Nm−1

c ) =
(

1/N
(n+m−1)−1
c

)
. But, the anti-

commutator of the same two operators is typically an (n + m)−body operator. The

commutativity requires one quark in On to act on the same quark line as a quark in

Om to produce non-zero commutator, because the quark operators acting on different

quark lines commute with each other. Thus, it reduces the (n + m)−body operator

to an (n+m− 1) body operator.

One can construct the effective n-body operators On using spin Si, flavor T a and

spin-flavor Gia generators of the SU(2Nf ) algebra [49], because the operator On acts

on the spin and flavor indices of n-quarks. Therefore On has the generic form,

On =
∑
m,l

(
Si
)m

(T a)l
(
Gia
)n−m−l

, (5.4)

and the QCD one-body operator becomes,

O1-body
QCD =

∑
n,m,l

cn
1

Nn−1
c

(
Si
)m

(T a)l
(
Gia
)n−m−l

. (5.5)

The above form of the n−body operator On is only applicable for ground state

baryons. For orbitally excited baryons, one must include SO(3) orbital angular mo-

mentum generators `i in the operator product [58, 59] in the Eq. (5.4).

There are two types of Nc dependences in QCD one-body operator. First one is

an explicit Nc dependence by the factor 1/Nn−1
c accompanying the n−body operator

On, and the second one is an implicit Nc dependence from the matrix elements of

On. Since On is a product of spin-flavor SU(2Nf ) generators, their matrix elements

vary with the baryon states in different spin-flavor multiplets. For example, consider

the baryon spin tower S = {1/2, 3/2, · · · , Nc/2}. The lower bottom of this tower

contains baryons with spin of O (N0
c ), whereas, the top of the tower contains baryons
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with spin of O (Nc). Since the matrix elements of S, I and Gia of baryon states are

6 O (Nc), the nth order operator On has matrix elements 6 O (Nn
c ). Consider a

baryon with spin of O (Nc). It produces a factor Nn
c from the matrix elements of

On, which compensate with the explicit factor 1/Nn
c . Thus, the 1/Nc expansion will

not be a predictive tool for baryons with spin of O (Nc) since all the terms in the

expansion are equally important. Baryons with spins of O (N0
c ) are systematically

suppressed 1/Nc, and the operator expansion can be truncated at any desired order in

the 1/Nc expansion. Therefore, the 1/Nc expansion can be considered as a predictive

tool for baryons with low-spin.

5.3 Quark operator classification

Let’s consider the spin-flavor structure of ground-state baryons for large, odd

and finite Nc. The completely symmetric spin-flavor representation of ground-state

baryons can have spin 1/2, 3/2, · · · , Nc/2. Also, spin-flavor SU(2Nf ) representation

can be decomposed into a tower of SU(2) ⊗ SU(Nf ) representations, as given in

Eq. (3.33). For two quark flavors, the ground state baryon representation contains a

tower of baryon states with S = I,

(S, I) = 1/2, 3/2, · · · , Nc/2 (5.6)

which is finite dimensional unlike the infinite dimensional baryon tower (see Eq. (4.12))

of the contracted spin-flavor algebra. When Nc = 3, this reduces to N and ∆

states. For three quark flavors, each baryon spin corresponds to a weight diagram

(see Fig. (3.2) and Fig. (3.3)).
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Quark representation of the spin-flavor symmetry of large Nc baryons manifests

the non-relativistic quark model picture. However, this does not mean that the quarks

in baryons are assumed to be non-relativistic. A detailed discussion of this approach

are given in Refs. [55, 57]. Quark creation and annihilation operators q†f and qf

are defined in the quark representation. The index f varies from 1 to 2Nf , where

f = {1, ..., Nf} represents the Nf quark flavors with spin up and f = {Nf+1, ..., 2Nf}

represents the Nf quark flavors with spin down. Since baryons are fermions and the

antisymmetry of the SU(Nc) color symbol implies that the ground state baryons

contain Nc quarks in the completely symmetric spin-flavor representation with Nc

boxes (see Fig. (3.1)) according to Young Tableaux. Thus, one can consider them as

bosonic objects by omitting the color quantum numbers of quark operators for the

spin-flavor analysis, and the quark operators satisfy the bosonic commutation relation

[qf , q†f ′ ] = δf
′

f . (5.7)

An n−body operator can be written using quark creation and annihilation opera-

tors. These quark operators can be classified by considering the number of q†, q pairs

in the operator.

• Zero-body operators :

A zero-body operator does not contain q or q†, and it is uniquely identified as

the identity operator 1.

• One body operators :

A one-body operator acts on a single quark. It contains the quark number

operator q†q:

q†q =
Nc∑
j=1

q†jqj = Nc1, (5.8)
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and the spin-flavor adjoint q†ΛAq, where ΛA is spin-flavor generator with A =

{1, · · · , (2Nf )
2 − 1}. It is convenient to decompose the SU(2Nf ) adjoint one-

body operator q†ΛAq into SU(2)⊗ SU(Nf ):

Si =
Nc∑
j=1

q†j
(
Si ⊗ 1

)
qj (1, 0)

T a =
Nc∑
j=1

q†j (1⊗ T a) qj (0, adj) (5.9)

Gia =
Nc∑
j=1

q†j
(
Si ⊗ T a

)
qj (1, adj)

where Si and T a on the right-hand side are in the fundamental representations

of SU(2) and SU(Nf ) respectively. They are normalized as,

Tr〈SiSj〉 =
1

2
δij

Tr〈T aT b〉 =
1

2
δab (5.10)

Tr〈ΛAΛB〉 =
1

2
δAB

where i, j = {1, 2, 3}, a = {1, · · · , 8}. When Nc = 3, Si and T a becomes σi

and λa which represent Pauli and Gell-Mann matrices respectively. Also, the

uppercase letters (A,B, ... ) denote indices transforming according to the ad-

joint representation of the SU(2Nf ) spin-flavor group, and the lowercase letters

(a, b, ...) denote indices transforming according to the adjoint representation

of the SU(Nf ) flavor group. The brackets in the right hand side denote the

dimension of the corresponding irreducible representation SU(2)⊗ SU(Nf ).

• Two-body operators : Two-body operators act on two quarks. It contains two

creation and annihilation operators, q, q†. For example,

SiT a =
Nc∑
j,j′

(
q†jS

iqj

)(
q†j′T

aqj′
)

(5.11)
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where each one-body operator acts on separate quark lines. When j = j′, two-

body operator reduces to one-body operator. But for all the cases when j 6= j′,

this operator is a pure two-body operator.

• In general, n−body operators : Considering the structure of two-body opera-

tors, one can generalize it into an n−body operator,

q† · · · q†T q · · · q, (5.12)

where T is a traceless completely symmetric tensor. Because T must be trace-

less in order to be a pure n−body operator, and symmetric as the spin-flavor

part of the ground-state baryon wave function is symmetric.

5.4 Operator identities

In the previous section, the operator structures in the quark representation are

discussed. In calculating matrix elements, it’s easy to deal with lower-body operators

than complex many-body operators. Therefore it’s important if an n−body effective

operator in the 1/Nc expansion can be reduced into linear combinations of lower-body

operators. Operator identities play a key role in reduction of a many-body operator

into linear combinations of lower-body operators by eliminating redundant operators.

The operator reduction of 2-body operators was done by Dashen et al. [49], and their

work is briefly summarized in this section.

The unique zero-body operator is the identity operator 1. One-body operators

are the quark number operator : q†q and spin-flavor generators : q†ΛAq, where ΛA =

{Si, T a, Gia}. The only operator reduction for a one-body operator is the reduction

of quark number operator into the identity (see Eq. (5.8)). A two body operator
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transforms as a singlet (1), adjoint (Tαβ ) and a completely symmetric traceless tensor

(s̄s = T
(α1,α2)
(β1,β2) ) under SU(2Nf ).

Two-body : = 1⊕ adj ⊕ s̄s
= 1⊕ Tαβ ⊕ T (α1,α2)

(β1,β2) (5.13)

Since the quark number operator can be eliminated by the identity in Eq. (5.8)

one can only consider the adjoint bilinears q†ΛAq of SU(2Nf ). A product of two

operators can be written in terms of its symmetric product (an anti-commutator)

or/and anti-symmetric product (a commutator). The commutator can be reduced

using the Lie algebra relations in Eq. (4.8), and the anti-commutator transform as

the symmetric product of two adjoints:

(adj ⊗ adj)S = 1⊕ adj ⊕ āa⊕ s̄s
= 1⊕ Tαβ ⊕ T [α1α2]

[β1β2] ⊕ T
(α1α2)
(β1β2) , (5.14)

where the traceless tensor (āa = T
[α1α2]
[β1β2] ) transforms as anti-symmetric in its up-

per and lower indices. One can directly notice that this āa does not appear in the

representation of a two-body operator. Dashen et al [49] summarized the two-body

identities into three different sets.

• The first identity (reduction to zero-body) : two-body operators contain a

SU(2Nf ) singlet component which is a linear combination of a coefficient and

the zero-body unit operator. The SU(2Nf ) singlet in (adj⊗adj)S is the Casimir

operator,

{q†ΛAq, q†ΛAq} = Nc(Nc + 2Nf )

(
1− 1

Nf

)
1, (5.15)

where the coefficient of 1 operator is the SU(2Nf ) Casimir invariant of O (N2
c )

for the completely symmetric baryon representation.

• The second identity (reduction to one-body) : two-body operators contain a

SU(2Nf ) adjoint component which is a linear combination of a coefficient of

O (Nc) times the one-body adjoint operator. This SU(2Nf ) adjoint in (adj ⊗
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adj)S is obtained by a contraction of the anti-commutator with the SU(2Nf ) d

symbol dABC ,

dABC{q†ΛBq, q†ΛCq} = 2(Nc +Nf )

(
1− 1

Nf

)
q†ΛAq . (5.16)

• The third identity (neglecting āa components ) simply reveals that the āa

representation in Eq. (5.14) must vanish by comparing the representations in

Eq. (5.13) corresponding to the completely symmetric baryon representation.

In addition to the components of the two-body operator given in Eq. (5.13), a

three-body operator has a traceless tensor:

Three-body := 1⊕ Tαβ ⊕ T (α1α2)
(β1β2) ⊕ T

(α1α2α3)
(β1β2β3) . (5.17)

This additional component T
(α1α2α3)
(β1β2β3) can be considered as a completely symmetric

tri-linear products of adjoint one-body operators, since the products which are not

completely symmetric can be reduced to two-body operators using the identities

given in Eq. (4.8). Although there are ten irreducible SU(2Nf ) representations in

(adj ⊗ adj ⊗ adj)S for the case of Nf > 2, but only four of them survive because the

other six sets identically vanish according to the Eq. (5.17). Some of these three-body

identities are products of two-body āa representation and one-body adjoint repre-

sentation. By comparing all the representations of (adj ⊗ adj ⊗ adj)S and āa ⊗ adj

separately with the Eq. (5.17), and requiring that the adjoints in (āa⊗ adj) are com-

pletely symmetric; Dashen et al. [49] showed that the three-body identities are simply

products of the one-body and two-body identities.

In summary, the allowed representations of SU(2Nf ) for n−body operators are

1 ⊕ Tαβ ⊕ T (α1α2)
(β1β2) ⊕ · · · ⊕ T

(α1α2···αn)
(β1β2···βn) . All the other representations can be ruled out
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using the two-body āa operator identities, whereas the only “pure” n−body repre-

sentation is T
(α1α2···αn)
(β1β2···βn) . For an arbitrary light quark flavors Nf , two-body operator

identities of SU(2Nf ) are given in the Table (5.1). The spin-flavor representation

(SU(2), SU(Nf )) of each identity is given in the second column, and the entire ta-

ble is divided into three separate horizontal sections. The first section contains the

SU(2Nf ) Casimir identity. The second section contains the identities transforming

the two-body operators into SU(2Nf ) adjoints. The third section contains the iden-

tities transforming two one-body adjoints into āa representation.

Table 5.1. SU(2Nf ) identities : Transformation properties of the identities under
SU(2)× SU(Nf ) are given in the second column [49].

2{Si, Si}+Nf{T a, T a}+ 4Nf{Gia, Gia} = Nc(Nc + 2Nf )(2Nf − 1) (0, 0)

dabc{Gia, Gib}+ 2
Nf
{J i, Gic}+ 1

4
dabc{T a, T b} = (Nc +Nf )

(
1− 1

Nf

)
T c (0, adj)

{T a, Gia} = (Nc +Nf )
(

1− 1
Nf

)
Si (1, 0)

1
Nf
{Sk, T c}+ dabc{T a, Gkb} − εijkfabc{Gia, Gjb} = 2(Nc +Nf )

(
1− 1

Nf

)
Gkc (1, adj)

4Nf (2−Nf ){Gia, Gia}+ 3N2
f {T a, T a}+ 4(1−N2

f ){Si, Si} = 0 (0, 0)

(4−Nf ){Gia,Gib}+ 3N2
f {T a, T b} − 2

(
Nf − 4

Nf

)
{J i, Gia} = 0 (0, adj)

4{Gia, Gib} = −3{T a, T b} (āa) (0, āa)

4{Gia, Gib} = {T a, T b} (s̄s) (0, s̄s)

εijk{Si, Gic} = fabc{T a, Gkb} (1, adj)

dabc{T a, Gkb} =
(

1− 2
Nf

) (
{Sk, T c} − εijkfabc{Gia, Gjb}

)
(1, adj)

εijk{Gia, Gjb} = facgdbch{T g, Gkh} (ās+ s̄a) (1, ās+ s̄a)

{T a, Gib} = 0 (āa) (1, āa)

{Gia, Gja} = 1
2

(
1− 1

Nf

)
{Si, Sj} (S = 2) (2, 0)

dabc{Gia, Gjb} =
(

1− 2
Nf

)
{Si, Gjc} (S = 2) (2, adj)

{Gia, Gjb} = 0 (S = 2, āa) (2, āa)
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5.5 An application : Baryon mass operator

The operator identities can be considered as valuable tool set in building and

analyzing baryon operators such as baryon masses, magnetic moments, baryon axial

currents etc,. As an example, one can illustrate the baryon mass operator for Nf = 3,

in the 1/Nc expansion [47,49]. For three light quark flavors, the baryon mass operator

can be decoupled into two parts. The first part assumes the SU(3) symmetric limit,

i.e. up, down and strange quark masses are equal. The second part assumes the

SU(3) breaking limit with different quark masses.

5.5.1 Baryon masses in the SU(3) symmetric limit

In the SU(3) symmetric limit, the mass operator transforms as a spin-flavor sin-

glet. Since the baryon mass operator is a QCD one-body operator, it has the same

form as in Eq. (5.5),

M
(1,1)
B =

∑
n,l

c
(n)
l

1

Nn−1
c

O(n)
l , (5.18)

where c
(n)
l are unknown dynamical coefficients. As a consequence of being the mass

operator a spin-flavor singlet, the effective n-body operators O(n) defined in Eq. (5.4)

must be SU(2)×SU(3) scalars. To obtain a SU(3) flavor singlet, all the flavor indices

on T ’s and G’s must be contracted using SU(3)-invariant tensors δab, dabc, and fabc.

The latter operator products can be removed using the operator reduction rule.

The zero-body operator transforming as a singlet under SU(2) × SU(3) is the

identity operator 1. Since the one-body operators do not transform as a singlet

under SU(2) × SU(3), then there are no contributions from one-body operators to

the baryon mass operator. There is only one two-body operator S2 transforming as a

singlet under SU(2)×SU(3), because the operator identities can be used to express T 2

and G2 in terms of S2. Notice that the three-body operators and all other operators
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with odd number of contributions can be removed by the operator reduction rule; and

the only possible spin-flavor singlet operators are the identity 1 and even powers of

S2. Therefore, the SU(3) symmetric part of the baryon mass operator can be simply

written as,

M
(1,1)
B = c0Nc1 + c2

1

Nc

S2 + c4
1

N3
c

S4 + · · ·+ cNc−1
1

NNc−2
c

SNc−1 (5.19)

5.5.2 Baryon masses in the SU(3) breaking limit

The SU(3) symmetry is not exact because the light quarks have different masses.

The perturbation transforms as an octet (1, 8) under SU(2)× SU(3). Therefore the

SU(3) breaking part of the baryon mass operator transforms as an octet [47],

M
(1,8)
B =

Nc∑
n=1

dn
1

Nn−1
c

Oan , (5.20)

where dn are unknown dynamical coefficients, and the effective operators Oan are the

products of SU(3) generators with one free flavor index a. The operator reduction

identities imply that, only the n-body operators with either one T a or one Gia need

to be considered. There is only one independent one-body operator,

Oa1 = T a , (5.21)

and only one two-body operator,

Oa2 = {Si, Gia} , (5.22)

are allowed after implementing the operator reduction [47]. Moreover, the operator

reduction helps one to see that there is only one independent n-body for each n. All

of these operators can be generated by recursively anti-commuting the 1-body and
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2-body operators with S2 [47, 49],

Oan+2 = {S2,Oan} . (5.23)

Since S is of O (N0
c ), the operator Oan+2 is suppressed by 1/N2

c relative to Oan. It

is valid to truncate the expansion in Eq. (5.20) for arbitrary a after the first two

terms, up to corrections of relative order 1/N2
c [47]. After the operator reduction, the

three-body operator for an arbitrary a,

Oa3 = {S2, T a} , (5.24)

which gives a reasonable estimation for truncation of the series in Eq. (5.20) at the

O (ε/N2
c ), where the explicit factor ε represents the order of the SU(3) breaking

(ε ∼ 0.3).

There are two one-body Oa1 = T a operators which are relevant for the baryon

mass splitting. One is T 8 : iso-spin symmetric 1 operator, and the other one is T 3 :

iso-spin breaking operator. The matrix elements of T 8 and T 3 are [47],

T 8 =
1

2
√

3
(Nc − 3Ns) ,

T 3 =
1

2
(Nu −Nd) , (5.25)

where, Nc = Nu + Nd + Ns represents the number of colors Nc in terms of the

number of each quark-flavor u, d, and s (Nu, Nd, Ns) in the baryon.

1The iso-spin symmetry implies that mu = md.
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Therefore the SU(3) breaking part of the baryon mass operator in the 1/Nc ex-

pansion has the form,

M
(1,8)
B = εd1T

8 + εd2
{Si, Gi8}

Nc

+ εd3
{S2, T 8}
N2
c

+O
(
ε/N3

c

)
. (5.26)
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CHAPTER 6

BARYON MASSES IN THE 1/NC EXPANSION

FRAMEWORK

6.1 Introduction

In this chapter, an analysis of a baryon masses using the 1/Nc expansion frame-

work as presented in Ref. [27]. In the quark model picture, the two possible spins and

Nf possible quark flavors of quarks lead to the idea of organizing the baryon states

into irreducible representations of SU(2Nf ). Furthermore, one can consider the ex-

cited baryon states by considering the orbital excitations of quarks which can be

identified with the orbital angular momentum quantum numbers. Therefore in gen-

eral, baryon states can be organized into the irreducible representations or multiplets

of SU(2Nf )×O(3), where O(3) contains generators of the orbital angular momentum.

A key observation from the analysis carried out in Refs. [28, 29] is that, the

source/sink operators which, in the continuum limit, are in irreducible representa-

tions of the spin-flavor and quark orbital angular momentum groups SU(2Nf )×O(3)

are very close to being at the optimum for the selective overlap with the baryon states.

This is a strong indication that the baryon mass eigenstates them- selves must be ap-

proximately organized into multiplets of that group, a fact that is well-known to hold

phenomenologically. This has been tested explicitly in the lattice QCD (LQCD) cal-

culations by measuring the coupling strengths of sources in different representations

to each of the baryon levels studied.The state admixture of different multiplets of

SU(2Nf ) × O(3) is known as the configuration mixing , cannot however be directly

inferred from those strengths, as they depend on details of the operators.
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One of the objectives in LQCD is the calculation of the light baryon spectrum,

where in recent years substantive progress has been made. The implementation of op-

timized baryon source operators [28,29,60,61] has enabled improved signals for excited

baryons, leading to remarkable progress in identifying states by their quantum num-

bers and in the determination of their masses. In calculations performed with quark

masses corresponding to 390 MeV 6 Mπ 6 702 MeV, the spectrum of non-strange

baryons [28] and also of strange baryons [29] were obtained. The case of Mπ =702

MeV corresponds to the limit of exact SU(3) flavor symmetry. These calculations

were performed on anisotropic lattices 163 × 128 with a gluon Symanzik-improved

action with tree-level tadpole-improved coefficients and an anisotropic clover fermion

action as explained in Ref. [62]. Although other recent works on baryon LQCD spec-

troscopy have been carried out in Refs. [60, 61, 63–66], the present work will use the

results obtained by the Jefferson Lab Lattice QCD Collaboration in Refs. [28, 29].

The study can similarly be applied to other results, in particular those of the BGR

Collaboration [63] where the masses of the states analyzed here have been calculated.

The existence of a spin-flavor symmetry in baryons can be rigorously justified in

the large-Nc limit of QCD. The symmetry is the result of a consistency requirement

imposed by unitarity on pion-baryon scattering in that limit [11–13], and spin-flavor

symmetry is thus broken by corrections which can be organized in powers of 1/Nc.

Under the assumption that the real world with Nc = 3 baryons can be analyzed

using a 1/Nc expansion, starting at the lowest order with an exact spin-flavor sym-

metry, many analyses of baryon masses and other properties have been carried out.

In particular, excited baryon masses have been analyzed in numerous works for the

cases considered in this work [21, 23, 25, 44, 46, 58, 59, 67, 68] as well as for other mul-

tiplets [69–72]. Although spin-flavor symmetry is justified in the large-Nc limit, the

larger SU(2Nf ) × O(3) is not. The latter can be broken due to spin-orbit effects at
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O (N0
c ).

The states studied in this work are the ones corresponding to the [56, 0+] or

Roper multiplet, the [56, 2+] and the [70, 1−] of SU(6) × O(3) representation for

three light quark flavors u, d, and s. These are of particular interest because they

have been previously analyzed phenomenologically in the framework of the 1/Nc ex-

pansion employed here [73], where the assumption of no configuration mixing works

very well up to the degree of accuracy that the input masses and other observables

permit. For example, there are particular predictions that result when configura-

tion mixings are disregarded. They have the form of parameter-independent mass

relations which hold up to higher-order corrections in the 1/Nc or SU(3)-breaking

expansions. Among those relations are the well-known Gell-Mann- Okubo (GMO)

and equal-spacing (EQS) relations, which are valid in general, and additional ones

involving different spin-flavor states such as relations in the 56-plets that follow from

the Gürsey-Radicati (GR) mass formula, and other relations in the 70-plet [21]. As

it will be shown in the present analysis, LQCD baryon masses fulfill to the expected

accuracy those relations.

The objective of this chapter is to analyze the baryon masses, both from the

Particle Data Group (PDG) [74] and LQCD [28, 29], using the 1/Nc expansion to

O (1/Nc) and to first order in SU(3) symmetry breaking. For two flavors and the

multiplets considered here all states are established, but for three flavors there is a

significant number of missing strange baryon states. For example, in the [70, 1−]

multiplet there are 30 theoretical masses and only 17 are currently experimentally

known. Although those 17 masses are sufficient for the purpose of the 1/Nc analysis,

they are not sufficient for a thorough test of the mass relations. On the other hand,

the LQCD results provide complete multiplets, enabling a complete test of mass re-
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lations. In the particular case of the [70, 1−], the issue of state mixing can be sorted

out in the phenomenological case thanks to the simultaneous analysis of partial decay

widths and photo-couplings, as shown most recently in Ref. [68] for the non-strange

baryons. These inputs are however not possible for the LQCD baryons, and therefore

the state mixing relies very strongly on the criterion for identifying states. In this

regard, level-crossing effects are possible as the quark masses are varied in the LQCD

calculations [63,65].

This chapter is outlined as follows. In section 6.2, a brief description of the 1/Nc

expansion framework is given. Then from section 6.3 to section 6.5 contain the fit

results to each baryon multiplet, an analysis of baryon mass relations and baryon

mass predictions. Then the section 6.6 summarizes the fit results into three figures,

each corresponds to a specific pion mass. The section 6.7 contains the conclusions

and discussion.

6.2 Baryon mass operators for spin-flavor multiplets in the

1/Nc expansion

In the simplest non-relativistic quark shell model, the leading order baryon mass

is governed by the constituent quark masses, which is of order Nc. Therefore, all the

corrections to the masses are assumed to be added only by the interactions among Nc

number of quarks, because in large Nc limit, baryons are static objects. Interactions

can be represented by the n-body operators which are products of SU(2Nf ) genera-

tors, i.e, Si, T a, Gia.

Since the quark spin and orbital angular momentum are in general weakly cou-

pled, baryons have been lead to a phenomenologically successful scheme of organizing
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the states in multiplets of SU(2Nf )× O(3). For finite Nc it is possible to work with

the ordinary rather than the contracted spin-flavor group for the purposes of building

the operator bases [49]. Any static baryon observable can be expressed by an effective

operator which is decomposed in a basis of operators ordered in powers of 1/Nc and

which can be expressed as appropriate tensor products of the symmetry generators.

In the present case of baryon masses, the bases of operators are well-known. The

details for obtaining those bases can be found in Refs. [21, 23,25,25,44,50,58,59].

The excited states considered here will be either in the totally symmetric (56

multiplet) or in the mixed symmetric (70 multiplet) irreducible representations of

SU(6). Because, in the spin-flavor SU(6) representation, all the possible baryon

multiplets are organized as, 6 ⊗ 6 ⊗ 6 = 56S ⊕ 70MS ⊕ 70MA ⊕ 20A, which can be

decomposed into SU(3)× SU(2) irreducible representation:

56 = 10⊗ 4 ⊕ 8⊗ 2 ,

70 = 10⊗ 2 ⊕ 8⊗ 4 ⊕ 8⊗ 2 ⊕ 1⊗ 2 ,

20 = 8⊗ 2 ⊕ 1⊗ 4 .

Following the large Nc Hartree picture of a baryon, without a loss of generality and

for the purpose of dealing with the group theory of the spin-flavor and orbital degrees

of freedom, one can describe a low excitation baryon as a spin-flavor symmetric core

with Nc − 1 quarks and one excited quark. In this way it becomes straightforward

to obtain the matrix elements of bases operators. The orbital excitations in the

O(3) representation with ` = {0, 1, 2} the parity can be defined as P = (−1)`. The

multiplets to be analyzed have the following state contents:

• [56, 0+] : one SU(3) 8 with spin 1/2, and one 10 with spin 3/2,

• [56, 2+] : one SU(3) 8 for each spin 1/2 and 5/2, and one 10 for each spin 1/2

though 7/2,
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• [70, 1−] : one 1 Λ baryon for each spin 1/2 and 3/2, two 8’s for each spin 1/2

and 3/2, one 8 for spin 5/2, and one 10 for each spin 1/2 and 3/2 .

The mass operator bases are organized in powers of 1/Nc and involve SU(3) singlet

and octet operators, the latter for symmetry breaking by the parameter ε ≡ ms− m̂ ,

where m̂ = (mu +md) /2. One may consider the expansion to O (ε0/Nc) and O (ε). It

turns out that contributions O (ε/Nc) are almost insignificant in most cases as shown

later. Therefore, using the large Nc power counting rules, we can write the baryon

mass operator as an expansion in 1/Nc. As we discussed earlier, any static baryon

observable can be expressed by an effective operator which is decomposed in a basis

of operators ordered in powers of 1/Nc and which can be expressed as appropriate

tensor products of the symmetry generators. In general the baryon mass operator

can be written as,

MB =
∑
i

ciOi +
∑
j

bjBj , (6.1)

where, first(second) summation represents the SU(3)-symmetric (SU(3)-breaking)

linear combination of operators Oi (Bj) and their associated coefficients ci(bj).

The LQCD results used here are as follows: for non-strange baryons the results

are those of Ref. [28], of which only the results for the negative parity baryon masses

will be analyzed, and for the case of SU(3) with three flavors the results of Ref. [29]

are used. For two flavors the quark masses used correspond to Mπ = 396 and 524

MeV, and for three flavors ms has been kept fixed, and Mπ = 391, 524 and 702 MeV,

where the last one corresponds to exact SU(3) symmetry. For each of the multiplets

it is necessary to identify the states with the LQCD mass levels. This procedure is

not unique and thus it requires some analysis. For instance, in lattice QCD results

there are several possible states available for each spin. Therefore, there are many

possible arrangements for the masses which can be considered for the fits. Most of
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those possible arrangements do not satisfy well the mass relations and that model

independent approach can filter out many arrangements. Only the arrangements are

acceptable which satisfy the mass relations to a reasonable degree. Also, the arrange-

ments that lead to un-natural values for the coefficients can be eliminated. Therefore,

the most general acceptable mass arrangement can be selected using those criteria.

The notation used to designate the states will be as follows: BS or B′S for states

with baryon spin S which belong predominantly in octets, and B
′′
S for baryons which

belong predominantly in singlet or decuplet. For the case of the ∆ and Ω baryons

which can only belong in a decuplet, no primes are used, and the same for the [56, 0+]

baryons where S = 1/2 (3/2) states necessarily belong to 8 (10).

6.3 [56, 0+] multiplet : ground states and excited states

6.3.1 Introduction to [56, 0+] multiplet

In the SU(6) representation, 56 is the symmetric multiplet, and as default it is

identified as the ground state baryons. But when there is no orbital excitations or

l = 0, there is a possible radial excitation which produces the Roper states with same

Jp quantum numbers, where J is the total angular momentum quantum number.

This radially excited multiplet is identified as “Roper” because the p-wave nucleon

Roper resonance belongs to this multiplet. The Roper resonance for the nucleon has

a mass about 1440 MeV/c2 and its Breit-Wigner width is about ∼ 300 MeV/c2 [39].

Also according to the PDG the πN is the main decay channel of the Roper(1440) nu-

cleon. Therefore, both ground state and excited Roper multiplets can be represented

by [56, 0+] in SU(6)×O(3) representation. As we discussed before, the 56-plet can be

decomposed in to the irreducible representation of SU(3)×SU(2) in flavor and spin.
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In particular, we have one SU(3) octet (8) with spin 1/2 and one SU(3) decuplet

(10) with spin 3/2. Therefore, in the iso-spin symmetric limit N1/2,Λ1/2,Σ1/2,Ξ1/2

masses belong to the octet and ∆3/2,Σ3/2,Ξ3/2,Ω3/2 masses belong to decuplet.

The analysis of LQCD ground-state baryon masses including higher-order terms

in the SU(3) breaking has been carried out in Ref. [75], for LQCD calculations other

than the present ones. It is noted that the hyperfine (HF) mass splittings have the

behavior observed also in other LQCD calculations, where it increases with Mπ up to

Mπ ∼ 400 MeV, and decreases for higher Mπ (for a current summary see [76]). On the

other hand for the excited baryons the HF splittings are almost always monotonously

decreasing with increasing Mπ.

6.3.2 Mass operators in [56, 0+] multiplet

In this case the mass operator is the famous Gürsey-Radicati (GR) mass formula

[20], which, explicitly displaying the 1/Nc power counting, reads as follows:

M[56,0+] = c1Nc +
c2

Nc

S(S + 1) + b1Ns (6.2)

+
b2

2
√

12Nc

(
3I(I + 1)− S(S + 1)− 3

4
Ns(Ns + 2)

)
+O(1/N2

c ) ,

where S is the baryon spin operator, I the isospin, and Ns the number of strange

quarks, and the ci and bi are coefficients determined by the QCD dynamics, which

are obtained by fitting to the masses. The mass operators as defined is such that

all coefficients are O (N0
c ). The SU(3) breaking parameter ε is here included in

the coefficients b1 and b2. For all mass formulas, the quark mass dependencies are

implicitly absorbed into the coefficients.
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6.3.3 Mass relations for [56, 0+] multiplet

The input masses are given in the Table (6.1). Note that, for the physical Roper

baryon states, only N1/2,Λ1/2,Σ1/2,∆3/2 data are available. Because of this limita-

tion, it is difficult to check the mass relations for the physical case. In LQCD, all

the ground-state and excited state baryon masses at three different pion masses are

available. The checks with mass relations are given in Table (6.2) and Table (6.3) ,

which show that they are satisfied within errors for the LQCD results.

Table 6.1. Ground state (left), and [56, 0+] excited Roper (right) baryon masses in
MeV. The inversion in the ordering of the masses of the Ξ1/2 and the ∆
masses at and above Mπ = 391 MeV is similar to that observed in other
LQCD calculations [60].

Mπ[MeV] Mπ[MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702

N1/2 938±30 1202±15 1309±9 1473±4 N1/2 1450±20 2221±52 2300±30 2339±21

Λ1/2 1116±30 1279±20 1371±7 1473±4 Λ1/2 1630±70 2189±44 2330±26 2339±21

Σ1/2 1189±30 1309±13 1375±6 1473±4 Σ1/2 1660±30 2252±46 2357±52 2339±21

Ξ1/2 1315±30 1351±15 1420±9 1473±4 Ξ1/2 · · · 2278±22 2321±54 2339±21

∆3/2 1228±30 1518±20 1582±9 1673±6 ∆3/2 1625±75 2356±33 2450±17 2454±55

Σ3/2 1383±30 1582±15 1622±6 1673±6 Σ3/2 · · · 2369±31 2423±19 2454±55

Ξ3/2 1532±30 1636±11 1655±11 1673±6 Ξ3/2 · · · 2453±26 2463±45 2454±55

Ω3/2 1672±30 1691±13 1694±9 1673±6 Ω3/2 · · · 2501±33 2504±35 2454±55
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Table 6.2. Mass relations for the ground state octet and decuplet. The relations
are valid up to corrections O (ε2/Nc) in the case of the GMO and EQS
relations, and up to O (ε/N2

c ) for the rest.

Relation Mπ[MeV]

PDG 391 524

2(N + Ξ)− (3Λ + Σ) = 0 30.2±0.4 38±75 32±32

Σ′′ −∆ = Ξ′′ − Σ′′ = Ω′′ − Ξ′′ 155±2 64±25 40±11

149.0±0.5 55±19 33±13

140.7±0.5 54±17 40±14

1
3
(Σ + 2Σ′′)− Λ− (2

3
(∆−N)) = 0 9±1 1±28 14±12

Σ′′ − Σ− (Ξ′′ − Ξ) = 0 23.5±0.5 12±25 12±15

3Λ + Σ− 2(N + Ξ) + (Ω− Ξ′′ − Σ′′ + ∆) = 0 16±2 29±81 32±36

Σ′′ −∆ + Ω− Ξ′′ − 2(Ξ′′ − Σ′′) = 0 2.5±2.4 8±51 14±37

Table 6.3. Mass relations for the Roper multiplet. The relations hold at the same
orders as in the case of the ground state baryons.

Relation Mπ[MeV]

391 524

2(N + Ξ)− (3Λ + Σ) = 0 179±180 106±155

Σ′′ −∆ = Ξ′′ − Σ′′ = Ω′′ − Ξ′′ 13±45 -27±26

84±40 41±49

48±42 41±57

1
3
(Σ + 2Σ′′)− Λ− (2

3
(∆−N)) = 0 51±65 29±41

Σ′′ − Σ− (Ξ′′ − Ξ) = 0 58±63 77±80

3Λ + Σ− 2(N + Ξ) + (Ω′′ − Ξ′′ − Σ′′ + ∆) = 0 144±189 174±170

Σ′′ −∆ + Ω′′ − Ξ′′ − 2(Ξ∗ − Σ′′) = 0 107±110 67±147
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6.3.4 Fit results for [56, 0+] multiplet masses to data

Using the GR mass formula Eq. (6.2) the ground-state and excited [56, 0+] Roper

baryon masses are fitted to the data . The input masses from Particle Data Group

and from the LQCD are summarized in Table (6.1). In all 56-plet masses the flavor

singlet breaking of SU(6) × O(3) is O (1/Nc) and it is governed by the hyperfine

interaction. The SU(3)-breaking effects on the hyperfine interaction is controlled by

the coefficient b2.

In the Roper baryons, the identification of the 81/2 is obvious, being the lightest

positive parity excited states above the ground state, but for the 103/2 one needs to

distinguish between two possible excited multiplets, one which will be a Roper and

one which be in the [56, 2+]. One of the choices, namely that in which the Roper

103/2 is the lightest one, does not seem to be consistent with the magnitude of the

HF splittings observed throughout the spectrum. Therefore, 103/2 belonging to the

[56, 0+] are the second from the lowest ones. i.e, the 103/2 belonging to the [56, 2+]

are the lowest-lying excitations, followed by the Roper ones.

Table (6.4) gives the results of the fits for the ground-state baryons, and Table (6.5)

for the Roper baryons.
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Table 6.4. Coefficients of the GR mass formula for the ground state baryons. The
case Mπ = 702 MeV corresponds to exact SU(3) symmetry. χ2

dof is the χ2

per degree of freedom.

