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ABSTRACT

By mining data from Jefferson Lab Hall A experiment E08-014 a new 3He elastic
cross section was extracted from a large quasielastic background. This measure-
ment was taken with an initial beam energy of 3.356 GeV and an angle of 20.51◦.
The cross section was found to be 1.345 × 10−6 µb/sr ± 0.086 × 10−6 µb/sr
at Q2 = 34.19 fm−2. This new data point falls approximately halfway between
the first and second diffractive minima of the 3He form factors. When combined
with recent high Q2 3He elastic cross section measurements from Jefferson Lab
and MIT-Bates this new data point improves our knowledge of the cross section
and form factors at large momentum transfers.

The new high Q2 data motivate a reanalysis of the 3He elastic cross section world
data and provide an improved understanding of the magnetic form factor in
particular. For this analysis the elastic cross section world data for 3He, and its
mirror nuclei 3H, were collected. The world data spans a time frame from 1965
to 2016. The dataset contains electron energy ranges from tens of MeV to above
12 GeV for measurements performed at many different facilities. The world data
were then fit using a sum of Gaussians parametrization which allowed for the
extraction of both targets’ magnetic and electric form factors which were then
used to calculate charge densities and radii.

The new charge and magnetic form factors for 3H and the charge form factor
for 3He are in good agreement with the 1994 fits from Amroun et al. However,
the addition of the new high Q2 data has caused the 3He magnetic form factor’s
first diffractive minimum to shift up in Q2 by 1-3 fm−2 while also decreasing the
magnitude of the magnetic form factor above Q2 ≈ 20 fm−2. The first diffractive
minima for 3H are located at Q2 ≈ 13 fm−2 and Q2 ≈ 23-24 fm−2 for the charge
and magnetic form factors respectively. The first diffractive minima for 3He are
located at Q2 ≈ 11 fm−2 and Q2 ≈ 17-20 fm−2 for the charge and magnetic form
factors respectively.

The charge radius for 3He was found to be 1.90 fm ± 0.00144 fm in reasonable
agreement with past measurements, and the charge radius for 3H was found to
be 2.02 fm ± 0.0133 fm which is much larger than past measurements. However,
each of these charge radii has an additional uncertainty that must be applied to
them due to allowing all parameters to float freely during the sum of Gaussians
fitting procedure. This additional uncertainty should be small for 3He, but it is
likely quite significant for 3H and would help bring this charge radius closer to
agreement with past measurements that made different fitting choices. Unfortu-
nately, this analysis was unable to quantify this additional uncertainty.

The new form factor fits were compared to modern theoretical predictions from
the 2016 paper of Marcucci et al. The ‘conventional’ theoretical approach applied
in this paper modelled two and three-body nucleon interactions with relativistic



corrections and was reasonably successful at predicting the charge form factors
of 3H and 3He. χEFT predictions were also often successful. However, while the
‘conventional’ approach still performed best, theory failed to accurately predict
the magnetic form factors of either 3H or 3He. The first diffractive minimum of
the new 3He magnetic form factor fits actually moved further away from theory.
This disagreement between theory and experiment provides motivation for new
asymmetry measurements using polarized 3He and a polarized electron beam.
When the beam is scanned in Q2 on the target the sign of the asymmetry will
flip at the form factor minima pinning down their true location.
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1

Chapter 1

Elastic Electron Scattering

Electron scattering is one of the most powerful tools available to physicists to study

the nature of nuclear matter. When electrons are accelerated to high energies by means

of a particle accelerator, like Jefferson Lab’s CEBAF, and fired at a nuclear target the

electrons scatter according to the nuclear structure of the target. This scattering is

well described by quantum electrodynamics (QED). Thus, by measuring the scattered

electrons (and occasionally other particles), called ‘semi-inclusive electron scattering’,

the nuclear structure of the target is revealed.

1.1 Kinematics of Elastic Electron Scattering

The process of elastic electron scattering via the electromagnetic process is shown

in Figure 1.1. An incident electron, with four-momentum k = (E0, k), exchanges a

virtual photon, q = (ν, q), with a target in the target’s rest frame, p = (M, 0). The

virtual photon exchanges energy and momentum causing the electron to scatter with a

scattering angle θ and four-momentum k′ = (E′, k′). The proton is also scattered with

four-momentum p′, but the proton is not measured in inclusive electron scattering.

When the kinetic energy of this scattering process is conserved the process is called

‘elastic’.

When the scattering process is elastic the entire process can be described by two
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Figure 1.1: Elastic Electron Scattering. An incident electron interacts with a
target by exchanging a virtual photon causing the electron to scatter.

variables. These variables are the scattering angle, θ, and the initial energy, E0. By

using conservation of energy and momentum as well as applying the Einstein relation

the scattered electron’s final energy, E′, is found to be given by Equation 1.1. The

energy lost by the incident electron during scattering, ν, is given by Equation 1.2. The

strength of the interaction, how much four-momentum is transferred to the target by

the electron, is generally described as in Equation 1.3. Q2 is given in units of (GeV/c)2

which can be converted to fm−2 by multiplying the (GeV/c)2 result by a value of ≈

25.7.

E′ =
E0

1 + 2E0
M sin2

(
θ
2

) (1.1)

ν = E0 − E′ (1.2)
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Q2 = −q2 = 4E0E
′ sin2

(
θ

2

)
(1.3)

Another useful quantity to define is Bjorken x, denoted xBj , given by Equation

1.4. This variable is interpretable as the fraction of the nucleon’s three-momentum

carried by the quark struck by the electron in the Breit frame. For a single nucleon

0 ≤ xBj ≤ 1. However, for a nucleus 0 ≤ xBj ≤ A, where A is the atomic mass number

of the target. The elastic peak can then be found at xBj ≈ A. Taking 3He as an

example one would then expect to find the elastic peak at xBj = 3.

xBj =
Q2

2M(E0 − E′)
(1.4)

1.2 Differential Cross Section

The differential cross section is proportional to the probability that an electron

incident on a target will interact with that target. This can be thought of as the ‘size’

of the interaction. However, for a scattered electron to be measured it must be seen

by a detector which measures within some acceptance dΩ. Therefore, the differential

cross section measures the probability that an electron will be scattered from a target

into solid angle dΩ.

Following the discussion of cross sections and form factors laid out in chapters five

and six of [1], and largely adopting their notation, let us begin with the classical case

of particles scattering from a fixed target nuclei. The Rutherford scattering equation

can be obtained classically as Equation 1.5 or through non-relativistic quantum

mechanics by assuming that the wave functions of the electron are plane waves (Born

approximation).

(
dσ

dΩ

)
Rutherford

=
(zeZe)2

(4πε0)2(4E0)2 sin4(θ/2)
(1.5)

Here z (Z) is the atomic number of the incident particle (target), e is the elementary
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charge, ε0 is the vacuum permittivity, and E0 is the incident particle’s initial energy.

The Rutherford equation can also be written as Equation 1.6 following the quantum

mechanical derivation, where α is the fine structure constant, h̄ is the reduced Planck’s

constant, and c is the speed of light. Notice that the cross section falls off like 1
q4

indicating that the interaction probability falls off rapidly with increased momentum

transfer [1].

(
dσ

dΩ

)
Rutherford

=
4Z2α2 (h̄c)2E′2

|qc|4
(1.6)

The Rutherford equation does not account for relativity, spin, or target recoil. To

begin accounting for these quantities let us continue the derivation by adding relativity.

To do this we add a second term to the cross section that is scaled by a constant and

introduces angular dependence to Equation 1.6. This yields the preliminary version of

the Mott equation while still neglecting recoil as seen in Equation 1.7.

(
dσ

dΩ

)
Mott

No Recoil

=

(
dσ

dΩ

)
Rutherford

(
1− β2 sin2

(
θ

2

))
(1.7)

Here β = v
c with v being the velocity of the incident particle [1].

By taking the incident particle’s velocity to its maximum value of c we see β goes

to unity. Then Equation 1.7 simplifies via trigonometric identity to Equation 1.8.

(
dσ

dΩ

)
Mott

No Recoil

=

(
dσ

dΩ

)
Ruth.

cos2

(
θ

2

)
=

(
dσ

dΩ

)
Ruth.

=
4Z2α2 (h̄c)2E′2

|qc|4
cos2

(
θ

2

)
(1.8)

Equation 1.8 now accounts for relativity, but also accounts for spin by suppressing

scattering through 180◦ for a spinless target which is forbidden by conservation of

helicity [1].



CHAPTER 1. ELASTIC ELECTRON SCATTERING 5

1.3 Nuclear Form Factors

So far we have only considered scattering off of a pointlike target. Real nuclear

targets are made up of atoms with differing geometry. To quantize the spatial extent

of a target we introduce the concept of form factors. Form factors contain all of the

transverse spatial information about the target. Multiplying the Mott cross section,

excepting recoil, by the form factor we get the experimental cross section as in Equation

1.9. By measuring the experimental cross section of a target at various angles for a

single energy and dividing out the Mott cross section the form factor, F (q2), of a

target can be determined.

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

No Recoil

|F (q2)|2 (1.9)

Continuing to assume that recoil is negligible as well as the validity of the Born

approximation the target’s form factors can be written as the Fourier transform of a

charge distribution, ρ(x), as in Equation 1.10. If the charge distribution is spherically

symmetric then the form factor equals the right side of Equation 1.10 with the integral

of ρ(r) normalized to unity.

F (q2) =

∫
e

iq·x
h̄ ρ(x)d3x

x−→r−−−→ 4π

∫
ρ(r)

sin (|q|r/h̄)

|q|r/h̄
r2dr (1.10)

This procedure can be inverted to find the charge distribution of a target from its form

factor as in Equation 1.11 [1].

ρ(r) =
1

(2π)3

∫
F (q2)e

−iq·x
h̄ d3q (1.11)

Let us now examine a simple example of a charge distribution and its form factor.

Assume that there is a charge distribution in the shape of a hard sphere, i.e. a solid

ball of constant charge density that drops to zero beyond a certain radius. This is a

reasonable first order model for the charge distribution of an atom. The top plot in

Figure 1.2 shows a hard sphere of charge density. The bottom plot shows the form
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factor, Fourier transform, of the upper hard sphere plot. Now we can see that the

form factor of a hard sphere distribution of charge yields an oscillatory and decreasing

form factor [1].

Figure 1.2: Hard Sphere Charge Distribution Form Factor. Taking the Fourier
transform of a hard sphere charge distribution (top plot) yields an oscillatory form
factor (bottom plot).

Next let us examine what a form factor for 3He, Figure 4.8, and a form factor for

3H, Figure 4.20, look like. They each have the oscillatory behavior predicted by the

hard sphere of charge model indicating that their charge densities can be modelled

similarly (in reality their charge densities decrease gradually with distance and not

all at once). It is also interesting to study the form factors of individual nucleons like

the proton. One might expect to find minima in the proton’s form factors as well,

however no such minima are observed. This is because the proton’s form factors have

an approximately dipole form, and the Fourier transform of a dipole is an exponential.

This explains why we do not observe minima in the proton’s form factors. However, it

must be noted that the proton’s form factors cannot be found by taking the Fourier

transform of the electric or magnetic charge densities since for the Fourier transform

to be valid the recoil of the system must be small. Since the proton is relatively light
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the recoil is not negligible and the Fourier transform is not valid.

As [1] points out the location of the diffractive minima can be used to learn about

the size of the target. For a hard sphere of charge the charge radius, R, is roughly

given by Equation 1.12, where q
h̄ is the location of the first minima. One can also study

the charge radius by examining the behavior of the charge density as it approaches

zero. This can be seen by expanding the form factor in q from the first integral in

Equation 1.10. Euler’s formula, eix = cos(x) + i sin(x), begins the expansion of the

exponent, but we are still left with a troublesome i sin(x) term. This i sin(x) term can

be eliminated by assuming that the wavelength of the electron, h̄
q , is much larger than

the charge radius, R, as in Equation 1.13.

R ≈ 4.5h̄

q
(1.12)

R� h̄

q
=⇒ Rq

h̄
� 1 (1.13)

Now i sin
(
Rq
h̄

)
−→ 0 and we can drop the i sin(x) term leaving only eix ≈ cos(x).

The Taylor expansion of cos(x) is given by Equation 1.14.

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ ... (1.14)

Keeping only the first two terms of the cos(x) expansion we can now rewrite the form

factor equation as in Equation 1.15. Here we have inserted q · r = |q||r| cos(ω) where

ω is the angle between q and r.