Coefficients Mπ[MeV ]

[MeV] PDG 391 524 702

c1 293±6 377±3 420±2 474 ±1

c2 247±12 296±5 251±3 200±2

b1 189±12 75±6 45±3 0

b2 94±26 43±11 14±7 0

χ2
dof 0.19 0.15 1.43 0

Table 6.5. Fit to the [56, 0+] excited Roper baryons. It is found that the SU(3)
breaking effects on the HF interactions can be neglected, thus b2 = 0
throughout.

Coefficients Mπ[MeV ]

[MeV] PDG 391 524 702

c1 469±8 714±6 760±5 770±3

c2 175±44 165±12 124±9 115±20

b1 204±18 48±12 15±12 0

χ2
dof 0.16 0.53 0.76 0
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Figure 6.1. Evolution of the coefficients with Mπ for the ground state baryons (left
panel) and the Roper baryons (right panel).
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In Fig. (6.1) the dependencies on Mπ of the coefficients are displayed. The well-

known dramatic downturn with decreasing Mπ of the Roper baryon masses is clearly

driven by the spin-flavor singlet component of the masses, given by the coefficient

c1. The HF effects determined by c2 have a smooth behavior in Mπ but significantly

different strength in the GS than in the Roper states, being reduced in the latter. Un-

like the GS baryons, no significant SU(3) breaking in the HF interaction is observed

in the Roper baryons, so the coefficient b2 is consistent with zero for the LQCD masses.

The mass relations are given in Tables (6.2) and (6.3), which show that they are

satisfied within errors for the LQCD results. In the physical case, the knowledge of

the Roper states is rather incomplete. Based on the mass relations the predictions

shown in Table (6.6) are made. As shown below, the listed PDG candidate states

may also match predictions from the [56, 2+] multiplet, as discussed in section 6.4.

Table 6.6. Predictions of physically unknown states in the Roper multiplet. These
predictions agree with the ones in Ref. [77].

Baryon Predicted mass Fitted Mass PDG candidate and mass

[MeV] [MeV] [MeV]

Σ
′′

3/2 1790± 131 1800 Σ(1840)(3/2+)∗ with mass ∼ 1840

Ξ1/2 1825± 108 1815 · · ·

Ξ
′′

3/2 1955± 171 1975 Ξ(1950)(??)∗∗∗ with mass ∼ 1950± 15

Ω3/2 2120± 219 2150 · · ·
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6.4 [56, 2+] excited states

6.4.1 Introduction to [56, 2+] multiplet

The [56, 2+] multiplet has ` = 2 with the S = 1/2 octet and S =3/2 decuplet.

Because of ~J = ~S + ~L, it gives two SU(3) octets with total angular momentum J =

3/2 and 5/2, and four decuplets with J = 1/2, 3/2, 5/2 and 7/2.

There is mixing between states in the octet and decuplet, namely the Σ and the

Ξ pairs of states with S = 3/2 and with S = 5/2, namely (Σ
(8)
S , Σ

(10)
S ) and (Ξ

(8)
S ,

Ξ
(10)
S ). These mixings obviously result from SU(3) breaking, and the physical states

are defined as follows:(
ΣS

Σ′S

)
=

(
cos θΣS sin θΣS

− sin θΣS cos θΣS

)(
Σ

(8)
S

Σ
(10)
S

)
,

(
ΞS

Ξ′S

)
=

(
cos θΞS sin θΞS

− sin θΞS cos θΞS

)(
Ξ

(8)
S

Ξ
(10)
S

)
(6.3)

6.4.2 Mass operators in [56, 2+] multiplet

The mass operator for this multiplet contains three SU(3)-symmetric and three

SU(3)-breaking operators.

M[56,2+] =
3∑
i=1

ciOi +
3∑
i=1

bi B̄i , (6.4)

The basis of operators along with the matrix elements are given in Table (6.7),
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Table 6.7. Matrix elements of SU(3) singlet operators (top) and SU(3) breaking op-
erators (bottom). Here, aS = 1, −2/3 for S = 3/2, 5/2, respectively and
bS = 1, 2/3, 1/9, −2/3 for S = 1/2, 3/2, 5/2, 7/2, respectively.

O1 O2 O3

Nc1
1
Nc
`i si

1
Nc
SiSi

83/2 Nc − 3
2Nc

3
4Nc

85/2 Nc
1
Nc

3
4Nc

101/2 Nc − 9
2Nc

15
4Nc

103/2 Nc − 3
Nc

15
4Nc

105/2 Nc − 1
2Nc

15
4Nc

107/2 Nc
3
Nc

15
4Nc

B̄1 B̄2 B̄3

Ns
1
Nc
`iGi8 − 1

2
√

3
O2

1
Nc
SiGi8 − 1

2
√

3
O3

NS 0 0 0

ΛS 1 3
√

3 aS
4Nc

−3
√

3
8Nc

ΣS 1 −
√

3 aS
4Nc

√
3

8Nc

ΞS 2
√

3 aS
Nc

−
√

3
2Nc

∆S 0 0 0

Σ′′S 1 3
√

3 bS
4Nc

−5
√

3
8Nc

Ξ′′S 2 3
√

3 bS
2Nc

−5
√

3
4Nc

ΩS 3 9
√

3 bS
4Nc

−15
√

3
8Nc

Σ3/2 − Σ′′3/2 0
√

3
2Nc

0

Σ5/2 − Σ′′5/2 0
√

3
2Nc

0

Ξ3/2 − Ξ′′3/2 0
√

42
6Nc

0

Ξ5/2 − Ξ′′5/2 0
√

42
6Nc

0

6.4.3 Mass relations for [56, 2+] multiplet

The input masses are given in Table (6.8). The mass relations for the [56, 2+]

multiplet are depicted in [25] were checked with the baryon masses and the results

are given in Table (6.9). In addition to GMO and EQS relations, there are several

relations which relate SU(3) mass splittings in multiplets with different baryon spin,

as well as relations among the masses of baryons with the same strangeness but dif-
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ferent baryon spin. Almost all the mass relations are satisfied by the LQCD results,

with some exceptions of the results at Mπ = 702 MeV. Those exceptional deviations

are corresponding to the relations among different spin-candidates, and their sizes are

expected to be included in the higher order corrections.

Table 6.8. The input baryon masses (physical and LQCD [28, 29]) corresponding to
the [56, 2+] multiplet. The experimental values are those for baryons with
a three star or higher rating by the PDG.

Mπ[MeV] Mπ[MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702

N3/2 1700±50 2148±33 2178±61 2314±17 ∆3/2 1935±35 2270±37 2344±17 2387±19

Λ3/2 1800±30 2225±28 2227±39 2314±17 Σ′′3/2 · · · 2318±26 2379±15 2387±19

Σ3/2 · · · 2243±24 2238±26 2314±17 Ξ′′3/2 · · · 2374±13 2409±6 2387±19

Ξ3/2 · · · 2263±31 2305±15 2314±17 Ω3/2 · · · 2420±28 2450±13 2387±19

N5/2 1683±8 2140±31 2198±17 2271±13 ∆5/2 1895±25 2333±35 2359±17 2388±17

Λ5/2 1820±5 2228±20 2249±15 2271±13 Σ′′5/2 · · · 2368±20 2392±19 2388±17

Σ5/2 1918±18 2229±22 2253±17 2271±13 Ξ′′5/2 · · · 2430±24 2418±13 2388±17

Ξ5/2 · · · 2296±22 2275±13 2271±13 Ω5/2 · · · 2487±24 2470±13 2388±17

∆1/2 1895±25 2284±107 2312±28 2398±32 ∆7/2 1950±10 2390±31 2384±19 2403±21

Σ′′1/2 · · · 2270±26 2348±17 2398±32 Σ′′7/2 2033±8 2428±22 2418±15 2403±21

Ξ′′1/2 · · · 2293±35 2391±13 2398±32 Ξ′′7/2 · · · 2494±22 2455±13 2403±21

Ω1/2 · · · 2378±42 2426±13 2398±32 Ω7/2 · · · 2553±22 2477±13 2403±21
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Table 6.9. Mass relations for the [56, 2+] multiplet. The relations hold at the same
orders as in the case of the ground state baryons.

Relation Mπ[MeV]

391 524 702

2(N3/2 + Ξ3/2)− (3Λ3/2 + Σ3/2) = 0 98±126 49±173 0

2(N5/2 + Ξ5/2)− (3Λ5/2 + Σ5/2) = 0 40±98 55±65 0

Σ′′1/2 −∆1/2 = Ξ′′1/2 − Σ′′1/2 = Ω1/2 − Ξ′′1/2 -13±110 36±33 0

23±44 43±22 0

85±54 35±19 0

Σ′′3/2 −∆3/2 = Ξ′′3/2 − Σ′′3/2 = Ω3/2 − Ξ′′1/2 48±46 36±23 0

56±29 30±16 0

45±31 41±15 0

Σ′′5/2 −∆5/2 = Ξ′′5/2 − Σ′′5/2 = Ω5/2 − Ξ′′5/2 35±40 34±26 0

62±31 26±23 0

57±34 52±18 0

Σ′′7/2 −∆7/2 = Ξ′′7/2 − Σ′′7/2 = Ω7/2 − Ξ′′7/2 38±38 35±25 0

67±31 36±20 0

59±31 22±18 0

∆5/2 −∆3/2 − (N5/2 −N3/2) = 0 70±68 4±68 44±33

(∆7/2 −∆5/2)− 7
5
(N5/2 −N3/2) = 0 68±78 2.5±92 75±41

∆7/2 −∆1/2 − 3(N5/2 −N3/2) = 0 129±175 13±192 133±74

8
15

(Λ3/2 −N3/2) + 22
15

(Λ5/2 −N5/2)

−(Σ5/2 − Λ5/2)− 2(Σ′′7/2 −∆7/2) = 0 91±100 29±75 0

Λ5/2 − Λ3/2 + 3(Σ5/2 − Σ3/2)− 4(N5/2 −N3/2) = 0 10±207 10±272 0

Λ5/2 − Λ3/2 + Σ5/2 − Σ3/2 − 2(Σ′′5/2 − Σ′′3/2) = 0 111±81 12±72 87±59

7(Σ′′3/2 − Σ′′7/2)− 12(Σ′′5/2 − Σ′′7/2) = 0 44±319 39±268 67±266

4(Σ′′1/2 − Σ′′7/2)− 5(Σ′′3/2 − Σ′′7/2) = 0 83±170 87±104 58±161
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6.4.4 Fit results for [56, 2+] multiplet masses to data

The first step is the identification of the states in LQCD results. With the ex-

ception of the 103/2, all the states are in spin-flavor states which appear for the first

time, and thus the lightest states with given spin and flavor are the ones of interest.

In the case of the 103/2, as discussed earlier, there are two possible excited levels to

consider, one of which will belong to the excited [56, 0+], where the arguments for

the identification were already given. Which is, the 103/2 belonging to the [56,2+]

are the lowest lying excitations, followed by the Roper ones. For Σ and Ξ baryons,

the LQCD analysis [29] has assigned the dominant SU(3) multiplet to which they

belong, 8 or 10. Therefore, there is no ambiguity about the identification of states

in the present multiplet.

Two different fits are carried out, one includes all the SU(3) breaking operators,

and a second one only including the one-body operator giving the spin independent

breaking effects. Since the symmetry breaking by the operator B1 does not produce

mixing between 8 and 10, the mixing angles are actually ∝ ε/Nc, and thus naturally

very small. The results are shown in Table (6.10). It is checked that the present fit

fully agrees with a previous one for the physical case [25]. One important observation

is that based on the quality of the fits the mixings cannot be definitely established

for the LQCD results.
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Table 6.10. Two fits, with (second column) and without (third column) the operators
B2 and B3 (see Table (6.7)). The second fit does not describe well the
physical baryons.

aaaaaaaaaaaa
Coefficients

Mπ [MeV]
PDG 391 524 702 391 524 702

c1 540±11 704±2 718±1 754±1 710±2 724±1 753±1

c2 18±5 48±6 28±3 -6±5 59±6 21±3 0

c3 244±4 169±5 166±3 104±4 151±5 148±3 106±4

b1 217±4 75±3 54±1 0 56±3 36±1 0

b2 95±14 -23±11 13±5 0 0 0 0

b3 268±16 59±9 55±4 0 0 0 0

Mixing angles [Rad]

θΣ3/2
-0.16±0.02 0.06±0.03 -0.03±0.01 0 0 0 0

θΞ3/2
-0.26±0.04 0.07±0.03 -0.03±0.01 0 0 0 0

θΣ5/2
-0.22±0.03 0.05±0.03 -0.03±0.01 0 0 0 0

θΞ5/2
-0.20±0.02 0.08±0.04 -0.03±0.01 0 0 0 0

χ2
dof 0.84 0.60 0.47 0.92 0.63 0.53 0.80

The evolution with Mπ of the coefficients is shown in Fig. (6.2). It is interesting

to notice that the coefficient c1 has qualitatively similar but less dramatic behavior

than in the case of the Roper baryons, which must be an indication of a similar mech-

anism as the one which drives down the Roper masses with decreasing Mπ. The HF

interaction given by c3 behaves smoothly with Mπ, decreasing slowly as Mπ increases,

and it has similar strength as in the Roper baryons. Although the operators B2 and

B3 are significant in the physical case, their contributions are negligible in the LCQD

cases, as shown by the second fit in Table (6.10). The latter observation tells that the

mixing between octet and decuplet states, which are driven by those operators, are

very small as confirmed by the small mixing angles in the first fit in Table (6.10).
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Figure 6.2. Evolution of the operator coefficients with Mπ for the two fits of the
[56, 2+] masses.

6.4.5 Mass predictions

The fit and the mass relations predictions for the experimentally unknown or

poorly known states are shown in Table (6.11). The PDG candidate state Σ(1840)(3/2+)∗

could be identified with the Σ3/2(1889) state in Table (6.11), but as discussed earlier

it can also be identified with the Roper Σ3/2. The PDG candidate state Ξ(2120)∗(??)

is consistent with both Ξ3/2 and Ξ′′7/2 in Table (6.11), so its parity could be predicted

as positive.
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Table 6.11. Predictions of physically unknown states in the [56, 2+] multiplet, and
suggested identifications with PDG listed states. The first two GMO re-
lations and the 12th equation in Table (6.9), which is a large Nc parameter
independent mass relation, were used to predict the above masses.

Missing Fitted mass Mass listed in PDG Mass from mass relations

states [MeV] [MeV] [MeV]

Σ3/2 1889 Σ(1840)(3/2+)∗ with mass ∼ 1840 1920±70

Ξ3/2 2074 Ξ(2120)∗(??): 2130±7 2080±75

Ξ5/2 2000 Ξ(2030)∗∗∗(S > 5/2+) with 2025±5 2006±14

Σ′′1/2 2059.5 · · · 2127±120

Ξ′′1/2 2221 Ξ(2250)∗∗(??): 2214±5 · · ·

Ω1/2 2382 · · · · · ·

Σ′′3/2 2059.35 Σ(2080)∗∗(3/2+): 2120±40 2109±96

Ξ′′3/2 2211.8 · · · · · ·

Ω3/2 2350 · · · · · ·

Σ′′5/2 2053 Σ(2070)∗(5/2+): 2070±10 2077±56

Ξ′′5/2 2178 · · · · · ·

Ω5/2 2297 · · · · · ·

Ξ′′7/2 2129 Ξ(2120)∗(??): 2130±7 · · ·

Ω7/2 2222 · · · · · ·

6.5 [70, 1−] excited states

6.5.1 Introduction to [70, 1−] multiplet

In the SU(6) representation, the 70-plet contains one SU(3) decuplet with spin

3/2, two octets with spin 1/2 and one singlet with spin 1/2 in the irreducible repre-

sentation of SU(3) × SU(2). The two octets differ in their total quark spins which

are 1/2 and 3/2. In the notation of (2s + 1), they are 2 and 4 respectively, where s
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is the quark spin. The following notation is used to represent the states correspond

to this multiplet : BS or B′S for states with baryon spin S which belong to octets,

and B′′S for baryons which belong to singlet or decuplet. In this [70, 1−] multiplet,

` = 1 and it will couple with the spins and produce one SU(3) 1 (singlet) Λ baryon

for each S =1/2 and 3/2, two 8′ for each S =1/2 and 3/2, one 8 for each S =5/2 and

one 10 for each S =1/2 and 3/2.

In the case of two flavors, the baryon states are belong to [20′, 1−] multiplet in

SU(4) × O(3) representation. There are two mixing angles for the pairs of nucleon

states with S = 1/2 and S = 3/2. Denoting by (2s+1)NS, the physical states are given

by:

NS

N ′S

 =

 cos θ2S sin θ2S

− sin θ2S cos θ2S


2NS

4NS

 . (6.5)

Understanding these mixings is very important, as the decays and photo-couplings

are sensitive to them. These mixings are predicted at the leading level of breaking of

spin-flavor symmetry [67]. Indeed, if theO (N0
c ) spin-orbit operators O2,3,4 would have

contributions of natural size, the mixing angles would be θ1 = cos−1(−
√

2/3 ) = 2.526

radians and θ3 = cos−1(−
√

5/6 ) = 2.721 radians up to 1/Nc corrections. However, it

is known phenomenologically that the contributions from those operators are weak,

and thus the mixing angles are significantly affected by the sub-leading in 1/Nc opera-

tors, in particular the hyperfine operator O6. The determination of the mixing angles

requires in principle more information than just masses, as there are seven masses,

and nine mass operators up to the order 1/Nc, which means that the angles cannot be

predicted. A biased prediction is obtained by neglecting the 3-body operators, which

gives one angle as a function of the other one according the the relation [68]:
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3

(
MN 1

2

+MN ′1
2

− 4MN 3
2

− 4MN ′3
2

+ 6MN 5
2

+ 8M∆ 1
2

− 8M∆ 3
2

)
= (6.6)

(
13 cos 2θ1 +

√
32 sin 2θ1

)(
MN ′1

2

−MN 1
2

)
− 4

(
cos 2θ3 −

√
20 sin 2θ3

)(
MN ′3

2

−MN 3
2

)
.

However a determination of the angles in a more rigorous way requires the input of

additional observables, namely the partial decay widths and/or photo-couplings. The

details of that analysis are provided in Ref. [68].

In the case of three flavors there are two-state and also three-state mixings. For

the nucleons one has the same case as for two flavors, while for Σ, Λ and Ξ baryons

there is three-state mixings. The physical states are given in terms of the quark spin

and SU(3) eigenstates by:


10S or 1S

8S

8′S

 = Θ


210S or 21S

28S

48S

 , (6.7)

where the physical states are indicated by the dominant SU(3) content, and the Euler

mixing matrix is given by:

Θ =


cφ cψ −cθ sφ sψ cψ sφ+ cθ cφ sψ sθ sψ

−cθ cψ sφ−cφ sψ cθ cφ cψ −sφ sψ cψ sθ

sθ sφ −cφ sθ cθ

 , cθ ≡ cos θ, sθ ≡ sin θ, etc.

(6.8)

The angles θ can always be taken in the interval [0, π). The mixing angles φ

and ψ vanish in the limit of exact SU(3) symmetry, and are thus proportional to

the parameter ε. The SU(3) symmetric limit becomes similar to the non-strange

case except that there are two additional masses, namely the ones of the singlet Λ
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baryons. The determination of the mixing angles would be similar to the non-strange

case. In the absence of additional information to that of the masses, the angles can

be determined only through exclusion of some operators. For instance, one strategy

would be to exclude the 3-body operators, which seem in general to have particularly

weak contributions to masses.

For the states which are subjected to mixing it is necessary to make the identifica-

tion of the physical states. As mentioned in the introduction, for the physical case the

identification has been clear for a long time, thanks to the simultaneous use of strong

decay partial widths and helicity amplitudes [21, 68, 78, 79], but that information is

not available for the LQCD baryons. The identifications of the LQCD states were

analyzed separately (a total of 256 possibilities). It turns out that most assignments

pass the tests of χ2, mass relations and naturalness of the coefficients. Thus on a

general rigorous ground the problem of state assignment is not completely resolved.

However, if one requires that the coefficients flow reasonably smoothly towards the

physical ones which are known, then only one assignment becomes possible, namely

the one discussed here.

6.5.2 Mass operators in [70, 1−] multiplet

In the case of non-strange baryons, where the states belong to a 20 plet of SU(4)

the mass formula reads [58]:

M[20,1−] =
8∑
i=1

ciOi , (6.9)

Where the eight basis operator s up to and including O (1/Nc) are given in Ta-

ble (6.12).
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Table 6.12. Mass operator basis and matrix elements for the [20, 1−] multiplet.

O1 O2 O3 O4

Nc1 `i si
3
Nc
`

(2)
ij giaG

c
ja `i si + 4

Nc+1
`i taG

c
ja

N1/2 Nc − (2Nc−3)
3Nc

0 2
Nc+1

N ′1/2 Nc - 5
6

−5(Nc+1)
48Nc

0

N ′1/2 −N1/2 0 −1
3

√
Nc+3
2Nc

− 5
48Nc

√
(Nc+3)(2Nc−1)2

2Nc
−
√

Nc+3
2Nc(Nc+1)2

N3/2 Nc
(2Nc−3)

6Nc
0 − 1

Nc+1

N ′3/2 Nc −1
3

1
12Nc

(Nc + 1) 0

N ′3/2 −N3/2 0 −1
6

√
5(Nc+3)
Nc

1
96Nc

√
5(Nc+3)(2Nc−1)2

Nc
−
√

5(Nc+3)
4Nc(Nc+1)2

N ′5/2 Nc +1
2

− 1
48Nc

(Nc + 1) 0

∆1/2 Nc +1
3

0 0

∆3/2 Nc −1
6

0 0

O5 O6 O7 O8

1
Nc
`i S

c
i

1
Nc
SciS

c
i

1
Nc
siS

c
i

2
Nc
`

(2)
ij siS

c
j

N1/2 − (Nc+3)
3N2

c

(Nc+3)
2N2

c
− (Nc+3)

4N2
c

0

N ′1/2 − 5
3Nc

2
Nc

1
2Nc

5
6Nc

N ′1/2 −N1/2

√
Nc+3
18N2

c
0 0 5

12Nc

√
Nc+3
2Nc

N3/2
(Nc+3)

6N2
c

(Nc+3)
2N2

c
− (Nc+3)

4N2
c

0

N ′3/2 − 2
3Nc

2
Nc

1
2Nc

− 2
3Nc

N ′3/2 −N3/2

√
5(Nc+3)

36N3
c

0 0 − 1
24

√
5(Nc+3)
N3
c

N ′5/2
1
Nc

2
Nc

1
2Nc

1
6Nc

∆1/2 − 4
3Nc

2
Nc

− 1
Nc

0

∆3/2
2

3Nc
2
Nc

− 1
Nc

0
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For three flavors, the mass formula reads [21,23]:

M[70,1−] =
11∑
i=1

ciOi +
4∑
i=1

bi B̄i , (6.10)

where the basis operators up to and including O (1/Nc) or O (ε) are given in Ta-

ble (6.13) and Table (6.14). In order that the SU(3) breaking operators do not con-

tribute to the non-strange baryon masses, they have been redefined according to:

B̄1 = t8 − 1
2
√

3Nc
O1, B̄2 = T c8 − Nc−1

2
√

3Nc
O1, B̄3 = 10

Nc
d8ab giaG

c
ib + 5(N2

c−9)

8
√

3N2
c (Nc−1)

O1 +

5
2
√

3(Nc−1)
O6 + 5

6
√

3
O7, B̄4 = 3 `i gi8 −

√
3

2
O2.

Table 6.13. SU(3) singlet basis of operators for the [70, 1−] masses.

O1 O2 O3 O4 O5 O6

Nc1 `i si
3
Nc
`

(2)
ij giaG

c
ja

4
Nc+1

`i taG
c
ja

1
Nc
`i S

c
i

1
Nc
SciS

c
i

281/2 Nc
3−2Nc

3Nc
0 2(Nc+3)(3Nc−2)

9Nc(Nc+1)
−Nc+3

3N2
c

Nc+3
2N2

c

481/2 Nc −5
6

−5(3Nc+1)
48Nc

5(3Nc+1)
18(Nc+1)

− 5
3Nc

2
Nc

281/2 − 481/2 0 −
√

(Nc+3)
18Nc

− 5
24

√
(Nc+3)(3Nc−2)2

2N3
c

− (5−3Nc)
9(Nc+1)

√
Nc+3
2Nc

√
Nc+3
18N3

c
0

211/2 Nc -1 0 0 0 0
2101/2 Nc

1
3

0 − (3Nc+7)
9(Nc+1)

− 4
3Nc

2
Nc

283/2 Nc
2Nc−3

6Nc
0 − (Nc+3)(3Nc−2)

9Nc(Nc+1)
Nc+3
6N2

c

Nc+3
2N2

c

483/2 Nc −1
3

3Nc+1
12Nc

3Nc+1
9(Nc+1)

− 2
3Nc

2
Nc

283/2 − 483/2 0 −
√

5(Nc+3)
36Nc

− 1
48

√
5(Nc+3)(2−3Nc)2

N3
c

−
√

5(Nc+3)(5−3Nc)2

324Nc(Nc+1)2

√
5(Nc+3)

36N3
c

0

213/2 Nc
1
2

0 0 0 0
2103/2 Nc −1

6
0 3Nc+7

18(Nc+1)
2

3Nc
2
Nc

485/2 Nc
1
2

−3Nc+1
48Nc

− 3Nc+1
6(Nc+1)

1
Nc

2
Nc

O7 O8 O9 O10 O11

1
Nc
siS

c
i

2
Nc
`

(2)
ij siS

c
j

3
N2
c
`i gja{Scj , Gc

ja} 2
N2
c
ta{Sci , Gc

ja} 3
N2
c
`i gia{Scj , Gc

ja}
281/2 −Nc+3

4N2
c

0 (Nc+3)(7−15Nc)
24N3

c
− (Nc+3)(3Nc+1)

12N3
c

− (Nc+3)(3Nc+1)
24N3

c

481/2
1

2Nc
5

3Nc

5(3Nc+1)
24N2

c
− (3Nc+1)

3N2
c

5(3Nc+1)
12N2

c

281/2 − 481/2 0
√

25(Nc+3)
72N3

c

√
(Nc+3)(3Nc−2)2

288N5
c

0
√

(Nc+3)(3Nc+1)2

72N5
c

211/2 0 0 0 0 0
2101/2 − 1

Nc
0 (3Nc+7)

6N2
c

(3Nc+7)
6N2

c

(3Nc+7)
12N2

c

283/2 −Nc+3
4N2

c
0 (Nc+3)(15Nc−7)

48N3
c

− (Nc+3)(3Nc+1)
12N3

c

(Nc+3)(3Nc+1)
48N3

c

483/2
1

2Nc
− 4

3Nc

(3Nc+1)
12N2

c
− (3Nc+1)

3N2
c

(3Nc+1)
6N2

c

283/2 − 483/2 0 −
√

5(Nc+3)
144N3

c

√
5(Nc+3)(3Nc−2)2

576N5
c

0
√

5(Nc+3)(3Nc+1)2

144N5
c

213/2 0 0 0 0 0
2103/2 − 1

Nc
0 − (3Nc+7)

12N2
c

(3Nc+7)
6N2

c
− (3Nc+7)

24N2
c

485/2
1

2Nc
1

3Nc
− (3Nc+1)

8N2
c

− (3Nc+1)
3N2

c
− (3Nc+1)

4N2
c
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Table 6.14. SU(3) octet basis of operators for the [70, 1−] masses.

B1 B2
t8 T c8

281/2,283/2
N3
c−(7Ns−8I2)N2

c+3(4Ns−8I2+1)Nc−9Ns
2
√

3Nc(Nc−1)(Nc+3)

N4
c−(3Ns−1)N3

c+(Ns−8I2−3)N2
c−3(Ns−8I2+1)Nc+9Ns

2
√

3Nc(Nc−1)(Nc+3)

481/2,483/2,485/2
Nc−Ns−4I2

2
√

3(Nc−1)

N2
c−(3Ns+2)Nc+4(I2+Ns)

2
√

3(Nc−1)
281/2−481/2,283/2−483/2 0 0
211/2,213/2

(3−Nc)√
3(Nc+3)

(Nc+5)(Nc−3)

2
√

3(Nc+3)
281/2−211/2,283/2−213/2 − 3(Nc−1)

2
√
Nc(Nc+3)

− 3(Nc−1)

2
√
Nc(Nc+3)

481/2−211/2,483/2−213/2 0 0

101/2, 103/2
Nc−8Ns+5
2
√

3(Nc+5)

N2
c−(3Ns−4)Nc−7Ns−5

2
√

3(Nc+5)

281/2−2101/2,283/2−2103/2 −
√

2
3

Nc+3
Nc(Nc−1)(Nc+5)

√
2
3

Nc+3
Nc(Nc−1)(Nc+5)

481/2−2101/2,483/2−2103/2 0 0

B3
10
Nc
d8ab giaG

c
ib

281/2,283/2
3N3

c−(13Ns−8I2+3)N2
c+(31Ns−44I2−12)Nc−6(Ns−14I2)

− 24
5

√
3N2

c (Nc−1)

481/2,483/2,485/2
3N2

c−(7Ns+4I2−3)Nc+(Ns−20I2)

− 24
5

√
3Nc(Nc−1)

281/2−481/2,283/2−483/2 0
211/2,213/2 0
281/2−211/2,283/2−213/2

5(3Nc+1)

16Nc
√
Nc

481/2−211/2,483/2−213/2 0

101/2,103/2 −3N2
c−14(Ns−1)Nc−22Ns−5

24
5

√
3Nc(Nc+5)

281/2−2101/2,283/2−2103/2
5(Nc+2)

6
√

6Nc

√
Nc+3

Nc(Nc−1)(Nc+5)
481/2−2101/2,483/2−2103/2 0

B4
3 `i gi8

281/2 −N3
c−(10Ns−14I2+3)N2

c+3(7Ns−8I2)Nc−9(Ns−2I2)√
3Nc(Nc−1)(Nc+3)

481/2 −5(Nc−Ns−4I2)

4
√

3(Nc−1)

281/2−481/2 −Nc−Ns−4I2

2
√

6(Nc−1)

√
1 + 3

Nc

211/2

√
3(Nc−3)
(Nc+3)

281/2−211/2
9(Nc−1)

2(Nc+3)
√
Nc

481/2 −2 11/2 0
2101/2

Nc−8Ns+5
2
√

3(Nc+5)

281/2−2101/2 −
√

2
3

√
Nc+3

Nc(Nc−1)(Nc+5)
481/2−2101/2

4√
3

1√
(Nc−1)(Nc+5)

283/2
N3
c−(10Ns−14I2+3)N2

c+3(7Ns−8I2)Nc−9(Ns−2I2)

2
√

3Nc(Nc−1)(Nc+3)
483/2 −Nc−Ns−4I2

2
√

3(Nc−1)

283/2−483/2 −
√

5
3
Nc−Ns−4I2

4(Nc−1)

√
1 + 3

Nc

213/2 −
√

3(Nc−3)
2(Nc+3)

283/2−213/2 − 9(Nc−1)

4(Nc+3)
√
Nc

483/2−213/2 0
2103/2 −Nc−8Ns+5

4
√

3(Nc+5)

283/2−2103/2

√
Nc+3

6Nc(Nc−1)(Nc+5)

483/2−2103/2
2
√

10√
3(Nc−1)(Nc+5)

485/2

√
3(Nc−Ns−4I2)

4(Nc−1)
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6.5.3 Mass relations for [70, 1−] multiplet

Theoretically, there are 30 baryon masses in the [70, 1−] multiplet, but only 17

masses are identified experimentally with a three-star or higher rating by the PDG.

In LQCD, all the baryon masses are available for each respective pion mass with

an ambiguity of identification of the mass levels corresponding to each baryon spin.

Therefore, all the possibilities have to be taken into account to find the most general

assignments of masses. One can realize that there are 256 possibilities in total refer-

ring to the Fig (11) of Ref. [29]. The criteria for the identification of most general

assignment includes a test of χ2, mass relations and the naturalness of the fitted coef-

ficients. Also, one required that the coefficients flow reasonably smooth towards the

physical ones which are known, then only one assignment becomes possible, namely

the one selected here. All the input masses after identification of states are given in

Table (6.15).

GMO and ES relations are tested with the LQCD input masses and results are

given in Table (6.16), but cannot be tested for the physical case due to insufficient

number of experimentally known states. The parameter independent mass relations

are written with a different notation where, SB is the mass splitting between the

state B and the non-strange states in the SU(3) multiplet to which it belongs. The

results for the parameter independent mass relations with the input masses are given

in Table (6.17).
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Table 6.15. [70, 1−] masses. The experimental values are those for baryons with a
three star or higher rating by the PDG.

Mπ[MeV] Mπ[MeV]

Baryon PDG 391 524 702 Baryon PDG 391 524 702

N1/2 1538±18 1681±51 1797±32 1968±8 N5/2 1678±8 2012±26 2033±20 2109±11

Λ1/2 1670±10 1777±32 1852±27 1968±8 Λ5/2 1820±10 2057±19 2068±12 2109±11

Σ1/2 · · · 1783±25 1852±27 1968±8 Σ5/2 1775±5 2059±21 2066±15 2109±11

Ξ1/2 · · · 1846±32 1899±32 1968±8 Ξ5/2 · · · 2127±21 2105±15 2109±11

N3/2 1523±8 1820±40 1896±17 2000±8 ∆1/2 1645±30 1885±40 1964±42 2023±60

Λ3/2 1690±5 1904±25 1939±17 2000±8 Σ′′1/2 · · · 1952±25 1998±37 2023±60

Σ3/2 1675±10 1905±23 1940±20 2000±8 Ξ′′1/2 · · · 1987±27 2038±17 2023±60

Ξ3/2 1823±5 1974±25 1976±17 2000±8 Ω1/2 · · · 2011±41 2060±20 2023±60

N ′1/2 1660±20 1892±35 1928±37 2045±11 ∆3/2 1720±50 1955±32 2033±17 2098±11

Λ′1/2 1785±65 1849±36 1944±37 2045±11 Σ′′3/2 · · · 1958±36 2071±15 2098±11

Σ′1/2 1765±35 1840±36 1941±37 2045±11 Ξ′′3/2 · · · 2040±31 2108±15 2098±11

Ξ′1/2 · · · 1876±27 2001±22 2045±11 Ω3/2 · · · 2101±30 2139±15 2098±11

N ′3/2 1700±50 1895±29 1935±37 2077±10 Λ′′1/2 1407±4 1710±32 1796±20 1922±11

Λ′3/2 · · · 1936±30 1981±27 2077±10 Λ′′3/2 1520±1 1817±21 1816±40 1903±11

Σ′3/2 · · · 1951±27 1977±25 2077±10

Ξ′3/2 · · · 1998±31 2030±27 2077±10
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Table 6.16. GMO and ES relations for the [70, 1−] multiplet. Due to the insufficient
number of physically known states with three or more stars, the mass
relations for physical states cannot be checked for the physical case.

Relation Mπ[MeV]

PDG 391 524

2(N1/2 + Ξ1/2)− (3Λ1/2 + Σ1/2) = 0 · · · 59±156 17±125

2(N3/2 + Ξ3/2)− (3Λ3/2 + Σ3/2) = 0 · · · 31±121 13±74

2(N5/2 + Ξ5/2)− (3Λ5/2 + Σ5/2) = 0 · · · 46±91 6±64

Σ′′1/2 −∆1/2 = Ξ′′1/2 − Σ′′1/2 = Ω1/2 − Ξ′′1/2 · · · 67±47 35±56

· · · 34±36 40±41

· · · 24±49 22±26

Σ′′3/2 −∆3/2 = Ξ′′3/2 − Σ′′3/2 = Ω3/2 − Ξ′′3/2 · · · 2±49 39±23

· · · 82±47 37±21

· · · 61±43 31±21

Table 6.17. Octet-Decuplet mass relations for the [70, 1−] multiplet. SB is the mass
splitting between the state B and the non-strange states in the SU(3)
multiplet to which it belongs. The results shown correspond to the rela-
tion divided by the sum of the positive coefficients in the relation (e.g.,
163 for the first relation).

Relation Mπ [MeV]
391 524

14(SΛ3/2
+ SΛ′

3/2
) + 63SΛ5/2

+ 36(SΣ1/2
+ SΣ′

1/2
)

−68(SΛ1/2
+ SΛ′

1/2
)− 27SΣ5/2

= 0 9.4±40 0.96±34

14(SΣ3/2
+ SΣ′

3/2
) + 21SΛ5/2

− 9SΣ5/2

−18(SΛ1/2
+ SΛ′

1/2
)− 2(SΣ1/2

+ SΣ′
1/2

) = 0 37±45 5.4±38

14SΣ′′
1/2

+ 49SΛ5/2
+ 23(SΣ1/2

+ SΣ′
1/2

)

−45(SΛ1/2
+ SΛ′

1/2
)− 19SΣ5/2

= 0 9.4±40 0.7±34

14SΣ′′
3/2

+ 28SΛ5/2
+ 11(SΣ1/2

+ SΣ′
1/2

)

−27(SΛ1/2
+ SΛ′

1/2
)− 10SΣ5/2

= 0 0.8±40 0.1±33
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6.5.4 Fit results for [70, 1−] multiplet masses to data

The fits can be done separately for the [20′, 1−] multiplet which corresponds to

two flavors, and [70, 1−] multiplet which corresponds to three flavors. The fit re-

sults for the non-strange (case of two flavors) baryons are given in Table (6.18)1. The

physical case is in good agreement with previous works [58,59]. If one considers only

the seven known masses as inputs to the fit, one operator must be eliminated: the

operator O8 is thus dismissed as it always results virtually irrelevant. A second fit

where only the three dominant operators are kept turns out to be consistent for the

lattice QCD results, but gives a poor fit to the physical case. In that case, the Mπ

evolution of the coefficients is shown in Fig. (6.3).

c1

c5

c6

PDG 396 524
-100
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100
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Figure 6.3. Evolution of the minimum set of operator coefficients with Mπ in SU(4)×
O(3).