F (q2) =

∫ ∞
0

∫ 1

−1

∫ 2π

0
ρ(r)

(
1− 1

2

|q||r| cos(ω)

h̄

)
r2dφ d cos(ω) dr (1.15)

Integrating over φ and cos(ω) we obtain Equation 1.16 [1].
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F (q2) = 4π

∫ ∞
0

ρ(r)r2dr − 4π
q2

6h̄2

∫ ∞
0

ρ(r)r4dr (1.16)

If we require that ρ(r) be normalized such that 4π
∫∞

0 ρ(r)r2dr = 1 then we can

define the mean square charge radius as in Equation 1.17.

〈r2〉 = 4π

∫ ∞
0

r2ρ(r)r2dr (1.17)

Now Equation 1.16 can be rewritten as Equation 1.18.

F (q2) = 1− q2

6h̄2 〈r
2〉 (1.18)

Taking the derivative of Equation 1.18 with respect to q2 we can extract 〈r2〉 as in

Equation 1.19. So by measuring the form factor of a target at very low q2 one can

calculate the mean square radius by finding the slope of the form factor at q2 = 0 [1].

〈r2〉 = −6h̄2dF (q2)

dq2
|q2=0 (1.19)

At this point we are still claiming that the recoil of the struck particle is negligible.

Let us examine the truth of this assumption by comparing the electron energies needed

to study nuclear structure to the mass of a typical target, 3He. First let us determine

approximately what energy an electron needs to be able to probe a target’s nuclear

structure. The Planck-Einstein relation can guide us with this estimate, and is given

in Equation 1.20, where h is Planck’s constant and ν is the electron’s frequency.

E = hν (1.20)

Also remember the relationship between frequency and wavelength given in Equation

1.21

ν =
c

λ
(1.21)
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Combining Equations 1.20 and 1.21 gives us Equation 1.22 which allows us to estimate

the required electron energies to study nuclear structure.

E =
hc

λ
(1.22)

Now plug in some reasonable values along with the constants. Nuclear targets are

generally atoms made up of protons and neutrons so to glean any information about

their structure one must use electrons with a wavelength approximately the size of,

or smaller than that of, a proton. The proton’s radius is about 0.84 fm. Plugging

this into the wavelength value in Equation 1.22 along with h ≈ 4.136 × 10−15 eVs

and c ≈ 3× 108 m/s yields an electron energy of about 1.477 GeV. 3He has a mass of

about 2.81 GeV. Clearly the electron energies required to study nuclear structure are

no longer negligible when compared to target nuclei like 3He. This now requires us to

account for target recoil in our cross section calculation from before.

Taking the recoil of the target in to account one finds that the recoil factor is given

by Equation 1.23 from Equation 1.1.

E′

E0
=

1

1 + 2E0
M sin2

(
θ
2

) (1.23)

Adding the factor of E′

E0
to the Mott cross section gives Equation 1.24.

(
dσ

dΩ

)
Mott

=
4Z2α2 (h̄c)2E′3

|qc|4E0
cos2

(
θ

2

)
(1.24)

The Mott cross section can be written in a slightly different form by setting some

constants equal to one and rearranging some of the energies as in Equation 1.25. We

now have an equation that represents the scattering of electrons off of a pointlike

particle [1].

(
dσ

dΩ

)
Mott

= Z2E
′

E0

α2 cos2
(
θ
2

)
4E2

0 sin4
(
θ
2

) (1.25)

At this point in the analysis we have accounted for charge, spin, relativity, and
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recoil. However, we have still neglected the fact that many targets have a magnetic

moment, µ, that will also interact with the electrons it scatters. Equation 1.26 shows

the magnetic moment for a pointlike spin 1/2 particle of mass M where the g = 2

factor comes from Dirac theory.

µ = g
eh̄

4M
(1.26)

To account for magnetic interactions we do as we did in Equation 1.7 and introduce

a second term to the cross section. This term is scaled by a constant and given an

angular dependence of sin2(θ/2) as in Equation 1.27. The angular dependence arises

from a need to conserve angular momentum and helicity. We obtain tan2(θ/2) by

pulling out a 1/ cos2(θ/2).

(
dσ

dΩ

)
point

spin 1/2

=

(
dσ

dΩ

)
Mott

(
(1− 2τ tan2

(
θ

2

))
(1.27)

τ is given by Equation 1.28 where M is the target’s mass and Q2 is the kinematic

variable measuring momentum transfer from Equation 1.3. From Equation 1.27

it becomes clear that at large angles and large momentum transfers the magnetic

interaction becomes significant and cannot be ignored. The effect of the magnetic

term causes the cross section to fall off less rapidly than it would if only the electric

interaction were relevant [1].

τ =
Q2

4M2
(1.28)

Finally let us consider that nuclear targets are not pointlike particles and thus the

g-factor from Dirac is not precisely equal to two. Instead the g-factor is replaced by

the proton and neutron magnetic moments given in Equation 1.29 quantified in terms

of the nuclear magneton, µN given in Equation 1.30, where mp is the proton mass.

µp = 2.79µN µn = −1.91µN (1.29)
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µN =
eh̄

2mp
= 3.1525× 10−8 eV T−1 (1.30)

We once again need to introduce form factors to describe the structure of the electric

and magnetic components of the cross section. In this case we use the Sach’s form

factors GE(Q2) and GM (Q2) for the electric and magnetic components respectively.

With these form factors we finally arrive at the Rosenbluth Equation 1.31 [1].

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Mott

[
G2
E

(
Q2
)

+ τG2
M

(
Q2
)

1 + τ
+ 2τG2

M

(
Q2
)

tan2

(
θ

2

)]
(1.31)

The physical meaning of these form factors can be further explored by studying

their behavior as Q2 → 0. GE(Q2) describes the electric structure of the target and

therefore equals the electric charge of the target at Q2 = 0 in units of elementary

charge. GM (Q2) describes the magnetic structure of the target and therefore equals

the magnetic moment of the target at Q2 = 0 in units of the nuclear magneton. So

we find that at Q2 = 0 the proton’s form factors are given by Equation 1.32 and the

neutron’s form factors are given by Equation 1.33.

GpE
(
Q2 = 0

)
= 1 GpM

(
Q2 = 0

)
= 2.79 (1.32)

GnE
(
Q2 = 0

)
= 0 GnM

(
Q2 = 0

)
= −1.91 (1.33)

In the literature one finds several other commonly used form factors related to

GE and GM . Being able to translate between these form factors is often necessary to

compare the results reported by different groups. The first set of these form factors are

the Dirac form factor, F1, and the Pauli form factor, F2. These two form factors are

given by Equations 1.34 and 1.35 in relation to GE and GM which are more commonly

used because of their physical interpretation.
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GE
(
Q2
)

= F1

(
Q2
)
− µτF2

(
Q2
)

(1.34)

GM
(
Q2
)

= F1

(
Q2
)

+ µF2

(
Q2
)

(1.35)

One final set of form factors are Fch and Fm. Their relations to GE and GM are given

in Equations 1.36 and 1.37 [2]. These are the form factors used in the sum of Gaussians

analysis of the data presented in this thesis. To see what the 3He and 3H Fch and Fm

form factors look like along with some world data see Figures 4.9 and 4.21 respectively.

Fch
(
Q2
)

= GE
(
Q2
)

(1.36)

Fm
(
Q2
)

=
GM

(
Q2
)

µ
(1.37)

The form factors GE and GM can be separated out from experimental data

according to the procedure of Rosenbluth separation laid out in [2]. First numerous

cross section measurements at a fixed Q2 and multiple angles must be taken. To see

how to extract GE and GM it is helpful to rewrite the Rosenbluth equation in Equation

1.31 as Equation 1.38 with ε given in Equation 1.39. As an example of what a typical

cross section looks like see Figure 4.13 which shows the 3He cross section derived in

this thesis.

(
dσ

dΩ

)
exp

=

(
dσ

dΩ

)
Mott

1

1 + τ

[
G2
E

(
Q2
)

+
τ

ε
G2
M

(
Q2
)]

(1.38)

ε =

(
1 + 2(1 + τ) tan2

(
θ

2

))−1

(1.39)

Now we can define a value called the reduced cross section by dividing the experi-

mental cross section by the Mott cross section and rearranging some kinematic factors

as in Equation 1.40.
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(
dσ

dΩ

)
r

=

(
dσ
dΩ

)
exp(

dσ
dΩ

)
Mott

ε(1 + τ) =
[
εG2

E

(
Q2
)

+ τG2
M

(
Q2
)]

(1.40)

If one plots the reduced cross section against ε we see that we are plotting the equation

of a line. Figure 1.3 shows an example of a Rosenbluth separation using data from [3].

The first point used was taken at 3.304 GeV and 27.24◦ with a dσ
dΩ of 2.77 ± 0.39 ×

10−13 cm2/sr and the second point was at taken at 0.9893 GeV and 140.31◦ with a dσ
dΩ

of 3.27 ± 0.13 × 10−15 cm2/sr. Both points have the same Q2 value, 55.1 fm−2, as

required to perform a Rosenbluth separation.

Figure 1.3: Rosenbluth Separtation. An example Rosenbluth separation using
data at Q2 = 55.1 fm−2 from [3]. From this separation we find Fch = 6.98 × 10−5 and
Fm = 3.33 × 10−5, where we have converted GE and GM to the Fch and Fm form
factors used in this analysis.

Immediately we can identify the slope of the line as G2
E

(
Q2
)

and the y-intercept

as τG2
M

(
Q2
)

[1]. Taking the data from our example separation and converting GE

and GM to Fch and Fm we find that Fch = 6.98 × 10−5 and Fm = 3.33 × 10−5,

where we have neglected to treat the uncertainty for simplicity. These form factor

values are in agreement with the calculations made in [3]. This method works well

to extract the Sach’s form factors if there are enough data points taken and they
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have sufficiently small error bars. Unfortunately, this method is very time consuming

from an experimental standpoint. In Section 4.2 we will examine a different method

of extracting form factors by fitting experimental cross section data using a sum of

Gaussians technique.

1.4 Motivation and Mirror Nuclei

Why are we interested in finding the form factors of 3H and 3He? Knowing these

form factors allows us to calculate numerous useful quantities including the cross

section at different energies, the charge radii, and the charge densities. The form

factors also teach us about the three-body physics inside of the two nuclei, and thus

they provide information on the total wave function. This information can then be

compared with theoretical predictions, e.g. comparing the fitted form factors to theory

predictions as in Sections 4.3.6 and 4.3.7, and then be used to improve the underlying

theoretical models. If one wishes to study a ‘free’ neutron one often uses 3He as a

proxy system. These theoretical models are vital for correcting for three-body effects

inside the nucleus so that a ‘free’ neutron can be studied, and all of these corrections

are dependent on a firm understanding of the 3He form factors.

This analysis has chosen to analyze both 3H and 3He as they are mirror nuclei. This

means that each nuclei has the same number of nucleons, but the number of protons

and neutrons in each nucleus is flipped (i.e. 3H has one proton and two neutrons and

3He has two protons and one neutron). The differences in the form factors of these

mirror nuclei then teach us about the differences of the protons and the neutrons in

the system by simply replacing one with the other. If the two nuclei are in the ground

state then each has three nucleons in the 1S1/2 shells. 3H should have one proton in

the 1S1/2 shell and two neutrons in the 1S1/2 shell for a full shell for the neutrons (so

the angular momentum of 3H is derived from the unpaired proton). 3He should have

two protons in the 1S1/2 shell for a full shell and one neutron in the 1S1/2 shell (so

the angular momentum of 3He is derived from the unpaired neutron). It is believed
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that the strong force treats both protons and neutrons identically. Therefore, changing

between these nuclei does not change the ground state shell-model state but merely

fills a different shell. Any differences in the form factors for these mirror nuclei are

then due to the different Coulomb forces in the nuclei from the electric charges of the

protons and neutrons [4].

Let us predict which nucleus, 3H or 3He, has a larger charge radius and then study

how that influences the form factors. To do this we will employ the liquid drop model

of the nucleus. In this model the binding energy for a nucleus is given by Equation

1.41 [5]. The terms from left to right are the volume, surface, Coulomb, asymmetry,

and pairing terms, and they are derived from how the nucleon’s configurations and

ratios contribute to the binding energy. In Equation 1.41 a1−4 are empirically derived

constants, A is the total number of nucleons, Z is the number of protons, and N is

the number of neutrons.

B(A,Z) = a1A− a2A
2/3 − a3

Z(Z − 1)

A1/3
− a4

(N − Z)2

A
+ δ (1.41)

Let us now apply this binding energy formula to our mirror nuclei. We see that

the volume and surface terms are equal for 3H and 3He since both nuclei have A = 3.