A comparison of the physical case shows that it is consistent with earlier work

[58,59], but differs significantly for the coefficients c3 and c6 with respect to the recent

global analysis carried out in Ref. [68]. Since all those fits are consistent in terms

of the χ2, it is an indication of the ambiguity that results when only the masses are

fitted. This means that also for the LQCD results one should expect several con-

1In order to compare with the coefficients Ci obtained in the global analysis [68], where the
operators are given in spherical basis and with different normalizations than here, the correspondence
is: C1 = c1, C2 = − 5

6c2, C3 = − 75
144c3, C4 = 3

2c4, C5 = − 5
3c5, C6 = 2c6, C7 = −c7, and C8 = 5

3c8.
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sistent fits in terms of the value of the χ2, which will have some of the parameters

significantly different.

Table 6.18. Fits to the non-strange [20, 1−] baryon masses. Unless the mixing angles
are inputs to the fit, the operator O8 is not necessary due to linear de-
pendence as there are only seven mass inputs to fit. For the physical case
with seven parameter fit (second column), the mixing angles from the
global analysis (θN1/2

=0.49±0.29, θN3/2
=3.01±0.17) were used as inputs.

For the minimal fit (third column) with c1,c5,c6, the mixing angles in the
physical case are not inputs.

aaaaaaaaaaaa
Coefficients

Mπ [MeV]
PDG 396 524 PDG 396 524

c1 463±2 543±5 598±3 459±2 533±5 579±3

c2 -36±12 39±35 13±14 0 0 0

c3 313±69 -83±215 -96±74 0 0 0

c4 65±31 -70±71 -95±30 0 0 0

c5 71±18 99±48 107±24 16±18 122±46 106±23

c6 443±10 446±25 307±13 443±10 502±25 414±13

c7 -20±31 -0.37±62.89 -66±34 0 0 0

θN1/2
[Rad] 0.52±0.13 2.94±0.21 2.76±0.06 3.13±0.01 3.04±0.05 3.03±0.03

θN3/2
[Rad] 3.02±0.09 2.88±0.42 2.38±0.11 3.12±0.02 2.98±0.08 2.97±0.05

χ2
dof 0.05 0 0 0.68 0.52 1.0

For two flavors, and following the global analysis of Ref. [68], the two mixing an-

gles are given as input, and in this way it is possible to fit with the complete basis

of operators up to 2-body. If the additional information provided by partial decay

widths and/or photocouplings is not available, as it is the case for the LQCD results,

one possibility is to neglect some of the basis operators, which allows one to predict

the mixing angles solely using the masses. A guidance on what operator(s) to exclude

is given by the rather clear hierarchy in the importance the different operators have,

as measured by the magnitude of their coefficients. In fact, it becomes clear that the



102

mixing angles are mostly controlled by the operators O2, O6 and to a lesser extend

O4 and O5.

In the case of three flavors the number of masses is much larger than the number

of basis operators, and thus in principle the mixing angles can be determined with

the information on the masses, of course after the above mentioned identification of

states has been performed. Such identification is clearly displayed in Table (6.15).

For the sake of brevity, only those operators which have effects of any significance

have been included here: after an initial analysis, several operators whose coeffi-

cients resulted consistent with zero have been eliminated. The fits for three flavors

are given in Tables (6.19) and (6.20) for the corresponding subsets of operators. Be-

cause of the different definitions of the basis operators for the different multiplets,

in order to compare contributions which are of common nature across mutliplets

such as the spin-flavor singlet contributions, the HF and the SU(3) breaking, the

following identification of coefficients should be done: c156 ↔ (c1 + (b1 + b2)/
√

3)70,

c2[56,0+]
↔ c3[56,2+]

↔ 1
3
c670 , b156 ↔ −

(
(b1 + b2)

√
3/2
)

70
. The mixing angles are given

in Table (6.21).
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Table 6.19. Fit to the [70, 1−] masses using a subset of operators chosen as a minimal
subset such the χ2

dof is acceptable for all input sets. For the physical
case the mixing angles from the global analysis [68] (θN1/2

=0.49±0.29,
θN3/2

=3.01±0.17) were used as inputs.

Coefficients Mπ[MeV]

[MeV] PDG 391 524 702

c1 444.3±0.3 572±2 585±1 636±1

c2 84±2 68±12 -7±6 -16±4

c3 117±13 59±22 -40±18 2±8

c4 115±5 -12±12 -28±9 -13±4

c5 84±10 134±17 132±14 84±7

c6 538±5 327±10 350±6 262±4

c7 -159±13 49±27 -59±17 13±11

b1 -214±5 -100±13 -43±9 0

b2 -188±2 -62±6 -46±4 0

b3 -92±2 -41±10 -6±7 0

χ2
dof 0.74 0.65 0.14 0.09

Table 6.20. Fit results with minimal set of mass operators for the [70, 1−]. Only
masses are used as inputs.

Coefficients Mπ[MeV]

[MeV] PDG 391 524 702

c1 462±0.3 582±2 587±1 637±1

c2 83±2 92±10 13±8 -11±4

c5 -67±11 136±17 127±13 96±7

c6 420±4 270±9 344±6 257±4

c7 -78±14 4±31 -47±16 21±11

b1 -92±4 -53±13 -34±9 0

b2 -179±2 -58 ±6 -48±4 0

θN1/2
0.33±0.02 0.79±0.21 2.95±0.05 2.94±0.02

θN3/2
0.45±0.02 0.79±0.13 2.86±0.07 2.84±0.03

χ2
dof 6.7 0.86 0.46 0.13
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Table 6.21. Mixing angles in the [70, 1−] predicted from the fit to the masses.

Mixing angles Mπ[MeV]

[Rad] PDG 391 524 702

θN1/2
0.76±0.03 0.61±0.12 2.77±0.06 2.98±0.05

θN3/2
3.09±0.40 0.10±0.81 2.70±0.10 2.84±0.03

φΛ1/2
-0.15±0.01 -0.15±0.01 -0.14±0.01 0

θΛ1/2
0.83±0.01 0.70±0.01 2.76±0.01 2.98±0.05

ψΛ1/2
0.05±0.01 0.11±0.01 -0.18±0.02 0

φΛ3/2
-0.21±0.03 -0.16±0.04 -0.12±0.02 0

θΛ3/2
3.08±0.01 0.13±0.01 2.69±0.02 2.84±0.03

ψΛ3/2
-0.18±0.01 0.07±0.03 -0.03±0.01 0

φΣ1/2
-0.25±0.02 0.03±0.01 -0.05±0.04 0

θΣ1/2
1.01±0.01 0.75±0.01 2.75±0.01 2.98±0.05

ψΣ1/2
-0.10±0.01 0.01±0.07 0.03±0.04 0

φΣ3/2
-0.08±0.06 0.06±0.04 -0.02±0.04 0

θΣ3/2
3.05±0.01 0.16±0.02 2.66±0.01 2.84±0.03

ψΣ3/2
0.04±0.02 0.03±0.02 0.005±0.001 0

φΞ1/2
-0.30±0.03 0.03±0.01 -0.05±0.06 0

θΞ1/2
0.94±0.01 0.78±0.01 2.77±0.04 2.98±0.05

ψΞ1/2
-0.14±0.02 0.01±0.07 0.03±0.06 0

φΞ3/2
-0.09±0.07 0.05±0.03 -0.02±0.04 0

θΞ3/2
3.07±0.01 0.19±0.03 2.69±0.02 2.84±0.03

ψΞ3/2
0.05±0.03 0.02±0.01 0.006±0.001 0

The fits in the physical case are checked to be consistent with previous analy-

sis [21,23]. It is interesting to observe the evolution of the mixing angles θ with Mπ,

as they can give a clue on the possible level crossing as Mπ evolves. As it is the case

in the non-strange case discussed above, in the S = 3/2 baryons these angles remain

continuous from the physical case to Mπ = 702 MeV, while in the case of the S = 1/2
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baryons there is a change by more than π/2, indicating a level crossing along the way.

This qualitatively agrees with the LQCD results in Refs. [63, 65]. It is interesting to

observe that for Mπ = 702 MeV all baryons are stable, and almost all are still stable

for Mπ = 524 MeV, while below Mπ = 391 MeV they are unstable. Since the S = 1/2

baryons have S-wave decays, they are the ones to be sensitive to the opening of the

decay. These observations suggest a synchronization between the mixing angle and

the stability of the baryon. In fact, the change in θ1 shown in Table (6.21) in going

from Mπ = 391 to 524 MeV is approximately π/2, as expect for a level crossing. Is

this an explanation for the observed level crossings?. Perhaps, but it is not clear at

this point, and it deserves further study.
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Figure 6.4. Evolution with respect to Mπ of the coefficients of the basis operators
used to fit both the physical and the LQCD [70, 1−] masses.

Consistent fits to only LQCD results can be achieved by a minimal set of significant

operators. It is found that the relevant SU(3) singlet operators are the spin-flavor

singlet O1, the HF O6 and the two spin-orbit ones O2 and O5 and the first two SU(3)

breaking operators. These results are illustrated in Fig. (6.5). Note that all the SU(3)

breaking operators are relevant for fitting the physical case. The operator O3 is found

to be important for the physical masses, but irrelevant for the LQCD masses, where
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the operator O5 is instead significant. It is interesting to observe that in models with

pion exchange between quarks, such as certain versions of the chiral quark model, O3

is naturally important, and should fade as the Mπ increases.
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Figure 6.5. Evolution with respect to Mπ of the coefficients in Table (6.20). .

The mass relations are depicted in Tables 6.16 and 6.17. All are well satisfied,

except for the EQS relation for Mπ = 391 MeV involving Σ
′′

3/2. A shift of its mass

by ∼ +30 MeV leads to consistency. The mass predictions are given in Table (6.22).

Since, the PDG candidate state Ξ(1950)∗∗∗(??) is consistent with Ξ′3/2,Ξ5/2 and Ξ′′1/2

in Table (6.22), its parity could be predicted as negative.
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Table 6.22. Predictions of physically unknown states in the [70, 1−] multiplet from
the fit in Table (6.19).

Missing State Fitted mass with union set of operators PDG

[MeV] [MeV]

Σ1/2 1644.72 Σ(1620)1/2−∗∗=1620±10

Ξ1/2 1800.93 · · ·

Ξ′1/2 1930.24 · · ·

Λ′3/2 1824.59 · · ·

Σ′3/2 1780.37 · · ·

Ξ′3/2 1943.64 Ξ(1950)(??)∗∗∗=1950±15

Ξ5/2 1938.95 Ξ(1950)(??)∗∗∗=1950±15

Σ′′1/2 1827.51 · · ·

Ξ′′1/2 1968.76 Ξ(1950)(??)∗∗∗=1950±15

Ω1/2 2107.31 · · ·

Σ′′3/2 1916.21 Σ(1940)3/2−∗∗∗=1950±30

Ξ′′3/2 2057.24 · · ·

Ω3/2 2197.75 · · ·
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6.6 Summary of the fits to baryon masses
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Figure 6.6. At Mπ=139 MeV (physical) : green colored boxes represent the physically
unidentified states which were calculated using the mass relations and, the
red colored line represents the corresponding baryon mass from the fit.
Light-blue color represents the octets and light-yellow color represents a
singlet (for the case of Λ) or decuplet (for the cases of Σ,Ξ).
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Figure 6.7. Baryon spectrum for Mπ=391 MeV with LQCD input from Edwards et
al. [29] and the fits from 1/Nc expansion framework. Light-blue color
represents the octets and light-yellow color represents a singlet (for the
case of Λ) or decuplet (for the cases of Σ,Ξ).
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Figure 6.8. Baryon spectrum for Mπ=524 MeV with LQCD input from Edwards et
al. [29] and the fits from 1/Nc expansion framework. Light-blue color
represents the octets and light-yellow color represents a singlet (for the
case of Λ) or decuplet (for the cases of Σ,Ξ).
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6.7 Conclusions and discussion

From the study presented here of recent LQCD results for the low-lying baryon ex-

citations, it can be concluded that a picture of the spin-flavor composition of excited

baryons is derived from their masses calculated in LQCD and the 1/Nc expansion.

The results obtained entirely support the picture seen from the lattice QCD analysis

of the mass eigenstate couplings to source/sink operators. A similar, and even simpler

picture than the physical case emerges at increasing quark masses, where with very

few dominant operators the LQCD masses can be described. The expected narrow-

ness of the states analyzed for the quark masses in the LQCD results suggests that

those results are very realistic. For higher excited baryons, which will be broader, the

present LQCD results may be a poorer approximation. Nonetheless, they should be

interesting to study.

A strong conclusion is that the baryon masses calculated in LQCD are even closer

to an approximate SU(6)×O(3) symmetry limit than the physical ones. This is most

likely due to the fact that the composition of baryons becomes increasingly closer to a

constituent quark model picture as the quark masses increase, emphasizing the mass

operators which are naturally large in those models and suppressing the rest.

For the quark masses employed in the LQCD calculations used here, the dramatic

downturn in c1 for the Roper baryons is not manifest. This is an effect where prob-

ably chiral symmetry plays an important role as it becomes restored towards lighter

Mπ. In recent LQCD work on nucleon resonances [63, 65] a first evidence of that

downturn is observed. It remains to be determined what precise mechanism drives

that effect, and perhaps some clever strategy in LQCD calculations could be used

for that purpose. While in the Roper multiplet the c1 coefficient should have a large

negative curvature as a function of Mπ to match the physical masses, it lies along
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an almost prefect straight line for the ground-state baryons, and it has a moderate

negative curvature in the other cases.

Identifying the HF coefficients as mentioned earlier, one finds that for the LQCD

results the strength of the HF in the ground-state baryons is almost twice as large as

in the excited baryons, which is significantly different from the physical case, where it

is only about 25 % larger. One should point out that in a picture of large Nc baryons

with very heavy quark masses the hyperfine interaction will scale as mq = Nc, imply-

ing that in LQCD calculations at even larger quark masses than the ones used so far

the hyperfine interaction coefficient should eventually scale approximately as mq.

The spin-orbit contributions are all smaller than the natural size. In the [56, 2+] it

is an effect O (1/Nc), and the coefficient slowly decreases with increasing Mπ. In the

[70, 1−] the O (N0
c ) contribution is determined by c2 which decreases with increasing

Mπ, and the O (1/Nc) contribution is determined by c5 remains roughly independent

of Mπ.

An interesting open problem is how to relate the SU(6) × O(3) decomposition

of the physical baryons determined via the 1/Nc expansion as presented here, with

the information on the coupling strengths of the mass eigenstates to the different

source/sink operators obtained in the LQCD calculations.
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CHAPTER 7

CHIRAL PERTURBATION THEORY AS AN EFT IN QCD

7.1 Introduction

An effective field theory (EFT) is a theory (or Lagrangian) which includes all the

relevant physics at some specific length scale, as the relevant degrees of freedom to

the problem. Also one can identify a small parameter which allows one to perform

perturbative power counting, and systematically work to any desired level of preci-

sion. The foundation of EFT comes from the ideas by Ken Wilson, Steven Weinberg,

etc [9, 80, 81]. The EFT approach has become a very strong mathematical tool in

particle physics, especially when dealing with the nontrivial phenomenology of pro-

ducing the hadron spectrum (mesons and baryons) from quarks and gluons as the

fundamental degrees of freedom in QCD. Since the perturbative expansion in terms

of the gauge coupling is only possible at high energies, the low energy phenomenol-

ogy needs a reformulation of the QCD Lagrangian in terms of “hadron” degrees of

freedom with some small parameters in order to perform perturbative expansion to

describe the physical observables.

This chapter is organized as follows; The next section contains a brief overview of

the symmetries of the QCD Lagrangian, including a discussion on symmetry breaking

due to quark mass and QCD in the presence of external fields. The third section ex-

plains a flavor of the effective field theory approach. Then the fourth and fifth sections

summarizes the chiral effective theory for mesons and baryons with applications. The

last section is devoted to the heavy baryon approach.
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7.2 Symmetries of LQCD

The QCD Lagrangian LQCD respects the Poincaré symmetry, local color gauge in-

variance, flavor symmetry and discrete symmetries such as parity and charge conjuga-

tion. In addition to those symmetries, there are more symmetries emerge according to

the Noether’s theorem i.e., any continuous symmetry transformation (local or global)

which preserves the invariance of the action implies the existence of a conserved cur-

rent associated with the symmetry, and the corresponding charge is a constant of

motion.

7.2.1 Global U(1)V symmetry

This is identified as the U(1) “vector symmetry” with the subscript V , and the

transformations associated with the U(1)V symmetry can be defined as,

ψ(x)→ ψ′(x) = eiθψ. (7.1)

where θ is a constant. One can directly see that the QCD Lagrangian is invariant

under these transformations and the associated conserved current is:

JµV (x) = ψ̄(x)γµψ(x) , ∂µJ
µ
V (x) = 0 (7.2)

and the conserved charge is identified as the “baryon number”:

B =

∫
d3x ψ†(x)ψ(x) (7.3)
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7.2.2 Global U(1)A symmetry

This is identified as the U(1) ”axial-vector symmetry” with the subscript A, and

the transformations associated with the U(1)A symmetry,

ψ(x)→ ψ′(x) = eiθγ5ψ. (7.4)

yields the axial-vector current,

JµA(x) = ψ̄(x)γµγ5 ψ(x), (7.5)

which is not conserved,

∂µJ
µ
A(x) = 2imψ̄γ5ψ (7.6)

due to the quark mass. Therefore the U(1)A is a symmetry for the quark fields in

the limit of zero quark mass, which is identified as the “Chiral limit”, where γ5 is

identified as the “Chirality matrix”.

7.2.3 Isospin SU(2)f symmetry

In the case of two light quark flavors (Nf = 2), the quark fields can be identified

as an “isospin doublet ” : ψ(x) =

u(x)

d(x)

, and in the symmetry limit one assumes

mu = md. The SU(2)f symmetry transformations can be defined as,

ψ(x)→ ψ′(x) = eiθi
τa
2 ψ (7.7)

where θa is the ath group parameter associated with SU(2) generator τa (Pauli ma-

trices with a = {1, 2, 3}). Since the QCD Lagrangian is invariant under SU(2)f
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transformations, the associated conserved current can be defined as,

Jµa (x) = ψ̄(x)γµ
τa
2
ψ(x) (7.8)

and the time-independence of the conserved isospin charge,

Qa =

∫
dx J0

a(x) =

∫
d3x ψ†(x)

τa
2
ψ(x) (7.9)

implies that it commutes [H,Qa] = 0 with the QCD Hamiltonian.

7.2.4 SU(3)f symmetry

For three light quark flavors (Nf = 3), one can consider ψ(x) =


u(x)

d(x)

s(x)

, with

mu = md = ms approximation. Therefore the QCD Lagrangian is invariant under

SU(3)f transformations,

ψ(x)→ ψ′(x) = eiθa
λa
2 ψ ; (a = {1, 2, 3, .., 8}) (7.10)

where λa are 3× 3 Gell-Mann matrices with a = {1, ..., 8}, and the invariance under

SU(3)f transformations introduces the conserved current:

Jµa (x) = ψ̄(x)γµ
λa
2
ψ(x) (7.11)

and the conserved charge:

Qa =

∫
d3x ψ†(x)

λa
2
ψ(x) (7.12)
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7.2.5 Chiral symmetry

“Chirality” is defined as the helicity (spin projection on the momentum direction)

of a particle in the massless limit. Only two types of chirality or helicity are possible

along the axis of propagation: left-handed and right-handed. This allows one to

decompose the quark fields as,

ψ = ψR + ψL (7.13)

with,

ψR =
1

2
(1 + γ5)︸ ︷︷ ︸
PR

ψ , ψL =
1

2
(1− γ5)︸ ︷︷ ︸
PL

ψ , ψ̄R/L =
1

2
(1∓ γ5)︸ ︷︷ ︸
PL/R

ψ (7.14)

where the “chirality matrix” γ5 is defined as,

γ5 = γ5 = iγ0γ1γ2γ3 =

0 1

1 0

 , {γµ, γ5} = 0 , γ2
5 =

1 0

0 1

 with 1 =

1 0

0 1

 ,

(7.15)

in the Dirac representation [82]. PR and PL are identified as projection operators

which project the quark fields to their chiral components ψR and ψL. The chirality

projection operators also satisfy the following properties:

PR + PL = 1 : “completeness relation”

P 2
R = PR, P 2

L = PL : “idempotent” (7.16)

PRPL = PLPR = 0 : “orthogonal” .

The Chiral symmetry (or left-right handed symmetry) in LQCD emerges in the

massless limit of SU(3)f symmetry. In other words, QCD in the {mu,md,ms} → 0

limit, is called the “chiral” limit. Also, this approximation is reasonable since we can

argue that the real world is not so different from this theoretical limit. Therefore,
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one can re-write the QCD Lagrangian,

LQCD = ψ̄(x)iγµDµψ(x)− 1

4
Gµν(x)aGµνa (x)︸ ︷︷ ︸

L0
QCD

− ψ̄(x)mfψ(x)︸ ︷︷ ︸
LM

(7.17)

by separating the mass term LM .

In the goal of analyzing the symmetry of LQCD under the independent global

transformations of left- and right-handed fields, there are 16 quadratic forms of quark

bilinears [82]:

ψ̄Γiψ =


¯ψRΓ1ψR + ¯ψLΓ1ψL for Γ1 ∈ {γµ, γµγ5}
¯ψRΓ2ψL + ¯ψLΓ2ψR for Γ2 ∈ {1, γ5, σ

µν}
. (7.18)

Also note that, {Γ1, γ5} = 0 and [Γ2, γ5] = 0 combined with the orthogonality of PR

and PL give,

PRΓ1PR = PLΓ1PL = Γ1PLPR = PRΓ2PL = PLΓ2PR = 0 . (7.19)

Applying these properties in the QCD Lagrangian in the chiral limit, one can separate

the quark field term in L0
QCD into its left- and right-handed components,

L0
QCD = ψ̄R(x)iγµDµψR(x) + ψ̄L(x)iγµDµψL(x)− 1

4
Gµν(x)aGµνa (x). (7.20)

Since the covariant derivative is flavor-independent, L0
QCD is invariant under the trans-

formations [82] ,

ψR,L = UR,L ψR,L (7.21)
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where,

UR,L︸︷︷︸
U(3)R,L

= exp

(
−i

8∑
a=1

ΘR,L
a

λa

2

)
︸ ︷︷ ︸

SU(3)R,L

e−iΘ
R,L︸ ︷︷ ︸

U(1)R,L

(7.22)

for the case of three flavors Nf = 3 with Gell-Mann Matrices λa. Therefore L0
QCD

is considered to have U(3)R ⊗ U(3)L Chiral symmetry, and the invariance of L0
QCD

under this symmetry produces 2× (8 + 1) = 18 total conserved currents (associated

with left- and right-handed transformations),

Lµ,a = ψ̄Lγ
µλ

a

2
ψL , ∂µL

µ,a = 0 , Rµ,a = ψ̄Rγ
µλ

a

2
ψR , ∂µR

µ,a = 0 , (7.23)

where Lµ,a and Rµ,a are left and right-handed currents which can be derived by

considering the variation [83] of L0
QCD under the infinitesimal transformations.

δL0
QCD = ψ̄R,L

(
8∑

a=1

∂µΘR,L
a

λa
2

+ ∂µΘR,L

)
ψR,L (7.24)

These chiral current densities Lµ,a and Rµ,a separately transform under SU(3)L ⊗

SU(3)R as a singlet and octet which we can denote as (1, 8) multiplet. The vector

and axial-vector current densities are defined as linear combinations of these chiral

current densities as follows,

“octet ” current densities:

V µ,a = Rµ,a + Lµ,a = ψ̄γµ
λa
2
ψ

Aµ,a = Rµ,a − Lµ,a = ψ̄γµγ5
λa
2
ψ (7.25)

“singlet ” current densities:

V µ = ψ̄Rγ
µψR + ψ̄Lγ

µψL = ψ̄γµPRψ + ψ̄γµPLψ = ψ̄γµψ

Aµ = Rµ − Lµ = ψ̄γµPRψ + ψ̄γµPLψ = ψ̄γµγ5ψ (7.26)
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One can also obtain the conserved singlet vector current by transforming left-

and right-handed quark fields by a “same” phase, whereas the singlet axial-vector

currents can be obtained by transforming the left- and right-handed quark fields with

“opposite” phase. However, this singlet axial-vector current is only conserved in

classical level, but there will be extra terms (anomalies) in the quantum level which

are of pure quantum origin and explicitly break the classical U(1) axial symmetry [82].

It can be identified as,

∂µAµ =
Nfg

2

32π2Nc

εµνρσGµνa Gaρσ (7.27)

where, one can see that it is conserved at large Nc limit when the g → g/
√
Nc

rescaling [10] is applied.

7.2.6 Symmetry breaking due to quark mass

The discussion above described that the QCD has SU(3)L ⊗ SU(3)R ⊗ U(1)V

symmetry at the limit of zero quark mass. The breaking of the symmetry can be

studied by investigating the effect of the quark mass matrix. Let’s consider the LM
piece in the Eq. (7.17).

LM =
∑
f

ψ̄mfψ = ψ̄Mψ (7.28)

where M is the diagonal quark mass matrix. In the case of two light-flavors,

M = diag (mu,md) =

(
mu +md

2

)
1 + (mu −md)

λ3

2
(7.29)

and in the case of three light-flavors,

M = diag (mu,md,ms) =

(
mu +md +ms

3

)
1+(mu −md)

λ3

2
+

(
mu +md − 2ms√

3

)
λ8

2
.

(7.30)
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Applying the left- and right-handed transformations in Eq. (7.13) to the quark fields

using the properties in Eq. (7.18), one can clearly see that the quark mass term mixes

the left and right-handed fields.

LM = −ψ̄Mψ = −
(
ψ̄RMψL + ψ̄LMψR

)
(7.31)

The variation δLM under the chiral transformations in Eq. (7.22),

δLM = −
[

8∑
a=1

ΘR
a

(
ψ̄R

λa
2
MψL − ψ̄LM

λa
2
ψR

)
+ ΘR

(
ψ̄RMψL − ψ̄LMψR

)
+

8∑
a=1

ΘL
a

(
ψ̄L
λa
2
MψR − ψ̄RM

λa
2
ψL

)
+ ΘL

(
ψ̄LMψR − ψ̄RMψL

)]
,

(7.32)

can be combined with the δLQCD to obtain the corresponding vector and axial-vector

current densities for the full QCD Lagrangian for the case of Nf = 3:

∂µV
µ,a = iψ̄

[
M,

λa
2

]
ψ ,

∂µA
µ,a = iψ̄

{
λa
2
,M

}
ψ ,

∂µV
µ = 0 , (7.33)

∂µA
µa = 2iψ̄Mγ5ψ +

3g2

32π2
εµνρσGµνa Gaρσ , ε0123 = 1 .

These current densities associated with the symmetries and their deviations can be

summarized as follows [82].

• In the limit of massless quarks, the octet current densities V µ,a, Aµ,a and the

vector current density V µ are conserved, whereas the singlet axial-vector current

Aµ has an anomaly.

• All the axial currents are also not conserved when quark masses are non-zero.

• When the quark masses are equal (mu = md = ms), the eight vector currents

V µ,a are conserved since [λa, 1] = 0 according to the Eq. (7.33). This reflects to
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origin of the SU(3) symmetry originally proposed by Gell-Mann and Ne’eman

[82].

• It is important to notice that the SU(3)f symmetry is a global symmetry of

LQCD for both cases: with massless (mq = 0), and massive ({mu = md = ms} >

0) quarks.

• For the quark masses with any value, each individual flavor’s vector current

density (ūγµu, d̄γµd, s̄γµs, ...), and their sum are conserved. This reflects the

flavor independence of strong interactions.

7.2.7 QCD in the presence of external fields and PCAC

In the presence of external fields the QCD Lagrangian can be re-written by adding

Lexternal into the L0
QCD,

LQCD = L0
QCD + Lexternal

= L0
QCD + ψ̄γµ(vµ + γ5a

µ)ψ − ψ̄(s− iγ5p)ψ , (7.34)

by following the Gasser and Leutwyler’s procedure [84, 85], where vµ, aµ, s, p respec-

tively represents the vector, axial-vector, scalar and pseudo-scalar currents which are

hermitian, color neutral, 3× 3 matrices in the flavor space:

vµ =
λa

2
vµa , a

µ =
λa

2
aµa , s = λasa , p = λapa (for a = 1, ..., 8). (7.35)

Since QCD Lagrangian is invariant under Parity (P), Charge-conjugation (C) and

Time-reversal (T) transformations the external fields also follow the same invariance.

One can summarize the transformation properties as follows,

• Parity :

– quark fields :

ψf (~x, t)
P−→ γ0ψf (−~x, t) , (7.36)
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– external fields :

vµ(~x, t)
P−→ vµ(−~x, t) , aµ(~x, t)

P−→ −aµ(−~x, t) ,
sµ(~x, t)

P−→ sµ(−~x, t) , pµ(~x, t)
P−→ −pµ( ~−x, t) (7.37)

• Charge-conjugation :

– quark fields :

ψα,f (~x, t)
C−→ Cαβψ̄β,f (−~x, t) , ψα,f (~x, t)

C−→ ψ̄β,f (−~x, t)C−1
βα , (7.38)

where, α, β are Dirac spinor indices, and C = iγ2γ0 = −C−1

– external fields :

vµ
C−→ −vTµ , aµ

C−→ aTµ , s
C−→ sT , p

C−→ pT (7.39)

where the transposition apply in the flavor space, and the arguments

change from (~x, t) to (−~x, t).

In order to see the behavior of the external fields under local SU(3)L⊗SU(3)R⊗U(1)V

transformations, let’s define

vµ =
1

2
(rµ + lµ) , aµ =

1

2
(rµ − lµ) (7.40)

and apply to the Lexternal in the Eq. (7.34). Therefore one obtains,

ψ̄γµ (vµ + γ5aµ)ψ = ψ̄Rγ
µrµψR + ψ̄Lγ

µlµψL (7.41)

for the first term in Lexternal, and

ψ̄γµ (s− iγ5aµ)ψ = ψ̄Lγ
µ (s− ip)ψR + ψ̄Rγ

µ (s+ ip)ψL (7.42)

for the second term; with the aid of some auxiliary properties,
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γ5PR = PRγ5 = PR , γ5PL = PLγ5 = −PL
γµPR = PLγ

µ , γµPL = PRγ
µ (7.43)

which are associated with the chiral transformations of quark-fields. Therefore, the

QCD Lagrangian can be re-written as,

LQCD = L0
QCD + ψ̄Rγ

µrµψR + ψ̄Lγ
µlµψL − ψ̄Lγµ (s− ip)ψR − ψ̄Rγµ (s+ ip)ψL ,

(7.44)

which remains invariant under local transformations,

ψR = exp

(
−θ(x)

3

)
UR(x)ψR

ψL = exp

(
−θ(x)

3

)
UL(x)ψL (7.45)

where, U(x)L,R are independent space-time dependent SU(3) matrices which trans-

forms the external fields with the following properties [82]:

rµ → URrµU
†
R + iUR∂µU

†
R ,

lµ → ULrµU
†
L + iUL∂µU

†
L ,

s+ ip → UR (s+ ip)U †L ,

s− ip → UL (s− ip)U †R . (7.46)

7.3 Construction of effective field theories

The construction of the effective Lagrangian is directly based on the known sym-

metries of the parent theory (which is QCD, in our case). Comparing the quark

masses with the non-perturbative scale Λχ of dynamical chiral symmetry breaking

∼ 1 GeV [86] the quarks can be separated into “light” and “heavy” sectors:

mu,md,ms︸ ︷︷ ︸
light quarks

� Λχ(∼ 1 GeV) 6 mc,mt,mb︸ ︷︷ ︸
heavy quarks

. (7.47)



126

As discussed in the introduction of Chapter 2, the quark masses are not determined

directly by experiment; their values are determined with the help of theory and some

assumptions. The heavy quark masses are to a first approximation determined from

the heavy meson masses (eg: J/ψ, B-meson, etc.), and the light quark masses require

many theoretical twists for the estimations. Only lattice QCD calculations are able

to provide a determination of quark masses, but this is still not very precise.

This work is focused on the hadron states which belong to light quarks. There-

fore, the heavy particles can be integrated out from the generating functional of the

theory, such that only the light degrees of freedom are left behind with an effective

Lagrangian. If Φl are the light fields and Φh are the heavy fields, then it is pos-

sible to define effective vertices (or couplings) by summing all the contributions of

the intermediate states of the Φh in the elements of the S-matrix. Thus the effective

Lagrangian can be introduced :

ei
∫
d4x Leff(Φl) =

∫
DΦ ei

∫
d4x L(Φl,Φh) , (7.48)

where the S-matrix elements calculated from Leff are equivalent to those from the

original one for all energies smaller than Λχ, because the contribution of the heavy

field intermediate states is suppressed for E � Λχ. Therefore an expansion of the

effective couplings in terms of momenta would converge for E � Λχ, in other words

the Leff can be ordered as a momentum (or derivative) expansion with a cut-off Λχ.

The construction of effective field theories require an essential prerequisite to be

satisfied, called “Weinberg’s theorem” [9]. It states that, “if one writes down the most

general possible Lagrangian, including all terms consistent with assumed symmetry

principles, and then calculates matrix elements with this Lagrangian to any given
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order of perturbation theory, the result will simply be the most general possible S-

matrix consistent with analyticity, perturbative unitarity, cluster decomposition and

the assumed symmetry principles ”. Although there are infinite number of possible

terms with their free parameters in the effective Lagrangian, one has to have a proper

criterion to select the appropriate number of terms to turn Weinberg’s theorem into

a practical mode. Therefore, a proper scheme, and a systematic method of assessing

the importance of diagrams (generated by the couplings) allows us to organize all the

terms in the Lagrangian. This is identified as the Weinberg’s power counting scheme,

and will be discussed with mesons in the next section.

7.4 Meson Chiral Perturbation Theory

The spontaneous breaking of chiral SU(3)L×SU(3)R symmetry into SU(3)V gen-

erates the members of the pseudo-scalar meson octet (pion (π), kaon (K), eta (η))

which are identified as the Goldstone bosons. Although the Goldstone bosons are the-

oretically massless, in the real world they acquire a mass due to the explicit symmetry

breaking of the light quark masses. It is interesting to emphasize that, it is not fully

understood theoretically yet why QCD should exhibit this spontaneous symmetry

breaking phenomenon [82]. On the other hand, the experimental observation of the

hadron spectrum accompanied by the non-vanishing singlet scalar quark condensate

account for the spontaneous symmetry breaking in QCD.

As described in the previous chapter, QCD exhibits the SU(3)L×SU(3)R×U(1)V

symmetry in the chiral limit. U(1)V symmetry reflects to the baryon number conser-

vation and the classification of hadrons into baryons and mesons. The linear combi-

nations Qa
V = Qa

R + Qa
L and Qa

A = Qa
R − Qa

L commute with the chirally symmetric

part of the QCD Hamiltonian (H0
QCD). If the symmetries of H0

QCD would also be

symmetries of the vacuum state, there should be degenerate parity doublets. How-
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ever the low energy baryon spectrum does not contain degenerate baryon octet with

negative parity. For example, there is no evidence of the existence of two degenerate

states for the nucleon with same spin but opposite parity. This observation leads to

the assumption that the Qa
A generator does not annihilate the QCD ground state,

and the Qa
V does. Therefore the two empirical facts,

• There is no left-right symmetry observed in the hadron spectrum. SU(3) is the

approximately realized symmetry of the hadrons,

• The masses of the pseudo-scalar mesons are small compare to the scale of the

theory (eg : masses of vector mesons),

suggest that the spontaneous symmetry breaking happens in the chiral limit of QCD.