The asymmetry terms are also equal due to squaring the numerator. The δ (pairing)

term is zero for nuclei with odd numbers of nucleons. This leaves only the Coulomb

term, a3
Z(Z−1)

A1/3 , to differentiate the binding energies as we anticipated since the strong

force does not distinguish between protons and neutrons. For 3H this term equals zero,

and for 3He this term equals a3
2

31/3 . a3 is experimentally determined to equal 0.645

MeV making the binding energy of 3He 0.894 MeV lower than that of 3H [5]. (The

total binding energies of both nuclei are on the order of 8 MeV.) Ultimately, we find

that the binding energies of these mirror nuclei are similar, but the nucleons in 3He

are less tightly bound.

Let us examine if this prediction agrees with our expectations. 3He contains two

protons and a neutron, whereas 3H contains one proton and two neutrons. The nuclei
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of these atoms are held together by the strong force, while the Coulomb force pushes

against this binding force. 3He has more charge due to having two protons, and thus

the Coulomb force for 3He will be stronger than that of 3H. Therefore, we expect 3He

to have a larger charge radius than 3H as there is a larger Coulomb force pushing the

charge radius out against the strong force.

As [1] points out the location of the form factor’s diffractive minima can be used to

learn about the size of the charge radius (see Equation 1.12). Let us use this relation

to compare the locations of the first minima in Fch for 3He (Figure 4.8a) and 3H

(Figure 4.20a). (Fch is discussed in more detail in Section 1.3, but it represents the

Fourier transform of the electric charge density.) We see that the first minimum for

3He is found at Q2 ≈ 11 fm−2, and the first minimum for 3H is found at Q2 ≈ 13

fm−2. Equation 1.12 then predicts that 3He has a slightly larger charge radius than 3H

exactly as we predicted from the liquid drop model. The comparisons between these

two mirror nuclei are revisited in Section 4.3.8 using the new fits from this analysis.
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Chapter 2

Experimental Setup

2.1 Overview

The Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab) located

in Newport News, Virginia uses the Continuous Electron Beam Accelerator Facility

(CEBAF) to perform electron scattering experiments to study nuclear structure.

Jefferson lab consists of four experimental halls designated Halls A, B, C, and the

newly commissioned Hall D as shown in Figure 2.1. The facility is capable of creating

electron beams of energies as high as 12 GeV and supplying those electrons to the

four halls simultaneously (Hall A is limited to 11 GeV). The 12 GeV capability is a

recently completed upgrade. At the time of the experiment discussed in this thesis,

experiment E08-014, the facility was limited to 6 GeV beam energy.

2.2 Experiment E08-014

Experiment E08-014 ran in Jefferson Lab’s Hall A in 2011. The experiment used

electron scattering to measure the inclusive cross sections, N(e,e’), of various targets

using both of Hall A’s high resolution spectrometers (HRSs). E08-014 compared

heavy targets to two and three-nucleon targets to study the short range correlations

(SRC). To this end, inclusive cross sections for 2H, 3He, 4He, 12C, 40Ca, and 48Ca were
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Figure 2.1: Thomas Jefferson National Accelerator Facility. CEBAF is the ring
connecting to the experimental halls. This image is of the previous 6 GeV configuration.
Now Hall D is now located at the top right of the image. Image from [6].

measured in the region of 1.1 GeV2 < Q2 < 2.5 GeV2. This experiment studied the

region of 1.3 < xBj < 3 [7] [8].

While experiment E08-014 focused on the QE region of electron scattering, one

kinematic region, Kin 3.2 in Figure 2.2, also included elastically scattered electrons.

The elastic events can be seen by plotting the scattering angle of the electron versus

the scattered electron’s energy, E′, as shown in Figure 2.3. The resulting curve (red)

gives the elastic scattering band for 3He. When this band is compared with the

spectrometer’s upper and lower acceptance in energy and angle, represented by the

black lines, it becomes apparent that the elastic band passes through Kin 3.2. Thus

we expect to find 3He elastic data in Kin 3.2.

Now that we believe there should be elastically scattered electrons in our data let

us see if we can detect them. To find these electrons we will search for the elastic peak

in xBj that we discussed in Section 1.1. Figure 2.4 shows a plot of xBj for the summed

production runs of Kin 3.2. The large initial distribution is the quasielastic peak of

3He. Looking at xBj = 3 it is clear that there is another smaller peak indicating

the presence of elastically scattered electrons. The smaller peak contains around a

maximum of 1000 electrons, which while enough for a cross section extraction, places
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Figure 2.2: Kinematic Coverage of Experiment E08-014. Kinematic coverage
of experiment E08-014. The elastic 3He data used in this analysis is located in Kin 3.2.
Image from [7].

Figure 2.3: Elastic Band for 3He. The box made by the intersecting black lines
represents the maximum and minimum spectrometer acceptances in energy and angle
for Kin 3.2. The red line is the elastic scattering band. Clearly the red elastic band
passes through the spectrometer’s acceptance so we expect to find elastic events in
Kin 3.2.

a limit on the uncertainty of our measurement. This electron yield will also decrease

as we begin to impose cuts on the data.

These elastic events were scattered from a gaseous 3He target and used to extract
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Figure 2.4: Elastic Peak in xBj. The elastic peak is located at approximately
xBj = 3 as expected. Notice that there is a large quasielastic background in this
electron sample in addition to the elastic electrons in the elastic peak.

an elastic 3He cross section. This new measurement is located in the little studied

region of Q2 = 35 fm−2 as seen in Figure 2.5 which shows the 3He charge form factor,

Fch. This understudied region is interesting because it has the potential to constrain

and improve previous fits of the 3He form factors. In particular, high Q2 data points

like this help to pin down the magnetic form factor. Equation 1.31 makes clear that to

measure the magnetic form factor’s contribution to the cross section large Q2 values

and large back angles are required. Unfortunately, there are few measurements in the

world data of high enough Q2 to understand the magnetic form factor’s behavior after

its first minima.

2.3 CEBAF

Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) uses

superconducting radio frequency (SRF) cavities to accelerate electrons to energies

up to 12 GeV after a recent upgrade. However, this upgrade was completed after
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Figure 2.5: Location of New Elastic Measurement. This plot shows the Q2

region of the 3He electric form factor, Fch, where the new elastic 3He measurement is
located. The Y -axis is |Fch(Q2)|. Image from [3].

this experiment and as such this section will discuss the 6 GeV era beam before the

upgrade and Hall D was built. The accelerated electrons form polarizable continuous

wave (CW) beams that can be delivered to up to four scientific halls simultaneously

for use in nuclear physics experiments. These beams have a maximum energy of 5.7

GeV and a maximum current of 200 µA. The accelerator can split this current among

the three experimental halls [9].

CEBAF begins creating an electron beam using either a thermionic or polarized

gun to inject electrons into the accelerator. The polarized gun produces electrons by

illuminating a GaAs cathode crystal with a diode laser pulsed at 1497 MHz. (While

CEBAF operates with a ‘continuous wave’ beam, if one looks at small enough time

lengths the beam is still pulsed. This is due to needing to inject the electrons into the

RF cavities at the proper time to have the standing waves in the RF cavities accelerate

them.) These electrons then enter the first (North) of two linacs each of which contain

20 cryomodules that accelerate the electrons with a maximum gradient exceeding 7

MeV/m. At the end of the North linac the electrons are bent around a 180◦ bend and
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enter the South linac passing through 20 more cryomodules. Upon reaching the end

of the South linac the beam can be directed into any of the three halls by means of

RF separators and septa. If higher energies are desired the beam can be recirculated

through the linacs up to four additional times for a maximum of five passes through

the accelerator resulting in the maximum energy of 5.7 GeV [6].

2.4 Hall A Beamline

The distinguishing feature of Jefferson Lab’s experimental Hall A are the two High

Resolution Spectrometers (HRSs) and their associated detector packages. At a central

momentum setting of 4 GeV these two spectrometers provide a momentum resolution

better than δp
p = 2× 10−4 as well as a horizontal angular resolution of more than 2

mrad. The spectrometer magnets bend the particles upward into the detector stack

using a series of quadrupole and dipole magnets in a QQDQ arrangement [6]. A side

view of Hall A is given in Figure 2.6 and a top view is given in 2.7. Each of the

components listed in 2.7 will be discussed individually in the following sections.

Figure 2.6: Hall A Side View. The electron beam enters the hall from the left side of
the image. It then interacts with the target at the hall’s center. The scattered particles
then pass through the High Resolution Spectrometers which bend the particles upward
45◦ where they enter the detector stacks. Image from [6].
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Figure 2.7: Hall A Top View. The electron beam enters the hall from the left side
of the image. It then passes through the beam current monitors which measure the
current. The beam then goes through a raster to avoid overheating one area of the
target. Next the beam passes through the beam position monitors which measure its
position. It then interacts with the target at the hall’s center. The scattered particles
then pass through the High Resolution Spectrometers which bend the particles upward
45◦ where they enter the detector stacks. In the stacks the particles pass through
the vertical drift chambers, used for trajectory reconstruction, followed by the straw
chambers. They then pass through the first set of scintillator paddles, S0, followed by
the gas Cherenkov, before passing through the second set of scintillator paddles, S2m.
A coincidence of S0, S2m, and the GC creates the main production trigger. The GC
also performs particle identification. Finally the particles enter the electromagnetic
shower calorimeters which help further aid particle identification. Image from [10].

2.4.1 Beam Energy

An accurate measure of the electron beam’s energy is necessary to obtain accurate

experimental results. The energy of the electron beam was measured using the Arc

method laid out in [6]. This method works by passing the electron beam through a

series of dipole magnets in the arc section of the beam line and measuring its deflection
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as shown in Figure 2.8. The beam’s momentum, |−→p |, is then given by the field integral

of the eight dipole magnets,
∫ −→

B ·
−→
dl, divided by the arc bend angle, φarc, multiplied

by a constant Carc = 0.299792 GeV rad T−1 m−1/c as given in Equation 2.1. To

perform this calculation two measurements are required. The first measurement is of

the magnetic field integral of the eight dipoles and is made based on a ninth reference

dipole. The second measurement is of the bend angle of the arc which is measured by

a set of wire scanners (Super Harps).

Figure 2.8: Arc Energy Measurement Diagram. The electron beam is bent
through an angle φarc by a series of eight dipole magnets. Image from [10].

|−→p | = Carc

∫ −→
B ·
−→
dl

φarc
(2.1)

2.4.2 Beam Position Monitors

Along with the beam’s energy its position must also be well known. To assess the

beam’s position two beam position monitors (BPMs) are located 7.524 m and 1.286

m upstream of the Hall A target [6]. Figure 2.9 shows the layout of the beamline

components. Each of these BPMs is made up of four orthogonally oriented antennae

placed perpendicular to the beam. For beam currents above 1 µA these antennae
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produce a signal that is inversely proportional to the beam’s distance from the antennae.

The position of the beam is determined by the difference-over-sum technique laid out

in [11] and [12].

Figure 2.9: Layout of Hall A Beamline Components. Prior to striking the target
the electron beam passes through the two beam current monitors, BCM1 and BCM2,
and the Unser which measure the beam current. The beam then passes through the
raster which uses steering magnets to spread the beam out over the surface of the
target. Finally the beam passes through two beam position monitors, BPMA and
BPMB, which measure the beam’s position. Image from [10].

The BPMs are calibrated by wire scanners adjacent to each of them. These

wire scanners are independently calibrated periodically with respect to the Hall A

coordinates and are accurate to within 200 µm. The data from the BPMs is recorded

in the EPICS database every second and in the data stream every three to four seconds.

Each of the eight antennae signals is also recorded in the CODA data stream on an

event by event basis [7].

2.4.3 Raster

The electron beam is generally quite narrow at < 0.3 mm [10]. If this small beam

falls on a single part of the target the target can overheat locally causing parts of the

target to behave differently than those not struck by the beam. There is also the risk
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of burning a hole through the target. To avoid these problems the electron beam is

rastered, meaning that the beam is spread out over a larger area of the target. The

fast raster consists of two steering magnets and operates with a frequency of 17-24

kHz. It is located 23 m upstream from the target [6] as seen in Figure 2.9. This system

has the capability to spread the beam over several mm in all directions illuminating

the target uniformly.

2.4.4 Beam Current Monitors

The beam current is measured by two beam current monitors (BCMs), which are

RF cavity monitors, and an Unser located 25 m upstream of the target [6] as shown

in Figure 2.9. The Unser measures beam current by, “a system combining a second

harmonic magnetic modulator with an active current transformer in an operational

feedback loop, to obtain wide band response down to dc” [13]. The two BCM RF

cavities are located on either side of the Unser and are tuned to the electron beam

frequency of 1497 MHz (see Section 2.3).

These RF cavity monitors then produce a signal that is proportional to the beam

current which is recorded by a data acquisition system. Before being recorded the

output signals of the two BCMs are each split into three. One of those three signals

is amplified by a factor of three and another by a factor of ten. This results in six

signals from the two BCMs designated U1, U3, U10, D1, D3, and D10. The procedure

and results for the BCM calibration for experiment E08-014 can be found in [14].

2.5 Target

Hall A has a cryogenic distribution system (CDS) capable of cooling targets to

temperatures of around 5 K to 15 K [6]. The targets are kept in a vacuum scattering

chamber where they are allowed to interact with the electron beam. Inside this chamber

is a ladder containing various experimental targets as shown in Figure 2.10. The target

ladder is divided into three loops which are cryogenically cooled while having their
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pressure and temperature monitored continuously. During experiment E08-014 loops

one and two contained one each of a 10 cm and 20 cm target cell while loop 3 contained

two 20 cm target cells. The target ladder can be moved up and down to place different

targets in the path of the electron beam from the counting house [7].

Figure 2.10: Target Ladder for Experiment E08-014. Coolant is flowed through
the target ladder to maintain the targets’ temperatures. The cylinders on the right of
the image contain the target gasses. Only loops one and two are shown in this image.
Image from [7].

Experiment E08-014 used a liquid deuterium target as well as a gaseous 3He target,

examined in this thesis, and a gaseous 4He target. The 3He target was used in the

second run period of the experiment taking place from April 21st to May 15th of 2011.

The 3He target was located in loop 1 and was cooled to 17 K with a pressure of 211

psia [7]. The entire target layout over the two runs can be seen in Figure 2.11 and the

monitoring and control system is shown in Figure 2.12.

A 30 cm long carbon foil optics target was installed below loop 3. This target

contains seven carbon foils spaced 5 cm apart ranging from -15 cm to +15 cm. Electrons
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Figure 2.11: Table of Target Information for Experiment E08-014. Image from
[7].

scattering off of these foils can be used to calibrate the position of the target from data

collected by the detector package as will be discussed in 2.10. Along with these targets

a 10 cm and a 20 cm dummy target were also installed below the optics target. These

dummy targets each contained two thick aluminium foils separated by 10 cm and 20

cm respectively. The dummy targets were used to study the end cap contributions of

the target cells. There were also a BeO, a 12C, and an empty target installed below [7].

2.6 High Resolution Spectrometers

The high resolution spectrometers (HRSs) are the workhorses of Hall A. They are

designated the left HRS (LHRS) and right HRS (RHRS) for the spectrometers on the

left and right side of the beam direction respectively. While they were designed to be

identical they each have unique features based on their construction as well as the

general wear and tear of age on their components. They have a momentum resolution of

1×10−4 from 0.8 GeV to 4 GeV. They use a combination of superconducting quadrupole
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Figure 2.12: Cryogentic Monitoring and Control Screen. This control panel
monitors and controls the temperatures of the individual targets. This panel is also
used to move the target ladder up and down so that different targets can be placed in
the electron beam. Image from [7].

and dipole magnets in a QQDQ combination to bend the scattered particles through a

45◦ angle up into the detector stack as shown in Figure 2.13. The HRSs were designed

to provide, “a large acceptance in both angle and momentum, good position and

angular resolution in the scattering plane, an extended target acceptance, and a large

angular range.[6]”

The superconducting quadrupoles are labelled Q1, Q2, and Q3 as shown in 2.13.

The Q1 magnet provides focussing of the particles in the vertical plane, and the identical
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Figure 2.13: Side View of Single HRS. After interacting with the target the scat-
tered particles pass through the High Resolution Spectrometers. These spectrometers
have three quadrapole focusing magnets and a dipole magnet which bends the particles
upward 45◦ to the detector stacks. In the stacks the particles pass through the vertical
drift chambers, used for trajectory reconstruction, followed by the straw chambers.
They then pass through the first set of scintillator paddles, S0, followed by the gas
Cherenkov, before passing through the second set of scintillator paddles, S2m. A
coincidence of S0, S2m, and the GC creates the main production trigger. The GC also
performs particle identification. Finally the particles enter the electromagnetic shower
calorimeters which help further aid particle identification. Image from [10].

Q2 and Q3 provide focussing in the transverse plane. The 6.6 m long superconducting

dipole magnet bends the particles through a 45◦ angle while providing additional

focussing and the ability to use extended targets [6]. The primary characteristics of

the HRSs are given in Figure 2.14. Unfortunately, during the run period the Q3 power

supply of the RHRS was malfunctioning and could not reach the central momentum

setting of 3.055 GeV required for the experiment. As such this analysis considers only

data from the LHRS [7].
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Figure 2.14: Table of Important HRS Values. Image from [6].

2.7 Detector Package

The standard detector package for Hall A can be seen in Figures 2.7 and 2.13. These

components include VDCs, scintillator planes, gas Cherenkovs, and electromagnetic

calorimeters as well as the corresponding data acquisition systems. Each of these

components will be described in the following sections.

2.7.1 Vertical Drift Chambers

After passing through the HRSs the scattered charged particles first pass through

two vertical drift chambers (VDCs). These chambers each contain two planes of 368

wires each that are designated U1 and V1 for the bottom VDC and U2 and V2 for the

top VDC. These pairs of planes are oriented at a 45◦ angle to one another and are

separated by 0.335 m as shown in Figure 2.15. The lower VDC lies in the spectrometer

focal plane and the upper VDC allows angular reconstruction of particle trajectories

[15].

The VDCs’ interiors, Figure 2.16, were filled with a 62%-38% mixture of argon and
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ethane gasses flowed through at a rate of 10 liter/hour. Two gold-plated mylar planes

sit above and below the sense wires and a large electric field is created between them

on the order of -4 kV. As charged particles pass through the gas the gas molecules

become ionized and release electrons. The electric field then attracts these electrons to

the sense wires which then pass the signal from those electrons through amplifier cards

and on to the data acquisition system. The position of the particle can be resolved to

around 100 µm and the angle can be resolved to about 100 mrad [7] [15].

Figure 2.15: External VDC Diagram. Each of the two VDCs, called the upper
VDC and lower VDC, contains two planes of 368 sense wires oriented at 45◦ angles
to each other. The interior of the VDCs is filled with a 62%/32% argon/ethane gas
mixture. A large electric field is created perpendicular to the wire planes which attracts
electrons to the sense wires. Image from [15].
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Figure 2.16: Internal VDC Side View Diagram. Two gold-plated mylar planes
(three bold central lines) are situated above and below each sense wire plane (dashed
lines). These mylar planes create a large a electric field perpendicular to the wire
planes which attracts electrons to the sense wires. A 62%/32% argon/ethane gas
mixture is flowed through the VDCs from the gas boxes seen on either side of the
figure. Image from [15].

When operating at a high enough voltage the sense wires are efficient to above

99% in the central region of the wire planes. Towards the edge of the wire planes the

efficiency falls off. In general a charged particle will be detected by four to six wires. A

wire is considered to be efficient if that wire fired at the same time as its two adjacent

wires. Thus the efficiency of a wire is given by Equation 2.2, where κ is the number of

times a wire was considered to be efficient for an event and λ is the number of times

that the wire was inefficient for an event [15]. Figure 2.17 shows the wire efficiency

spectrum for a good run on the left and a bad run on the right. The right spectrum

indicates that the operating voltage may be too low or unsteady, and/or that some of

the amplifier cards have become disconnected.

ε =
κ

κ+ λ
(2.2)

Where and at what angle a charged particle passes through the VDCs determines



CHAPTER 2. EXPERIMENTAL SETUP 34

Figure 2.17: Example Wire Efficiency Spectra. The X-axis represents the wire
number and the Y -axis represents the wire’s efficiency. The left image indicates a
good run, and the right image shows a bad run. In the right image the operating
voltage may be too low or unsteady, and/or some of the amplifier cards have become
disconnected.

the time it takes for the electrons produced by its passing to drift to the sense wires.

Figure 2.18 shows a typical drift time spectrum for a single wire on the left. On the

right it shows a single sense wire drift cell with the sense wire at the center of the circle.

Timing is measured by a common stop TDC which triggers on the sense wire signals

and is stopped by the main event trigger. Higher TDC channels indicate shorter drift

times.

By examining each of the four trajectory regions A, B, C, and D on the right side of

Figure 2.18 we can explain the structure of the drift time spectrum. Region A on the

right side of the figure corresponds to TDC channels 1020-1080 on the left side of the

figure. These drift times are created by electrons from particles with large trajectory

angles that intersect less of the cell leading to a lower detection probability. Region B

corresponds to channels 1080-1460. This region represents the bulk of the cell where

the electric field lines are parallel giving the electrons a constant drift velocity and

track density (i.e. the number of tracks that pass through a given region). Region

C corresponds to channels 1460-1540. Here the field lines become quasiradial as we

approach the sense wire. Electron drift velocity is roughly constant here, but the
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track density increases. Finally region D corresponds to channels 1540-1620. Now the

trajectory is close to the sense wires so the electrons reach a maximal track density

and a dramatic increase in drift velocity occurs because the electric field lines converge

to the wire [15].

Figure 2.18: Wire Timing Spectrum. The left plot represents a single wire’s timing
spectrum. The X-axis is in units of TDC channel. The right image shows a single
wire VDC drift cell and several trajectories a charged particle may take when passing
through the cell. Image from [15].

The electron’s drift time can be used to calculate the distance the particle was

from the sense wire to begin pinning down its spatial location. Before this is done

all of the drift spectra must be calibrated to one another. This is done by defining a

reference time, t0, which is defined as the channel where the maximal slope is obtained

in the short drift time region around channel 1600. The drift distance can then be

calculated by integrating over the number of events, dN , per time bin, dt, and scaled

by a calibration constant, k, determined by the size of the drift cell as in Equation 2.3
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from [15].

x(t′) =
1

k

∫ t′

t0

dN

dt
dt (2.3)

The ultimate job of the VDCs is to reconstruct the charged particles’ trajectories

to provide θ, φ, and k′. A typical particle trajectory passes through all four wire planes

in the two VDCs as shown in the left side of Figure 2.19. Because there are two wire

planes per VDC the two locations where the particle was determined to cross each of

the VDC’s wire planes can be used to create a trajectory as seen in the right side of

Figure 2.19. In this case the trajectory can be described by four variables where one

has defined a U − V plane starting from (0,0) in the right side of the Figure [15].

Figure 2.19: Trajectory Reconstruction. The left plot shows a charged particle
passing through both VDCs, and the right plot shows the coordinates needed to
reconstruct that particle’s trajectory. Image from [15].

The first two variables are the two U − V coordinates of the crossing point of the

particle through the first VDC wire plane called (U ,V ). The second two variables are

the two angles, θU and θV , which are the angles in the U and V directions respectively
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between the two wire plane crossing points of the first VDC. Equations 2.4, 2.5, and 2.6

give these four variables with ∆U and ∆V being the differences between the crossing

point locations in the U and V directions respectively. d is the distance between the

U1 wire plane of the bottom VDC and the U2 wire plane of the top VDC, and l0 is

the distance between the two wire planes in a single VDC[15] .

U = U1 (2.4)

V = V1 −∆V = V1 − l0 tan (θV ) (2.5)

tan
(
θU(V )

)
=
U2 − U1

d
(2.6)

2.7.2 Scintillator Counters

After the VDCs are two planes of scintillator paddles located two meters apart.

Figure 2.20 shows a schematic of a single scintillator paddle. The first plane, S1,

consists of six paddles of plastic scintillators which provide overlapping coverage. The

second plane, S2m, consists of 16 plastic scintillator paddles smaller than those in S1

[7]. When a charged particle strikes one of these paddles it produces photons which

travel along the length of the paddle to either end where the photons encounter a

photomultiplier tube (PMT).

When the photons enter the PMT they create electrons via the photoelectric effect,

and an electric field accelerates these electrons down the PMT creating a larger cascade

of electrons as they pass through. This produces an analog electric signal. The PMT

then passes this signal on to the data acquisition system. These scintillators are very

efficient and have timing resolutions of around 0.30 ns [6] [7]. Due to these excellent

timing responses most of the primary triggers in Hall A use a coincidence of S1 and

S2m for the main production triggers of experiments. The triggers used in E08-014 are

discussed in 2.9.
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Figure 2.20: Single Plastic Scintillator Paddle. The S0 and S2m scintillator plane
paddles are composed of an active plastic scintillator region for particle detection. The
light released from the passage of particles then travels the length of the paddle to
PMTs on either side. Image from [10].