It was shown in Witten et al. [87] that, the ground state is invariant under SU(3)V ×

U(1)V . Also, Qa
V satisfy the commutation relations in SU(3) Lie algebra. Therefore

the eight vector charge (octet) Qa
V as well as the baryon number operator QV /3

(singlet) annihilate the QCD ground state

Qa
V |0〉 = QV |0〉 = 0 , [Qa

V , Q
b
V ] = ifabcQc

V , (7.49)

where as,

[Qa
A, Q

b
A] = ifabcQc

V , [Qa
V , Q

b
A] = ifabcQc

A , (7.50)

shows that Qa
A operators do not form a closed algebra. Also it is very important

to emphasize that the reason why one can assume Qa
A do not annihilate the ground

state,

Qa
A|0〉 6= 0 , (7.51)

is because the parity-doubling is not observed for the lower lying baryon states in

experiments. In other words, the QCD ground state is not invariant under “axial”

transformations. For each generator Qa
A, there exist an associated massless spin 0
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Goldstone boson field φa(x) which transforms under parity,

φa(~x, t)
P−→ −φa(−~x, t) (7.52)

as pseudo-scalars, and leaves the vacuum invariant from the transformations under

the sub group SU(3)V

[Qa
V , φ

b(x)] = ifabcφc(x) . (7.53)

On the other hand, it is interesting to note the scalar and pseudo-scalar quark densities

Sa(x) = ψ̄(x)λaψ(x) ,

Pa(x) = iψ̄γ5λaψ(x) , (7.54)

have important commutation properties with the vector charge (octet) at equal-time,

Qa
V (t) =

∫
d3x ψ†(~x, t)

λa
2
ψ(~x, t) (7.55)

namely [82],

[Qa
V (t), A0(x)] = 0 , a = {1, .., 8} (7.56)

and,

[Qa
V (t), Ab(x)] = i

8∑
c=1

fabcAc(x) , a, b = {1, .., 8} (7.57)

where A0 = {S0, P0} and Aa = {Sa, Pa} with a = {1, .., 8}. Here, one has to use the

properties
[
λa
2
, γ0λ0

]
= 0 and

[
λa
2
, γ0λb

]
= γ0ifabcλc. Therefore, one can re-write the

octet components of scalar and pseudo-scalar quantities,

Aa(x) = − i
3

8∑
b,c=1

fabc
[
Qb
V (t), Ac(x)

]
, (7.58)

to observe that it has vanishing matrix elements with the ground state, in the chi-

ral limit. Because in the chiral limit, the ground state is invariant under SU(3)V
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transformations, i.e Qa
V |0〉 = 0 leads to the condition,

〈0|Aa(x)|0〉 translation invariance−−−−−−−−−−−−→ 〈0|Aa(0)|0〉 ≡ 〈Aa〉 = 0 , a = {1, .., 8}. (7.59)

which leads one to obtain that the octet scalar quark condensate must vanish,

a = 3 → 〈ūu〉 − 〈d̄d〉 = 0 ,

a = 8 → 〈ūu〉+ 〈d̄d〉 − 2〈s̄s〉 = 0 , (7.60)

i.e. 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉. But according to Eq. (7.56), the singlet scalar quark

condensate is assumed to be non-vanishing.

〈ψ̄ψ〉 = 〈ūu+ d̄d+ s̄s〉 = 3〈ūu〉 = 3〈d̄d〉 = 3〈s̄s〉 6= 0. (7.61)

Therefore using the property (i)2
[
γ5

λa
2
, γ0γ5λa

]
= λ2

aγ0, one can obtain,

i[Qa
A(t), Pa(x)] =


ūu+ d̄d , a = 1, 2, 3
ūu+ s̄s , a = 4, 5
d̄d+ s̄s , a = 6, 7

1
3

(
ūu+ d̄d+ s̄s

)
, a = 8

. (7.62)

Applying the Eq. (7.62) for the ground state which is invariant under SU(3)V

with including the assumption of non-vanishing singlet scalar quark condensate, one

obtains

〈0|i[Qa
A(t), Pa(x)]|0〉 =

2

3
〈ψ̄ψ〉 a = {1, .., 8} (7.63)

with the use of translational invariance property. Inserting a complete set of states

into the Eq. (7.63) yields that both pseudo-scalar density Pa(x) and axial charge

operator Qa
A have non-vanishing matrix elements between vacuum and massless one

particle states [82]. Because of the Lorentz covariance, the matrix element of Qa
A

between the vacuum and the massless Goldstone boson states can be written as,

〈0|Aaµ(0)|φb〉 = ipµF0δ
ab (7.64)
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where F0 (≈ 93MeV) is the “decay constant ” of Goldstone bosons in the chiral

limit with momentum pµ. The assumption Qa
A|0〉 requires a non-zero value for F0 is

necessary and sufficient condition for spontaneous symmetry breaking.

7.4.1 Construction of the effective Lagrangian

The standard application of effective field theory procedure to QCD which leads to

Chiral perturbation theory (ChPT) is to start with the generating functional of vector

currents, axial vector currents, scalar and pseudoscalar densities in the form [84,88]

eiZ[v,a,s,p,θ] = 〈0out|0in〉 =

∫
DΦ ei

∫
d4x L[v,a,s,p,θ] . (7.65)

The Lagrangian in the presence of external fields reads:

L[v, a, s, p, θ] = L0
QCD + ψ̄γµ(vµ + γ5a

µ)ψ − ψ̄(s− iγ5p)ψ −
1

16π2
θGaµ,νGµ,νa ,

where, s = M quark mass matrix from Eq. (7.30). Note that, in the absence of

anomalies (or θ = 0), the Ward identities satisfied by the Green functions are equiv-

alent to an invariance of the generating functional under a local transformation of

external fields [89]. Thus the last term in the Lagrangian is neglected (or θ = 0)

through-out this work.

The reconstruction of the effective version of this generating functional in Eq. (7.65)

requires the transformation properties of the Goldstone bosons, which will replace the

quarks and gluons as the low-energy degrees of freedom. Conventionally, these Gold-

stone bosons are uniquely identified by 3×3, unitary and uni-modular matrix-valued

field,

U(x) = exp

(
i

F0

φa(x)λa

)
, U(x)U(x)† = 1 , det U(x) = 1 (7.66)
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which transforms non-linearly under chiral transformations;

U(x)→ RU(x)L† , (7.67)

where φa are Goldstone boson fields, F0 is a free parameter in the theory (related to

meson-decay constant), and λa are Gell-Mann matrices. Because the chiral SU(Nf )L×

SU(Nf )R symmetry is spontaneously broken by the emergence of massless Goldstone

bosons, the Lagrangian has to be written in terms of the generators of the broken

SU(Nf )L × SU(Nf )R symmetry [80, 81]. For the case of Nf = 2, the generators are

Pauli matrices and for the case of Nf = 3 they are Gell-Mann matrices. Therefore,

the Goldstone boson fields can be written as a matrix valued function φ which is a

product of generators and combinations of coefficients which can be identified with

the physical mesons,

φ = φa(x)λa =
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (7.68)

Also, the covariant derivative was introduced,

DµU = ∂µU − i[vµ, U ]− i{aµ, U} (7.69)

because the chiral invariance only permits the occurrence of vector and axial vector

sources in the covariant derivatives and field strength tensors in order to preserve

the correct transformation properties of the effective Lagrangian under the chiral

symmetry group (here, U represents the U(x)). Therefore, the most general “chiral”

effective Lagrangian can be written as [90],

Leff = Leff

(
U, ∂U, ∂2U, ...

)
(7.70)
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in terms of the Goldstone boson fields. The most important fact is, this effective

Lagrangian has the same symmetries as in QCD : C,P, T , Lorentz invariance and

chiral SU(3)L×SU(3)R symmetry. This chiral Lagrangian can be expanded in “chiral

powers ” (number of derivatives acting on Goldstone boson fields), and the chiral

power counting of the Lagrangian,

Leff = L(0)
eff + L(2)

eff + L(4)
eff + · · · (7.71)

contains only “even ” powers, because the Lorentz invariance permits terms with only

even number of derivatives.

7.4.2 The lowest-order effective Lagrangian

At zeroth chiral order the chiral SU(3)L × SU(3)R invariance implies that, L(0)
eff

can only be a function of UU † = 1, contributing to a constant term in the effective

Lagrangian which can be dropped.

At second order, there are two possible chiral invariant terms with two derivatives;

〈∂µU †∂µU〉 and 〈U †∂µ∂µU〉, where 〈· · · 〉 is the trace in flavor space. These can be

reduced to a single term because [82],

〈U †∂µ∂µU〉 = ∂µ〈∂µU †U〉 − 〈∂µU †∂µU〉 , 〈∂µU †U〉 = 0 . (7.72)

Therefore L(2)
eff is,

L(2)
eff = c1〈∂µU †∂µU〉 (7.73)
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where the coupling constant c1 is identified as a Low Energy Constant (LEC). It can

be fixed to F 2
0 /4 by expanding the Goldstone boson fields U ,

U = 1 +
i

F0

φ− 1

2F 2
0

φ2 +O
(
φ3
)
, (7.74)

with the trace property 〈λaλb〉 = 2δab. This results in the standard kinetic term of

the Lagrangian,

L(2)
eff =

1

2
∂µφ

a∂µφa +O
(
φ4
)
. (7.75)

Because the terms of zeroth chiral order have been dropped, the second chiral order

is effectively the leading (lowest) order (LO) Lagrangian,

L(2)
eff =

F 2
0

4
〈∂µU †∂µU〉 . (7.76)

Therefore at the leading-chiral-order, F0 is the only LEC appears in L(2)
eff (in the

chiral limit). The interpretation of this F0 can be directly visualized by considering the

Noether axial current (Jµ,aA ) of chiral symmetry for L(2)
eff . One can obtain the Jµ,aL and

Jµ,aR by using the variation δL(2)
eff under the chiral SU(3)L × SU(3)R transformations,

L = exp

(
−iΘa

L

λa
2

)
, R = exp

(
−iΘa

R

λa
2

)
, (7.77)

by using the property,

Jµ,aL/R =
∂
(
δL(2)

eff

)
∂∂µΘa

L/R

. (7.78)

Then, the linear combinations of Jµ,aL and Jµ,aR yield [82],

Jµ,aV = Jµ,aR + Jµ,aL = −iF
2
0

4
〈λa[U, ∂µU †]〉 , (7.79)

Jµ,aA = Jµ,aR − Jµ,aL = −iF
2
0

4
〈λa{U, ∂µU †}〉 . (7.80)
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Applying the expanded form of U matrices gives,

Jµ,aA = −iF
2
0

4

〈
λa

{
1 + · · · ,−iλb∂

µφb
F0

+ · · ·
}〉

= −F0∂
µφa (7.81)

which reveals that the non-vanishing matrix element when Jµ,aA (x) between the vac-

uum and a Goldstone boson state,

〈0|Jµ,aA (x)|φb(p)〉 = 〈0| − F0∂
µφa(x)|φb(p)〉 = −F0∂

µe−ip.xδab

= ipµF0e
−ip.xδab (7.82)

leads to interpret F0 as the Goldstone boson decay constant in the chiral limit.

7.4.3 Explicit symmetry breaking due to quark mass

The discussion up to this point assumed the chiral limit (mu = md = ms =

0) where the chiral symmetry is exact, therefore L(2)
eff doesn’t contain a mass term,

and describes the dynamics of the massless Goldstone bosons. In nature, the quark

masses are non-zero (but small), which leads to an explicit chiral symmetry breaking.

Therefore, one has to introduce a symmetry breaking term to the existing L(2)
eff in

order to account for the explicit symmetry breaking. Consider the mass term LM
(see Eq. (7.31) ) in the QCD Lagrangian, which breaks the chiral symmetry,

LM = −ψ̄Mψ = −
(
ψ̄RMψL + ψ̄LM†ψR

)
. (7.83)

It is important to notice that the M transform as,

M→M′ = LMR† (7.84)
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under the chiral transformations and leaves LM invariant. Therefore, one can intro-

duce an external scalar field (s) in the effective Lagrangian L(2)
eff which transforms

as,

s→ LsR† (7.85)

under chiral transformations which leave the L(2)
eff invariant. Therefore at leading

chiral order (O (p2)) the L(2)
eff gets the form,

L(2)
eff =

F 2
0

4
〈∂µU †∂µU〉+

F 2
0

2
B0〈sU † + s†U〉

=
F 2

0

4
〈∂µU †∂µU〉+

F 2
0

2
B0〈M

(
U † + U

)
〉 (7.86)

where, s = M = M†, and B0 is an additional constant associated with the ex-

plicit chiral symmetry breaking. Let’s consider expanding the second term of L(2)
eff in

Eq. (7.86), which can be labeled as L(2)
eff-sb (sb - symmetry breaking),

L(2)
eff-sb =

F 2
0

2
B0〈M

(
U † + U

)
〉 = B0F

2
0 (mu +md +ms)−

1

2
B0〈Mφ2〉+O

(
φ4
)
.

The first term of L(2)
eff-sb is related to the vacuum expectation values of the scalar

quark densities [90],

〈0|q̄q|0〉 = 〈0|∂HQCD

∂mq

|0〉 = −〈0|∂L
(2)
eff

∂mq

|0〉 = −B0F
2
0 +O (mq) , (7.87)

which yields,

〈0|ūu|0〉 = 〈0|d̄d|0〉 = 〈0|s̄s|0〉 = −B0F
2
0 (7.88)

at the leading oder, where the quark condensates are degenerate in the chiral limit.

The second term of L(2)
eff-sb can be expanded using Eq. (7.68),
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−B0

2
〈Mφ2〉 = −B0 (mu +md) π

+π− −B0 (mu +ms)K
+K− −B0 (md +ms)K

0K̄0

−B0

2
(mu +md) π

0π0 − B0√
3

(mu −md) π
0η − B

2

(
mu +md +ms

3

)
η2 ,

(7.89)

therefore one can write down the expression for the Goldstone bosons, to the lowest

order in the quark masses,

M2
π = 2B0m̂

M2
K = B0(m̂+ms)

M2
η =

2

3
B0(m̂+ 2ms) (7.90)

where m̂ =
(
mu+md

2

)
, and neglecting the π0-η mixing since it has smaller effects which

will vanish in the iso-spin limit (mu = md). These expressions for the Goldstone boson

(GB) masses in Eq. (7.90) comparing with the Gell-Mann-Oakes-Renner relation [91],

M2
π = (mu +md)

∣∣∣∣〈0|ūu|0〉F 2
0

∣∣∣∣+O
(
m̂2
)

(7.91)

infer that the s = O (p2) since the mass of Goldstone boson ≈ B0mq. Moreover, the

Eq. (7.90) can be used to deduce the Gell-Mann-Okubo mass formula for mesons,

3M2
η = 4M2

K −M2
π (7.92)

in the iso-spin limit. Another important thing to notice is that the absolute values

of the quark masses cannot be extracted since they depend on the QCD renormal-

ization scale, but the quark mass ratios are independent of the scale. Therefore,

extracting the light quark mass ratios from phenomenology is one important goal of

chiral perturbation theory,
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M2
K

M2
π

=
m̂+ms

2m̂

M2
η

M2
π

=
m̂+ 2ms

3m̂
(7.93)

Following the convention introduced by Gasser and Leutwyler, scalar and pseudo-

scalar (see Eq. (7.35)) are combined linearly to define,

χ = 2B0 (s+ ip) , (7.94)

where, B0 is the QCD order parameter in Eq. (7.88),and χ is of O (p2). Although,

in principle 〈χU † ± Uχ†〉 provide Lorentz invariant quantities, but the term with

minus sign has the wrong behavior under parity. Therefore, the most general, locally

invariant lowest order “chiral” effective Lagrangian reads [82]:

L(2)
eff =

F 2
0

4
〈∂µU †∂µU〉+

F 2
0

4
〈χU † + Uχ†〉 . (7.95)

7.4.4 Higher order effective Lagrangians

So far, the construction of the leading/lowest order O (p2) chiral Lagrangian L(2)
eff

has been outlined. The importance of higher order terms L(4)
eff ,L

(6)
eff , · · · comes into

account in order to make higher precision predictions in the perturbative chiral ex-

pansion. Note that the Goldstone boson momenta (associated with the derivative

terms of Goldstone boson fields) are of O (p), and quark masses are of O (p2) estab-

lish the chiral power counting of tree level interaction terms at each chiral order. In

addition to the tree-level power counting, one needs a proper power counting scheme

for loop diagrams when the calculation incorporates with higher chiral orders. For

example, at next-to-leading-order (NLO) in chiral expansion, in addition to the tree

level terms of L(4)
eff , one needs the tree level terms from L(2)

eff and the loop diagrams
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with the vertices from L(2)
eff .

Weinberg introduced a scheme1 [9] to determine the chiral dimension D in order

to facilitate the power counting of diagrams. If NL is the number of loops, and Nn is

the number of vertices formed from interactions with n derivatives, then

D = 2 + 2NL +
∑
n

Nn(n− 2) (7.96)

represents the correlation betweenD,NL andNn, where n = {2, 4, 6, ...(even numbers)}

(more details on the derivation of this formula can be found in references [9, 82]).

Let’s consider ππ scattering process to understand the behavior of this formula in

Eq. (7.96).

• At lowest chiral order O (p2) : D = 2 → Nn = 0 → only tree level graphs

contribute.

• At O (p4) there are two possibilities with D = 4→ NL +N4 = 1 :

(i) One-loop graphs composed only of lowest-order L(2)
eff vertices (N4 = 0, NL =

1)

(ii) Tree-graphs with only L(4)
eff vertices (N4 = 1, NL = 0)

• At O (p6) there are four possibilities with D = 6→ NL +N4 + 2N6 = 2 :

(i) Tree-graphs with only L(6)
eff vertices (NL = 0, N4 = 0, N6 = 1)

(ii) Tree-graphs with two L(4)
eff vertices (NL = 0, N4 = 2, N6 = 0)

(iii) Graphs composed of one tree-level L(4)
eff vertex with one-loop with L(2)

eff

vertices (NL = 1, N4 = 1, N6 = 0)

(iv) Graphs composed of two-loops with L(2)
eff vertices (NL = 2, N4 = 0, N6 = 0)

1A linear rescaling of external momenta and quadratic rescaling of quark masses.



140

7.4.5 The chiral effective Lagrangian at order O
(
p4
)

The most general chiral Lagrangian at O (p4) has been constructed by Gasser and

Leutwyler in [88] by considering the procedure of respecting the relevant symmetries

of QCD, and letting the one-loop divergence to be absorbed into the low energy

constants (LECs) by an appropriate renormalization. The result is,

L(4)
eff = L1〈DµU

†DµU〉2 + L2〈DµU
†DνU〉〈DµU †DνU〉+ L3〈DµU

†DµUDνU
†DνU〉

+L4〈DµU
†DµU〉〈χU † + Uχ†〉+ L5

〈
DµU

†DµU
(
χ†U + U †χ

)〉
+L6〈χU † + Uχ†〉2 + L7〈χU † − Uχ†〉2 + L8〈χU †χU † + Uχ†Uχ†〉
−iL9

〈
FR
µνDµU

†DνU + FL
µνDµUDνU

†〉+ L10

〈
U †FR

µνUF
µν
L

〉
+H1

〈
FR
µνF

µν
R + FL

µνF
µν
L

〉
+H2

〈
χ†χ
〉

(7.97)

with the renormalized LECs Lri and Hr
i defined as,

Li = Lri + ΓiR , i = 1, · · · , 10 , (7.98)

Hi = Hr
i + ∆iR , i = 1, 2 (7.99)

R =
µd−4

(4π)2

{
1

d− 4
− 1

2
(ln(4π) + γE + 1)

}
(7.100)

where the renormalized LECs Lri (empirical values) at the scale µ = mρ, and Γi values

are given in the Table (7.1).
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Table 7.1. Renormalized LECs Lri (empirical values) at the scale µ = mρ [82].

i Empirical value (Lri ) Γi

1 0.4±0.3 3
32

2 1.35±0.3 3
16

3 -3.5±1.1 0

4 -0.3±0.5 1
8

5 1.4±0.5 3
8

6 -0.2±0.3 11
144

7 -0.4±0.2 0

8 0.9±0.3 5
48

9 6.9±0.7 1
4

10 -5.5±0.7 −1
4

In Eq. (7.97) the term χ = 2B0 (s+ ip) contains the scalar and pseudo-scalar

sources, whereas the vector and axial-vector currents enter through,

F µν
R = ∂µrν + ∂νrµ − i[rµ, rν ]
F µν
L = ∂µlν + ∂νlµ − i[lµ, lν ] (7.101)

where rµ = vµ + aµ and lµ = vµ − aµ. Considering the individual terms of L(4)
eff

in Eq. (7.97) one can identify their interaction structure. For example, L1−3 terms

contain four derivatives, L4,5 contain two derivatives and one quark mass term, L6−8

contain squared quark mass terms, and L9,10 contribute to observables with external

vector and axial vector sources.

7.4.6 Application : Goldstone boson masses to O
(
p4
)

As an example for a higher order calculation, one can consider calculating the

meson mass at O (p4). At this order, the loop diagrams with L(2)
eff vertices, and contact

diagrams with L(4)
eff contribute to so called “self-energy”. The necessary diagrams are
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shown in Fig. (7.1) (free propagator, tad-pole, tree levelO (p4)). Therefore, expanding

the U fields in L(2)
eff yields,

L(2)
eff =

F 2
0

4
〈∂µU †∂µU〉+

F 2
0

2
B0〈M

(
U † + U

)
〉

=
1

4
〈∂µφ∂µφ〉 −

B0

2
〈Mφ2〉+

1

48F 2
0

〈[∂µφ, φ][∂µφ, φ]〉+
B0

24F 2
0

〈Mφ4〉+ · · · .

(7.102)

= + + +...

Figure 7.1. Unrenormalized meson propagator (light-gray color) as a sum of irre-
ducible self-energy diagrams (dark-gray color).

The 3rd term of Eq. (7.102) result in either p2 or M2
GB depending on whether the φ or

the ∂µφ are contracted, and the 4th term does not generate a momentum dependence.

In order to determine the masses, one needs to calculate the self-energies Σ(p2) of

the Goldstone bosons. The propagator of a scalar/ pseudo-scalar fields is defined as,

i∆(p) =

∫
d4x e−ip.x〈0|T [φ0(x)φ0(0)]|0〉

=
i

p2 −M2
0 + iε

, (7.103)

where φ0 are un-renormalized bare Goldstone boson fields, and M0 (lowest order

masses) are given in Eq. (7.90) with assuming iso-spin symmetry mu = md = m,

M2
π,0 = 2B0m ,

M2
K,0 = B0(m+ms) ,

M2
η,0 =

2

3
B0(m+ 2ms) . (7.104)

The loop diagrams with L(2)
eff and the contact diagrams with L(4)

eff result in so called

proper self-energy insertions −iΣ(p2) [82], which may represent a sum of a series of

diagrams as in Fig. (7.1). Thus the propagator becomes,
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i∆(p) =
i

p2 −M2
0 + iε

+
i

p2 −M2
0 + iε

[
−Σ(p2)

] i

p2 −M2
0 + iε

+ · · ·

=
i

p2 −M2
0 − Σ(p2) + iε

. (7.105)

Assuming that the Σ(p2) is expanded around p2 = λ2,

Σ(p2) = Σ(λ2) + (p2 − λ2)Σ′(λ2) + Σ̃(p2) , (7.106)

then at λ2 = M2 the propagator can be re-written as,

i∆(p) =
iZφ

p2 −M2 − ZφΣ̃(p2) + iε
(7.107)

where,

Zφ =
1

1− Σ′(M2)
(7.108)

is the wave function renormalization constant. With the renormalized fields φR =

φ0/
√
Zφ, the physical mass M can be identified as the pole position of the renormal-

ized propagator,

M2 = M2
0 + Σ(M2) . (7.109)

The calculation of the one-loop (tad-pole) diagram involves the loop-integration,

I(M2, µ) = µ4−d
∫

ddk

(2π)d
i

k2 −M2 + iε
. (7.110)

This loop integral is quadratically ultraviolet divergent. Therefore, a regularization

scheme is necessary which maintains the symmetries of the theory, in particular chi-

ral symmetry. “Dimensional regularization” provides a convenient mass-independent

regularization scheme, which also preserves the symmetries. Therefore according the

dimensional regularization method, the integration yields,
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I(M2, µ) = µ4−d
∫

ddk

(2π)d
i

k2 −M2 + iε

=
M2

(4π)d/2

(
M

µ

)d−4

Γ

(
1− d

2

)
(7.111)

for arbitrary space-time dimension d. Expanding this result in 4− d gives,

I(M2, µ) = M2

{
2R +

1

(4π)2
ln

(
M2

µ2

)}
+O (d− 4) , (7.112)

where R absorbs the ultraviolet divergence and the scale dependence in order to

renormalize the LECs of L(4)
eff , as given in Eq. (7.98). The LECs L9, L10, H1, and H2

does not contribute since this calculation is done assuming there are no external

fields. Also, L1, L2, L3 does not contribute since they are of O (φ4). Therefore, only

the L4, L5, L6, and L8 terms contribute. Therefore the tree level contributions with

either two derivatives or no derivatives can be generalized as [82],

L(4)
eff(2φ) =

1

2

(
aπ∂µπ

0∂µπ0 − bππ0π0
)

+ aπ∂µπ
+∂µπ− − bππ+π− + aK∂µK

+∂µK−

−bKK+K− + aK∂µK
0∂µK̄0 − bKK0K̄0 +

1

2
(aη∂µη∂

µη − bηηη)

(7.113)

where, the constants aφ and bφ (φ = {π,K, η}) can be given by,

aπ =
16B0

F 2
0

[(2m+ms)L4 +mL5] ,

bπ =
64B2

0

F 2
0

[
(2m+ms)mL6 +m2L8

]
,

aK =
16B0

F 2
0

[
(2m+ms)L4 +

1

2
(m+ms)L5

]
,

bK =
32B2

0

F 2
0

[
(2m+ms)(m+ms)L6 +

1

2
(m+ms)

2 L8

]
,

aη =
16B0

F 2
0

[
(2m+ms)L4 +

1

3
(m+ 2ms)L5

]
,

bη =
64B2

0

3F 2
0

[
(2m+ms)(m+ 2ms)L6 + 2(m−ms)

2L7 + (m2 + 2m2
s)L8

]
.

(7.114)
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At O (p4) the self-energy for a given Goldstone boson has the form,

Σφ(p2) = Aφp
2 +Bφ . (7.115)

where, the constants Aφ, Bφ contains the tree-level contribution from L(4)
eff and one-

loop (tad pole) contribution with a vertex from L(2)
eff (see Figure Kubis fig 5). In

addition to the loop integral in Eq. (7.111), one needs

µ4−di

∫
ddk

(2π)d
k2

k2 −M2 + iε
= M2I(M2, µ) (7.116)

because of there are vertex contributions from of L(2)
eff proportional to two derivatives.

It is equal to M2I(M2, µ) since µ4−d ∫ ddk
(2π)d

= 0 in dimensional regularization.

After analyzing all possible loop contributions for the case of SU(3)flavor, the

constants Aφ and Bφ can be given in terms of the LECs of L(2)
eff and L(4)

eff as in Ref. [82],

Aπ =
1

3F 2
0

{
2 I(M2

π , µ) + I(M2
K , µ)− 48B0 [(2m+ms)L4 +mL5]

}
,

Bπ =
M2

π

F 2
0

{
−1

6
I(M2

π , µ)− 1

6
I(M2

η , µ)− 1

3
I(M2

K , µ)

}
,

AK =
1

4F 2
0

{
I(M2

π , µ) + I(M2
η , µ)− 2 I(M2

K , µ)

−64B0

[
(2m+ms)L4 +

1

2
(m+ms)L5

]}
,

BK =
M2

π

F 2
0

{
1

12
I(M2

η , µ)− 1

4
I(M2

π , µ)− 1

2
I(M2

K , µ)

+32B0

[
(2m+ms)L6 +

1

2
(m+ms)L8

]}
,

Aη =
1

F 2
0

{
I(M2

K , µ)− 8B0

[
2(2m+ms)L4 +M2

ηL5

]}
,

Bη =
1

6F 2
0

{
(M2

π − 4M2
η )I(M2

η , µ) +M2
π

(
2 I(M2

K , µ)− 3 I(M2
π , µ)

)
+

8M2
η

3

(
M2

ηL8 + 2(2m+ms)B0L6

)
+

64

27
B2

0(m−ms)
2(3L7 + L8)

}
,

(7.117)
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Since the integrals I(M2
φ, µ) as well as the bare LECs contain 1/(d − 4) poles

(divergent when d→ 4), then the cancellations between those ultraviolet divergences

(infinities) result in leaving only the finite pieces with the renormalized LECs. Ac-

cording to the equations Eq. (7.109) & Eq. (7.115), the masses of a Goldstone boson

at O (p4) can be written as,

M2
φ = M2

φ,0 + AφM
2
φ +Bφ

=
M2

φ,0 +Bφ

1− Aφ
= M2

φ,0(1 + Aφ) +Bφ +O
(
p6
)

(7.118)

where M2
φ,0 denotes the lowest order squared mass of Goldstone boson φ = {π,K, η}

given in Eq. (7.104), and note that Aφ = O (p4) and {Bφ,M
2
φ,0} = O (p2).

Therefore the finite Goldstone masses at O (p4) can be written as in Ref. [82],

M2
π,4 = M2

π,2

{
1 +

M2
π,2

32π2F 2
0

ln

(
M2

π,2

µ2

)
− M2

η,2

96π2F 2
0

ln

(
M2

η,2

µ2

)
16

F 2
0

[(2m+ms)B0 (2Lr6 − Lr4) +mB0 (2Lr8 − Lr5)]

}
,

M2
K,4 = M2

K,2

{
1 +

M2
η,2

48π2F 2
0

ln

(
M2

η,2

µ2

)
16

F 2
0

[
(2m+ms)B0 (2Lr6 − Lr4) +

1

2
(m+ms)B0 (2Lr8 − Lr5)

]}
,

M2
η,4 = M2

η,2

{
1 +

M2
K,2

16π2F 2
0

ln

(
M2

K,2

µ2

)
− M2

η,2

24π2F 2
0

ln

(
M2

η,2

µ2

)
8

F 2
0

[
2(2m+ms)B0 (2Lr6 − Lr4) +M2

η,2 (2Lr8 − Lr5)
]}

+M2
π,2

{
M2

η,2

96π2F 2
0

ln

(
M2

η,2

µ2

)
+

M2
K,2

48π2F 2
0

ln

(
M2

K,2

µ2

)
− M2

π,2

32π2F 2
0

ln

(
M2

π,2

µ2

)}
+

128

9F 2
0

B2
0(m−ms)

2 (3Lr7 − Lr8) , (7.119)

where the subscript 2 and 4 of M2
φ,2 and M2

φ,4 respectively indicate their chiral order.

Notice that the O (p4) Goldstone masses vanish in the chiral limit, which was also
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expected from QCD in the chiral limit. Also note that the finite pieces of M2
φ,4 contain

terms which are,

• analytic in quark masses (∼ m2
qL

r
i ) which are proportional to Lri ,

• non-analytic in quark masses (∼ m2
q ln(m2

q)), which are so called “chiral loga-

rithms ” .

Moreover, one can deduce that the scale dependence of the LECs and the finite part

of the loop integrals compensate each other, such that the squared Goldstone boson

masses are scale independent.

7.5 Baryon Chiral Perturbation Theory

The previous sub-section was dedicated to the meson sector involving the interac-

tions of Goldstone bosons. Therefore, this sub-section basically concentrates on the

interactions of baryons with each other and with Goldstone bosons and other exter-

nal fields. In particular, the interest is calculating matrix elements associated with

a single baryon in the initial and final states, which can be used to describe static

properties of baryons such as masses, magnetic moments, form-factors, and also low

energy processes such as pion-nucleon scattering, Compton scattering, etc.

The time ordered baryon matrix elements of the quark currents are generated by

the baryon-to-baryon transition amplitude in the presence of external fields [82,85,92],

F(~p′, ~p, v, a, s, p) = 〈~p′out|~pin〉connected
a,v,s,p ~p′ 6= ~p (7.120)

determined by the Lagrangian of Eq. (7.66),

L[v, a, s, p] = L0
QCD + ψ̄γµ(vµ + γ5a

µ)ψ − ψ̄(s− iγ5p)ψ (7.121)
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in the presence of external fields, and in the absence of anomalies. The states |~pin〉

(|~p′outn〉) specify the incoming (outgoing) baryon state with momentum p (p′). The

functional F contains only the connected diagrams. The first step is constructing an

effective Lagrangian for the interacting fields by specifying its transformation proper-

ties. In the case of meson-baryon interactions, one can directly recall the transforma-

tion properties of the Goldstone bosons fields U which were discussed in the previous

subsection. It turns out it is more convenient to consider the square root of U -fields

by defining,

u2(x) = U(x) . (7.122)

Since in general, U -field transforms under SU(Nf )R × SU(Nf )L as U → LUR†, thus

the u-field has to transform as,

u→ u′ =
√
LUR† ≡ Luh−1(L,R, U) = h(L,R, U)uL−1 (7.123)

where, h(L,R, U) ∈ SU(Nf ) is the so-called compensator field which depends in a

non-trivial way on L,R, and U ,

h(L,R, U) = u′−1Lu =
√
LUR†

−1
L
√
U . (7.124)

Since a general feature of transformation behavior under the sub-group SU(Nf )V

leaves the ground state invariant, and independent of U , leads to have L = R = V ,

such that u′ = V uV †. Therefore one can observe,

h−1(V, V, U) = V † or h(V, V, U) = V . (7.125)

This linear transformation property under the sub-group SU(Nf )V of SU(Nf )L ×

SU(Nf )R can be directly used for the baryon fields.
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Therefore, for the particular case Nf = 3, let’s consider a matrix valued field B

which contains the ground state octet baryons where each element is associated with

a space-time (x) dependent, complex, four-component Dirac field:

B =
8∑

a=1

λaBa =


1√
2
Σ0 + 1√

6
Λ Σ+ P

Σ− − 1√
2
Σ0 + 1√

6
Λ N

Ξ− Ξ0 − 2√
6
Λ

 . (7.126)

where the matrix B is traceless but not real (Hermitian), i.e., B 6= B†, and transforms

non-linearly under SU(3)L × SU(3)R as,

B → B′ = h(L,R, U)B h−1(L,R, U) . (7.127)

Since the chiral symmetry constrains the baryon Green functions generated by the

functional in Eq. (7.120) to satisfy the chiral ward identities, then the corresponding

most general Lagrangian has to preserve the invariance under local chiral transfor-

mations, in the presence of external fields. Therefore, the covariant derivative has to

be introduced in order to preserve the local SU(3)L × SU(3)R × U(1)V symmetry,

Dµ = ∂µ + Γµ (7.128)

with the chiral connection Γµ (transforms as a 4-vector under parity),

Γµ =
1

2

[
u† (∂µ − irµ)u+ u (∂µ − ilµ)u†

]
, (7.129)

which transforms as,

Γµ → Γ′µ = hΓµh
† − (∂µh)h† , (7.130)

such that the covariant derivative satisfies the expected transformation behavior:

DµB(x)→ hDµB . (7.131)
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The other building block is called the “chiral vielbein” uµ (transforms as an axial-

vector under parity), which is Hermitian ,

uµ = i
[
u† (∂µ − irµ)u− u (∂µ − ilµ)u†

]
, (7.132)

and transforms as uµ → huµh
† under chiral transformations. Then, the scalar,

pseudo-scalar sources can be introduced by χ± using the χ defined in Eq. (7.94),

χ± = u†χu† ± uχ†u , (7.133)

which has χ± → hχ±h† transformation behavior under the SU(3)L×SU(3)R×U(1)V

symmetry.

7.5.1 The leading order meson-baryon chiral Lagrangian

In the meson ChPT, meson-chiral Lagrangians contain even powers of momenta

due to the Lorentz invariance. Also the power counting of the covariant derivative

and external fields acting on meson fields remains the same as in meson ChPT. There-

fore, starting with the baryon fields consist of two light quark flavors, one can notice

that the nucleon mass does not vanish in the chiral limit, also the partial deriva-

tive ∂µ acting on nucleon fields produce “large” momentum for the time-component

and a “small” quantity ∼ O (Mπ) for the spatial component (3-momentum). This

requires the chiral power counting for the baryonic sector has to be specified carefully.

In order to summarize the chiral counting scheme, one can simply consider the

counting of bilinears Ψ̄ΓΨ, where Ψ denotes the nucleon state. Considering the
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positive energy solution to the Dirac equation [82],

Ψ(+)(~x, t) = e−ip
µ
Nxµ
√
EN +mN

 χ∗

~σ.~pN
EN+mN

χ∗ ,

 (7.134)

where χ∗ is the two-component Pauli spinor and pµN = (EN , ~pN) withEN =
√
~p2
N +m2

N ,

allows at the low-energy limit
(

~σ.~pN
EN+mN

→ |~pN |
mN

)
to distinguish the matrix elements

of bilinears Γ = {γ5, γ5γ0, γi, σi0} which couples large and small components in the

nucleon state Ψ. Therefore, ∂µ acting on Ψ produces,

pµN =


(
mN ,~0

)
∼ O (p0)

(EN −mN , ~pN) ∼ O (p)

 . (7.135)

With this observation for the case of SU(2)flavor, one can summarize the chiral power

counting for baryon ChPT (BChPT) for SU(3)flavor [92] by considering the minimum

possible chiral order of the elements:

B, B̄ = O
(
p0
)
, DµB = O

(
p0
)
, (iγµDµ − m̊B)B = O (p)

{1, γµ, γγµ, σµν} = O
(
p0
)
, γ5 = O (p) , (7.136)

where m̊B denotes the mass of the octet baryon in the chiral limit. Note that, due to

the spin (Dirac structures) odd powers in momentum are possible in BChPT.