2.7.3 Gas Cherenkov

Located in the detector stack between the S1 and S2m scintillator planes is a gas

Cherenkov (GC) detector. The GC operates by detecting Cherenkov radiation created

by particles passing through a gas at velocities greater than the speed of light in that

gas medium. When light passes through a transparent medium its velocity is reduced

by the medium’s index of refraction, n, as seen in Equation 2.7. Because the speed

of light is reduced, particles can travel faster than the speed of light in that medium.

When a particle exceeds the speed of light in a medium (i.e. its velocity threshold), vth,

it creates an electromagnetic shock wave in the same manner as a jet plane creating a

sonic boom. The shock wave formed has the conical shape seen in Figure 2.21 where

the angle θ is given in Equation 2.8 with β = v
c , where v is the velocity and c is the

speed of light [16].

vth =
c

n
(2.7)
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Figure 2.21: EM Shock Wave. The EM shock wave is produced by a particle
exceeding the speed of light in the medium it is passing through. This shock wave
then produces Cherenkov radiation. Image from [17].

cos(θ) =
1

βn
(2.8)

GC detectors are especially useful for particle discrimination, in particular, for

distinguishing between electron and pion events. GCs are able to discriminate between

particles of different mass because of the velocity threshold required to create Cherenkov

radiation shown in Equation 2.9. The Hall A GC is generally filled with CO2 which

has an index of refraction of n = 1.00041. Therefore, the momentum threshold for an

electron is pth = 0.0178 GeV and for a pion it is pth = 4.87 GeV. The HRSs accept

momenta up to about 4.3 GeV. Thus electrons generally create a signal passing through

the GC while the pions generally do not. It is still possible for pions to interact with

the gas or the detector structures and create low energy δ-electrons that can be seen

by the GC, but this is a low probability process. When in normal operation the GC

can generally detect electrons with an efficiency of over 99% [7].

pth =
mc√
n2 − 1

(2.9)

The Hall A GCs each contain ten spherical mirrors which focus the Cherenkov light

onto ten PMTs as seen in Figure 2.22. The LHRS GC has a detector path length of

80 cm and produces an average of 7 photoelectrons per event, and the RHRS GC has

a detector path length of 130 cm and yields on average 12 photoelectrons per event.
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[6] [18]. Each PMT signal passes through a 10X amplifier before being split. One of

these two signals is sent to an ADC and put in the data stream for offline analysis.

The other signal is again split and one of these two new signals is converted to digital

and sent to a TDC. The remaining PMT signal is summed with the PMT signals of

the nine other PMTs. This summed signal is converted to a digital signal and then is

used as part of the efficiency triggers. The combined GC signal was also added to the

main production trigger during experiment E08-014 to prevent pions from firing the

main trigger [7].

Figure 2.22: Hall A GC Interior. Ten spherical mirrors inside the gas Cherenkov
reflect the Cherenkov light onto the ten PMTs. Image from [7].

The ten photomultiplier tubes in each GC must be calibrated such that they place

the same charge detected in the same ADC channel. The charge detected is then

proportional to the number of incident photons. This means each of the PMTs have the

same response to a photon and thus can be compared to one another. This procedure

has two parts, a hardware calibration and a software calibration. First the hardware

is calibrated by gain matching the PMTs. This is done by first locating the single

photoelectron (SPE) peak of each of the PMTs in the ADC data. Then by increasing

or decreasing the voltage of the PMTs the SPE peak can be shifted up or down in

ADC channels respectively. A target ADC channel is then chosen and the voltages
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of the individual PMTs are then adjusted until all of the SPE peaks are located in

the same ADC channel. After the PMTs are gain matched they will each still have

slightly different responses than the other tubes. The final software calibration is done

by selecting the same target ADC channel for the SPE peaks. Each PMT’s ADC

spectrum is then given an constant offset to place its SPE peak in the desired channel.

For the specific procedure and results from experiment E08-014’s GC calibration see

Section 4.2.1 of [7].

2.7.4 Electromagnetic Calorimeters

In the detector stack of each HRS behind the GC and the S2m scintillator plane

sit a series of lead-glass blocks with PMTs attached making up an electromagnetic

calorimeter. The calorimeters in the LHRS and RHRS have their lead-glass blocks

arranged differently as shown in Figure 2.23. The LHRS blocks are set in two columns

of 17 blocks each with the first layer called pion-rejector 1 (PRL1) and the second

layer called pion-rejector 2 (PRL2). The RHRS blocks are arranged in two layers. The

first layer is referred to as the ‘preshower’ and is made up of two columns of 24 PMTs

each. The second layer, called the ‘shower’, is comprised of five columns of 16 blocks

each [6] [7].

The calorimeters provide a second level of particle identification for the experiments.

When charged particles pass through the lead-glass blocks they are slowed down by

their interactions with the nuclei of the particles in those blocks (lead-glass is chosen

for its heavy nuclei). The energy lost by this deceleration from nuclei is emitted

as photons via Bremsstrahlung radiation. These released photons continue on and

produce electron-positron pairs through pair production which again create more

Bremsstrahlung radiation. This alternating process creates a ‘shower’ of photons,

electrons, and positrons in the calorimeter. The PMTs then detect the Cherenkov

light from these electrons and positrons in the lead-glass.

Heavier particles compared to electrons, like pions, require a much greater path

length in the lead-glass blocks to release a shower of particles because pions mostly



CHAPTER 2. EXPERIMENTAL SETUP 42

Figure 2.23: Hall A Electromagnetic Calorimeters. The LHRS blocks are set in
two columns of 17 blocks each with the first layer called pion-rejector 1 (PRL1) and
the second layer called pion-rejector 2 (PRL2). The RHRS blocks are arranged in two
layers. The first layer is referred to as the ‘preshower’ and is made up of two columns
of 24 PMTs each. The second layer, called the ‘shower’, is comprised of five columns
of 16 blocks each [6] [7]. Image from [6].

interact through ionization not Bremsstrahlung. This means that only electrons should

create significant showers in the calorimeters. Although they still provide accurate

particle identification the PRL1 and PRL2 in the LHRS do not totally absorb all

of the electrons’ energy, whereas the preshower and shower in the RHRS are total

absorbers [7]. The PMTs attached to the lead-glass blocks must also be calibrated in

the same manner as the GC discussed in 2.7.3. For a full accounting of the calorimeter

calibration procedure for experiment E08-014 see section 4.2.2 of [7].

2.8 Data Acquisition System

A schematic of the data acquisition system (DAQ) is shown in Figure 2.24. To

understand the Hall A DAQ let us follow the data signal chronologically through

the various components. This journey begins with the analog signals produced by

each of the detector components in the detector stack described in section 2.7. Some

signals are digitized as they pass through the system. Detector signals enter the system
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through one of two ways. The first is by being sent into a majority logic unit (MLU)

which then uses various combinations of signals to create triggers and coincidences

between the detectors. For example, it may create a new trigger output that is a

coincidence of the S1, S2m, and GC signals which was used as the main production

trigger in experiment E08-014 [19].

Figure 2.24: Schematic of Hall A DAQ and Trigger System. Image from [19].

These MLU output signals are then transported via NIM-ECL translator to a

trigger supervisor (TS) module. The TS module is the central control point for the

DAQ. This module decides whether or not to accept a trigger from the detectors. If a

trigger is accepted the TS then creates a level one accept (L1A) signal. These L1A

signals provide timing and gating information for the electronics such as ADCs and

TDCs. The TS can also prescale the triggers if the rate is higher than desired. The

L1A signals are then sent to the retiming module where they await the trigger signals

from the detectors that enter the DAQ via the second method [19].
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The second way into the DAQ is by taking the signals from the detectors directly

into NIM cards. Here, using the NIM cards such as amplifiers and coincidence modules,

the detector signals are combined to make triggers matching those produced by the

MLU. These signals are called the retiming signals and are also sent to the retiming

module where they meet up with the L1A signals. The L1A signals are then retimed

to match the detector signals. Now the gates and stops determined by the detector

signals are in coincidence with the L1A signal [19].

This coincidence signal is sent to the transition module (TM) which acts as an

interface between the TS and the electronics. The TM then copies the signals for the

triggers, gates, and stops and sends them to the VME and FASTBUS crates containing

the ADCs, TDCs, and scalers which are controlled by read out controllers (ROCs).

These front end electronics then begin recording data based on the trigger information

from the detectors and a unique event number for this trigger is created that contains

all of the front end electronics information for that event [19].

The Hall A DAQ also contains two timing scalers (clocks), a fast (104 kHz) and a

slow clock (1024 Hz), which are used to time the experimental run and are used to

normalize experimental data. The timing from the clocks allows the missing data from

computer dead-time to be understood. When high data rates are passing through the

DAQ the computer processing time of that data becomes a limiting factor. While one

event is being processed the next event that arrives before the first event is processed

is missed by the system and not recorded. This problem can be alleviated in several

ways.

The first method is to ‘prescale’ the data meaning that the system doesn’t try to

read all of the data. For example if the system is set to a prescale factor of five the

system will only record one fifth of the data in the stream. This allows the electronics

to keep up and the data can be normalized back by knowing the prescale factor. The

proportion of time the DAQ was able to accept signals is known as the ‘live time’ given

in Equation 2.10. Here psi is the prescale value of trigger i, T acci is the number of

trigger i accepted and recorded by the DAQ, and Ti is the total number of trigger i
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created by the detectors. The ‘dead-time’ is then equal to one minus the live time.

[19].

LT =
psi × T acci

Ti
(2.10)

Another method of preventing data from being lost to electronic dead-time is by

placing the data in a buffer before analyzing it. The buffer is essentially an electronic

storage bin where the raw data is kept in computer memory until the system has

processed all the events preceding the buffered event. As long as the buffer is large

enough all the events can be processed eventually without loss. This allows the

experiment to run as fast as the front end electronics are capable of running [19].

The dead-time can be monitored by several methods. One is by the electronic

dead-time monitor (EDTM) signal in the DAQ. The EDTM sends constant pulser

signals into the S1, S2m, and GC data streams. If the DAQ is free these signals will

be accepted, but if the DAQ is busy they will be rejected. The number of accepted

signals in the final data can be compared to the known EDTM pulser rate to calculate

the dead-time. The TS module also sends out an electronic busy signal when it is

processing data and unable to accept new triggers. This busy signal is essentially an

internal constant pulser signal that is gated by the TS entering the busy state, and

provides a second method of calculating the dead-time [19].

Now we have seen how the data is gathered from the detectors, but how is this

system controlled and how does the data come to be in a datafile useful for analysis?

The CEBAF Online Data Acquisition (CODA) program, seen schematically in Figure

2.25, allows the DAQ to be controlled remotely and builds the experiment’s run

datafiles. The main CODA GUI is used to begin and end each experimental run. The

GUI communicates these commands to a readout controller (RC) server that ties all

of CODA’s components together. Once the RC server gets the command to begin a

run it informs the electronics described above to begin the process of taking data [19].

Once a trigger is accepted by the DAQ the crates containing ADCs and TDCs are
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Figure 2.25: Schematic of CODA. Image from [19].

read out by the ROCs. The ROCs pass this information on to CODA’s event builder

(EB). The EB then takes these disparate pieces of data from the various components

and organizes them all into one file using the CODA formatting structure. The EB

then sends this file in the form of a single event to the event transfer (ET) system.

The ET gathers these events and then sends them on to the event recorder (ER)

where they are finally written to permanent storage such as tape file. The resulting

CODA files can then be decoded to create ROOT files which are then used in the

offline analysis of the experimental runs. These data files contain scaler readouts every

one to four seconds. They also log the Experimental Physics and Industrial Control

System (EPICS) data, which contains information from the hall like target position,

spectrometer angle, BCM readings, BPM readings, beam energy, and spectrometer

magnet information, periodically every few seconds [7] [19].
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2.9 Triggers

Experiment E08-014 used seven different triggers. Each of these triggers is made

up of a combination of the signals from the S1 and/or S2m scintillator planes and the

sum of the ten GC signals. The main production trigger is a coincidence of S1, S2m,

and the GC sum signals called T1 (T3) for the RHRS (LHRS), and is denoted by (S1

& S2m & GC). Two efficiency triggers designed to measure the efficiency of the main

production triggers T1 (T3) are T2 (T4) for the RHRS (LHRS). These are made up

of a coincidence of the GC signal and only one of either S1 or S2m. The triggers T6

(T7) for the RHRS (LHRS) are the coincidences of the S1 and S2m scintillator planes.

Since these triggers do not involve the GC they recorded pion events as well and were

thus useful for particle identification purposes. Finally trigger T5, the coincidence of

T1 and T3, was disabled for this experiment [7].

2.10 High Resolution Spectrometer Optics

Once the charged particles are bent through a spectrometer and into the detector

stack they first pass through the two VDCs set in the HRS’s focal plane as described

in 2.7.1. The VDCs give the particle’s location in the focal plane which can then

be used to reconstruct where the electron interacted with the target, the ‘reaction

vertex’, as well as its trajectory at the target. This reconstruction is done by applying

an optics matrix determined by the characteristics of the HRS. This matrix needs to

be calibrated for each experiment as there are always slight changes in the relative

positions of the target, spectrometer, and detectors as well as changes in spectrometer

magnet behavior. This section describes the coordinate systems used in Hall A and

the standard procedure for optimizing the optics matrix.

2.10.1 Hall A Coordinate Systems

Hall A has five different coordinate systems which can all be related to one another.

• Hall Coordinate System (HCS):
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The HCS can be seen in Figure 2.26. The origin of the HCS begins at the center

of Hall A which is located at the intersection of the electron beam and the target’s

vertical axis of symmetry, x̂. The ẑ direction is defined in the direction of the electron

beam’s travel. The ŷ direction is defined to be vertically up [20].

Figure 2.26: Hall Coordinate System. Image from [20].

• Target Coordinate System (TCS):

Each spectrometer has their own target coordinate system as seen in Figure 2.27.

The z axis is defined by drawing a line perpendicular from the sieve slit surface of

the spectrometer and the midpoint of the central sieve slit hole. The ẑtg direction is

defined to be pointing away from the target. When optimally aligned the spectrometer

is pointing at the hall center with the sieve slit being perfectly centered causing the

ẑtg vector to pass through the hall center [20].

With this optimal alignment the distance separating the hall center and the central

midpoint of the sieve slit hole is defined as the spectrometer constant, Z0. By definition

the TCS origin is located a distance Z0 from the sieve surface on the ẑtg axis, and

in the optimal case is the same as the hall center. The x̂tg direction is defined to

be parallel to the sieve plate surface pointing downwards. Finally the in-plane and

out-of-plane angles, φtg and θtg, are defined as
dytg
Z0

and
dxtg
Z0

respectively [20].

• Detector Coordinate System (DCS):

The origin of the detector coordinate system is located inside of the first VDC
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Figure 2.27: Target Coordinate System. Image from [7].

on either spectrometer as shown in 2.28. This origin is defined by the intersection of

wire 184 at the center of the U1 wire plane of the bottom VDC with the projection of

wire 184 at the center of the V1 wire plane of the bottom VDC. ŷ is defined in the

direction parallel to the short axis of the VDC pointing to the left of the direction of

the particles entering the VDC. x̂ is defined along the longer VDC axis pointing away

from the hall center. The ẑ direction is defined as vertically up. For a more detailed

description of the coordinates and how to calculate the detector vertex see [20].

• Transport Coordinate System (TRCS):

The transport coordinate system is defined by rotating the DCS 45◦ about its ŷdet

axis as shown in Figure 2.29 [20].

• Focal Plane Coordinate System (FCS):

The FCS is another rotated coordinate system as shown in Figure 2.30. It is

created by rotating the DCS about its ŷdet axis by and angle ρ. ρ is defined as the
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Figure 2.28: Detector Coordinate System. Image from [20].

Figure 2.29: Transport Coordinate System. Image from [20].

angle between the ẑdet axis and the central ray passing through the target, i.e. φtg =

θtg = 0, for the corresponding relative momentum given in Equation 2.11 [7] [20].

δp =
p− p0

p0
(2.11)

2.10.2 Spectrometer Optics Optimization Procedure

Now that we understand the coordinate systems in Hall A we must calibrate the

optics of the HRS so that we can reconstruct what happens at the target when the
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Figure 2.30: Focal Plane Coordinate System. Image from [20].

electrons scatter. To do this we create an optics matrix that links the focal plane

coordinates to the target coordinates. To first order this matrix can be written as

Equation 2.12. A set of polynomial tensors in xfp can then describe the target variables

in terms of the focal plane variables as shown in Equations 2.13, 2.14, 2.15, and 2.16.

These tensors can all be written similar to the one written in Equation 2.17 [20].



δ

θ

y

φ


tg

=



〈δ|x〉 〈δ|θ〉 0 0

〈θ|x〉 〈θ|θ〉 0 0

0 0 〈y|y〉 〈y|φ〉

0 0 〈φ|y〉 〈φ|φ〉





x

θ

y

φ


fp

(2.12)

δ =
∑
j,k,l

Dj,k,lθ
j
fpy

k
fpφ

l
fp (2.13)

θtg =
∑
j,k,l

Tj,k,lθ
j
fpy

k
fpφ

l
fp (2.14)

ytg =
∑
j,k,l

Yj,k,lθ
j
fpy

k
fpφ

l
fp (2.15)

φtg =
∑
j,k,l

Pj,k,lθ
j
fpy

k
fpφ

l
fp (2.16)
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Dj,k,l =

m∑
i=1

C
Dj,k,l

i xifp (2.17)

This matrix is calibrated by placing a sieve slit, shown in Figure 2.31, over the

spectrometer entrance. The sieve has a series of holes with a well known pattern. This

pattern then shows up in the focal plane data and by knowing the hole locations well

the focal plane data can be correlated with the sieve holes. The variables in Equations

2.14, 2.15, and 2.16 described above turn out to be impractical to work with so an

additional three variables are defined.

The first of these variables is Zreact which describes the point of interaction between

the beam and the target given in Equation 2.18. The second and third are xsieve,

Equation 2.19, and ysieve, Equation 2.20, which describe the horizontal and vertical

positions of the sieve plate respectively. In these equations L and Dy are defined as

they were in the TCS above, θ0 is the spectrometer angle, and xbeam is the horizontal

beam position [20]. For the specific results of the optics calibration procedure for

experiment E08-014 see section 4.3.2 of [7].

Figure 2.31: Optics Sieve Plate for E08-014. The two larger holes make it possible
to determine the plate’s orientation when performing the optics calibration. Image
from [7].
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Zreact =
− (ytg +Dy) + xbeam (cos (θ0)− φtg sin (θ0))

φtg cos (θ0) + sin (θ0)
(2.18)

xsieve = xtg + Lθtg (2.19)

ysieve = ytg + Lφtg (2.20)
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Chapter 3

Cross Section Extraction

3.1 Overview

This chapter will explore the various analyses used to extract a 3He elastic cross

section from experiment E08-014’s data. This discussion will include all measurements

required to extract a differential cross section, various corrections for efficiency losses,

the physics cuts applied to the data, and an estimate of the uncertainties. Also

discussed will be the Monte Carlo software used to create an artificial elastic electron

spectrum as well as the software used to calculate radiative corrections to this data.

3.2 Experimental Cross Section

The theoretical origins of a differential cross section were explored in Section 1.2.

However, this derivation is not particularly useful for extracting an actual experimental

cross section. Extracting a cross section is essentially an exercise in electron counting.

Let us now write the cross section as an experimentalist understands it as in Equation

3.1. Each of these variables will be examined in detail later in this chapter.

(
dσ

dΩ

)
exp

=
ps Ne

Nin ρ LT εdet

1

∆Ω∆P∆Z
(3.1)

Here ps represents the prescale value of the given trigger being examined. Ne is
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the number of electrons detected by the experiment that survive physics cuts, like

particle identification, and acceptance cuts. Nin is the number of electrons incident

on the target, and can be calculated from the cumulative beam charge. ρ is the

target’s density. LT is the livetime correction which accounts for events missed due

to electronic dead-time in the DAQ. εdet represents the product of all of the detector

efficiencies such as the GC, VDC single track, EM calorimeter, and trigger efficiencies.

∆Ω represent the solid angle covered by the spectrometer after acceptance cuts. ∆P

is the momentum acceptance seen by the spectrometer after acceptance cuts. Finally

∆Z represents the length of the target seen by the spectrometer.

3.3 Beam Charge

First we begin by finding the charge of the electron beam during any given

experimental run. This process begins with the U and D BCMs measuring the beam

current prior to the beam striking the target. These BCMs are calibrated according to

Equation 3.2, and the constants can be found in Table 3.1. The BCM calibration for

experiment E08-014 can be read about in more detail in [14] where these equations

are found. The final constants in the table were updated after the analysis in [14], and

were provided via private communication with Dien Nguyen.

〈Ibeam〉 =
scaler
time −K

′
offset

CV−to−F
(3.2)

BCM K′offset CV−to−F

U1 200 1035
D1 37 1263

Table 3.1: BCM Calibration Constants for E08-014

The average current, 〈Ibeam〉, is thus dependent upon the number of counts in the

scaler measuring beam current in a certain period of time tracked by a clock scaler

which is then modified by the two known calibration constants K ′offset and CV−to−F .

Now that we have a current we can calculate the charge, Q, of the beam during a run
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using Equation 3.3. We can then divide the charge by the elementary charge of the

electron, e, to find the total number of electrons incident on our target, Nin, as in

Equation 3.4.

Q = 〈Ibeam〉 × time (3.3)

Nin =
Q

e
(3.4)

Figure 3.1 shows the current as measured by the U1 and D1 BCMs for experimental

run 4074. During E08-014 the target beam current was 120 µA. When the beam ‘trips’

(abruptly turns off) and when the beam current is being brought up to the desired

current it tends to be somewhat unstable. These events can be seen in the trailing

edges and leading edges of the gaps in the BCM current measurement. These periods

of instability are discarded by placing cuts on the current spectrum represented by the

red lines in Figure 3.1. These lines are placed two scaler readouts, about 4 seconds per

readout, before (after) the BCMs register 90% of the 120 µA operating current for

the falling (rising) edge. This analysis was performed for each run of Kin 3.2 and the

results are shown in Table 3.2.

Run
Charge
U1

(µC)

Charge
D1

(µC)

Average
Charge

(µC)

Electrons
U1

Electrons
D1

Average
Electrons

3892 5568.68 6015.81 5792.25 3.47608 × 1016 3.75519 × 1016 3.61564 × 1016

3893 118261 118016 118138 7.38207 × 1017 7.36678 × 1017 7.37443 × 1017

3894 136502 138131 137316 8.5207 × 1017 8.62243 × 1017 8.57157 × 1017

4073 7656.35 7654.74 7655.54 4.77924 × 1016 4.77824 × 1016 4.77874 × 1016

4074 251551 251227 251389 1.57023 × 1018 1.56821 × 1018 1.56922 × 1018

4075 280417 280017 280217 1.75042 × 1018 1.74792 × 1018 1.74917 × 1018

Totals 799956 801062 800509 4.99348 × 1018 5.00039 × 1018 4.99693 × 1018

Table 3.2: Charge Accumulated
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Figure 3.1: BCM Readouts for Run 4074. These plots show the U1 and D1 BCM
measurements for run 4074. The cuts are applied two scaler readouts before (after)
the BCMs register 90% of the 120 µA operating current for the falling (rising) edge.

3.4 Corrections and Efficiencies

3.4.1 Live-time Correction

Now we have measured how many total electrons are incident on our target.

However, we have not yet accounted for the electronic dead-time discussed in Section

2.8 and Equation 2.10. While the electronics discard some valid trigger events because

the system is busy processing the previous event scalers still record every trigger

created regardless of if it is recorded by the main DAQ. This means that the live-time

of the system can be calculated by taking the ratio of the total triggers recorded by

the DAQ electronics to the total hardware triggers recorded by the scalers.

Table 3.3 contains the live-time for each run as well as the weighted average of
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live-times for the cumulative runs. The discrepancy between the live-times for the

first and last three runs is due to the differing event rates on the right arm during

each of these sets of runs. When the right arm has a higher data rate the live-time for

both arms decreases. The average live-time of 95.27% is then applied as a correction

of 1
0.9527 to the total number of elastic electrons detected.

Run
Hardware

T3

Electronic
T3

Live-time

3892 49802 42982 0.86306
3893 485367 427476 0.88073
3894 - 311724 0.87912*
4073 106003 103741 0.97866
4074 1124275 1102321 0.98047
4075 1152972 1129955 0.98004

Weighted
Average

0.9527

Table 3.3: Live-time per Run. Note that run 3894 had no End of Run readout so
the live-time is a weighted average of the two runs, 3892 and 3893, taken the same day.