Therefore, using the building blocks discussed above, one can construct the lowest

order (O (p)) SU(3)L × SU(3)R meson-baryon chiral Lagrangian [82],

L(1)
MB = 〈B̄ (iγµDµ − m̊B)B〉 − D

2
〈Bγµγ5{uµ,B}〉 −

F

2
〈Bγµγ5[uµ,B]〉 (7.137)

where D and F are two axial-vector coupling constants which can be determined by

fitting the semi-leptonic decays of baryons B → B′ + e− + ν̄e at tree level. The m̊B

denotes the baryon mass in the chiral limit. Also, the covariant derivative of B is
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defined using the chiral connection Γµ given in Eq. (7.129) as,

DµB = ∂µB + [Γµ,B] . (7.138)

For the case of Nf = 2, this Lagrangian in Eq. (7.137) becomes,

L(1)
πN = Ψ

(
iγµDµ − m̊N +

g̊A
2
γµγ5uµ

)
Ψ , (7.139)

where g̊A is the axial-vector coupling.

7.5.2 An application at tree level : Goldberger-Treiman re-

lation

The nucleon matrix element of the pseudo-scalar density is given in Ref. [82] as,

mq〈N(p′)|Pi(0)|N(p)〉 =
M2

πFπ
M2

π − t
GπN(t)iū(p′)γ5τiu(p) (7.140)

where t = (p′ − p)2 and GπN(t) is referred to the pion-nucleon form factor. Also the

pion-nucleon coupling gπN is defined as,

gπN = GπN(t)|t=M2
π
. (7.141)

Since the Lagrangian L(1)
πN in Eq. (7.139) does not contain a direct coupling of pseudo-

scalar field Pi(x) to nucleon (i.e., does not contain terms with χ or χ†), the matrix

element of the pseudo-scalar density is therefore given by Fig. (7.2), at lowest order

in chiral expansion.
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mq qi

Figure 7.2. Lowest-order contribution to the single-nucleon matrix element of the
pseudoscalar density.

Analogous to the scalar coupling discussed in Eq. (7.86), one can write down the

coupling of pseudo-scalar field to a pion as,

Lext = i
F 2

0B0

2
〈pU † − Up〉 = 2B0F0qiφi + · · · (7.142)

where qi is the four-momentum of the pion. Also, one needs the interaction term of

a nucleon with a single pion. Expanding the vielbein of Eq. (7.132) in the absence of

external fields, and inserting it to the L(1)
πN in Eq. (7.139) gives,

Lint = − g̊A
2F0

Ψγµγ5~τ .∂µ~φΨ. (7.143)

Therefore, the Feynman rule for the pion-nucleon VπNN vertex becomes,

VπNN = − g̊A
2F0

γµqµγ5~τ . (7.144)

Using the components Lext,VπNN the expression for the diagram in Fig. (7.2) reads:

2B0F0mq

(
i

t−M2
π

)
ū(p′)

(
− g̊A

2F0

γµqµγ5~τ

)
u(p) =

M2
πF0

M2
π − t

g̊Am̊N

F0

ū(p′)γ5iτiu(p) ,
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with the aid of M2
π = 2B0mq, ūγ

µqµγ5u = 2m̊N ūγ5u, and Fπ = F0 at O (p2). Com-

paring Eq. (7.140) and Eq. (7.145),

GπN(t) =
m̊N

F0

g̊A (7.145)

which yields the “Goldberger-Treiman (GT) relation”,

gπN =
m̊N

F0

g̊A (7.146)

at the leading order in chiral expansion when t = M2
π .

7.6 Heavy Baryon Approach

In the heavy baryon chiral perturbation theory (HBChPT), the baryons are consid-

ered as heavy static fermions [31,93]. The velocity of the baryon is nearly unchanged

or effectively conserved when it exchanges a small momentum with a meson. There-

fore the baryon four-momentum can be decomposed into a large component mBv and

a small residual momentum component kµ,

pµ = mB vµ + kµ , vµvµ = 1 , v.k � mB . (7.147)

7.6.1 Power counting scheme in HBChPT

In the HBChPT, the derivative expansion for both mesons and baryons becomes an

expansion in powers of (k/Λχ), where k is a momentum of the order of the meson mass

and Λχ is the chiral symmetry breaking scale. Therefore, the higher derivative terms

in the effective theory are suppressed by powers of (k/Λχ). The baryon propagator

can be revised into

1

p2 −m2
B
→ 1

2mB

1

(v.k)
+O

(
1/m2

B
)
, (7.148)
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a version where the mass dependence can be resided in the vertices which can be or-

dered according to their power in 1/mB. The chiral dimension D for a given Feynman

diagram is given by [82],

Ddim = 4NL − 2IM − IB +
∞∑
n=1

2n NM
2n +

∞∑
n=1

n NBn , (7.149)

where, NL is the number of loops, IM is the number of internal meson lines, NM
2n is

the number of meson vertices from L2n, NBn is the number of baryon vertices from

L(n)
MB, and IB is the number of internal baryon lines. For the processes which have

single baryon in the initial and final states, the Eq. (7.149) becomes,

Ddim = 2NL + 1 +
∞∑
n=1

2(n− 1) NM
2n +

∞∑
n=1

(n− 1) NBn , (7.150)

because the total number of mesonic vertices NM can be related to IM by NL =

IM + IB−NM −NB + 1, and the total number of baryonic vertices can be written as,

NB =
∞∑
n=1

NBn = IB + 1 . (7.151)

Note that the loop contribution starts from Ddim > 3.

7.6.2 Octet baryons in HBChPT

The effective baryon fields Bv with definite velocity vµ can be related to the original

baryon fields B by ,

Bv(x) = eimB/vvµx
µB(x) , (7.152)

satisfying a modified Dirac equation [31],

i/∂Bv(x) = 0 . (7.153)
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which no longer contains the baryon mass term. Derivatives on Bv fields produce

powers of k rather than p, thus higher derivative terms in the effective theory are

suppressed by powers of k/Λχ rather than p/Λχ, where Λχ is the chiral symmetry

breaking scale. Therefore, it leads to a consistent derivative expansion.

On the other hand, the Dirac structure of the effective theory simplifies in the

heavy baryon limit. The Bv is a two component spinor which contain the particle

(positive-energy) solution and the anti-particle (negative energy) solution. This can

be projected into the particle solution, using the velocity projection operator

Pv =

(
1 + /v

2

)
, Bv = PvBv (7.154)

whereas, anti-baryon solutions are suppressed by 1/mB. Also, it is important to

introduce a special spin operators Sµv called the “Pauli-Lubanski spin vector” which

satisfies the properties

v.Sv = 0 , S2
vBv = −3

4
Bv , {Sλv , Sσv } =

1

2

(
vλvσ − gλσ

)
,

[Sλv , S
σ
v ] = iελσαβvαSvβ (7.155)

where, ε0123 = +1. These spin operators are valid in an arbitrary Lorentz frame, and

can be reduced to usual spin operators (written in terms of Pauli-matrices) for non-

relativistic spin 1/2 particles in the rest frame, vµ = (1, 0, 0, 0). Using the properties

of Eq. (7.155) one can obtain the identities given by Jenkins and Manohar in Ref. [31]

to systematically replace the Dirac structures by Sv and vµ:

B̄vγ5Bv = 0 , B̄vγµBv = vµB̄vBv , B̄vγµγ5Bv = 2B̄vSµvBv
B̄vσµνBv = 2εµναβvαB̄vSvβBv , B̄vσµνγ5Bv = 2i

(
vµB̄vSνvBv − vνB̄vSµvBv

)
,

(7.156)

where the Bv is represents the octet baryon multiplet,
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Bv =


1√
2
Σ0
v + 1√

6
Λv Σ+

v Pv
Σ−v − 1√

2
Σ0
v + 1√

6
Λv Nv

Ξ−v Ξ0
v − 2√

6
Λv

 . (7.157)

Let’s recall the meson fields U and u defined in Eq. (7.122) with the use of Eq. (7.68),

U = u2 = exp

(
i
2φaT a

F0

)
. (7.158)

where,

φ = 2φaT a =
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 . (7.159)

Under a SU(3)L × SU(3)R transformation, these Bv, u, U fields transform as,

U → LUR† , Bv → h(L,R, U)Bvh†(L,R, U) , ,

u→ Luh†(L,R, U) = h(L,R, U)uR† (7.160)

where, h(L,R, U) is recalled from the section (7.5). The most general lowest order

chiral Lagrangian for octet-baryon is [31],

Lv,8 = i〈B̄v(v.D)Bv〉+ 2D〈B̄vSµv (v.D){Aµ,Bv}〉+ 2F 〈B̄vSµv (v.D)[Aµ,Bv]〉

+
F 2

0

4
〈∂µU∂µU †〉+ a〈M

(
U + U †

)
〉 ,

(7.161)

where,

DµBv = ∂µBv + [V µ,Bv] , (7.162)

V µ =
1

2

(
u∂u† + u†∂µu

)
, Aµ =

i

2

(
u∂u† − u†∂µu

)
, (7.163)

M = diag (m,md,ms) . (7.164)

Note, the mass term mBB̄vBv is absent in the Lagrangian because of the redefinition

in Eq. (7.152).
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7.6.3 Decuplet baryons in HBChPT

The motivation for including the decuplet baryons in the effective chiral La-

grangian reflects to the pioneering work done on “chiral corrections to the baryon

axial currents” by Jenkins and Manohar in Ref. [32]. It has been shown that, the

explicit inclusion of the decuplet degree of freedom plays an important role in the

convergence of effective theories such as combined ChPT and 1/Nc expansion [36].

Therefore, in the main focus of this thesis work on one-loop corrections to baryon

masses and currents in SU(3) using the combined framework containing the explicit

inclusion of decuplet degrees of freedom. Analogous to the spin 1/2 baryon octet

fields, the decuplet fields are also treated as heavy fermion fields in the effective chi-

ral Lagrangian. In order to include the spin 3/2 decuplet, it is necessary to introduce

a field called, Rarita-Schwinger field T µabc which contains both spin 3/2 and spin 1/2

contributions. The spin 1/2 pieces are projected out using the constraint γµTµ = 0

in the rest frame, which implies :

vµTµ = 0. (7.165)

T µabc is a completely symmetric SU(3) tensor in the flavor indices “a, b, c”, and also a

color singlet. Under SU(3)L × SU(3)R T µabc transform as,

T µabc → hda h
e
b h

f
c T µdef , (7.166)

where h is the same as for octet baryons. The velocity dependent fields also can be

defined analogous to the Eq. (7.152) as,

T µv (x) = eimT /vvµx
µT µ(x) . (7.167)



159

The spin algebra for T µv can be simply obtained by replacingBv by T µv in Eq. (7.155).

The total angular momentum operator Jµv of spin 3/2 baryon is defined as [32],

(Jνv Tν)µ = SνvT µv + iεµναβvαTvβ , J2
vT µv = −15

4
T µv . (7.168)

The propagator for the Rarita-Schwinger field for a decuplet baryon contains an

additional term namely, the polarization projector P µν
v . The decuplet propagator is

then given by iP µν
v /(v.k), where P µν

v projects out the positive energy solutions to the

equation of motion Uµi . The polarization sum can be written as [32],

P µν
v =

4∑
i=1

Uµi Ūνi = (vµvν − gµν)− 4

3
Sµv S

ν
v (7.169)

and, also the identities,

v.Sv = 0 , P µν
v P λ

vν = −P µλ
v ,

P µν
v P λ

vν = 0 , P µν
v vν = P µν

v vµ = 0 , P µν
v gµν = −2 ,

P µν
v Svν = SvµP

µν
v = 0 , P µν

v Svµ = −4

3
Sνv , SvνP

µν
v = −4

3
Sµv (7.170)

are useful when computing the Feynman diagrams. The most general lowest order

chiral Lagrangian for decuplet-baryon is [32,33],

Lv,10 = −i〈T̄ µv DTvµ〉+ ∆m〈T̄ µv Tvµ〉+ C〈T̄ µv AµBv + B̄vAµT µv 〉+ 2H〈T̄ µv SvνAνTvµ〉 .
(7.171)

There are couple of important things to notice in this Lagrangian :

• The kinetic term has the opposite sign from that for the octet, because the

spinor solutions Uµ are space-like (U2 < 0).

• Because of the redefinition of T µv in Eq. (7.152), there will be no factors of

exp (i(mT −B)/vvµx
µ) from the terms which contain both decuplet and octet

fields.
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• The decuplet-octet mass splitting ∆m = mT −B has a magnitude approximately

of the order of small momentum (∼ O (meson mass)). Therefore it enters to

the theory through the decuplet propagator,

iPµνv
(k.v −∆m)

. (7.172)

7.6.4 Most general Lagrangian at lowest order

The most general Lagrangian in HBChPT consist of two main contributions

namely, the octet baryon contribution and the decuplet baryon contribution,

L(0)
v = L(0)

v,8 + L(0)
v,10

= i〈B̄v(v.D)Bv〉+ 2D〈B̄vSµv (v.D){Aµ,Bv}〉+ 2F 〈B̄vSµv (v.D)[Aµ,Bv]〉
−i〈T̄ µv DTvµ〉+ ∆m〈T̄ µv Tvµ〉+ C〈T̄ µv AµBv + B̄vAµT µv 〉+ 2H〈T̄ µv SvνAνTvµ〉

+
F 2

0

4
〈∂µU∂µU †〉 (7.173)

where the superscript (0) of L(0)
v indicates the chiral limit (mq → 0).
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CHAPTER 8

COMBINED EFFECTIVE THEORY OF THE 1/NC AND

CHIRAL EXPANSIONS

8.1 Introduction

This chapter focuses on combining the 1/Nc expansion and the Chiral expansion

in baryons with three light quark flavors. The early version of baryon ChPT by H.

Pagels [94] has evolved into several EFT’s based on different versions effective Chiral

Lagrangians [80,81,95] discussed in chapter 7. One is the relativistic version namely,

Baryon ChPT (BChPT) [85, 96] followed by the non-relativistic version based in an

expansion in the inverse baryon mass [31, 96] or Heavy Baryon ChPT (HBChPT).

And other versions are Lorentz covariant versions based on the IR regularization

scheme [97–99]. All these versions of baryon effective theories are associated with its

own low energy expansion. But the convergence of all these low energy expansions

became an important issue. This convergence problem arises with the loop contri-

butions of O (p2) and O (p3) to the physical observables. It is natural to expect a

slower convergence of an expansion that progresses in steps of O (p) as is the case for

the baryon sector, compared to the expansion that progresses in steps of O (p2) in

the Goldstone boson sector. Jenkins and Manohar [32] realized that the closeness of

mass between octet and decuplet has a key impact to the convergence. Therefore an

explicit inclusion of decuplet degrees of freedom in the theory plays an important role

of ameliorating the convergence of the one-loop contributions to certain observables

such as the π−N scattering amplitude and the axial currents and magnetic moments.

There have been since then numerous works [100–108] including spin 3/2 baryons.

The key enlightenment resulted from the study of baryons in the large Nc limit of

QCD [10]. It was shown in the previous chapters that in the large Nc limit baryons be-
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have differently than mesons [15], in particular because their masses scale like O (Nc)

and the π−baryon couplings are O
(√

Nc

)
. These properties were shown to require for

consistency, that at large Nc baryons must respect a dynamical contracted spin-flavor

symmetry SU(2Nf ), where Nf being the number of light flavors [11–14], broken by

effects ordered in powers of 1/Nc and in the quark mass differences. The inclusion

of these large Nc consistency requirements into the effective theory can be naturally

implemented through a combination of the 1/Nc expansion and HBChPT [109], which

is the framework followed in chapters 9 and 10. The study of one-loop corrections in

that framework was first carried out in Refs. [34,35,109]. In the combined theory, one

has to deal with the fact that the 1/Nc and Chiral expansions do not commute [30].

The physics behind this non-commutativity is the role of ∆ resonance which intro-

duces the small mass scale m∆ − mN mass difference of O (1/Nc). Therefore, it is

necessary to define the order of this mass splitting with respect to the low energy

expansion. A specific linking between 1/Nc and Chiral expansions has been imple-

mented when the baryon mass splitting of O (1/Nc) is considered to be O (p) in the

Chiral expansion, which is called the ξ−expansion : O (p) = 1/Nc = O (ξ). Following

the work by Cordon et. al. and [34,35,109], the theoretical framework is discussed in

detail, in particular the power counting, the renormalization, and the linked 1/Nc and

low energy expansions, along with observations that further clarify the significance of

the framework.

The determination of the quark mass dependence of the various low energy ob-

servables, such as masses, axial couplings, magnetic moments, electromagnetic polar-

izabilities, etc., are of key importance as a significant test of the effective theory, in

particular its range of validity in quark masses, as well as for the determination of its

low energy constants (LECs). Lattice QCD (LQCD) has made a significant progress

in the calculations [110–112] of baryon observables, which open new opportunities
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for further understanding the low energy effective theory of baryons. This in turn

can give insights on LQCD results, in particular an understanding on the role and

relevance of including the spin 3/2 baryons consistently with large Nc requirements.

This chapter is organized as follows. In the section 8.2, the foundation of the

effective Lagrangian with its properties are described along with the building blocks

of the combined chiral and 1/Nc expansion approach. Then section 8.3 describes the

interactions between the fields associated with the baryon effective Lagrangians up

to O (ξ3). The ξ-power counting is illustrated in the section 8.4. The section 8.5

is dedicated to the calculation of one-loop correction to the self-energy, and the last

section discusses the the one-loop corrections to the baryon currents.

8.2 Foundation of the Effective Lagrangian

The symmetries that the effective Lagrangian must respect in the chiral and large

Nc limits are Chiral SUL(Nf )⊗ SUR(Nf ) and contracted dynamical spin-flavor sym-

metry SU(2Nf ) [11–14], where Nf is the number of light quark flavors, which is

considered to be three in this work. For the case of Nf = 2 was successfully done

in Cordon et. al [36]. In the limit Nc → ∞ the spin-flavor symmetry with two

(three) quark flavors requires baryons to belong into degenerate multiplets of SU(4)

(SU(6)). At finite Nc the spin-flavor symmetry is broken by effects suppressed by

powers of 1/Nc, and the mass splittings in the GS multiplet between the states with

spin S + 1 and spin S are proportional to (S + 1)/Nc. The effects of finite Nc are

then implemented as an expansion in 1/Nc at the level of the effective Lagrangian.

Because baryon masses scale as proportional to Nc, it becomes natural to use the

framework of HBChPT [31,32], where the expansion in inverse powers of the baryon

mass becomes part of the 1/Nc expansion. The framework presented next follows
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that of Refs. [34,109].

As discussed in chapter 4, baryons in the large Nc limit must appear in multiplets

of spin-flavor SU(2Nf ), where Nf = 3 is the number of light flavors. A dynamical

contracted SU(2Nf ) symmetry results from the requirement of large Nc consistency of

baryon observables [11–14]. There are 35 generators of SU(6) and their commutation

relations can be recalled from Eq. (4.8),

[Si, T a] = 0 [T a, T b] = ifabcT c

[Si, Sj] = iεijkSk [T a, Gib] = ifabcGic

[Si, Gja] = iεijkGka [Gia, Gjb] = i
4
δijfabcT c + i

6
δabεijkSk + i

2
εijkdabcGkc .

(8.1)

The ground state baryons belong to the totally symmetric spin-flavor irreducible

representation with Nc Young boxes (see Fig (3.1)) which consist of states with

spin S = 1/2, ..., Nc/2. The dimension of the SU(3) multiplet can be written as

(p, q) =
(
2S, 1

2
(Nc − 2S)

)
, for a given spin S.

8.2.1 Building blocks of the effective Lagrangian

In HBChPT, the baryon field in general can be denoted by B with it’s well defined

spin which defines its irreducible representation in SU(3). The Goldstone bosons are

represented by u fields :

u = expiφ
aTa/Fπ (8.2)

which is already defined in the chapter 7 with its non-linear transformation,

R u h†(L,R, u) = h(L,R, u) u L† (8.3)
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where L(R) transforms in SU(3)L(SU(3)R), and “h” handles the SU(3) flavor trans-

formations. The Chiral transformations on baryon fields B can be defined as,

(L,R) : B = h(L,R, u) B . (8.4)

Although Chiral transformations do not commute with SU(6) group, but they leave

the commutation relations unchanged. The covariant derivative is defined,

DµB = ∂µB− iΓµB (8.5)

with,

Γµ =
1

2

(
u† (i∂µ + rµ)u+ u (i∂µ + lµ)u†

)
, uµ = u† (i∂µ + rµ)u− u (i∂µ + lµ)u† ,

(8.6)

where, lµ = vµ−aµ and rµ = vµ+aµ are gauge sources, and uµ is the “chiral vielbein”.

The transformation properties of all these building blocks of the covariant derivative

under chiral transformation are,

Γµ → Γ′µ = hΓµh
† − (∂µh)h† , uµ → u′µ = huµh

† . (8.7)

The scalar (s) and pseudo-scalar (p) sources can be collected by recalling the defini-

tions of χ± from Eq. (7.133), and χ from Eq. (7.94),

χ = 2B0(s+ ip) ,

χ± = u†χu† ± uχ†u ,
χ0
± = 〈χ±〉 ,

χ̃± ≡ χa±T
a, where χa± ≡

1

2
〈λaχ±〉 , (8.8)

where χ± transforms as χ± → hχ±h† under the SU(3)L×SU(3)R×U(1)V symmetry.

Also, the field-strength associated with the gauge sources can be collected as,

F µν
L = ∂µ`ν − ∂ν`µ − i[`µ, `ν ] , F µν

R = ∂µrν − ∂νrµ − i[rµ, rν ] ,
F µν
X±

= u†F µν
X u† ± uF µν

X
†u . (8.9)
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Also in general, if A is an SU(3) octet operator which can be defined as A = AaT a

where, in the fundamental irrep, one denotes:

Aa =
1

2
〈λaA〉 . (8.10)

8.2.2 Properties of the effective Lagrangian

The effective Lagrangian should contain contracted symmetry in the Nc → ∞

limit. In particular, the couplings of Goldstone Bosons to baryons will violate the

symmetry at sub-leading order in 1/Nc. The Goldstone Boson fields transform as sin-

glets under the spin-generators, octets under both SU(3) and X ia generators; which

are the generators of the contracted SU(6)c group.

The effective Lagrangian can be systematically written as a power series in the

low energy expansion or Chiral expansion, and simultaneously in 1/Nc. It is most

convenient to write the Lagrangian to be chiral invariant as this is a Noether sym-

metry of QCD. This means that each term will, through the unitary parametrization

of the Goldstone Boson fields, show different orders in 1/Nc through the powers of

1/Fπ. In addition, the low energy constants (LECs) will themselves admit an expan-

sion in powers of 1/Nc. For the HBChPT expansion the large mass of the expansion

is taken to be the spin-flavor singlet component of the baryon masses in the chiral

limit, M0 = Ncm0 (m0 can be considered here to be a LEC defined in the chiral limit

and which will have itself an expansion in 1/Nc).

In the following the effective HB chiral Lagrangian is implemented. It is con-

structed in terms of tensors involving the Goldstone Boson operators and the exter-

nal sources, and spin-flavor tensors built with products of the SU(6) generators that

have been already discussed. A scale “Λ” is introduced in order to render most of
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the LECs dimensionless. In the calculations Λ = mρ will be conveniently chosen as

the QCD scale. In order to ensure the validity of the OZI rule for the quark mass

dependency of baryon masses, the following combination of the source χ+ is defined:

χ̂+ ≡ χ̃+ +Nc χ
0
+, (8.11)

where, χ̂+ is of O (Nc), such that the non-strange baryon mass dependence on ms is

O (N0
c ). Requiring the Lagrangian to satisfy the QCD symmetries, and implementing

the dynamical symmetry constraints as discussed before, one can systematically build

the Lagrangian order by order in the chiral and 1/Nc expansions.

8.3 Interactions from the effective Lagrangians

The fields which are associated with the phenomenology are Goldstone boson

fields, Baryon fields and external sources. Therefore the complete theory consist

of two main pieces of Lagrangians: the meson Lagrangian and baryon Lagrangian.

The amplitudes of interactions between these degrees of freedom are identified as

interaction vertices, and those can be obtained up to a desired order by expanding

the Lagrangians using the tools mentioned in the section 8.2.1.

8.3.1 Meson Lagrangian

The meson fields are described using the meson Lagrangian given in Eq. (7.95) as

follows:

Lπ =
F 2
π

4
〈∂µU †∂µU〉+

F 2
π

4
〈χU † + Uχ†〉 . (8.12)
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This Lagrangian can be expanded using the definitions of Goldstone boson fields given

in Eq. (8.2), and then one can obtain the interaction vertices for vector and axial vector

currents in terms of momentum, as given in the third column of Table (8.1).

8.3.2 Baryon effective Lagrangians of O (ξ), O
(
ξ2
)

and O
(
ξ3
)

The lowest order Lagrangian is O (ξ) and, reads [109]:

L(1)
B = B†

(
iD0 + g̊Au

iaGia − CHF
Nc

~̂S2 +
c1

Λ
χ̂+

)
B , (8.13)

where g̊A is the axial coupling in the chiral and large Nc limits (it has to be rescaled

by a factor 5/6 to coincide with the usual axial coupling as defined for the nucleon,

i.e., gA = 5
6
g̊A). Here one notes an important point which will be present in other

instances as well: the baryon mass dependence on the current quark mass behaves

at O (Nc mq) (c1 is of zeroth order in Nc), and this indicates that in a strict large

Nc limit the expansion in the quark masses of certain quantities such as the baryon

masses cannot be defined due to divergent coefficients of O (Nc). This in particular

impacts the σ terms discussed later. In the present case those terms are spin-flavor

singlet.

The Lagrangian is manifestly invariant under chiral transformations, translations

and rotations (the latter also involving obviously the action of the Si generators of

SU(6)). It is not invariant under the contracted SU(6) transformations generated by

the X ia generators. At large Nc such transformations affect the leading GB-baryon

interaction contained in the covariant derivative term D0 (the Weinberg-Tomozawa

type interaction) by terms of the same oder, i.e., O (1/Nc), but since those terms

are also O (p), they are O (ξ2); the effect on the GB-baryon couplings proportional

to g̊A is O (1/Nc) with respect to the term itself; the effect on the hyperfine term

proportional to CHF is of the same order as the term itself, and finally the term pro-
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portional to c1 is obviously invariant. The construction of higher order Lagrangians

can be accomplished making use of the tools provided in Appendix B.

The interaction vertices can be obtained using the later mentioned tools, up to

any desired order in ξ. Since the focus of this work is to calculate one-loop correc-

tions to the masses and currents, one only needs the interaction vertices from the

lowest order Lagrangian. These interaction vertex types are : Derivative interactions,

vector currents and axial-vector currents. The Feynman diagrams and corresponding

expressions for each vertex is given in Table (8.1).

The O (ξ2) Lagrangian is given by:

L(2)
B = B†

((
z1

Nc

+
z2

Nc

Ŝ2 +
z3

Λ2
Nc χ

0
+

)
iD̃0 +

(
− 1

2Ncm0

+
w1

Λ

)
~D2

+

(
1

2Ncm0

− w2

Λ

)
D̃2 +

c2

Λ
χ0

+

CA
1

Nc

uiaSiT a +
CA

2

Nc

εijkuia{Sj, Gka}

+ κ0 ε
ijkF 0

+ijS
k + κ1 ε

ijkF a
+ijG

ka + ρ0F
0
−0iS

i + ρ1F
a
−0iG

ia

+
τ1

Nc

ua0G
iaDi +

τ2

N2
c

ua0S
iT aDi +

τ3

Nc

∇iu
a
0S

iT a + τ4∇iu
a
0G

ia + · · ·
)
B.

(8.14)

The terms involving D̃0 contribute to the wave function renormalization factors at

this order. Note that there are also O (ξ2) terms stemming from the 1/Nc suppressed

terms in the LECs of the lower order Lagrangian. Similar comments apply to the

higher order Lagrangians. Such terms require knowledge of the physics at Nc > 3 to

be determined, which can be studied using LQCD, see for instance [76,113].

For the O (ξ3) Lagrangian, where only those terms that contribute to baryon

masses, wave function renormalization and vector and axial currents are explicitly

displayed in Eq. (8.15).
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L(3)
B = B†

( z4

Λ2
χ̃+ iD̃0 +

z5

Λ2
[iD̃0, χ̃+] +

c3

Nc Λ3
χ̂2

+

h1

N3
c

Ŝ4 +
h2

N2
c Λ

χ̂+Ŝ
2

+
h3

NcΛ
χ0

+Ŝ
2 +

h4

Nc Λ
χa+{Si, Gia}+

CA
3

N2
c

uia{Ŝ2, Gia}+
CA

4

N2
c

uiaSiSjGja

+
DA

1

Λ2
χ0

+u
iaGia +

DA
2

Λ2
χa+u

iaSi +
DA

3 (d)

Λ2
dabcχa+u

ibGic +
DA

3 (f)

Λ2
fabcχa+u

ibGic

+ gE [Di, F+i0] + α1
i

Nc

εijkF a
+0iG

iaDk + β1
i

Nc

F a
−ijG

iaDj + · · ·
)
B (8.15)

As it will be shown later, the components of the LECs needed to subtract the UV

divergencies do consistently satisfy these constraints.

Some terms O (ξ4) are needed for subtracting UV divergencies, but they are be-

yond the order of the present calculations and can therefore systematically and con-

sistently be eliminated. For instance, one needs terms such as:

L(4)
B = B†

(
(
z6

N3
c

Ŝ4 +
z7

NcΛ2
χ0

+Ŝ
2 +

z8

NcΛ2
χa+{Si, Gia}) iD̃0 + · · ·

)
B . (8.16)

Through the calculation of the one loop corrections to the self-energies and the vector

and axial vector currents the β functions associated with several of the terms will be

determined. The β functions are defined such that the LECs are renormalized:

X = X(µ) +
1

(4π)2
βXλε , (8.17)

where X(µ) are the LECs and µ is the renormalization scale.
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Table 8.1. Vertices from the lowest order effective Lagrangians.

Baryons Baryon Meson

Derivative Interactions Currents Currents

(a)

k, a

(i)
(
−gA
Fπ

)
(iki)G

ia

(d)

q, a

vector : T aδµ0

axial-vector : gAG
iaδµi

(g)

q, a

k, b k′, c

vector : i(kµ + k′µ)fabc

(b)

k2, ck1, b

(−i)
(

1
2F 2
π

)
(ik2,0 −

ik1,0)fabcT a

(e)

q, a

k, c

vector : gA
Fπ
Gibfabcδµi

axial-vector : 1
Fπ
fabcT bδµ0

(h)

q, a

q, b

axial-vector : (−i)Fπqµδab

(c)

k3, dk1, b

k2, c

(i)
(
gA

6F 3
π

)
(ik2,i)f

cdefabeGia

(f)

q, a

k2, dk1, c

vector :(
− 1

2F 2
π

)
T bfadef ebcδµ0

axial-vector :(
− gA

2F 2
π

)
Gibfadef ebcδµi

(i)

k3, dk1, b

k2, c

q, a

(−i) 2
3Fπ

fabef cdek3,µ
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8.4 ξ power counting

The spin-flavor operators appearing in the effective Lagrangians will be scaled by

the appropriate powers of 1/Nc in such a way that all LECs are of zeroth order in Nc.

Therefore, the 1/Nc power of a Lagrangian term with nπ pion fields is given by [49]:

n− 1− κ+
nπ
2
, (8.18)

where the spin-flavor operator is n-body (n is the number of factors of SU(6) gen-

erators appearing in the operator), and κ is basically the number of factors of the

coherent generators Gia remaining after reducing the operator using commutators.

The last term, nπ/2, stems from the factor (1/Fπ)nπ carried by any term with nπ

pion fields. It is opportune to point out that commutators of spin-flavor generators

will always reduce the n-bodyness of the product of operators: e.g., let G be any

generator of SU(6), and consider the commutator [G, ~S2] = {Si, [G, Si]}. In principle

this looks like a three-body operator, but because [G, Si] is a 1-body operator, [G, ~S2]

is actually a 2-body operator.

The terms in the effective Lagrangian are constrained in their Nc dependence by

the requirement of the consistency of QCD at large Nc. This constraint is in the form

of a upper bound in the power in 1/Nc for each term one could write down in the

Lagrangian. This leads to constraints on the Nc dependencies of the ultra-violet (UV)

divergencies, which have to be subtracted by the corresponding counter-terms in the

Lagrangian. One very important point to mention is that the UV divergencies are

necessarily polynomials in low momenta p (derivatives), in M2
π and in 1/Nc (modulo

factors of 1/
√
Nc due to 1/Fπ factors in terms where pions are attached). Therefore,

the structure of counter-terms is independent of any linking between the 1/Nc and

chiral expansions. For this reason, one can simply take the large Nc and low energy
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limits independently in order to determine the UV divergencies. For a connected

diagram with nB external baryon legs, nπ external pion legs, ni vertices of type i

which has nBi baryon legs and nπi pion legs, and L loops, the following topological

relations hold [114,115],

L = 1 + Iπ + IB −
∑

ni, 2IB + nB =
∑

ni nBi , 2Iπ + nπ =
∑

ni nπi , (8.19)

where Iπ is the number of pion propagators and IB the number of baryon propagators.

The chiral or low energy order of a diagram, where νpi is the chiral power of the vertex

of type i, is then given by [115]:

νp = 2− nB
2

+ 2L+
∑
i

ni (νpi +
nBi
2
− 2), (8.20)

Note that nBi is equal to 0 or 2 in the single baryon sector.

On the other hand, the 1/Nc power of a connected diagram is determined by

looking only at the vertices: the order in 1/Nc of a vertex of type i is given according

to Eq. (8.18) by: νOi +
nπi
2

, where νOi is the order of the spin-flavor operator. Thus,

the 1/Nc power of a diagram, upon use of the third Eq. (8.19), is given by:

ν1/Nc =
nπ
2

+ Iπ +
∑

ni νOi , (8.21)

where nπ is the number of external pions, and νOi the 1/Nc order of the spin-flavor

operator of the vertex of type i. Since νOi can be negative (due to factors of Gia

in vertices), one can think of individual diagrams with ν1/Nc negative and violating

large Nc consistency, requiring cancellation with other diagrams. Such a sum will

have to respect the mentioned upper bound on the 1/Nc power corresponding to the

sum of such diagrams. The explicit example of such cancellation in the axial currents
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at one-loop which is given later.

One can determine now the nominal counting of the one-loop contributions to

the baryon masses and axial currents. The LO baryon masses are O (Nc). The one

loop correction shown in Fig. (8.1) has: (L = 1, nB = 2, nπ = 0, n1 = 2, νO1 =

−1, nB1 = 2, νp1 = 1) giving νp = 3 as it is well known, and ν1/Nc = −1. Since

there is only one possible diagram, this must be consistent by contributing O (Nc)

to the spin-flavor singlet component of the masses, which is the case as shown in the

section (8.5). The diagrams for vector and the axial currents are given in Tables (8.5),

(8.6), and (8.7). The current at tree level is O (Nc), and the sum of the diagrams

cannot scale like a higher power of Nc. Performing the counting for the individual

diagrams one obtains: νp(j) = 2 for j = 1, · · · , 4, and ν1/Nc(j) = −2, j = 1, 2, 3

and ν1/Nc(4) = 0. Thus a cancellation must occur of the O (N2
c ) terms when the

contributions to the axial currents by the set of diagrams are added. Since the ac-

ceptable bound is that the sum be O (Nc), one concludes that the axial current has,

at one-loop, corrections O (p2Nc) or higher.

One can consider the case of two-loop diagrams, in particular diagrams where the

same meson-baryon vertex Eq. (8.13) appears four times. For the masses one has

νp(j) = 5, and individual diagrams give ν1/Nc = −2. A cancellation must occur to

restore the bound on the Nc counting for the masses, i.e., O (Nc). Thus, at two-loops

the UV divergencies of the masses must be O (p5Nc) or higher. For the axial cur-

rents a similar discussion requires that counter-terms to the axial currents must be

O (p4Nc) or higher.

Defining the linked power counting ξ by: O (1/Nc) = O (p) = O (ξ), the ξ order

of a given Feynman diagram will be simply equal to νp + ν1/Nc as given by Eqs.(8.20)
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and (8.21), which upon use of the topological formulas Eq. (8.19) leads to:

νξ = 1 + 3L+
nπ
2

+
∑
i

ni (νOi + νpi − 1). (8.22)

The ξ-power counting of the UV divergences is obvious from the earlier discussion.