3.4.2 Trigger Efficiency

The main trigger, T3, for E08-014 was a coincidence of S1, S2m, and the GC

detectors. However, this trigger is not perfectly efficient. To measure T3’s efficiency

we use trigger T4, which is the coincidence of one of either S1 or S2m and the GC, and

Equation 3.5. Here PS3,4 are the prescale values of T3 or T4, and nT3,4 are the number

of triggers of either T3 or T4. Figure 3.2 shows the T3 efficiencies for each of the runs,

and Table 3.4 lists these efficiencies along with the weighted average of the runs.

T3eff =
PST3 × nT3

PST3 × nT3 + PST4 × nT4

(3.5)

3.4.3 VDC Single Track Efficiency

In general the VDCs are very efficient, but it is possible for particles to make

several tracks in the VDCs. This can cause issues with track reconstruction. For the
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Figure 3.2: T3 Efficiency by Run.

Run T3 Efficiency

3892 0.9692
3893 0.9885
3894 0.9894
4073 0.9888
4074 0.9890
4075 0.9887

Weighted
Average

0.9886

Table 3.4: T3 Efficiency

analysis of E08-014 only events making a single track in the VDCs that also passed

PID cuts were analyzed. This single track efficiency can be calculated with equation

3.6. Here the variable Ntrack=1 is the number of events making only a single track, and

the variable N0≤track≤4 is the number of events producing between one and four tracks.

For the LHRS during experiment E08-014 εV DC was found to be 99.175%, and Table

3.5 gives the breakdown for both detectors by number of tracks seen. This introduces

a small correction factor of 1
0.99175 to the electron yield. For more detailed information

on this calibration see [7] where these values were calculated.

εV DC =
Ntrack=1

N0≤track≤4
(3.6)
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Ntrack 0 1 2 3 4

HRSL 0.030% 99.175% 0.743% 0.045% 0.005%
HRSR 0.048% 99.360% 0.545% 0.039% 0.007%

Table 3.5: VDC Track Efficiency for HRSs

3.4.4 Particle Identification

When a trigger is seen it is important to be able to identify what particle caused

the trigger. For this analysis we are only interested in electrons, but pions occasionally

cause triggers as well. Figure 3.3 shows a plot of the two pion rejector calorimeters

used for PID in E08-014. The data in this figure is not the data used in this analysis,

and the figure is only intended to show where we expect to see certain particles in this

thesis’ analysis.

As discussed in Section 2.7.4 electrons will leave large signals in the PRs, and pions

much smaller signals. Using this property of the PRs we can show the area almost

certain to be electrons shaded in blue, and the area we expect to be pions is shaded in

red. Note that the blue (red) region is not all of the electrons (pions), but triggers in

the blue (red) region are almost certainly electrons (pions). (Note that the shaded

regions are not cuts placed on the final data. They are only used to check the pion

contamination of our sample.) The other low energy events not identified as pions

are generally δ, or knock-on, electrons. These events are created when particles strike

the metals of the detector frames and windows and knock out an electron. On rare

occasions these electrons have sufficient energy to create a shower in the PRs. We can

see for the run shown in Figure 3.3 that there is a non-zero pion contamination in the

sample.

Alternatively, we can look at the same data in the GC to identify the particles as

shown in Figure 3.4 (again this data is an example and was not used in this analysis).

We discussed how the gas in the GC is chosen for electrons to emit Cherenkov radiation

in Section 2.7.3. Due to this gas choice pions rarely create Cherenkov radiation in the

GC. We can see this difference in Figure 3.4 by identifying the bulk of the signal, blue,
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Figure 3.3: PID with the Pion Rejectors. This plot does not show the data used
in this analysis. It is intended only to show where we expect to see certain particles in
this thesis’ analysis. The X-axis represents pion-rejector 1, and the Y -axis represents
pion-rejector 2. Both axes are in units of ADC channel. Pions are found in the lower
energy ADC channels. The red box indicates an area in which the particles are almost
certainly pions, but the red box is not a cut applied to the data. The electrons are
found in the higher energy ADC channels. The blue box indicates an area in which
the particles are almost certainly electrons, but the blue box is not a cut applied to
the data. The boxed regions were only used to check the pion contamination. Image
from [7].

as electrons, and the lowest signals, red, as pions. Again, the blue (red) region is not

all of the electrons (pions), but triggers in the blue (red) region are almost certainly

electrons (pions) (again these are not cuts on the final data and are only used to check

the pion contamination). In this data we see the non-zero pion contamination again.

Fortunately, as with the PR plots, the pions and electrons are easy to distinguish from

one another.



CHAPTER 3. CROSS SECTION EXTRACTION 62

Figure 3.4: PID with the Gas Cherenkov. This plot does not show the data used
in this analysis. It is intended only to show where we expect to see certain particles
in this thesis’ analysis. The X-axis is in units of ADC channel, and the Y -axis is the
number of events detected. Pions are found in the lower energy ADC channels. The
red area shows where almost all of the particles should be pions, but the red area
is not a cut applied to the data. Electrons are found in the bulk of the distribution
between ADC channels 100 and 1400. The blue area shows where almost all of the
particles should be electrons, but the blue area is not a cut applied to the data. The
shaded areas were only used to check the pion contamination. Image from [7].

Now let us examine the combined six experimental runs used in this analysis using

the PRs and GC. Figure 3.5 shows the PRs for our data with reasonable physics cuts

applied to the data. We see the same ‘cloud’ of electrons in the higher PR ADC

channels indicating that electron energy is being well measured by the PRs. The red

box in this cloud shows a similar region to before where we are almost certain to

have ‘good’ electrons. However, when we search for the pion cloud in the lower energy

channels, represented by the small red box in the lower left, we see very few pions

at all. This is a result of Kin 3.2 producing few pions that can be measured by the

detectors so our pion contamination is extremely low. The small number of pions can

be eliminated by placing a diagonal cut on the data represented by the green line in

Figure 3.5. Note that the only cut actually applied to the data was the diagonal green

line. The red boxes were only used to check the pion contamination and were not cuts

applied to the final data.

We can also examine the GC, Figure 3.6, as we did previously. Once again we have

applied reasonable physics cuts to the data. We see a large bulk signal at its strongest
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Figure 3.5: PID with the Pion Rejectors. This plot shows the six runs used in this
analysis. The X-axis represents pion-rejector 2, and the Y -axis represents pion-rejector
1. Both axes are in units of ADC channel. The red box in the low energy ADC channels
shows a region in which pions would be located if they were in the data. Few events
are located in this pion region indicating few pions are contaminating the sample. The
red box in the cloud of events in higher ADC channels indicates the region in which
events should definitely be electrons. These boxes were only used to check the pion
contamination but are not cuts applied to the data. The green line is a cut applied to
the final data. This cut removes junk events, δ-electrons, and any of the few pions in
the sample below the green line.

between channels 300 and 500, shown between two red lines, as expected. This shows

that we are detecting electrons well with the GC. Looking in the lower ADC channels

for pions we again see that there seem to be very few in our data. In fact, below ADC

channel 80 we see only 15 events showing that there are very few pions in our sample.

As a result when making the final cuts to the data only the diagonal cut on the PRs

was used to eliminate possible pions, and more likely, junk electrons which are most

probably δ-electrons.
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Figure 3.6: PID with the Gas Cherenkov. This plot shows the GC ADC for the
six runs used in this analysis. The X-axis is in units of ADC channel, and the Y -axis
is the number of events detected. Pions would be found in the lower energy ADC
channels below the red line at channel 80, but that region contains almost no events so
there are very few pions in the sample. The area between the red lines at channels 300
and 500 shows where almost all of the particles should be electrons. The two areas
where we expect all events to be pions or electrons were only used to check the pion
contamination, but they are not applied as cuts to the data.

3.4.5 Gas Cherenkov Efficiency

Now that we have demonstrated that very few pions are contaminating our electron

sample we must still account for inefficiencies in the GC. During E08-014 one of the

ten PMTs in the LHRS GC was slightly inefficient, and this PMT happens to measure

electrons with the kinematics of those elastically scattered from 3He at this analysis’

kinematics. To study the GC efficiency we can use T3, the main trigger, which is a

coincidence of S1, S2m, and the GC detectors as well as T7, which is a coincidence of

S1 and S2m. The number of events firing both T3 and T7, T3&7, divided by T7 will

yield the GC efficiency for these E08-014 runs as shown in Equation 3.7 [21].

εGC =
T3&7

T7
(3.7)
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Before we find the GC efficiency let us first place some reasonable kinematic and

acceptance cuts on the combined data of our six experimental runs (see Section 3.6 for

details on the cut values). Figure 3.7 shows a plot of T7 on the left and T3&7 on the

right with physics cuts. These cuts are fairly strict and include a cut on xBj to isolate

the elastic peak so there are few events. The events form the characteristic elastic band

shape across the GC PMTs. Taking the ratio we find that εGC = 196/203 = 0.966.

This is still fairly efficient accounting for the slightly inefficient PMT. Knowing the

GC inefficiency allows us to scale the electron yield by 203/196 to correct for this

inefficiency.

Figure 3.7: GC Efficiency. The left plot is T7 with physics cuts and the right is T3&7

with physics cuts.

3.5 Target Density

As the electron beam passes through the gaseous 3He target it causes the target to

heat considerably. In the ideal case the target would heat uniformly. However, studies

of the target boiling effect during E08-014 indicate that the strength of the target

boiling effect was correlated to the location along the target’s long axis, Zreact. Note
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that the term ‘boiling’ is not used to indicate the physical process of liquid boiling

to gas as the 3He target was already gaseous. Instead, boiling is meant to indicate a

change in gas density in the target due to temperature differences. Figure 3.8 shows

events detected along Zreact for various beam currents. The two peaks at either end

of the plot are the aluminum endcaps of the target. It is clear from this plot that

the density of the gas across the cell is not constant otherwise the event rate would

be approximately constant. The bump in density from -8 cm to -3 cm is due to this

part of the cell being more effectively cooled by the cryosystem leading to a higher

gas density. For a detailed discussion of the target boiling studies see [7] Section 5.4.1

and Appendix D. Ignoring the large bump, the small downward slope of the density

observed is due to the fact that the scattering angle seen by the spectrometer changes

slightly along the length of the cell leading to a change in Q2.

The target boiling effects were the result of using a significantly higher beam

current than the 3He cells were designed to cool [22]. (This higher current did provide

the silver lining of helping to create enough elastic electrons for this analysis to be

possible.) To better understand the density of the target when the beam was on Silviu

Covrig created a computer simulation of the target under the experimental conditions.

The computational fluid dynamics (CFD) simulation studied the behavior of 4He based

on its density, specific heat, thermal conductivity, and viscosity. The simulation also

factored in the conditions of the cell such as pressure and temperature which were

measured during the experiment [23]. The mechanics of the CFD simulation are best

described in Covrig’s own words,

“This method of calculation is called finite volume element, which means

that the volume of the target cell is broken into smaller volumes, a process

controlled by the size of the mesh. Fluid dynamics equations, transport

equations or equations for any scalar/vector of interest are solved on these

elements of volume or computational cells and predictions are made for

the fields of temperature, velocity, density etc. in the whole volume of the
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Figure 3.8: 3He Boiling Effect. The X-axis here represents Zreact (direction along
the cell’s long axis) and is in units of meters. The Y -axis shows the number of events.
The two peaks at either end of the distribution come from the endcaps of the target
and are cut from the final sample. The different colored lines represent different beam
currents. If the target density was constant throughout the cell the lines between
the endcaps would be flat. However, there is clearly a bump around Zreact = -0.02
m. Above this value the number of events decreases due to the density of the 3He
gas decreasing. This decreased density occurs because the cell was unevenly cooled
and gas further from the coolant heated decreasing the gas density. Ignoring the large
bump, the small downward slope of the density observed is due to the fact that the
scattering angle seen by the spectrometer changes slightly along the length of the cell
leading to a change in Q2. Image from [7].

geometry. At any given z-location along the beam line the raster area is,

say, 9 mm by 2 mm or 3 mm by 3 mm. If the mesh size was, say, 0.25

mm, then you could expect about 12x12 or 144 volumetric cells at that

z-location. For each of these cells the program predicts the velocity of

the fluid, its density, temperature etc. at the center of the cell. If you

then make a 2D plot of density vs. beam line z-location, the program

plots a vertical dotted line that represents the spread of density among

the volumetric cells at that z-location. The spread in value is given by
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what happens at that z-locations over the area of the raster. The fluid

may not have constant velocity in the raster area at that z-location, so

heating from the beam will decrease more or less its density in volumetric

cells that move slower or faster respectively [23].”