At one-loop one finds that the masses have O (ξ2) and O (ξ3) counter-terms, while

the axial currents will have O (ξ) and O (ξ2) counter-terms. To two loops one expects

O (ξ4) and O (ξ5), and O (ξ3) and O (ξ4) counter-terms for masses and axial currents

respectively. The non-commutativity of limits is manifested in the finite terms where

Mπ and or momenta and δm̂ appear combined in non-analytic terms, and are therefore

sensitive to the linking of the two expansions.

8.5 One-loop correction to the baryon self-energy

p0

k

0

Figure 8.1. One-loop contribution to the self-energy of a baryon field.

The self-interaction of baryon fields governed by emission and absorption of Gold-

stone bosons gives rise to contributions to the baryon masses and also contribute to

their wave function renormalization. The lowest order contribution of this type of

interaction can be represented by the one-loop diagram, as shown in Fig. (8.1). The

interaction has two contributions which are symmetric by each vertex, because we

only focus on the processes which involve the same incoming and outgoing baryon.

Therefore the two interaction vertices can be seen as, the incoming (outgoing) baryon

field couples to an intermediate baryon propagator (thick line) and a Goldstone boson

propagator (dashed line). The intermediate baryon can be either a member of baryon

octet or decuplet. Therefore, the contributions from the baryon octet and decuplet
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are taken into the account systematically, in the effective theory.

The p0 is the energy of the external baryon which can be defined as,

p0 = δmin + p0 (8.23)

where p0 is the kinetic energy O (p2/Nc), and δmin = δmout. In the heavy baryon for-

malism, the velocity dependent baryon propagator contains a residual mass, while the

(heavy) baryon mass is absorbed into the interaction vertex for the renormalization.

For convenience, one can define

δm̂ ≡ CHF
Nc

~S2 − c1

Λ
χ̂+ ,

iD̃0 ≡ iD0 − δm̂ . (8.24)

where δm̂ gives rise to mass splittings between baryons, which are of O (1/Nc) or

O (p2). Therefore, the residual mass of a baryon propagator evaluated for state x can

be written as δm̂x, which leads to the baryon mass shift,

δmn = δm̂n − δm̂in . (8.25)

The first term in δm̂ is the hyper-fine interaction and the second term corresponds to

the SU(3) breaking effects. In the ξ expansion SU(3) breaking effects do not show in

δmn as they are O (ξ2). Thus, one can reasonably neglect the SU(3) breaking effects

in the baryon propagator in the loop by assuming that the residual mass is SU(3)

symmetric, i.e. δm̂→ CHF
Nc

Ŝ2.

Combining all the propagators and the vertices the expression for the one-loop

correction to the self-energy can be written as,
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δΣ1−loop =
g̊2
A

F 2
π

8∑
a=1

∑
n

GiaPnGja µ(4−d)

∫
ddk

(2π)d
kikj

(k2 −M2
a + iε)(p0 − k0 − δmn + iε)

where, Pn is the projector which projects the intermediate baryon labeled by n, and

Ma is the corresponding Goldstone boson mass with the SU(3) flavor index a. The

final expression for δΣ1−loop can be obtained using the Feynman parameterization with

dimensional regularization method, and all the necessary tools are given in Appendix

C. The expression for the loop integral Hij(Mπ, δmn, p0) can be simplified as,

Hij(Mπ, δmn, p0) = µ(4−d)

∫
ddk

(2π)d
kikj

(k2 −M2
a + iε)(p0 − k0 − δmn + iε)

=
δij
d− 1

(
2iµ(4−d)

(
d− 1

d

)(
d

2(4π)d/2
Γ(1− d

2
)

Γ(2)

)
J((M2

a −Q2), 1, Q, d, 1)

)
(8.26)

where, Q = (p0− δmn) and the Appendix C provides the definition of the J function

and it’s properties. Also this expression for the loop integral in Eq. (8.26) agrees with

the result given for the integral in Eq. (15) of [116].

The ultraviolet divergent pieces of the self-energy can be brought to a compact

form:

δΣUV
1−loop =

λε
(4π)2

(
g̊A
Fπ

)2(
p0M2

aG
iaGia +

1

2
M2

a [[δm̂,Gia], Gia]− 2

3
p03

(8.27)

− p02
[[δm̂,Gia], Gia]− p0[[δm̂, [δm̂,Gia]], Gia]− 1

3
[[δm̂, [δm̂, [δm̂,Gia]]], Gia]

)
,

where λε ≡ 1/ε − γ + log 4π. Using the SU(3) singlet and octet components of the

quark masses, m0 and ma, one can write the meson mass squared matrix:

M2ab = 4B0(δabm0 + dabcmc), (8.28)
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and therefore,

M2
aW

aa = M2abW ab, (8.29)

for any symmetric 8× 8 tensor W . In terms of Mπ and MK one has: m0 =

1
3
(2m̂+ms) =

2M2
K+M2

π

12B0
and ma = 1√

3
(m̂−ms) = δ8a (−M2

K+M2
π)

2
√

3B0
.

In order to obtain from Eq. (8.28) the counterterms necessary to renormalize the

mass and wave function, one uses the results in Appendix D. The explicit UV diver-

gent and polynomial (in 1/Nc, m
0, ma and p0) terms of the self-energy are

δΣPoly = − 1

(4π)2

(
g̊A
Fπ

)2{
B0CHF

6Nc

(
7

3
+ λε

)(
m0(9Nc(Nc + 6)− 84Ŝ2)− 24ma(2{Si, Gia}

− 3

4
(Nc + 3)T a)

)
+
C3
HF

N2
c

(
8

3
+ λε

)(
−(Nc + 6) +

36− 5Nc(Nc + 6)

3Nc

Ŝ2 +
4

Nc

Ŝ4

)
− p0

(
(1 + λε)12B0

(
m0(

1

4
Nc(Nc + 6) +

5

9
Ŝ2) +ma(

7

12
{Si, Gia} − 1

2
(Nc + 3)T a)

)
+

C2
HF

N2
c

(2 + λε)

(
3

2
Nc(Nc + 6) + (−18 +Nc(Nc + 6))Ŝ2 − 4Ŝ4

))}
, (8.30)

where terms of higher powers in p0 have been disregarded. There are few observations

on δΣPoly which can be summarized as follows.

• The contributions to the spin-flavor singlet component of the masses isO (p2N0
c ),

the spin symmetry breaking is O (1/N2
c ), and the SU(3) breaking is O (p2/Nc).

• The UV divergencies in the mass are produced by the contribution of the partner

baryon and is determined by the mass splitting, i.e., by CHF .

• The contributions to δZ are suppressed by powers of 1/Nc, but with two ex-

ceptions, namely, there is a spin-flavor singlet contribution proportional to m0

which is O (Nc) and a term proportional to ma which is O (N0
c ).

The term O (Nc) in δZ is of key importance for the mechanism of cancellations

of 1/Nc power counting violating terms, as it is shown later in the analysis of the



179

one-loop contributions to the currents.

The counterterms for renormalizing the masses and wave functions are O (ξ2) and

O (ξ3) (all contributions O (ξ4) are consistently dropped) and involve terms that ap-

pear in L(1)
B with LECs of higher order in 1/Nc, and terms in L(2,3)

B . To renormalize,

the LECs are written as in terms of the β functions defined in Eq. (8.17), and the

beta-functions βX are given in Table (8.2).

Table 8.2. β functions for mass renormalization.

LEC β/[̊g2
A/F

2
π ]

m0 −Nc+6
N3
c
C3
HF

CHF
36−5Nc(Nc+6)

3N2
c

C3
HF

c1
3
4
Nc+3
Nc

ΛCHF

c2
3
16
NcΛCHF

c3 0

h1 −12C3
HF

h2 0

h3
7
4
ΛCHF

h4
1
2
ΛCHF

Finally the non-analytic contributions to δΣ1-loop are:

δΣNA = − 1

(4π)2

(
g̊A
Fπ

)2 8∑
a=1

∑
n

GiaPnGia

×
{

(p0 − δmn)(M2
a −

2

3
(p0 − δmn)2) log

M2
a

µ2
(8.31)

+
2

3
(M2

a − (p0 − δmn)2)
3
2 (π + 2 arctan

(
p0 − δmn√

M2
a − (p0 − δmn)2

)}
,
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where, the total non-analytic contribution to the one-loop can be obtained by sum-

ming over all the possible intermediate states, which can be identified as partial

contributions. Each partial contribution is associated with set of matrix elements

of two-body, three-body, many-body operators, etc. which has to be projected to

the corresponding combination of intermediate state and Goldstone boson state. Ta-

ble (8.3) gives the reduction procedure of a product of two vectors, and the Table (8.4)

gives the reduction of the SU(3) 8⊗ 8 product of operators. Note that the tensors

in the last column of Table (8.4) are indeed projectors, i.e., idempotent.

Table 8.3. Projection operators for operator products of irreps of SU(2).

irrep ` component projection tensor P`
0 P iQi 1

3
δijδi

′j′

1 iεijkP jQk 1
2
εijkεki

′j′

2 1
2
(P iQj + P jQi)− 1

3
δijP kQk 1

2
(δii

′
δjj
′
+ δij

′
δji
′
)− 1

3
δijδi

′j′

Table 8.4. Projection tensors for the operator products of irreps. of SU(3).

irrep R component projection tensor PR
1 P aQa 1

8
δabδcd

8 ifabcP bQc 1
3
fabef ecd

8′ dabcP bQc 3
5
dabedecd

10 + 10 (1
2
(δacδbd − δadδbc)− 1

3
fabef ecd)P cQd 1

2
(δacδbd − δadδbc)− 1

3
fabef ecd

27 1
2
(P aQb + P bQa)− 1

8
δabP cQc − 3

5
dabcdcdeP dQe 1

2
(δacδbd + δadδbc)− 1

8
δabδcd − 3

5
dabedecd

The typical reductions associated with the operator products in the one-loop in-

tegrals has the general form:

P aQbLab =
∑

R=1,8,8′,10+10,27

(PQ)RLR (8.32)
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where L is the loop integral and:

(PQ)abR = PRabcdP cQd LabR = PRabcdLcd . (8.33)

By observing the terms in the δΣUV
1−loop in Eq. (8.28) and the δΣNA in Eq. (8.31),

one can directly visualize the structures of operator products which are needed to

calculate the matrix elements between baryon states. The reductions of those multi-

body spin-flavor operators which appear in the polynomial contributions of the one-

loop corrections to the self-energy and the currents require some lengthy calculations

using identities, such as DJM relations given in Table (5.1), etc. These reductions are

only valid for matrix elements between states in the totally symmetric irrep of SU(6).

[[δm̂,Gia], Gia] =
CHF
Nc

(
7

2
Ŝ2 − 3

8
Nc(Nc + 6)

)
[[δm̂, [δm̂,Gia]], Gia] =

(
CHF
Nc

)2

(4Ŝ4 − (Nc(Nc + 6)− 18)Ŝ2 − 3

2
Nc(Nc + 6))

[[δm̂, [δm̂, [δm̂,Gia]]], Gia] =

(
CHF
Nc

)3 (
36Ŝ4 − (5Nc(Nc + 6)− 36)Ŝ2 − 3Nc(Nc + 6)

)
M2

aG
iaGia = 2B0

(
m0Ĝ2 +ma(− 7

24
{Si, Gia}+

3

16
(Nc + 3)T a)

)
M2

a [[δm̂,Gia], Gia] = 4
CHF
Nc

B0

(
8

3
m0Ŝ2 +

5

12
ma{Si, Gia}

)
− 4M2

aG
iaGia

(8.34)

where, δm̂ = CHF
Nc

Ŝ2. Appendix A contains more details on spin-flavor operator bases,

matrix elements of spin-flavor operators, and the operator identities respectively. A

direct application : self-energy correction to the baryon mass is discussed in the

chapter 9 in detail.

8.6 One-loop corrections to the baryon currents

Similarly, the one-loop corrections to baryon vector and axial-vector currents can

be calculated using the combined effective framework. The corresponding one-loop



182

diagrams for the vector currents are summarized in Table (8.5) and for the axial

vector currents are summarized in Table (8.6) and Table (8.7). For the simplicity of

expression, the definition of Hij(Ma, δmn, p0) is used to some loop integrals:

Hij(Ma, δmn, p0) = µ(4−d)

∫
ddk

(2π)d
kikj

(k2 −M2
a + iε)(p0 − k0 − δmn + iε)

. (8.35)

Note that, the diagrams for the vector currents are associated with two types

of loop-integrals: self-energy diagram and triangle diagram. Except the triangle

diagram, the expressions for the other diagrams can be written in terms of the

self-energy integral. The one-loop integrals for the axial vector currents in Ta-

ble (8.6) are analogous to the loop-integrals corresponding to the vector diagrams

in Table (8.5). The loop-integrals for axial-vector currents in Table (8.7) involve the

Goldstone boson propagator and can be evaluated using the standard integrals given

in [117]. Each loop-integral is accompanied by matrix elements of operator products

of SU(2)×SU(3) irreps., and one can build a set of relations between those operator

products to perform operator reduction. A detailed calculation of these diagrams in

order to obtain the vector charges and axial couplings are given in the last chapter

along with the fit results to the LQCD calculations.
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Table 8.5. One loop diagrams for the vector currents. The subscript of δm refers to
either the intermediate baryon propagator δmn or the incoming/outgoing
δmin/out baryon propagator with respect to the current-vertex.

Vector current diagram Expression

p0

k, a

q, c
iδµ0

(
gA
Fπ

)2
(Hij(Ma,δmn,p0))

(p0−δmin+iε)
〈TcGiaGja〉

p0

k, a

q, c

iδµ0

(
gA
Fπ

)2
(Hij(Ma,δmn,p0+q0))

(p0+q0−δmout+iε) 〈G
iaGjaTc〉

p0

k, a

q, c
iδµ0

(
gA
Fπ

)2 ( 〈GiaTcGja〉
δmin−δmout+q0

)
(Hij(Ma, δmin, p0)

− Hij(Ma, δmout, p0 + q0))

p0

k, b

q, c

k + q, a (
gA
Fπ

)2

GiafabcGjbµ(4−d)
∫

ddk
(2π)d

(ki+qi)(2kµ+qµ)(kj)

((k+q)2−M2
b+iε)(p0−k0−δm1+iε)(k2−M2

a+iε)

p0

k, a

q, c

k + q, b

−i
(
fabcfabd

2F 2
π

T d
)
µ(4−d)

∫
ddk

(2π)d
(2k0+q0)(2kµ+qµ)

((k+q)2−M2
b+iε)(k2−M2

a+iε)

p0

k, a

q, c

−iδµ0
1

2F 2
π
f caef edaT dµ(4−d)

∫
ddk

(2π)d
1

(k2−M2
a+iε)
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Table 8.6. Axial-Vector Currents (I).

Axial-vector current diagram Expression

p0

k, a

q, c
i
(
g3
A

F 2
π

)
GµcGiaGja

(p0−δmin+iε)
Hij(Ma, δmn, p0)

p0

k, a

q, c

b (−i)
(
gA

3

F 2
π

)
GlbGiaGjaδbcqµql

(q2−M2
b+iε)(p0−δmin+iε)

Hij(Ma, δmn, p0)

p0

k, a

q, c

i
(
g3
A

F 2
π

)
GiaGjaGµc

(p0+q0−δmout+iε)Hij(Ma, δmn, p0 + q0)

p0

k, a

q, c

b

(−i)
(
g3
A

F 2
π

)
GiaGjaGlbδbcqlqµ

(p0+q0−δmout+iε)(q2−M2
b+iε)

Hij(Ma, δmn, p0 + q0)

p0

k, a

q, c
iδµ0

(
g3
A

F 2
π

)(
〈GiaGµcGja〉

δmin−δmout+q0

)
(Hij(Ma, δmin, p0)

− Hij(Ma, δmout, p0 + q0))

p0

k, a

q, c

b

(−i)
(
g3
A

F 2
π

)
GiaGlbGjaδbc

(q2−M2
b+iε)(δmin−δmout+q0)

qlqµ×

× (Hij(Ma, δmin, p0)−Hij(Ma, δmout, p0 + q0))
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Table 8.7. Axial-Vector Currents (II).

Axial-vector current diagram Expression

p0

k, a

q, c

−i
(
gA

2F 2
π

)
δµif

caef edaGidµ(4−d)
∫

ddk
(2π)d

1
k2−M2

a+iε

p0

k, a

q, c

b
i
(
gA

6F 2
π

)
f baefdae(qiqµ)Gidµ(4−d)

∫
ddk

(2π)d
1

(k2−M2
a+iε)(q2−M2

b+iε)

p0

k, a

q, c

d

b

−i gA
3F 2
π

qµqi
q2−M2

c
Gibf caef baeµ4−d ∫ ddk

(2π)d
1

k2−M2
a+iε

p0

k, a

q, c

b

−i 2gA
3F 2
π

qµqi
q2−M2

b+iε
Gidf caef bae

(
µ4−d ∫ ddk

(2π)d
1

k2−M2
a+iε

)
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CHAPTER 9

GROUND STATE BARYON MASSES FROM THE

COMBINED FRAMEWORK

9.1 Introduction

The effective Lagrangian is manifestly chiral invariant, and can be systematically

written as a power series in the low energy expansion or in the chiral expansion, and

simultaneously in 1/Nc. In the HBChPT formalism, the larger contribution to the

baryon mass is governed by the spin-flavor singlet component, whereas the leading

order splitting between baryon masses is due to the hyperfine interaction which is

considered to be a small energy scale for the theory. The size of the hyperfine split-

ting in the low energy expansion plays an important role since it combines with the

Goldstone boson masses to appear as powers in the contributions from the loop di-

agrams. This implies that the low energy expansion and 1/Nc expansion does not

commute [30,118]. As discussed in the chapter 8, the emphasis of the framework goes

to the linking between two expansions : O (p) = 1/Nc = O (ξ).

The application of this combined framework to the baryon masses for the case of

SU(2)flavor was successfully done by Cordon and Goity [36]. It is important to no-

tice that the combined approach allows one to study the convergence the low energy

expansion, with the availability of LQCD baryon masses. It has been clearly shown

that, the decuplet contribution as intermediate states for the loop play an important

role in the convergence, with increasing quark mass (see Fig. (4) of Ref. [36]). In

average, it is believed that the consistent range of quark mass for the ξ-expansion is

MPhysical
π 6Mπ . 300MeV, which is also considered in this work. One loop-correction

to the non-strange baryon masses involves N , ∆ baryons and π meson. In the case of
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SU(3)flavor, this becomes a bit complicated since one has to consider octet baryons,

decuplet baryons as well as the π,K, η mesons, as well as the matrix elements asso-

ciated with each loop integral. Especially, obtaining these matrix elements as well as

the expressions for octet and decuplet baryon masses for any generic Nc is a remark-

able achievement in this work.

This chapter is organized as follows. In the section 9.2, the leading order (LO)

baryon mass is introduced which is of O (ξ). The section 9.3 contains a detailed

discussion on the one-loop correction to the baryon mass in ξ-expansion for the case

of SU(3). The section 9.4 is dedicated to an analysis of mass relations such as Gell-

Mann-Okubo (GMO), Equal Spacing (ES), Gürsey Radicati (GR) mass relations. The

fit results to the available data for baryon masses from the experiments as well as from

the LQCD are discussed in section 9.5 along with an analysis on mass relations. The

section 9.6 is focused on an application of baryon masses from the combined formalism

to extract the baryon σ-terms. In the last section some observations, conclusions and

prospective applications are discussed.

9.2 Baryon mass at leading order

Considering the leading order Lagrangian, the baryon mass atO (ξ) can be written

as [12,14],

mB(S, Y, I) = Ncm0 +
CHF
Nc

S(S + 1)− c1

Λ
χ̂+ (9.1)

where, m0, CHF and c1 are LECs to be determined by fitting to the baryon masses.

m0 is the spin-flavor singlet contribution to the baryon mass and it is correlated with

the quark mass contribution which is coupled by the LEC, c1. CHF is the hyper-fine

interaction and it is equal to M∆ −MN for Nc = 3 at O (1/Nc).
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9.3 One-loop correction to the baryon mass

A propagating baryon can self interact by emitting and absorbing a Goldstone

boson. This is parameterized by the terms represent the baryon-meson interaction

in the effective Lagrangian.This contribution to the baryon propagator is called the

self-energy correction, in which the lowest order contribution is diagrammatically rep-

resented by one-loop diagram is depicted in Fig. (8.1).

The expression for the one-loop diagram δΣ1−loop contains the vertices from L(1)
B ,

external (incoming/out-going) baryon propagator, intermediate baryon propagator as

well as a projector Pn which projects the incoming baryon to the intermediate baryon

labeled by n, and the loop integral J :

δΣ1−loop = i
g̊2
A

F 2
π

8∑
a=1

∑
n

GiaPnGia Γ(1− d
2
)

(4π)
d
2

J
(
(M2

a − (p0 − δmn)2), 1, (p0 − δmn), d, 1
)
,

(9.2)

where, the explicit evaluation of the loop integral J is given in the Appendix C.

The non-commutativity of the 1/Nc and chiral expansions of course resides in the

non-analytic terms of the loop integral through their dependence on the ratios of the

small scales δmn/Ma. Notice that when the one loop integrals are written in terms of

the residual momentum p0, they do not depend on the spin-flavor singlet piece of δm̂.

p0 is naturally associated with iD̃0. The one-loop contribution to the wave function

renormalization constant is given by:

δZ1−loop =
∂

∂p0
δΣ1−loop


p0→0

. (9.3)

An important fact which has to be considered throughout the one-loop diagram

calculation for self-energy is that, the initial and final baryon has to be the same.



189

The selection rules corresponding to the quantum numbers : Spin S, Hyper-charge

Y , Iso-spin I which can determine the possible channels associated with different

combinations of intermediate baryon and corresponding meson states. Therefore, for a

given baryon, the total contribution will be the sum of each individual channel, which

is represented by the two summations in Eq. (9.2). Each combination of intermediate

baryon + meson, can be identified as a “partial contribution” to a given baryon mass.

Therefore, if the baryon state is defined as,

|B〉 =

∣∣∣∣∣∣∣
S Sz

R Y IIz

〉
, (9.4)

then matrix element of a partial contribution can be simply represented by,

〈B|GiaPnGia|B〉 =

〈
S Sz
R Y IIz

∣∣∣∣GiaPnGia

∣∣∣∣ S Sz
R Y IIz

〉
, (9.5)

where, the explicit expression for the projection operator is,

Pn =
∑
n

∣∣∣∣ Sn Snz
Rn YnInInz

〉〈
Sn Snz
Rn YnInInz

∣∣∣∣ . (9.6)

Appendix A provides all the necessary elements for the evaluation of the spin-

flavor matrix elements in the δΣ1−loop in Eq. (9.2). The explicit final expressions for

the self-energy are not given here because they are too lengthy, but with those ele-

ments they can be easily calculated. One loop corrections to baryon masses start at

O (ξ2). Because the ξ-power countingMπ → ξMπ and Fπ →
√

Nc
3
Fπ withNc → Nc/ξ,

the ξ-order of one-loop integral is O (ξ4). But, the matrix elements can be of O (1/ξ)

or O (1/ξ2) suppress the ξ power of the loop-integral corresponding to each partial

contribution. Therefore the loops contain terms of O (ξ2) and O (ξ3).
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Table 9.1. Partial contributions to the one-loop correction of the self-energy.

N Λ Σ Ξ

N → N + π Λ→ N +K Σ→ Σ + π Ξ→ Ξ + π

N → N + η Λ→ Λ + η Σ→ Σ + η Ξ→ Ξ + η

N → Σ +K Λ→ Σ + π Σ→ N +K Ξ→ Σ +K

N → Λ +K Λ→ Ξ +K Σ→ Λ + π Ξ→ Λ +K

N → ∆ + π Λ→ Σ∗ + π Σ→ Ξ +K Ξ→ Ξ∗ + π

N → Σ∗ +K Λ→ Ξ∗ +K Σ→ ∆ +K Ξ→ Ξ∗ + η

Σ→ Σ∗ + π Ξ→ Σ∗ +K

Σ→ Σ∗ + η Ξ→ Ω + π

Σ→ Ξ∗ +K

∆ Σ∗ Ξ∗ Ω

∆→ N + π Σ∗ → Σ + π Ξ∗ → Ξ + π Ω→ Ω + π

∆→ Σ +K Σ∗ → Σ + η Ξ∗ → Ξ + η Ω→ Ξ +K

∆→ ∆ + η Σ∗ → N +K Ξ∗ → Σ +K Ω→ Ξ∗ +K

∆→ ∆ + π Σ∗ → Λ + π Ξ∗ → Λ +K

∆→ Σ∗ +K Σ∗ → Ξ +K Ξ∗ → Ξ∗ + π

Σ∗ → ∆ +K Ξ∗ → Ξ∗ + η

Σ∗ → Σ∗ + π Ξ∗ → Σ∗ +K

Σ∗ → Σ∗ + η Ξ∗ → Ω +K

Σ∗ → Ξ∗ +K

The one-loop corrections to the baryon mass is given by setting p0 = 0 in the

self-energy contributions. Thus, the mass of the baryon state | S, Y I〉 then reads:

mB(S, Y, I) = Ncm0 +
CHF
Nc

S(S + 1)− c1

Λ
χ̂+ + δm1−loop+CT

B (S, Y, I) ,

(9.7)
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where δm1−loop+CT
B (S, Y, I) involves contributions from the one-loop diagram in Fig. (8.1),

and CT denotes counter-term contributions. From both types of contributions,

there are O (ξ2) and O (ξ3) terms from the Lagrangians L(2)
B and L(3)

B respectively.

The calculation is exact to the latter order, as can be deduced from the previ-

ous discussion on power counting. The notation for the O (ξ) mass shift is used:

δmn ≡ CHF
Nc

Sn(Sn + 1)− c1
Λ
χ̂+. Note that CHF is equal to the LO term in M∆ −MN

in the real world Nc = 3.

9.4 Corrections to baryon mass relations

Mass relations among baryon states are a direct consequence of its symmetry

structure. One can check those relations with the experimentally measured baryon

masses. In nature, these mass relations are violated by small amounts. The sensitivity

to the deviations from this relations is a good measure of the precision/validity of

the symmetry behind the theory. In other words, the size of the violations to these

mass relations indicate the predictive power of the theory. Three main mass relations

namely, Gell-Mann-Okubo (GMO), Equal spacing (ES) and Gürsey-Radicati (GR)

relations are analyzed to O (ξ3). The relations are exact at tree level except the GR

relation. The deviations to these relations are basically given by the non-analytic

terms in the self-energy which will be briefly discussed under the analysis of each

relation. It is very important to highlight that the violations to these mass relations

are obtained explicitly in terms of Nc. This allows one to study the spin-flavor

symmetry breaking of the mass relations at finite Nc.

9.4.1 Gell-Mann-Okubo (GMO) relation

The GMO relation and its violation can be defined as,
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2(mN +mΞ) = (3mΛ +mΣ) , ∆GMO = 2(mN +mΞ)− (3mΛ +mΣ) .

(9.8)

The combined effective theory exactly satisfies the GMO relation at tree level for any

arbitrary Nc. It’s very impressive to observe that the deviation to the GMO relation

is calculable and the LECs it depends on is the CHF , gA, and Fπ, where at leading

order CHF = m∆ −mN . The experimentally observed baryon masses produce a de-

viation ∆exp
GMO = 30± 10 whereas, the theoretical calculation from the fit to physical

mass yields ∆th
GMO = 44 ± 5, where for the theoretical evaluation g̊A = 6

5
× 1.27 and

Fπ = 93 MeV.

20 40 60 80 100
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20
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40

Nc

M
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Figure 9.1. The deviation of GMO relation with Nc.

Another very important observation is that the ∆th
GMO behaves like 1/Nc as de-

picted in Fig. (9.1), so that the GMO relation is exact at the large Nc limit. Since

the complete expression for ∆th
GMO is a lengthy expression, one can see the above

observation by expanding it in the large Nc limit,

∆GMO = −
(

g̊A
4πFπ

)2(
2π

3
(M3

K −
1

4
M3

π −
2√
3

(M2
K −

1

4
M2

π)
3
2 )

+
2CHF
Nc

(
−M2

K logM2
K +

1

4
M2

π logM2
π + (M2

K −
1

4
M2

π) log(
4

3
M2

K −
1

3
M2

π)
))

+ O
(
1/N3

c

)
. (9.9)
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For the physical MK and Mπ one can check that the shown expansion is within

30% of the exact result, and the expansion seems to converge for Nc > 5. The explicit

expression for ∆GMO at Nc = 3 is,

∆GMO =

=
g̊2
A

288F 2
ππ

((
4M3

K −M3
π − 3M3

η

)
+ 8

(
M2

K − C2
HF

)3/2 − 6
(
M2

η − C2
HF

)3/2

−2
(
M2

π − C2
HF

)3/2
)

+
g̊2
A

F 2
ππ

2

(
(C2

HF −M2
K)

3/2

18
Tanh−1

[√
C2
HF

C2
HF −M2

K

]

−
(
C2
HF −M2

η

)3/2

24
Tanh−1

[√
C2
HF

C2
HF −M2

η

]
− (C2

HF −M2
π)

3/2

72
Tanh−1

[√
C2
HF

C2
HF −M2

π

])

+
g̊2
A

F 2
ππ

2

(
−CHF

96

(
4M2

KLog[M2
K ]− 3M2

ηLog[M2
η ]−M2

πLog[M2
π ]
)

C3
HF

144

(
4Log[M2

K ]− 3Log[M2
η ]− Log[M2

π ]
)

+

(
CHF
288

(
4M2

K −M2
π − 3M2

η

)) (
3Log[µ2] + 7

))
,

(9.10)

where, one can clearly see that the scale µ dependence vanishes in Eq. (9.10) when

the GMO relation for mesons,

M2
η =

(4M2
K −M2

π)

3
(9.11)

is exact. Also note that, according to the expression in Eq. (9.10), ∆GMO is exact

(when Mη = MK = Mπ) in the SU(3) symmetric limit.

9.4.2 Equal Spacing (ES) relation

ES relation involves three difference. Therefore, the violations can be studied by

defining two differences ∆ES1, ∆ES1,

mΣ∗ −m∆ = mΞ∗ −mΣ∗ = mΩ −mΞ∗ ,

∆ES1 = mΞ∗ − 2mΣ∗ +m∆ , ∆ES2 = mΩ− − 2mΞ∗ +mΣ∗ . (9.12)

With experimentally measured masses, ∆ES1 gives −6 ± 7 MeV and and ∆ES2 gives

−9 ± 7 MeV, whereas theoretically both of them are −14 ± 5 MeV. The behavior
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of ∆ES1 and ∆ES2 with Nc are identical, and its expression can be expanded in 1/Nc

gives,

∆ES1 = ∆ES2 =
g̊2
A

NcF 2
π

(
4M3

K −M3
π −M3

η

64π

)
+O

(
1

N2
c

)
. (9.13)

Since ∆ES1 and ∆ES2 have exactly the same behavior in Nc, then one can observe that

the both deviations are identically vanish in the large Nc limit, as shown in Fig. (9.2).
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Figure 9.2. The deviation of ES1 and ES2 relation with Nc.

9.4.3 Gürsey-Radicati (GR) relation

In contrast to the GMO relation (or the ES relation) containing only the octet

(decuplet) baryon masses, the Gürsey-Radicati (GR) mass relation connects both

octet and decuplet masses. It relates SU(3) breaking in the octet and decuplet, and

which generalizes to arbitrary Nc. If one disregards the term proportional to h2 in the

L(3)
B in Eq. (8.15) which gives SU(3) breaking in the hyperfine splittings, one obtains

one additional relation first found by Gürsey and Radicati [20], namely:

mΞ∗ −mΞ = mΣ∗ −mΣ , ∆GR = (mΞ∗ −mΞ)− (mΣ∗ −mΣ) , (9.14)

where, ∆GR denotes the violation to the relation, which is 21± 7 MeV for the physi-

cal ground state baryon masses. The deviation of the relation (9.14) is due to SU(3)

breaking effects in the hyperfine interaction (CHF ) that splits 8 and 10 baryons, and
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such a deviation starts with the term proportional to h2 which is O (p2/Nc) or O (ξ3).

The one-loop contributions to GR relation are free of UV divergences, and the

complete expression for the ∆GR can be written as,

∆GR =
h2

Λ

12

Nc

M2
K +

(
g̊A

4πFπ

)2
2π

9
M3

K +
(9Nc − 43)π

72

(
M2

K −
(

3CHF
Nc

)2
) 3

2

− Nc − 3

24

[
3

(
M2

K −
(

5CHF
Nc

)2
) 3

2

π − 2 arctan
5CHF

Nc

√
M2

K −
(

5CHF
Nc

)2



+ 10

(
M2

K −
(

3CHF
Nc

)2
) 3

2

arctan
3CHF

Nc

√
M2

K −
(

3CHF
Nc

)2
+

240

N3
c

C3
HF logM2

K

]
− (MK →Mπ) ,

=
h2

Λ

12

Nc

(M2
K −M2

π) +
3π

Nc

(
g̊ACHF
4πFπ

)2

(MK −Mπ) +O
(

log(MK/Mπ)

N3
c

)
,

(9.15)

where the last line corresponds to expanding in the large Nc limit. For the case with

keeping h2 = 0, the behavior of the ∆GR with Nc is the same as for ∆GMO, as depicted

in Fig. (9.3).
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Figure 9.3. The deviation of Gürsey-Radicati (GR) relation with Nc.
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9.5 Fits to the baryon spectrum

This sub-section is focused on an analysis and fits to the experimental baryon

masses as well as the baryon masses from LQCD calculations for the case of SU(3).

The validity of the mass relations: GMO, ES and GR are checked at different quark

masses using the experiment and LQCD inputs as well as, using the fitted masses from

the combined effective theory. The fits are basically performed in two approaches:

individual fits to baryon masses corresponds to a given quark mass, and combined

fits of baryon masses in a range of quark masses.

The mass formula for the fit is,

mB = Ncm0 +
CHF
Nc

Ŝ2 − c1

Λ
χ̂+ + δm1−loop

B (µ)

− 1

Λ

(
c2

2
χ̂0

+ +
h2

N2
c

χ̂+Ŝ
2 +

h3

Nc

χ̂0
+Ŝ

2 +
h4

Nc

χ̃8
+S

iGi8

)
, (9.16)

where, δm1−loop
B (µ) is the self-energy contributions to the masses which depends on

the renormalization scale µ and the scale Λ(= µ = mρ considered thoughout this

work), and χ̃8
+S

iGi8 = 4B0m8〈SiGi8〉 1.

The input experimental masses and calculated LQCD baryon masses by Alexan-

drou et.al [37] can be combined into the Table (9.2). The LQCD simulations in

Ref. [37] have been carried out for ten ensembles of dynamical twisted mass fermion

gauge configurations at three different values of the inverse bare lattice coupling β,

namely β = 1.90, 1.95 and 2.10. The β values correspond to three different lattice

spacings a = 0.094, 0.082 and 0.065 fm. Therefore, each ensemble can be identified

by the lattice spacing a and the bare twisted light quark (u, d) mass µl, where as

the renormalized strange quark mass ms is determined using the physical mass of Ω−

1 A useful formula for the term proportional to h4 is:

〈SiGi8〉 = 1√
3

(
3
4 Î

2 − 1
4 Ŝ

2 − 1
48Nc(Nc + 6) + 1

8 (Nc + 3)Y − 3
16Y

2
)

= 1
16

√
3
(12Î2−4Ŝ2 + 3S(2−S)),

where S is the strangeness. This term is responsible for the tree-level mass splitting between Λ and
Σ, and also it is identical to the result obtained in Ref. [119]
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baryon. The quantity R(ml,ms, a) defined in Ref. [120] of ETMC collaboration, for

the quark mass ratio in terms of pion and kaon masses:

R(ml,ms, a) ≡ ml

ms

(
2M2

K −M2
π

M2
π

)
, (9.17)

with the Fig. (11) of Ref. [120] can be used to obtain the values for Mπ and MK for

each ensemble as given in Table (9.3).

Table 9.2. Baryon masses : The first row corresponds to the physical measurements.
The rest are the masses from LQCD calculations [37], each column corre-
sponds to a specific lattice spacing (or β value) given in accordance with
the Table (9.3).

Mπ MK MN MΛ MΣ MΞ M∆ MΣ∗ MΞ∗ MΩ

139 497 938(3) 1116(3) 1189(3) 1315(3) 1228(3) 1383(3) 1532(3) 1672(3)

261 524 1102.0(18.3) 1232.9(39.4) 1310.3(43.5) 1333.1(35.6) 1490.9(83.4) 1566.9(67.8) 1613.9(53.9) 1657.5(60.9)

298 528 1092.1(23.5) 1234.3(39.4) 1292.4(43.1) 1329.4(34.9) 1456.0(86.3) 1537.2(67.4) 1586.9(54.5) 1656.2(64.8)

332 537 1140.7(13.0) 1249.6(40.2) 1338.1(43.1) 1342.2(36.9) 1492.3(83.5) 1592.0(67.5) 1613.3(60.4) 1680.8(63.7)

256 528 1070.6(14.1) 1231.4(36.4) 1306.7(39.9) 1363.2(31.2) 1517.8(74.9) 1593.8(60.8) 1637.9(50.4) 1711.1(53.5)

302 541 1145.8(11.4) 1261.0(35.6) 1318.0(38.5) 1366.2(32.0) 1515.2(75.0) 1578.7(61.0) 1612.6(50.2) 1692.4(54.4)

372 555 1204.9(3.9) 1306.3(35.1) 1358.0(39.3) 1374.8(32.2) 1562.1(74.0) 1633.2(59.8) 1660.9(48.7) 1709.3(54.0)

432 576 1276.4(10.0) 1332.8(35.8) 1390.9(37.8) 1374.6(34.5) 1601.9(73.1) 1638.2(60.0) 1663.3(48.3) 1693.1(53.6)

213 489 1031.0(12.5) 1179.8(28.7) 1252.2(30.8) 1327.2(25.0) 1407.4(59.8) 1522.2(47.0) 1597.3(38.0) 1681.6(41.8)

246 499 1072.1(21.5) 1215.7(29.4) 1277.5(32.4) 1328.2(25.8) 1448.4(63.2) 1538.0(48.6) 1581.9(39.5) 1648.4(43.7)

298 511 1103.8(20.8) 1221.6(29.1) 1278.3(32.0) 1329.0(25.3) 1448.4(60.9) 1529.4(49.7) 1588.5(40.2) 1674.0(43.4)

9.5.1 Individual fits : physically (experimentally) measured

masses

The fit result for the physically observed baryons can be summarized as Ta-

ble (9.4). Note that the large value of the low energy constant m0 corresponds to

the correlation between the spin-flavor singlet and the quark mass contribution. The

extracted value of CHF has a very good agreement with the experimental value of
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m∆ −mN .

Table 9.3. LQCD parameters and the values of Mπ and MK from Ref. [37].

β a aµl ml(MeV) ms(MeV) R(ml,ms, a) Mπ MK

1.90 0.0936(13) 0.003 12.796 92.4 0.979 260.7 523.751

0.004 17.079 92.4 0.98 297.5 528.076

0.005 21.327 92.4 0.976 332.3 537.375

1.95 0.0823 0.0025 11.947 92.4 0.972 255.8 527.901

0.0035 16.726 92.4 0.982 301.8 540.918

0.0055 26.248 92.4 0.984 371.6 555.24

0.0075 35.769 92.4 0.994 431.6 576.349

2.10 0.0646 0.0015 9.327 92.4 0.965 212.8 488.953

0.0020 12.407 92.4 0.976 245.5 499.152

0.0030 18.602 92.4 0.979 298.4 511.071

Table 9.4. Fit results for the physically observed baryons (the baryon mass for a given
spin, hyper-charge and iso-spin is given in the Eq. (9.16)).

Mπ = 139 MeV m0 CHF c1 c2 h2 h3 h4

MK = 497 MeV 866.8(6) 290.7(8) -2.291(3) 3.437(4) 0.102(4) 1.280(6) 1.762(5)

χ2=1.16 MN MΛ MΣ MΞ M∆ MΣ∗ MΞ∗ MΩ

Physical Mass (MeV) 938±3 1116±3 1189±3 1315±3 1228±5 1383±3 1532±3 1672±3

Fitted Mass (MeV) 936.5 1118.2 1189.7 1313.5 1227.9 1383.4 1531.4 1672.2

∆GMO ∆ES1 ∆ES2 ∆GR

Exp. 31(8) −6(6) −9(6) 23(6)

Th. 44 −7.3 −7.3 24

9.5.2 Individual fits : LQCD baryon masses

Similar to the case with physically measured baryons, one can perform fits to each

set of LQCD baryons corresponding to individual ensembles in LQCD. The fit results

are shown in Table (9.5) with three main rows representing the three lattice spacings
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(with ten ensembles) given in Table (9.3). There are several observations which can

be made if one re-arranges the rows in the order of increasing pion mass.

• The CHF is consistently increasing with the pion mass.

• The c1 (SU(3) breaking) is behaving uniformly for all ten ensembles.

The baryon masses obtained from the fits to individual LQCD ensembles are sum-

marized in Table (9.6). Therefore, one can analyze the mass relations directly with

LQCD masses as well as the fitted masses from the theory. The results are given in

Table (9.7).

Table 9.5. Fit results of LECs to individual sets of baryon masses from LQCD (the
baryon mass for a given spin, hyper-charge and iso-spin is given in the
Eq. (9.16)).

χ2 Mπ MK m0 CHF c1 c2 h3 h4

0.716 261 524 597(4) 591(3) -2.22(3) 3.32(4) 0.13(2) 1.63(5)

0.962 298 528 599(5) 606(3) -2.26(3) 3.39(4) 0.14(2) 1.6(1)

0.695 332 537 632(4) 620(2) -2.31(3) 3.46(4) 0.12(2) 1.7(1)

1.23 256 528 610(4) 589(3) -2.26(2) 3.39(2) 0.15(2) 1.6(1)

0.935 302 541 632(3) 618(2) -2.23(2) 3.35(2) 0.15(2) 1.54(5)

0.743 372 555 684(1) 643(1) -2.31(3) 3.46(4) 0.15(2) 1.59(3)

0.382 432 576 746(3) 680(2) -2.31(3) 3.46(4) 0.13(2) 1.65(5)

0.606 213 489 536(3) 548(2) -2.20(2) 3.30(2) 0.12(2) 1.59(3)

1.198 246 499 555(4) 566(3) -2.20(3) 3.30(4) 0.13(2) 1.59(5)

0.808 298 511 576(4) 589(3) -2.25(3) 3.37(4) 0.12(2) 1.58(5)
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Table 9.6. Baryon masses obtained from the fits to LQCD data. Each line contains a
set of baryon masses corresponding to their pion mass scale from LQCD.

χ2 Mπ MK MN MΛ MΣ MΞ M∆ MΣ∗ MΞ∗ MΩ

0.716 261 524 1105.28 1210.04 1301.03 1345.55 1473.64 1572.23 1628.81 1643.39

0.962 298 528 1098.26 1208.32 1282.05 1342.99 1437.81 1539.30 1605.91 1637.64

0.695 332 537 1142.20 1228.03 1329.86 1354.33 1490.30 1578.80 1637.60 1666.71

1.23 256 528 1072.79 1209.12 1297.58 1373.98 1490.90 1601.01 1666.71 1688.01

0.936 302 541 1146.54 1250.10 1313.79 1372.09 1486.0 1584.25 1644.29 1666.11

0.743 372 555 1205.08 1284.51 1349.10 1387.14 1555.08 1628.57 1676.19 1697.96

0.384 432 576 1277.22 1316.89 1385.02 1384.47 1592.39 1641.10 1672.03 1685.18

0.606 213 489 1032.25 1169.67 1248.19 1332.24 1392.01 1523.65 1615.30 1666.96

1.198 246 499 1078.89 1196.63 1269.79 1337.99 1432.80 1536.17 1602.58 1632.03

0.808 298 511 1107.6 1210.42 1273.81 1334.64 1428.05 1533.53 1609.68 1656.5

Table 9.7. Deviations from the mass relations using LQCD data (in black)
Vs fitted masses (in blue) from the combined effective theory.

Mπ MK ∆GMO ∆GR ∆ES1 ∆ES2

261 524 139±98, 30 24±103, 12 -29±138, -42 -3±118, -42

298 528 152±100, 25 13±103, 6 -32±140, -35 20±121, -35

332 537 121±99, 21 17±107, 34 -78±140, 30 46±126, 30

256 528 133±89, 31 -12±94, -11 -32±125, -44 29±108, -44

302 541 77±87, 27 -14±94, 2 -30±125, 38 46±108, 38

372 555 118±86, 18 11±92, 10 -43±122, 26 21±106, 26

432 576 87±89, 13 41±92, 32 -11±122, -18 5±106, -18

213 489 75±71, 28 0±72, 8 -40±97, -40 9±83, -40

246 499 124±77, 26 -7±75, -2 -46±101, -37 23±86, -37

298 511 78±76, 21 8±76, 15 -22±101, 29 26±87, 29
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9.5.3 Combined fits to the lattice QCD masses

The LQCD calculations facilitate the ability to analyze baryon masses correspond-

ing to a range of quark masses. In order to eliminate the quark-mass-dependence from

the LECs, one has to consider the baryon masses within a range of quark masses.

The quark-mass-range chosen in this work is: Mphysical
π 6 Mπ . 300 MeV ,such that

the convergence of the low energy expansion is preserved according to our observa-

tions. There are 11 sets of baryon masses in total (i.e. each baryon has 11 masses

correspond to a range of 140 . Mπ . 430 MeV ), if one combines the LQCD results

from Ref [37] and the empirical masses. A naive fit of LECs to all the 11 sets of

baryon masses result in imperfect fits as well as unnatural LECs. This constraints

the selection of baryon masses corresponding to a particular range of quark-masses.

After some effort trying numerous combinations, the baryon masses which correspond

to the range of 140 MeV 6 Mπ . 300 MeV gives reasonably good fits with LECs

which acquire natural sizes.

Let’s first consider the baryon masses from LQCD which are corresponding to the

range of Mπ . 300 MeV. This includes five sets of baryon masses (for the cases :

Mπ = {213, 246, 256, 261, 302} ) i.e,. 40 baryon masses in total. In the fitting, the

number of degrees of freedom is 35 since the total number of fitting parameters is

6. The fit results are given in the first row of Table (9.8). Notice that the value

of m0 gets smaller since it acquires the absolute spin-flavor singlet contribution by

detaching with the SU(3) flavor singlet (quark mass) contribution to the low energy

constant c2. µ2 is also redundant in this case, as it is the same for the individual fits

to LQCD masses. CHF also obtained a smaller value since it is correlated with µ20

which is also correlated with c2 since the counter term of h3 contains a quark mass

contribution. The value of c1 which governs the SU(3) breaking has not much devi-

ated from the average value extracted from individual fits. This observation indicates
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that the SU(3) breaking is approximately invariant with respect to the quark mass.

As the second step in the combined fitting approach, the set of physical baryon

masses are added to the existing set of baryon masses from LQCD which were consid-

ered in the fits corresponding to the first row of Table (9.8). Therefore, the number

of degrees of freedom increases to 43. The fit result is given in the second row of

Table (9.8). Notice that the considerable amounts of changes can be observed only

from the LECs : m0, CHF , h3 and h4. This means that, the addition of physical

masses to the fit affects the contributions to the baryon masses from the spin-flavor

singlet component and the hyperfine interaction. In addition to these observations of

LECs, one can check the deviations from the mass relations. The analysis of mass

relations with this second combined fit results are given in Table (9.9). The LEC µ2

which enters in ∆GR is best determined by fixing it using ∆GR in the physical case,

and then the rest of the LECs are determined by the overall fit. In this way, the

deviations of the mass relations are one of the predictions of the effective theory, and

can therefore be used as a test of LQCD calculations. At present the errors in the

LQCD calculations are relatively large, and thus such a test is not yet very significant.

Table 9.8. Results for LECs : first row fit to LQCD octet and decuplet baryon masses
[37] including results for Mπ ≤ 300 MeV, and second row including also
the physical masses. Throughout the renormalization scale is µ = mρ.

χ2
dof m0 CHF c1 c2 h3 h4

0.58 168(3) 182(7) -2.39(2) -1.49(3) 1.16(3) 1.95(3)

0.98 154(2) 220(4) -2.36(1) -1.57(2) 1.30(3) 1.89(2)
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Table 9.9. Deviations from mass relations in MeV.
Here, ∆ES1 = mΞ∗ − 2mΣ∗ +m∆ and ∆ES2 = mΩ− − 2mΞ∗ +mΣ∗ .

Mπ MK ∆GMO ∆GR ∆ES1 ∆ES2

[MeV] Exp Th Exp Th Exp Th Exp Th

139 497 31±42 46 23±30 38 -6±30 -14 -9±30 -14

213 489 75±70 33 0±72 29 -40±97 -11 9.2±83 -11

246 499 124±77 30 -7±75 25 -46±101 -11 23±86 -11

255 528 133±89 37 -12±94 26 -32±125 -14 29±108 -14

261 524 139±99 35 24±103 25 -29±138 -13 -3±119 -13

302 541 77±87 32 -14±94 23 -30±125 -13 46±108 -13

Using the fit results, one can plot the evolution of each baryon mass with respect

to the pion mass as given in Fig. (9.4). The plot includes, the theoretical predictions

with error-bands (in blue-green) and the masses from experiment + LQCD (in red).

Regarding the theoretical prediction, the 67% confidence interval is represented by

the light blue, and 95% confidence interval is represented by light green.
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Figure 9.4. The evolution of baryon masses obtained from the combined fit result
(second row of Table (9.8)) with respect to the pion mass. The 67%
confidence interval is represented by the band of light blue, and 95%
confidence interval is represented by the band of light green. The red
points with error bars are the calculations from LQCD [37].
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9.6 Predictions on sigma terms

From the baryon masses the σ-terms are derived according to the definition,

σBmq ≡ mq
∂mB

∂mq

, (9.18)

where, mq has several choices, for example;

mq =


m̂ ,
ms ,

m0 = (2m̂+ms)/3 ,

m8 = 1/
√

3(m̂−ms) .

 . (9.19)

The m0 and m8 are SU(3) singlet and octet components of the quark masses. Natu-

rally the set of σ-terms will satisfy the same relations discussed above for the masses.

These relations are exact at tree the tree level, and the deviations occur due to the loop

corrections. The σ-terms associated with the same mq are related via those relations

and their deviations are calculable as described before for the masses. In addition to

the GMO and ES relations one finds the following tree level O (ξ3) relations,

σNms =
ms

8m̂
(−4(Nc − 1) σN m̂ + (Nc + 3) σΛ m̂ + 3(Nc − 1) σΣ m̂)

σΛms =
ms

8m̂
(−4(Nc − 3) σN m̂ + (Nc − 5) σΛ m̂ + 3(Nc − 1) σΣ m̂) (9.20)

σΣms =
ms

8m̂
(−4(Nc − 3) σN m̂ + (Nc + 3) σΛ m̂ + (3Nc − 11) σΣ m̂)

σ∆ms =
ms

8m̂
(−4(Nc − 1) σ∆ m̂ − 5(Nc − 3)( σΛ m̂ − σΣ m̂) + 4Nc σΣ∗ m̂)

σΣ∗ms =
ms

8m̂
(−(Nc − 3)(4 σ∆ m̂ + 5 σΛ m̂ − 5 σΣ m̂) + 4(Nc − 2) σΣ∗ m̂).

Several of these relations are poorly satisfied. The deviations are calculable and

given by the non-analytic contributions to one-loop. It is easy to understand why

these relations receive large corrections. The reason is that, they behave as O (p3Nc)

in the large Nc limit. This implies that any tree level relation one may use to relate ms

and m̂, thus the σ terms will receive in principle such large non-analytic deviations.

In the physical case Nc = 3, those deviations are numerically large for the first, third,
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and fourth relations above. This in particular affects the nucleon strangeness σ term,

and thus indicates that its estimation from arguments based on tree level relations for

an arbitrary Nc, is subject to important corrections such as for the nucleon-σ̂ [121].

In terms of the octet components of the quark masses, in addition to GMO and ES

relations one finds:

σN m8 =
(Nc + 3) σΛm8 + 3(Nc − 1) σΣm8

4(Nc − 3)
, (9.21)

σ∆m8 =
−5(Nc − 3) σΛm8 + 5(Nc − 3) σΣm8 + 4Nc σΣ∗m8

4(Nc − 3)
, (9.22)

where it can be readily checked that they are well defined for Nc → 3 as the nu-

merators on the RHS are proportional to (Nc − 3). These relations are violated

as O (p3N0
c ) in the large Nc. For both relations in the limit Nc → ∞ one finds

LHS − RHS = Nc
128π

(
g̊A
Fπ

)2

(MK −Mπ)(M2
K −M2

π) +O (1/Nc). Thus they are not as

precise as the GMO and ES relations.Finally, if the LEC constant h2 vanishes, one

has one extra tree-level relation related to Eq. (9.14), namely,

σΞ∗m8 − σΣ∗m8 − (σΞm8 − σΣm8) = 0 (9.23)

whose deviation behaves as O (1/N2
c ) in the large Nc limit, and thus expected to be

very good.

9.7 Conclusions and discussion

There are some key observations extracted from the analysis of the baryon masses.

Considering the aspect of fitting, the ξ-expansion works very well with all the phys-

ically measured ground-state baryon masses. Also, the fit results for the individual

set of baryon masses corresponding to it’s LQCD ensemble, shows that the theory

works pretty well up to the quark mass scale around ∼ 300 MeV. This can be directly

observed by the theoretical predictions (see Fig. (9.4)) from the combined fit, which

refers to the fit including all the baryon masses (physical+LQCD) up to ∼ 300 MeV



207

quark mass scale.

Another important fact is that, the one-loop corrections to the self-energy includes

the decuplet contributions in the loop-corrections. This improves the convergence of

the expansion, which reflects in the good behavior of SU(3) symmetry. For example,

the GMO, ES mass relations are exact at the tree level for any arbitrary Nc and

the deviations to those relations are from the loop corrections. These corrections are

calculable and also behave as O (1/Nc), i.e., the mass relations become exact in the

large Nc limit.

Moreover, the baryon masses from this combined approach allows one to determine

the quark mass dependence to the baryon masses, i.e., in other words the baryon σ-

terms. The idea of the combined-fit is to study the baryon masses on this aspect,

because the LECs extracted from the combined fit are independent of the quark mass

scale. Once the LECs are fixed from the combined fit, one can simply study the

behavior of baryon masses with respect to quark masses. Therefore this framework

can be used to predict the σ-terms with the corrections up to O (1/Nc) for all ground-

state baryons. Also, this can address the ambiguity in the value of the nucleon-σ̂ at

the physical point (Mπ = 139 MeV) with the corrections of O (1/Nc) which is the

same for the case of GMO relation [121].
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CHAPTER 10

BARYON CURRENTS (VECTOR AND AXIAL-VECTOR)

FROM THE COMBINED APPROACH

10.1 Introduction

This chapter is focused on calculating the baryon vector currents and axial-vector

currents. The notion of baryon currents were initially introduced by R. C. Hwa and

J. Nuyts in Ref. [122]. On the basis of the quark model, one can construct the

baryon currents as linear combinations of the products of three quarks. Then, using

the canonical anti-commutation relations for the quarks, the equal-time commutation

relations of the baryon currents. The 1/Nc expansion framework with the quark op-

erators as the operator basis provides the framework to study the baryon spin-flavor

structure [11–14]. Also, baryon decays play a crucial role on SU(3) flavor symmetry

breaking as well as the chiral SU(3) × SU(3) symmetry breaking [123]. Therefore,

the combined effective framework can be used to study the spin-favor-chiral symme-

try and it’s breaking effects. At the tree-level, the uia : chiral vielbein in the LO

Lagrangian in Eq. (8.13) contains the chiral currents and one can expand it to obtain

the interaction vertices associated with the baryon currents as well as the meson-

baryon-current interactions. Since the focus of this work is to calculate the one-loop

corrections to the baryon currents, one also needs the meson Lagrangian in Eq. (7.95)

(with covariant derivative fields Dµ instead of ∂µ to include the external currents) in

order to consider the currents entering to the loop through the GB propagator.
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Hadronic weak currents possess the V-A structure of the weak interactions. In

general, a hadronic weak current Jµ can be defined as,

Jµ = Vµ − Aµ , (10.1)

where,

Vµ = Vudūγµd+ Vusūγµs : Vector current ,

Aµ = Vudūγµγ5d+ Vusūγµγ5s : Axial-vector current . (10.2)

Vud, Vus are the elements of Cabibbo-Kobayashi-Maskawa matrix (or CKM matrix)

[124, 125]. Therefore the matrix elements of Vµ and Aµ between the baryon states

with same spin (denoted as B1 and B2) has the general forms [123] :

〈B2|Vµ|B1〉 = VCKM ūB2(p2)

[
f1(q2)γµ +

f2(q2)

MB1

σµνq
ν +

f3(q2)

MB1

qµ

]
uB1(p1) ,

(10.3)

〈B2|Aµ|B1〉 = VCKM ūB2(p2)

[
g1(q2)γµ +

g2(q2)

MB1

σµνq
ν +

g3(q2)

MB1

qµ

]
γ5uB1(p1) ,

(10.4)

where VCKM represents the corresponding element of CKM matrix, q ≡ p1 − p2 is

the momentum transfer, and uBi is the Dirac spinor of the ith baryon. The vector

(axial-vector) matrix element is characterized by the form factors fi(q
2) (gi(q

2)), and

the leading form factor can be denoted as f1(0) = gV (g1(0) = gA).

In addition to the introduction, this chapter includes two more sections dedicated

to vector currents, axial-vector currents including fit results to LQCD calculations

[38].
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10.2 Vector currents: charges

In this section the one-loop corrections to the vector current charges are calcu-

lated. The study is similar to that carried out in [123]. In the rest frame of a baryon

with the presence of an external current, the dominant contribution to the matrix

elements of the vector current is the corresponding charge, which is of O (ξ0). The

sub-leading terms are proportional to O (q/Nc), where q is the 4-momentum transfer

through the external current. Therefore, q ∼MB1 −MB2 ∼ O (p2), where MBi is the

rest-mass of the ith baryon involve with the vector current.

At q2 = 0, the baryon matrix elements for the vector current in the limit of exact

SU(3) symmetry are simply given by the matrix elements of the associated charge or

SU(3) generator T a. According the the Ademollo-Gatto theorem (AGT) [126], the

vector coupling constants to the first order in the symmetry-breaking interaction, are

not renormalized. An application to this theorem is strangeness-violating leptonic

decays of baryons and mesons. The theorem implies the amplitude of the vector

currents in the limit q2 → 0 are uniquely predicted up to first order in symmetry

breaking. In other words, the matrix elements of charge operator can deviate from

the symmetry only to second order in symmetry breaking [127]. Therefore, at lowest

order, the charges are simply given by the SU(3) generators : T a, and the one-loop

corrections are UV finite. Since up to O (ξ3) the AGT is satisfied, the corrections to

the charges are unambiguously given at one-loop by the non-analytic contributions

from the loops.

The one-loop diagrams are given in Fig. (10.1), and the corrections to the charges

are obtained by evaluating the diagrams at q → 0. In that limit the UV divergencies

as well as the finite polynomial terms in quark masses and δm̂ cancel in each of the
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two sets of diagrams, {A+B}, and {C+D+E}, as required by the AGT. The results

for the diagrams are the following:

{A} = − i

2F 2
π

fabcf bcdT dI(0, 1,M2
b )

{B} =
i

4F 2
π

fabcf bcdT d(q0
2K(q,Mb,Mc) + 4q0K

0(q,Mb,Mc) + 4K00(q,Mb,Mc))

{C} =
1

2
{T a, δẐ1−loop}

{D} = i

(
g̊A
Fπ

)2 ∑
n1,n2

GibPn2T
aPn1G

jb 1

q0 − δmn2 + δmn1

× (Hij(p0 − δmn1 ,Mb)−Hij(p0 + q0 − δmn2 ,Mb))

{E} =

(
g̊A
Fπ

)2

fabc
∑
n

GibPnGjcHij0(p0 − δmn, q,Mb,Mc), (10.5)

where the integrals K, Kµ, Kµν , Hij and Hij0 are given in Appendix C. Since the

temporal component of the current can only connect baryons with the same spin, q0

is equal to the SU(3) breaking mass difference between them plus the kinetic energy

transferred by the current, which are all O (p2), and can be neglected: so one can take

the limit q0 → 0 in the end. Diagram {D} requires a careful handling of the limit in

the cases when the denominator vanishes. The same is the case for diagram {F} in

the axial-vector currents in next section. The U(1) baryon number current is used to

check the calculation: only diagrams C + D contribute, and as required cancel each

other.

The UV divergent and polynomial pieces contributed by the diagrams in Fig. (10.1)

can be explicitly calculated, and are given as follows.
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{A}poly =
λε + 1

(4π)2

1

2F 2
π

fabcf bcdM2
b T

d

{B}poly = −λε + 1

(4π)2

1

2F 2
π

fabcf bcdT d(M2
b +

1

6
~q 2)

{C}poly =
1

(4π)2

(
g̊A
Fπ

)2
1

2

{
T a, (λε + 1)M2

bG
ibGib − 2(λε + 2)Gib[δm̂, [δm̂,Gib]]

}
{D}poly =

1

(4π)2

(
g̊A
Fπ

)2
1

3

∑
n1,n2

GibPn2T
aPn1G

ib 1

q0 − δmn2 + δmn1

×
{

(p0 − δmn1)(3(λε + 1)M2
b − 2(λε + 2)(p0 − δmn1)2 − {p0 → p0 + q0, δmn1 → δmn2})

}
=

1

(4π)2

(
g̊A
Fπ

)2
1

3

{
−3(λε + 1)M2

bG
ibT aGib

+ 2(λε + 2)
(
[δm̂, [δm̂,Gib]]T aGib +GibT a[δm̂, [δm̂,Gib]]− [δm̂,Gib]T a[δm̂,Gib]

)}
{E}poly = − 1

(4π)2

(
g̊A
Fπ

)2
i

6
fabc

∑
n

GibPnGjc
{
λε(2q

iqj + q2gij) + q2gij

− 3 gij((λε + 1)(M2
b +M2

c )− (λε + 2)(δmin − 2δmn + δmout)
2)
}

= − 1

(4π)2

(
g̊A
Fπ

)2
i

6

{
((2qiqj + q2gij)λε − q2gij)[T a, Gib]Gjb

+ 3(λε + 1)M2
b [[T a, Gib], Gjb]− 3(λε + 2)

(
[[T a, Gib], [δm̂, [δm̂,Gjb]]]

+ [[δm̂,Gib], [T a, [δm̂,Gib]]]
)}
, (10.6)

where in the evaluations one sets p0 → δmin and p0 + q0 → δmout. Combining the

polynomial pieces and using that [δm̂, T a] = [δm̂, Ĝ2] = [δm̂,GibT aGib] = 0, one

finally obtains:

{A+B}poly = −λε + 1

(4π)2

~q 2

4F 2
π

T a

{C +D + E}poly =
λε − 3

(4π)2

(
g̊A

4Fπ

)2

~q 2 T a (10.7)

As required by the AGT, when q → 0 the UV divergences and polynomial terms van-

ish for all the SU(3) vector charges of the baryon spin-favor multiplet. The calculation

of the finite non-analytic contributions has been carried out in previous work [123],

and will not be revisited here.
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The only counter term required is the one proportional to gE in Eq. (8.15), where

γgE = 1
(4Fπ)2 (4 − g̊2

A), and which provides the only unknown analytic contribution

to the octet and decuplet charge radii up to the order of the calculation. More

details will be presented elsewhere in a study of the vector current’s form factors. In

the context of the charge form factors, studies implementing the 1/Nc expansion for

extracting the long distance charge distribution of the nucleon has been carried out

in Refs. [128–131].

p0

q,aq,a
p0

p0
q,a

p0
q,a

p0

q,a

p0
q,a

A B

C

D E

Figure 10.1. Diagrams contributing to the 1-loop corrections to the vector charges.
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10.3 Axial couplings

In this section, the axial vector currents are studied to one-loop. At the tree level

the axial vector currents have two contributions, namely the contact term and the

GB pole ones, and reads:

Aµa = g̊AG
ja(gµj −

qµqj
q2 −M2

a

). (10.8)

In the non-relativistic limit, or equivalently large Nc limit, the time component of

the axial vector current is suppressed with respect to the spatial components. The

couplings associated with the latter are analyzed below to O (ξ2).

At the leading order the axial couplings are all given in by the coupling g̊A. For

Nc = 3 one obtains: F = g̊A/3, D = g̊A/2, and the axial coupling in the decuplet

baryons is H = g̊A/6. The one-loop diagrams contributing at that order are shown in

Fig. (10.2). The matrix elements of interest for the axial currents are 〈B′ | Aia | B〉

evaluated at vanishing external 3-momentum. The axial couplings are then defined

by:

〈B′ | Aia | B〉 = gBB′

A

6

5
〈B′ | Gia | B〉 . (10.9)

The axial couplings defined here are O (N0
c ). The O (Nc) of the matrix elements of

the axial currents is due to the operator Gia. The factor 6/5 mentioned earlier is

included so that gNNA at Nc = 3 exactly corresponds to the usual nucleon gA, which

has the value 1.2723±0.0023 [39]. This definition of the axial couplings is convenient

in the context of the 1/Nc expansion, as the differences between the different axial

couplings are O (1/N2
c ).
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Figure 10.2. Diagrams contributing to the 1-loop corrections to the axial vector cur-
rents.
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The results for the diagrams are the following:

{A} = −gµi
g̊A

2F 2
π

fabcf cdbGidI(0, 1,Mb)

{B} =
g̊A

6F 2
π

qµqi
q2 −M2

a

fabcf cdbGidI(0, 1,Mb)

{C} =
2̊gA
3F 2

π

qµqi
q2 −M2

d

fabcf cdbGidI(0, 1,Mb)

{D} = − g̊A
3F 2

π

qµqi
q2 −M2

a

fabcf cdbGidI(0, 1,Mb)

{E} =
1

2
g̊A(gµi −

qµqi
q2 −M2

a

){Gia, δẐ1-loop}

{F} = i(gµi −
qµqi

q2 −M2
a

)̊gA

(
g̊A
Fπ

)2 ∑
n1,n2

GjbPn2G
iaPn1G

kb 1

q0 − δmn2 + δmn1

× (Hjk(p0 − δmn1 ,Mb)−Hjk(p0 + q0 − δmn2 ,Mb)) . (10.10)

The corresponding polynomial terms of these one loop contributions are:

{A}poly =
1

(4π)2

g̊A
2F 2

π

(λε + 1)gµi f
abcf bcdGidM2

b

{B}poly = − 1

(4π)2

g̊A
6F 2

π

(λε + 1)
qµqi

q2 −M2
a

fabcf bcdGidM2
b

{C}poly = − 1

(4π)2

2̊gA
3F 2

π

(λε + 1)
qµqi

q2 −M2
d

fabcf bcdGidM2
b

{D}poly =
1

(4π)2

g̊A
3F 2

π

(λε + 1)
qµqi

q2 −M2
a

fabcf bcdGidM2
b

{E}poly =
1

(4π)2

1

2
g̊A

(
g̊A
Fπ

)2

(gµi −
qµqi

q2 −M2
a

) (10.11)

× {Gia, (λε + 1)M2
bG

jbGjb − 2(λε + 2)Gjb[δm̂, [δm̂,Gjb]]}

{F}poly = − 1

(4π)2
g̊A

(
g̊A
Fπ

)2

(gµi −
qµqi

q2 −M2
a

)
(

(λε + 1)M2
bG

jbGiaGjb

−2

3
(λε + 2)

(
GjbGia[δm̂, [δm̂,Gjb]]

+[δm̂, [δm̂,Gjb]]GiaGjb − [δm̂,Gjb]Gia[δm̂,Gjb]
) )

. (10.12)

The conservation of the axial currents is readily checked in the chiral limit. At

this point it is important to check the cancellation of the Nc power counting violating

terms shown in the polynomial terms of diagrams E and F . Such terms cancel in the
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sum, as it is easy to show using the results displayed in Appendix ?? for the axial

vector currents. One obtains:

{E + F}poly =
1

(4π)2
g̊A

(
g̊A
Fπ

)2

(gµi −
qµqi

q2 −M2
a

)

×
(

(λε + 1)
1

6
B0 (23m0Gia +

11

4
dabcmbGic +

5

3
maSi)

+ (λε + 2)
C2
HF

N2
c

((
1− Nc(Nc + 6)

3

)
Gia +

11

6
(Nc + 3)SiT a

− 8

3
{Ŝ2, Gia} − 4

3
Si{Sj, Gja}+

11

6
Ŝ2GiaŜ2

))
(10.13)

The quark mass dependent UV divergencies are O (mq/Nc), and the quark mass

independent ones give a term proportional to Gia, i.e., to the LO term but suppressed

by a factor 1/Nc, while the rest of the terms are O (1/N2
c ) or higher. The cancellation

mechanism that eliminates the Nc counting violating terms must be rather subtle, as

it required an explicit and lengthy calculation starting from Eq. (10.12)

In order to obtain the counter terms one uses the relations given in Appendix

D. The counter terms are contained in the Lagrangians L(2,3)
B , and the corresponding

β-functions are the ones shown in Table (10.1). In addition to g̊A, there are seven

LECs that are necessary to renormalize the axial vector couplings for generic Nc. For

Nc = 3 the terms proportional to CA
1,2,3 are linearly dependent and one is eliminated.

At Nc = 3, after considering isospin symmetry, there are thirty four axial couplings

associated with the axial currents mediating transitions in the spin-flavor multiplet

of baryons. This means that there are twenty seven relations among those couplings

that must be satisfied at the order of the present calculation. Such relations are

straightforward to derive with the results provided here, and they should eventually

become one good test for their LQCD calculations. It should be noted that in general

the relations do dependent on Nc explicitly.
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Table 10.1. β functions for counter terms contributing to the axial-vector currents.

LEC F 2
πβ LEC F 2

πβ/Λ
2

g̊A g̊3
A
C2
HF

3
DA

1 − 1
48
g̊A(36 + 23̊g2

A)

CA
1 −11

6
g̊3
AC

2
HF

Nc+3
Nc

DA
2 − 5

144
g̊3
A

CA
2

1
2
g̊3
AC

2
HF

1−2Nc
Nc

DA
3 (d) − 1

192
g̊A(36 + 11̊g2

A)

CA
3

8
3
g̊3
AC

2
HF DA

3 (f) 0

CA
4

8
3
g̊3
AC

2
HF

The one loop corrections to the axial currents are such that they do not contribute

to the Goldberger-Treiman discrepancies (GTD) [132]. The discrepancies are given

by terms in the Lagrangian of O (ξ3), namely:

L(3)
B = · · ·+ iB†(gGTD[∇i, χ̃a−]Gia + g0

GTD∂
iχ0
−S

i)B. (10.14)

As noted in [132] there are three LECs determining the spin 1/2 GTD in SU(3). The

1/Nc expansion shows that those LECs are actually determined by the two shown

above, which also determine the GTDs of the decuplet baryons.

The following observations are important: if one disregards the non-analytic con-

tributions to the corrections to the axial couplings, it is observed that the corrections

O (Nc) and O (N0
c ) to the matrix elements in S = 1/2 and 3/2 baryons due to the

counter terms are O (p2), i.e., proportional to quark masses. On the other hand the

terms independent of quark masses are O (1/Nc), i.e., spin symmetry breaking is sup-

pressed O (1/N2
c ) with respect to the leading order. This indicates that the effects of

spin-symmetry breaking are more suppressed than the SU(3) symmetry breaking. It

is important to note that at tree level NNLO the axial couplings satisfy Nc indepen-

dent relations. For the case of the ∆Y = 0 couplings within the baryon octet and
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decuplet one finds in the I = 1 case the first relation below, and in the case of the

I = 0 (η channel) one finds GMO and ES relations, namely:(
gA
gV

)π∆+ 3
5
πΞ∗− 8

5
πΣ∗

= 0 ,

2(gηNA + gηΞ
A )− 3gηΛ

A − gηΛ
A = 0 ,

gηΣ∗

A − gη∆
A = gηΞ∗

A − gηΣ∗

A = gηΩ
A − gηΞ∗

A . (10.15)

These relations are only violated by finite non-analytic terms. Additional relations are

straightforward to derive for other couplings, such as those involving the ∆Y = ±1

and the octet to decuplet off diagonal ones.

At LO and using
(
gA
gV

)πN
= 1.267±0.004 for the nucleon, one obtains

(
gA
gV

)KNΛ

=

0.760,
(
gA
gV

)KNΣ

= −0.253, and
(
gA
gV

)KΣΞ

=
(
gA
gV

)πN
, to be compared with the ones

obtained from semi-leptonic hyperon decays [133] 0.718± 0.015, −0.340± 0.017 and

1.32±0.20 respectively. The NLO SU(3) breaking corrections are evidently necessary.

On the other hand, the coupling gN∆
A is at LO equal to gA, while its phenomenological

value extracted from the width of the ∆ assuming a vanishing GTD is equal to 1.235±

0.011 [116, 134], which shows a remarkably small breaking of the spin-symmetry.

This seems to be in line with what was discussed above, namely that spin symmetry

breaking is suppressed with respect to SU(3) breaking by one extra order in 1/Nc.

In the following subsections the results for the axial couplings are confronted with

recent LQCD calculations.

10.3.1 Fits to LQCD Results

LQCD calculations of axial couplings, in particular for the nucleon, have a long

history. However, calculations involving hyperons, and including the decuplet baryons

are very recent. Indeed, the first such calculations were carried out by C. Alexandrou

et al [38], where the calculation of the axial couplings associated with the two neu-
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tral ∆S = 0 currents were performed for transitions within the octet and within the

decuplet baryons. They used twisted mass Wilson action adapted to 2+1+1 flavors

(2-light quark flavors + strange flavor + charm flavor). The results show the recurring

issue in LQCD calculations of axial couplings where the results come out between 5

and 10 % smaller than the physical value for the nucleon. Recent calculations of gNA

have been able to give consistent results [135], but those calculations are still missing

for hyperons and the baryon decuplet.

In this subsection the results [38], are fitted with the effective theory. The LECs

that can be fitted with these results are: gA, CA
1 · · · . In order to make a clear

identification of the different couplings, it is convenient to define the couplings in

a convenient way, which reflects the fact that the values of the axial couplings are

approximately related by spin-flavor symmetry. It is then convenient to write the

zero momentum transfer matrix elements of the axial currents as follows:

〈B′ | Aia | B〉 =
6

5
gaBB

′

A 〈B′ | Gia | B〉. (10.16)

The results shown above for the UV divergencies of the one loop contributions imply

that: δgaBB
′

A (UV div)/gaBB
′

A = O (CHF/Nc)+O (mq/Nc). At LO, gπNNA = gNA = 1.267.

The relations between the couplings gaBB
′

A and the ones displayed in [38] are as follows:

〈B8 | Ai=0 3 | B8〉 =
1

2
gB8
A

〈B10 | Ai=0 3 | B10〉 =
1

6
gB10
A

〈B8 | Ai=0 8 | B8〉 =
1

2
√

3
gB8

8

〈B10 | Ai=0 8 | B10〉 =
1

6
√

3
gB10

8 (10.17)

where B8,10 is an octet (decuplet) baryon with spin projection +1/2, and the cou-

plings on the RHS are those used in [38] and displayed in Tables (IV) and (V) of that
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reference. The LQCD results are given for several π and K masses. The values of Mπ

for the different cases are given in Table (I) of [38], and the corresponding MK is deter-

mined using the physical masses by the LO relation: M2
K = MKphys

2+ 1
2
(M2

π−Mπ
2
phys),

which corresponds to keeping ms fixed. While for general Nc the nine terms asso-

ciated with the LECs in Table (10.1) are linearly independent, at Nc = 3 the term

associated with CA
2 becomes linearly dependent with LO term, and thus its effects

are absorbed into δg̊A. In the case of the LQCD results being fitted here there is

an additional linear dependency, namely that of the term CA
4 which becomes linearly

dependent with the term CA
3 . So the fit will involve seven NLO LECs in addition to

g̊A. The results of the fits are shown in Table (10.2).

Table 10.2. LECs obtained by fitting to the LQCD results of Ref. [38]: here the
choices are Λ = mρ MeV and for the full NLO fit µ = mρ as well. The
independence of the χ2 on the choice of µ has been checked. In the NLO
full fits g̊A is an input; three different reasonable values are included as
example.

Fit χ2
dof g̊A δg̊A CA1 CA2 CA3 CA4 DA

1 DA
2 DA

3 DA
4

LO 3.9 1.35 - - - - - - - - -

NLO Tree 0.91 1.42 - -0.18 - - - - 0.009 - -

NLO Full 1.08 1.02 0.15 -1.11 0. 1.08 0. -0.56 -0.02 -0.08 0.

1.13 1.04 0.08 -1.17 0. 1.15 0. -0.59 -0.02 -0.09 0.

1.19 1.06 0. -1.23 0. 1.21 0. -0.62 -0.03 -0.09 0.

The LO fit, which involves only fitting the LO value of g̊A, shows a remarkably

good approximation to the full set of the LQCD results. This is clearly aided by

the very small dependency on Mπ of the LQCD results. It also shows the very good

approximate spin-flavor symmetry that relates axial couplings in the octet and de-

cuplet. A fit where only tree contributions are included up to the NNLO gives a

very precise description. Indeed, turning off some of the LECs as indicated in Ta-
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ble (10.2) provides a consistent fit. Note that in this case δg̊A, which is required to

cancel an UV divergence proportional to the leading term, can be turned off, as it

is only required when the loop contributions are included. The full NLO fit is more

complicated. Although the implemented consistency with the 1/Nc expansion gives

an important reduction of the non-analytic contributions, these are still significant.

The most significant issue in this case becomes the determination of the LO g̊A. If one

fits it, then the fit naturally drives it down to small values, which suppress the non-

analytic contributions. Such a situation is unrealistic, and therefore some strategy is

needed. Here one finds what the origin of this problem resides: at one loop one needs

to renormalize g̊A via the counterterm proportional to δg̊A, which is suppressed by

one power in 1/Nc. Fixing both the LO g̊A and the counterterm would thus require

information at different values of Nc, which is not accessible at present. One possible

approach is to fix g̊A to the value obtained with the LO fit, and fit the higher order

LECs. This however fails because the resulting fit has too large a χ2. Another strat-

egy is to input several different values of g̊A, and determine an approximate range

for it based of obtaining a χ2 that is reasonable. Finally one can perform a different

strategy, namely use the value for g̊A obtained by matching to the deviation to the

GMO relation, which can be used to give a value for g̊A/Fπ. If one does this, in the

physical case one obtains that g̊A ∼ 1.15 if one uses Fπ = 93 MeV. This however is

not what one should use for the present LQCD results, since they extrapolate to too

low of a value for gNA at the physical point. One would expect that in that case a

correspondingly smaller value should be used, namely g̊A ∼ 1.05. The NLO fit with

such an input for g̊A is almost consistent, and is shown in Table (10.2). Ultimately, in

order to have the LECs in BChPT×1/Nc fully determined one needs a global analysis

that involves LQCD calculations of a complete set of observables. This requires the

LQCD determination of the quark mass dependencies of the observables, and also

the possibility of results for different values of Nc, which is a more difficult task, but
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which has already been initiated with the baryon masses for two flavors [113], and

which has been analyzed with the effective theory [76].
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Figure 10.3. The effect of switching off the contribution of the ∆ in the loops [36].

As illustration of the importance of including the decuplet in the effective theory,

Fig. (10.3) shows the effect of removing it on the one-loop contributions. There is

a dramatic cancellation between octet and decuplet contributions even at Nc = 3,

without which the rather flat behavior of the axial couplings with Mπ is virtually

impossible to explain. This dramatic improvement in the behavior of the effective

theory when it is made consistent with the 1/Nc expansion permeates other observ-

ables, such as the mass relations and vector charges discussed earlier, as well as

virtually any other quantity, such as pion-nucleon scattering, Compton scattering,

etc.
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CHAPTER 11

CONCLUSIONS AND PERSPECTIVES

The qualitative idea of generalizing QCD from SU(3) to SU(Nc) by introducing

Nc number of colors [10], has become a quantitative powerful tool with its develop-

ment over a four decades. The application to baryons [15] with introducing large Nc

power counting, and the discovery of the dynamical spin-flavor symmetry of baryons

in the large Nc limit [11–14] made a substantial contribution for the advancement

in the framework. This framework allows one to perform perturbative calculations

in the low energy (non-perturbative) regime of QCD. In particular, in the baryonic

sector the spin-flavor symmetry can be studied with its explicit breaking by the sub-

leading 1/Nc corrections, via the construction of effective operators associated with

the observables of interest [44]. The 1/Nc expansion is thus a very powerful effective

theory in baryon phenomenology.

The initial focus of this thesis work was predominantly motivated by several facts.

First, there are missing resonances in the lower lying excited baryon multiplets. Sec-

ond, the availability of LQCD results on the lower-lying baryon multiplets contain a

complete set of states, including the ground state and resonances corresponding to

several different quark masses [28, 29]. Third, the successful application of the 1/Nc

framework to the excited baryon multiplets: [56, 0+] (Roper multiplet) in Ref. [77] ,

[56, 2+] in Ref. [25] and [70, 1−] in Refs. [21,23,58,59] with the available baryon masses

from experiment. The 1/Nc framework was simultaneously applied to both physical

and LQCD baryon masses corresponding to the [56, 0+], [56, 2+], and [70, 1−] multi-

plets. The importance of this study is governed by the ability to extract the dynamics

of the spin-flavor symmetry with its breaking in SU(3), and the behavior effective

operators with respect to the quark mass. The significance of this work is further
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demonstrated by the predictions of lower-lying missing resonances in the physical

case with higher precision, and the identification of undetermined quantum numbers

(e.g. spin and parity) of some baryon states in the Particle Data Group [27,136].

The main conclusions of this study on baryon masses in 1/Nc expansion can be

summarized as follows. The leading contribution to the baryon masses in all consid-

ered multiplets is governed by the spin-flavor singlet operator and hyper-fine operator.

The spin-orbit contribution is smaller compared to the spin-flavor singlet and hyper-

fine contributions, and shows small variation with respect to the quark mass in each

mutiplet. The SU(3) breaking operators are significant in magnitude near the physi-

cal quark mass, while the operators vanish at the SU(3) symmetric point (Mπ ∼ 700

MeV). The fit results to physical baryon masses for each multiplet are in good agree-

ment with the previous work [21, 23, 25, 58, 59, 77]. Fitting to LQCD results was a

challenge due the ambiguity of identification of baryon states for a given spin. A

model independent method was implemented, which tested the mass combinations

with mass relations and identified reasonable combination of baryon masses to be

fitted with the theory. Finally, the filtered baryon mass combinations from the mass

relations constrained the operator coefficients to be fitted with a reasonable χ2 value

and natural size of the coefficients. Therefore, this methodology was successfully ap-

plied simultaneously to identify the baryon states corresponding to each multiplet,

and yielded quality fit results to the LQCD spectrum.

The main focus of this thesis work was motivated by the combined approach of

two effective theories, namely ChPT and 1/Nc expansion in baryon phenomenology.

This framework was originally developed in Refs. [34,35,109,137], such that the effec-

tive Lagrangian respects the chiral SU(Nf ) × SU(Nf ) symmetry in the chiral limit,

and the contracted dynamical spin-flavor symmetry SU(2Nf ) in the large Nc limit.
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The heavy baryon formalism of ChPT (HBChPT) is also assumed in this combined

approach. One can expect a slower rate of convergence of the low energy expan-

sion, because the expansion progresses in steps of O (p) rather than steps of O (p2)

in the conventional ChPT. The essence of this combined framework is making the

link between the chiral expansion and the 1/Nc expansion. Due to the observation

of non-commutativity of the two expansions [30], they are linked by considering the

size of the baryon mass splitting of O (1/Nc), which is of O (p), the so called the

ξ-expansion [36]. Therefore, having a systematic low energy expansion, including the

chiral-spin-flavor symmetries combined together as an effective theory can be also

considered as a powerful effective theory in baryon phenomenology.

There are some key observations from this work, which can be lead to a bet-

ter understanding of baryon phenomenology. Because, this work concentrate on the

implementation of this combined framework to calculate one-loop corrections to the

ground state baryon masses, vector and axial-vector currents in the case of SU(3)flavor,

including an analysis with physical and LQCD results. It is worth noting that the

decuplet degrees of freedom in the loops were taken into account to improve the con-

vergence of the low energy expansion. One of the most important observations is the

deviations from the GMO, ES, and GR mass relations, that are explicitly calculated

from this framework to O (ξ3). The deviations to GMO and ES relations behave as

O (1/Nc), such that the SU(3) symmetry breaking relations are exact in the large Nc

limit. It is reasonable to suspect that the GR relation also has the same behavior, if

one neglects the tree level counter term proportional to the LEC h2. The previous

argument is supported by the fit results obtained by fixing h2 = 0. Moreover, the fit

results show that the combined framework works well in the case of SU(3)flavor in the

range of small quark masses (Mπ . 300 MeV). The main expectation of the combined

fit to the baryon masses is to extract the LEC values which are independent of quark
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mass, for the determination of baryon σ-terms [121].

It is clear the ξ-expansion framework can describe the LQCD results on baryon

masses as well as axial couplings. For example, the mild behavior of the axial cou-

plings with respect to the quark mass has been confirmed in the case of SU(3). This

completes the study of the combined framework in SU(3) for the baryon masses, since

the one-loop contributions were believed to be large in magnitude and have a small

range of convergence. The smaller values in gNNA at the physical point is expected

to be a LQCD issue rather than the problem of convergence of the effective theory,

because the ξ-expansion is well behaved for gA. Some possible sources of systematic

errors in the extraction from LQCD might be finite volume effects and/or the effects

from the three-point functions by excited states.
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APPENDIX A

SPIN-FLAVOR ALGEBRA AND OPERATOR BASES

The 4N2
f −1 generators of the spin-flavor group SU(2Nf ) consist of the three spin

generators Si, the N2
f − 1 flavor SU(Nf ) generators T a, and the remaining 3(N2

f − 1)

spin/flavor generators Gia.

In representations with Nc indices (baryons), the generators Gia have matrix ele-

ments O (Nc) on states with S = O (N0
c ). A contracted SU(6) algebra is defined by

the generators {Si, Ia, X ia}, where X ia = Gia/Nc. In large Nc, the generators X ia

become semiclassical as [X ia, Xjb] = O (1/Nc), while having matrix elements O (1)

between baryons.

The symmetric irrep of SU(6) with Nc Young boxes decomposes into the follow-

ing SU(2)spin × SU(3) irreps: [S, (p, q)] = [S, (2S, 1
2
(Nc − 2S))], S = 1/2, · · · , Nc/2

(assume Nc is odd). The baryon states are then denoted by: | SS3, Y II3〉. Clearly

the spin S of the baryons determines its SU(3) irrep.

In SU(3) for a given irrep given (p, q), the range of hypercharge is:

Ymin(p, q) = −2p+ q

3
≤ Y ≤ Ymax(p, q) =

p+ 2q

3
(A.1)

It is convenient to define:

Ȳ (p, q) = Ymax(p, q)− q
Ȳ ′(p, q) = Ymin(p, q) + q. (A.2)

One has that Ȳ > Ȳ ′ if p > q, and viceversa. The possible isospin values for a given

Y are as follows:
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if p ≥ q : I(Y ) =


if Y ≥ Ȳ : 1

2
(p− Ymax + Y ), · · · , 1

2
(p+ Ymax − Y )

if Ȳ ′ ≤ Y < Ȳ : 1
2
(p− Ymax + Y ), · · · , 1

2
(p+ Ymax + Y − 2Ȳ )

if Ymin ≤ Y < Ȳ ′ : 1
2
(q + Ymin − Y ), · · · , 1

2
(q + Y − Ymin)

if q ≥ p : I(Y ) =


if Y ≥ Ȳ ′ : 1

2
(p− Ymax + Y ), · · · , 1

2
(p+ Ymax − Y )

if Ȳ ≤ Y < Ȳ ′ : 1
2
(p+ 2Ȳ ′ − Ymax − Y ), · · · , 1

2
(p+ Ymax − Y )

if Ymin ≤ Y < Ȳ : 1
2
(q + Ymin − Y ), · · · , 1

2
(q + Y − Ymin)

with this, one can easily builds the content of ground state baryons for arbitrary Nc.

A.1 Matrix elements of spin-flavor generators

According to the Wigner-Eckart theorem, the matrix element of a generic SU(2)spin×

SU(3) tensor operator O``3
R̃Ỹ ĨĨ3

between baryon states of the form

∣∣∣∣∣∣ S S3

R Y II3

〉
will be

given in terms of reduced matrix elements (RMEs) and SU(3) Clebsch-Gordan (CG)

coefficients as,〈
S′ S′3
R′ Y ′I ′I ′3

∣∣∣∣O``3
R̃Ỹ ĨĨ3

∣∣∣∣ S S3

R Y II3

〉
=

1√
2S ′ + 1

√
dimR′

〈SS3, ``3 | S ′S ′3〉

×
∑
γ=1,2

〈S ′, R′ || O`
R̃
|| S,R〉γ

〈
R R̃

Y II3 Ỹ Ĩ Ĩ3

∣∣∣∣ R′

Y ′I ′I ′3

〉
γ

,

(A.3)

where, R is the irrep of SU(3) to which the state belongs, and ` is the angular mo-

mentum in the spherical basis.

Matrix elements of the spin-flavor generators between baryon states in the spin-

flavor symmetric representation are then given by:
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〈
S′ S′3
Y ′I ′I ′3

∣∣∣∣Sm ∣∣∣∣ S S3

Y II3

〉
= δSS′δY Y ′δII′δI3I′3

√
S(S + 1)〈SS3, 1m | S ′S ′3〉〈

S′ S′3
Y ′I ′I ′3

∣∣∣∣T yii3 ∣∣∣∣ S S3

Y II3

〉
= δSS′δS3S′3

1√
dim(2S, 1

2
(Nc − 2S))

〈S || T || S〉

×
〈

(2S, 1
2(Nc − 2S)) (1, 1)
Y I I3 yii3

∣∣∣∣ (2S, 1
2(Nc − 2S))
Y ′ I ′ I ′3

〉
γ=1〈

S′ S′3
Y ′I ′I ′3

∣∣∣∣Gm
yii3

∣∣∣∣ S S3

Y II3

〉
=

〈SS3, 1m | S ′S ′3〉√
2S ′ + 1

√
dim(2S, 1

2
(Nc − 2S))

∑
γ

〈S ′ || G || S〉γ

×
〈

(2S, 1
2(Nc − 2S)) (1, 1)
Y I I3 yii3

∣∣∣∣ (2S, 1
2(Nc − 2S))
Y ′ I ′ I ′3

〉
γ

(A.4)

where the reduced matrix elements are (here p = 2S, q = 1
2
(Nc − 2S)):

〈S || T || S〉 = sign(q − 0+)
√

dim(p, q)C2(p, q)

= sign(Nc − 2S − 0+)

×
√

(2S + 1)(Nc − 2S + 2)(Nc + 2S + 4)(Nc(Nc + 6) + 12S(S + 1))

4
√

6

〈S′ || G || S〉γ=1 =


if S = S′ + 1 : −

√
(4S2−1)((Nc+2)2−4S2)((Nc+4)2−4S2)

8
√

2

if S = S′ − 1 : −
√

(4S(S+2)+3)(Nc−2S)(Nc−2S+2)(Nc+2S+4)(Nc+2S+6)

8
√

2

if S = S′ : sign(Nc − 2S − 0+)
(Nc+3)(2S+1)

√
S(S+1)(Nc−2S+2)(Nc+2S+4)√

6Nc(Nc+6)+12S(S+1)

〈S′ || G || S〉γ=2 = −δSS′
(2S + 1)

√
(Nc − 2S)(Nc + 2S + 6) ((Nc + 2)2 − 4S2) ((Nc + 4)2 − 4S2)

8
√

2
√
Nc(Nc + 6) + 12S(S + 1)

(A.5)

A.2 Bases of spin-flavor composite operators

Here the bases of 2- and 3-body spin-flavor operators along with important operator

relations relevant to this work are given.There are operator relations which are valid for

matrix elements in the symmetric irrep of SU(6). The first ones are relations for 2-body

operators [49], and are shown in Table. (A.1).
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Table A.1. 2-body identities for the SU(6) generators acting on the irreducible rep-
resentation (Nc, 0, 0, 0, 0, 0).

Relation SU(2)spin × SU(3)

2Ŝ2 + 3T̂ 2 + 12Ĝ2 = 5
2
Nc(Nc + 6) (` = 0,1)

dabc{Gia, Gib}+ 2
3
{Si, Gic}+ 1

4
dabc{T a, T b} = 2

3
(Nc + 3)T c (0,8)

{T a, Gia} = 2
3
(Nc + 3)Si (1,1)

1
3
{Si, T a}+ dabc{T b, Gic} − εijkfabc{Gjb, Gkc} = 4

3
(Nc + 3)Gia (1,8)

−12Ĝ2 + 27T̂ 2 − 32Ŝ2 = 0 (0,1)

dabc{Gib, Gic}+ 9
4
dabc{T b, T c} − 10

3
{Si, Gia} (0,8)

4{Gia, Gib}27 = {T a, T b}27 (0,27)

dabc{T b, Gic} = 1
3
({Si, T a} − εijkfabc{Gjb, Gkc}) (1,8)

εijk{Gja, Gkb}10+1̄0 = (facddbce{T d, Gie})10+1̄0 (1,10 + 1̄0)

{Gia, Gja}`=2 = 1
3
{Si, Sj}`=2 (2,1)

dabc{Gia, Gjb}`=2 = 1
3
{Si, Gja}`=2 (2,8)

The following identities follow from these relations:

from the (0,1) relations:

Ĝ2 =
1

4

(
3

4
Nc(Nc + 6)− 5

3
S2

)
T̂ 2 =

1

4

(
Nc(Nc + 6)

3
+ 4Ŝ2

)
, (A.6)

from the (0,8) relations:

dabc{Gib, Gic} =
3

4
(Nc + 3)T a − 7

6
{Si, Gia}

dabc{T b, T c} = −(Nc + 3)

3
T a + 2{Si, Gia}, (A.7)

and from the (1,8) relations:

εijkfabc{Gia, Gjb} = (SkT c − (Nc + 3)Gkc)

dabc{T a, Gib} = 2dabcT aGib =
1

3
(SiT c + (Nc + 3)Gic)

fabc{T b, Gic} = εijk{Sj , Gka}, (A.8)
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while the rest of the identities are explicit in Table (A.1). Making use of these relations, the

basis of 2-body operators can be chosen to be as shown in Table (A.2).

Table A.2. 2-body basis operators.

2-body operator (`,R)

Ŝ2 (0,1)
{Si, Sj}`=2 (2,1)
{Si, T a} (1,8)
{Si, Gia} (0,8)

εijk{Sj, Gka} (1,8)
{Si, Gja}`=2 (2,8)

{T a, Gib}10+1̄0 (1,10 + 1̄0)
{T a, T b}27 (0,27)
{Gia, Gjb}(2,27) (2,27)
{T a, Gib}27 (1,27)

Making use of the basis of 2-body operators, some lengthy work leads to building the

basis of 3-body operators ` = 0, 1. That basis is displayed in Table A.3:

Table A.3. Operators of interest in the 3-body basis up to ` = 1.

3-body operator (`,R)

T aŜ2 (0,8)

{T a, {Si, Gib}}10+1̄0 (0,10 + 1̄0)
{T a, {Si, Gib}}27 (0,27)

SiŜ2 (1,1)
{T a, {T b, T c}27} (0,8⊗ 27)
Si{T a, T b}27 (1,27)

{Sj, {Gia, Gjb}(2,27)} (1,27)

{Ŝ2, Gia} (1,8)

εijk{Sj, {T a, Gkb}}10+1̄0 (1,10 + 1̄0)
εijk{Sj, {T a, Gkb}}27 (1,27)
{Gia, {T b, T c}27} (1,8⊗ 27)
{Gia, {Sj, Gjb}} (1,8⊗ 8)
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APPENDIX B

BUILDING BLOCKS FOR THE EFFECTIVE

LAGRANGIANS

In the symmetric representations of SU(6) the baryon spin-flavor multiplet consists of

the baryon states in the SU(3) irreps (p = 2S, q = 1
2(Nc − 2S)), where S is the baryon

spin. This permits a straightforward implementation of the non-linear realization of chiral

SUL(3)×SUR(3) on the spin-flavor multiplet. The baryon spin-flavor multiplet is given by

the field B, where the fields have well defined spin, and therefore also are in irreps of SU(3).

Defining as usual the Goldstone Boson fields πa, a = 1, · · · , 8, through the unitary

parametrization u = exp(iπ
aTa

Fπ
) (note that in the fundamental representation T a = λa/2,

with λa the Gell-Mann matrices), for any isospin representation one defines a non-linear

realization of chiral symmetry according to [80,81]:

(L,R) : u = u′ = Ruh†(L,R, u) = h(L,R, u)uL†, (B.1)

where (L,R) is a SUL(3)×SUR(3) transformation. This equation defines h, and since h is a

SU(3) transformation itself, it can be written as h = exp(icaT a). The chiral transformation

on the baryon multiplet B is then given by:

(L,R) : B = B′ = h(L,R, u)B. (B.2)

On the other hand, spin-flavor transformations of interest are the contracted ones, namely

those generated by {Si, Ia, Xia = 1
Nc
Gia}. While the isospin transformations act on the

pion fields in the usual way, and the spin transformations must be performed along with

the corresponding spatial rotations. The transformations generated by Xia are defined to

only act on the baryons.
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The effective baryon Lagrangian can be expressed in the usual way as a series of terms

which are SUL(3) × SUR(3) invariant (upon introduction of appropriate sources; see for

instance [82] for details). The fields in the effective Lagrangian are the Goldstone Bosons

parametrized by the unitary SU(3) matrix field u and the baryons given by the symmetric

SU(6) multiplet B.

The building blocks for the effective theory consist of low energy operators composed in

terms of the GB fields, derivatives and sources (chiral tensors), and spin-flavor composite

operators (spin-flavor tensors). The low energy operators are the usual ones, namely:

Dµ = ∂µ − iΓµ, Γµ = Γ†µ =
1

2
(u†(i∂µ + rµ)u+ u(i∂µ + `µ)u†),

uµ = u†µ = u†(i∂µ + rµ)u− u(i∂µ + `µ)u†,

χ = 2B0(s+ ip), χ± = u†χu† ± uχ†u,
FµνL = ∂µ`ν − ∂ν`µ − i[`µ, `ν ], FµνR = ∂µrν − ∂νrµ − i[rµ, rν ], (B.3)

where Dµ is the chiral covariant derivative, s and p are scalar and pseudo-scalar sources,

and `µ and rµ are gauge sources. It is convenient to define the SU(3) singlet and octet

components of χ± using the fundamental SU(3) irrep, namely:

χ0
± =

1

3
〈χ±〉

χ̃± = χ− χ0
± = χ̃a±

λa

2
(B.4)

Displaying explicitly the quark masses,

χ+ = 4B0Mq + · · · . (B.5)

The three quark mass combinations, namely SU(3) singlet, isosinglet, and isotriplet are

respectively defined to be:

m0 =
1

3
(mu +md +ms), m8 =

1√
3

(mu +md − 2ms), m3 ≡ (mu −md). (B.6)

The spin-flavor operators were discussed in Appendix A.

The leading order equations of motion are used in the construction of the higher order

terms in the Lagrangian, namely, iD0B = (CHFNc
S(S + 1) + c1

2Λ χ̂+)B, and ∇µuµ = i
2χ−.
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APPENDIX C

LOOP INTEGRALS

The one loop integrals needed in this work are provided here. The definition d̃dk ≡

ddk/(2π)d is used. The scalar and tensor one-loop integrals are:

I(n, α,Λ) ≡
∫
d̃dk

k2n

(k2 − Λ2)α
= i(−1)n−α

1

(4π)
d
2

Γ(n+ d
2)Γ(α− n− d

2)

Γ(d2)Γ(α)

(
Λ2
)n−α+ d

2

Iµ1,··· ,µ2n(α,Λ) ≡
∫
d̃dk

kµ1 · · · kµ2n

(k2 − Λ2)α
= i(−1)n−α

1

(4π)
d
2

1

4nn!

Γ(α− n− d
2)

Γ(α)

(
Λ2
)n−α+ d

2

×
∑
σ

gµσ1µσ2
· · · gµσ2n−1µσ2n

(C.1)

=
1

4nn!

Γ(d2)

Γ(n+ d
2)
I(n, α,Λ)

∑
σ

gµσ1µσ2
· · · gµσ2n−1µσ2n

,

where σ are the permutations of {1, · · · , 2n}.

The Feynman parametrizations needed when heavy propagators are in the loop are as

follows:

1

A1 · · ·AmB1 · · ·Bn
= 2mΓ(m+ n)

∫ ∞
0

dλ1 · · · dλm
∫ 1

0
dα1 · · · dαnδ(1− α1 − · · · − αn)

× 1

(2λ1A1 + · · ·+ 2λmAm + α1B1 + · · ·+ αnBn)m+n
, (C.2)

where the Ai are heavy particle static propagators denominators, and the Bi are relativistic

ones.

The integration over a Feynman parameter λ is of the general form:

J(C0, C1, λ0, d, ν) ≡
∫ ∞

0
(C0 + C1(λ− λ0)2)−ν+ d

2 dλ , (C.3)

which satisfies the recurrence relation:
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J(C0, C1, λ0, d, ν) =
−λ0(C0 + C1λ

2
0)1−ν+ d

2 + (3 + d− 2ν)J(C0, C1, λ0, d, ν − 1)

(d− 2ν + 2)C0
,

J(C0, C1, λ0, d, ν) = C0
d− ν

d− 2ν + 1
J(C0, C1, λ0, d, ν + 1) +

λ0

d− 2ν + 1
(C0 + C1λ

2
0)

d
2
−ν .

(C.4)

Integrals with factors of λ in the numerator are obtained by using,

J(C0, C1, λ0, d, ν, n = 1) ≡
∫ ∞

0
(λ− λ0)n=1(C0 + C1(λ− λ0)2)−ν+ d

2 dλ

= − 1

2C1 (d2 + 1− ν)
(C0 + C1λ

2
0)

d
2

+1−ν , (C.5)

and the recurrence relations

J(C0, C1, λ0, d, ν, n) =
1

C1
(J(C0, C1, λ0, d, ν−1, n−1)−C0J(C0, C1, λ0, d, ν, n−2)). (C.6)

For convenience in some of the calculations for the currents, one defines:

J̃(C0, C1, λ0, d, ν, n) ≡ J(C0, C1, λ0, d, ν, n) + λ0J(C0, C1, λ0, d, ν) . (C.7)

For the calculations in this work the following integrals are needed at d = 4− 2ε:

J(C0, C1, λ0, d, 3) =
1√
C0C1

(
π

2
+ arctan(λ0

√
C1

C0
)

)
,

J(C0, C1, λ0, d, 2) =
1

d− 3
(λ0(C0 + C1λ

2
0)

d
2
−2 + (d− 4)C0J(C0, C1, λ0, d, 3)) ,

J(C0, C1, λ0, d, 1) =
1

d− 1
(λ0(C0 + C1λ

2
0)

d
2
−1 + (d− 2)J(C0, C1, λ0, d, 2)) . (C.8)

C.1 Specific integrals

Here a summary of relevant one-loop integrals for the calculations in this work is pro-

vided for the convenience of the reader.

1) Loop integrals involving only relativistic propagators
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I(0, 1,M) = − i

(4π)
d
2

Γ(1− d

2
)Md−2

I(0, 2,M) =
i

(4π)
d
2

Γ(2− d

2
)Md−4

I(1, 1,M) =
i

(4π)
d
2

d

2
Γ(−d

2
)Md

I(1, 2,M) = − i

(4π)
d
2

d

2
Γ(1− d

2
)Md−2

K(q,Ma,Mb) ≡
∫
d̃dk

1

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)
=

∫ 1

0
dα I(0, 2,Λ(α))

Kµ(q,Ma,Mb) ≡
∫
d̃dk

kµ

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)
=

∫ 1

0
dα (α− 1) qµ I(0, 2,Λ(α))

Kµν(q,Ma,Mb) ≡
∫
d̃dk

kµkν

(k2 −M2
a + iε)((k + q)2 −M2

b + iε)

=

∫ 1

0
dα ((1− α)2 qµqν I(0, 2,Λ(α)) +

gµν

d
I(1, 2,Λ(α))), (C.9)

where:

Λ(α) =
√
αM2

a + (1− α)M2
b − α(1− α)q2

2) Loop integrals involving one heavy propagator

H(p0,M) ≡
∫
d̃dk

1

(p0 − k0 + iε)(k2 −M2 + iε)

=
2i

(4π)
d
2

Γ(2− d

2
)J(M2 − p02

, 1, p0, d, 2)

H ij(p0,M) ≡
∫
d̃dk

kikj

(p0 − k0 + iε)(k2 −M2 + iε)

= − i

(4π)
d
2

gijΓ(1− d

2
)J(M2 − p02

, 1, p0, d, 1) (C.10)

H ijµ(p0,Ma,Mb, q) ≡
∫
d̃dk

ki(k + q)j(2k + q)µ

(p0 − k0 + iε)(k2 −M2
a + iε)((k + q)2 −M2

b + iε)

= i
4

(4π)
d
2

∫ 1

0
dα

{
−1

2
Γ(3− d

2
)qiqjα(1− α)

×
(

(1− 2α)qµJ(C0, C1, λ0, d, 3)− 2 gµ0J̃(C0, C1, λ0, d, 3, 1)
)

+ Γ(2− d

2
)
(
(−(1− 2α)gijqµ + 2(αgµiqj − (1− α)gµjqi))J(C0, C1, λ0, d, 2)

+ 2gijgµ0J̃(C0, C1, λ0, d, 2, 1)
)}

,

where:
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C0 = αM2
a + (1− α)M2

b − p02 − 2(1− α)p0q0 − (1− α)(α q2 + (1− α)q02
)

C1 = 1

λ0 = p0 + (1− α)q0. (C.11)

Computing the polynomial pieces of the integrals, one obtains:

H(p0,M)poly =
i

(4π)2
2p0(λε + 2)

H ij(p0,M)poly =
i

(4π)2

p0

3
((3M2 − 2p02

)λε + 7M2 − 16

3
p02

)

H ij0(p0,Ma,Mb, q)
poly =

i

6(4π)2

(
(2qiqj + q2gij)λε + q2gij − 3(λε + 1)(M2

a +M2
b )gij

+ 3(λε + 2)(2p0 + q0)2gij
)
, (C.12)

where the UV divergency is given by the terms proportional to λε ≡ 1/ε−γ+ log 4π, where

d = 4− 2ε.
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APPENDIX D

USEFUL OPERATOR REDUCTION FORMULAS

The reductions of multi-body spin-flavor operators which appear in the polynomial

contributions of the one-loop corrections to the self-energy and the currents require some

lengthy work, and are therefore provided here. The reductions are only valid for matrix

elements between states in the totally symmetric irrep of SU(6).

1. Self-energy:

[[δm̂,Gia], Gia] =
CHF
Nc

(
7

2
Ŝ2 − 3

8
Nc(Nc + 6)

)
[[δm̂, [δm̂,Gia]], Gia] =

(
CHF
Nc

)2

(4Ŝ4 − (Nc(Nc + 6)− 18)Ŝ2 − 3

2
Nc(Nc + 6))

[[δm̂, [δm̂, [δm̂,Gia]]], Gia] =

(
CHF
Nc

)3 (
36Ŝ4 − (5Nc(Nc + 6)− 36)Ŝ2 − 3Nc(Nc + 6)

)
M2
aG

iaGia = 2B0

(
m0Ĝ2 +ma(− 7

24
{Si, Gia}+

3

16
(Nc + 3)T a)

)
M2
a [[δm̂,Gia], Gia] = 4

CHF
Nc

B0

(
8

3
m0Ŝ2 +

5

12
ma{Si, Gia}

)
− 4M2

aG
iaGia

(D.1)
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2. Vector currents:

Gia[δm̂, [δm̂,Gia]] =

(
CHF
Nc

)2(3

4
Nc(Nc + 6) + (

1

2
Nc(Nc + 6)− 9)Ŝ2 − 2Ŝ4

)
[δm̂,Gia][δm̂,Gia] = −Gia[δm̂, [δm̂,Gia]]

GibT a[δm̂, [δm̂,Gib]] = −[δm̂,Gib]T a[δm̂,Gib]

=

(
CHF
Nc

)2(
3(Nc + 3)SiGia + (

3

4
(Nc(Nc + 6)− 6)

+
1

2
(Nc(Nc + 6)− 30)Ŝ2 − 2Ŝ4)T a

)
[[T a, Gib], [δm̂, [δm̂,Gib]]] = −[[T a, [δm̂,Gib]], [δm̂,Gib]]

= 2[δm̂,Gib]T a[δm̂,Gib]− {T a, [δm̂,Gib][δm̂,Gib]}
fabcf bcdM2

b T
d = 6B0(m0T a +

1

4
dabcmbT c)

M2
bG

ibT aGib = 2B0

(
m0(Ĝ2 − 9

8
)T a

+
1

2
mb

(
1

2
{T a, 3

8
(Nc + 3)T b − 7

24
SiGib} − 3

4
dabcT c

))
M2
b [[T a, Gib], Gib] =

9

2
B0

(
m0T a +

1

4
mbdabcT c

)
(D.2)

3. Axial-vector currents:

GjbGia[δm̂, [δm̂,Gjb]] + h.c. =

(
CHF
Nc

)2(3

2
Nc(Nc + 6)Gia +

(
1

2
Nc(Nc + 6)− 14

)
{Ŝ2, Gia}

− {Ŝ2, {Ŝ2, Gia}}+
3

2
(Nc + 3)SiT a + 2SiSjGja

)
[δm̂,Gjb]Gia[δm̂,Gjb] =

(
CHF
Nc

)2(
−1

2

(
3 +

1

2
Nc(Nc + 6)

)
Gia

+
1

2

(
13− 1

2
Nc(Nc + 6)

)
{Ŝ2, Gia}+

1

2
{Ŝ2, {Ŝ2, Gia}}

−5

4
(Nc + 3)SiT a

)
facdf bcdM2

cG
ib = 6B0(m0δab +

1

4
mcdabc)Gib

M2
bG

jbGiaGjb =
1

2
{Gia,M2

bG
jbGjb} − B0

12

(
23m0Gia

+mb

(
5

3
δabSi +

11

4
dabcGic

))
(D.3)
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