This target density study was performed on 4He so the results of the study need to

be related to 3He. This can be done by using the isotopic nature of 3He and 4He as well

as the ideal gas law. We can begin by using the relation between the fractional change

in density between 3He and 4He as given in Equation 3.8, where dρ(3He) (dρ(4He)) is

the fractional change in density for 3He (4He), A3 (A4) is the number of nucleons for

3He (4He), P3 (P4) is the pressure for 3He (4He), and I3 (I4) is the beam current for

3He (4He) [23]. dρ is defined as ρ−ρ0

ρ0
, where ρ is the density with the beam on and ρ0

is the density with the beam off [23].

dρ(3He) =
A4

A3

P4

P3

I3

I4
dρ(4He) (3.8)

Plugging in the corresponding values from the experimental setup and the simulation

we can rewrite the product in Equation 3.8 as Equation 3.9.

R1 =
A4

A3

P4

P3

I3

I4
=

4

3
(3.9)

We can then use the ideal gas law to relate the densities of 3He and 4He without beam

as in Equation 3.10.

ρ0(3He) =
A3

A4

P3

P4

T4

T3
ρ0(4He) (3.10)

Once again we can rewrite the product in Equation 3.10 using the experimental and

simulation conditions as Equation 3.11.

R2 =
A3

A4

P3

P4

T4

T3
= 0.745 (3.11)

Finally we can solve Equation 3.8 for ρ(3He) by plugging in Equation 3.10. This
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gives us the equation describing the 3He density with the beam on as shown in Equation

3.12.

ρ(3He) = R1 R2 ρ(4He) + ρ0(3He) (1−R2) (3.12)

We can then get the 3He density along the Z-axis of the target from the 4He CFD

simulation results. By integrating over the Z-axis we find the average absolute density

of the target. This density was found to be 0.013 g/cm3 ± 0.0004 g/cm3. For a more

in depth discussion of this density extraction see [23].

3.6 Cuts

Not all of the electrons we detect necessarily come from regions we are interested in

studying. For example, any electrons that originated outside of the target or that have

a momentum greatly different than the momentum setting of the spectrometer are not

wanted in our electron sample. To ensure we are studying the electrons scattering from

the target we impose a series of physics cuts for the spectrometer’s acceptance as well

as some of the kinematics. In Section 3.4.4 we already discussed a cut to remove the

very small number of pions as well as the δ-electrons from our sample. In this section

will discuss the other major cuts we have imposed on the data which are summarized

in Table 3.6.

Cut Type Minimum Maximum

Y Target -0.03 m 0.028 m
θ -0.049 rad 0.042 rad
φ -0.03 rad 0.03 rad

dP = P−P0
P0

-0.02 0.03

Table 3.6: Summary of Acceptance Cuts

Each of these cuts was made using several techniques. Let us take the Ytarget

(Ytarget = sin (θHRS)Zreact) cut as our example. The first technique is a visual

assessment of the range of data that we wish to accept. Figure 3.9 shows the Ytarget
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plot of the experimental data, and the red region shows the range of data we chose

to cut on. Notice the two peaks at either end of the data. These peaks are created

by the aluminum endcaps, and as such are not of interest in this analysis. To remove

these peaks from the sample two cuts were placed on Ytarget.

Figure 3.9: Ytarget Acceptance. The red acceptance region runs from -0.03 m to
0.028 m. The peaks at either end of the distribution are from the target’s endcaps and
were cut from the sample. The bump starting around 0.01 m is due to the increased
target density due to the boiling effects discussed in Section 3.5.

The second technique involves intentionally using cuts that are too wide, and then

continually making the cuts tighter until the cross section result no longer changes as

the cuts are made tighter. When the cuts are too wide regions without the 3He gas

and/or outside of our kinematic region of interest are accepted giving a cross section

value that is dependent on the placements of the cuts. Once the cuts are strict enough

to capture only the electrons elastically scattered from 3He the cross section becomes

stable. Cuts are made such that they accept the maximum number of electrons in the

region where the cross section is stable independent of the cuts. Using both techniques

the acceptance region for Ytarget was chosen as the region between -0.03 m to 0.028 m.
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Now let us look at the remaining cuts for θ, φ, and dP (the momentum fraction

dP is often also referred to as δ). Figure 3.10 shows a plot of θ (the out-of-plane angle)

for experiment E08-014. This cut was primarily made visually and runs from -0.042

to 0.049 radians. Figure 3.11 shows a plot of φ (the in-plane angle) for experiment

E08-014. This cut was made both visually and with the second method of reducing

the cut width until the cross section value becomes stable. The second method is

more important for φ than for θ since the cross section is more sensitive to φ. The

cut for φ runs from -0.03 to 0.03 radians. Finally, Figure 3.12 shows a plot of dP for

experiment E08-014. This cut was made mostly using the second method of checking

for cross section stability. The dP cut runs from -0.02 to 0.03, where dP = P−P0
P0

, P is

the electron momentum, and P0 is the spectrometer’s momentum setting.

Figure 3.10: θ Acceptance. θ is the out-of-plane angle. The red acceptance region
runs from -0.042 radians to 0.049 radians.
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Figure 3.11: φ Acceptance. φ is the in-plane angle. The red acceptance region runs
from -0.03 radians to 0.03 radians.

Figure 3.12: dP Acceptance. dP is the momentum fraction. The red acceptance
region runs from -0.02 to 0.03.
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3.7 3He Elastic Cross Section Monte Carlo

To extract the final 3He elastic cross section value for this analysis a physics

simulation Monte Carlo program called SIMC was used. This program is primarily

used by JLab’s Halls A and C to simulate electron scattering experiments. SIMC

contains the geometry of the Hall A spectrometers including their various apertures and

the materials that comprise them. SIMC uses an event generator to create electrons

which then scatter from a given target. These events are transported through the

spectrometer based on an optics matrix which allows for the transformation of detector

coordinates to target coordinates. SIMC then records the final states of the scattered

electrons as if they were viewed by a detector.

SIMC requires numerous inputs before generating the initial events. The program

must be given ranges in momentum, in-plane angle (φ), out-of-plane angle (θ), beam

energy, and spectrometer angle. These acceptances are chosen to match the conditions

of the real world Hall A experimental setup. Note that the initial SIMC solid angle

variable acceptances (φ and θ) were made 15% larger than the final cuts used in the

analysis. This was done so that SIMC can apply a smearing function to these variables

which more accurately reflects real world behavior. SIMC then randomly and uniformly

generates particles in the detector in the provided acceptance ranges. Next SIMC

calculates the energy of each electron produced, weights each event by a cross section

model, and finally applies radiative corrections (see Section 3.8) to each event.

SIMC then transforms these events back through the spectrometer to their reaction

vertex in the target. Along the way it applies energy losses due to multiple scattering as

well as ionization and Bremsstrahlung. The spectrometer magnets are modelled using

the COSY INFINITY program [24]. This program contains the various transformation

matrices required to transport particles between the various coordinate systems and

through the spectrometer. While being transported through the spectrometer SIMC

checks to be sure that all recorded electrons do not strike the walls of the spectrometer

or any non-sensitive elements of the detectors in the stack. It also checks that the
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electrons pass through all apertures in the spectrometer. SIMC also applies a smearing

function to the electrons’ VDC positions to match the real world VDCs [10].

Let us now compare the results of SIMC (red lines) to the real experimental

data (blue lines). For all of these plots reasonable physics and acceptance cuts have

been applied. The SIMC data was scaled arbitrarily to match the counts of the

experimental data. We are only interested in comparing if SIMC matches the shape of

the experimental data in the acceptance region of each variable. Figure 3.13 shows the

SIMC result for φ (in-plane angle) alongside the experimental data. The agreement

between SIMC and data seems to be fairly good, although the SIMC data falls off

a little more quickly on the positive side. Figure 3.14 shows the SIMC result for

θ (out-of-plane angle) alongside the experimental data. Once again the agreement

looks decent, but there seems to be some drop off in the SIMC data in the negative θ

direction. Figure 3.15 shows the SIMC result for dP alongside the experimental data.

Notice here that the SIMC data was scaled to match the experimental acceptance

region of -0.02 to 0.03. The agreement between SIMC and experiment outside of this

region is poor, but in the region of our dP acceptance cuts the shapes are in good

agreement. The agreement of the shapes of the variables φ, θ, and dP show that SIMC

is reproducing experimental data well.

3.8 Radiative Corrections

In Chapter 1 the lowest order (Born term) Feynman diagram for elastic electron

scattering was discussed. While this is a good first approximation, other diagrams

contribute significantly to the cross section and must be accounted for as well. These

diagrams can be categorized as external or internal radiative corrections. External

corrections are characterized by interactions with other particles that are not the

primary scattering source for the electron. These corrections come in the form of

Bremsstrahlung radiation and ionization. Bremsstrahlung radiation is the radiation

released as photons when electrons are slowed down by the Coulomb fields of nuclei in
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Figure 3.13: SIMC φ and Experimental Data φ. φ is the in-plane angle. The red
histogram is the SIMC data, and the blue histogram is the experimental data.

Figure 3.14: SIMC θ and Experimental Data θ. θ is the out-of-plane angle. The
red histogram is the SIMC data, and the blue histogram is the experimental data.
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Figure 3.15: SIMC dP and Experimental Data dP . dP is the momentum fraction.
The red histogram is the SIMC data, and the blue histogram is the experimental data.

the material the electron is passing through.

Internal corrections are characterized by the electron interacting with the primary

scattering source via the exchange of real or virtual photons. Figure 3.16 shows the

additional first order diagrams which must be accounted for along with the Born

term diagram. These diagrams can again be separated into two categories, elastic and

inelastic corrections. The elastic corrections exchange only virtual photons shown in

Figure 3.16 b), c), and d). The inelastic corrections emit real photons as seen in e)

[10].

The radiative corrections for E08-014 were calculated by the program XEMC. For

a detailed discussion of the radiative corrections applied by XEMC see [25] and [26].

This program is derived from a previous program called RadCor which is detailed in

[27] and [28]. XEMC uses a built in cross section model to calculate the Born cross

section, without radiative corrections, and the radiative cross section. XEMC also uses

the peaking approximation discussed in [26].

These radiative corrections now allow us to compare our Monte Carlo elastic data
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Figure 3.16: Born and Lowest Order Radiative Correction Diagrams. Image
from [10].

to our experimental data by means of Equation 3.13. Where σExpRad is the experimental

cross section, σExpBorn is the experimental Born cross section, σModel
Rad is the model radiative

cross section, and σModel
Born is the model Born cross section [7]. Figure 3.19 shows the 3He

elastically scattered electron spectrum generated by SIMC in xBj . The tail below the

elastic peak is due to the radiative corrections, and demonstrates that the corrections
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are working as intended.

σExpBorn = σExpRad

σModel
Born

σModel
Rad

(3.13)

3.9 Aluminum Background Subtraction

Many of the events detected by the experiment are derived from electrons scattering

off of the aluminum walls of the target cell. These are not events we want in our cross

section measurement so steps are taken to subtract this Al background out of the

experimental data. This is done by means of a ‘dummy’ Al cell which is an empty Al

target cell. This dummy cell is placed in the beam and the scattered electrons are

measured as usual. Since the cell is empty all of the electrons measured scattered

off of the Al in the cell showing what the Al background looks like without the 3He

target. After correcting for the differing radiative effects, Al thicknesses, and charge

seen by the 3He target and Al dummy cells the electrons scattered from Al can be

subtracted from the production data. This yields an Al background subtracted result

which contains only the electrons that scattered from 3He.

To subtract the Al from the dummy cell the total charge experienced by the dummy

cell and the 3He target cell must be the same. This means that the Al background

must be scaled to account for the different amount of beam charge that the dummy

data collected as compared to the production data. For this analysis the dummy cell

result must be multiplied by 21.2708 to match the charge of the experimental runs.

The dummy cell also had different Al wall thicknesses as compared to the target cell.

To compensate for the larger dummy Al wall thickness the dummy data was scaled by

another 0.1979 times.

When subtracting the Al background of the dummy cell from the 3He cell one must

take into account the different radiative corrections due to the differing Al thicknesses.

The Al dummy cell gives a radiative correction ratio of σModel
Born /σ

Model
Rad = 1.823 and

the 3He target cell gives a ratio of σModel
Born /σ

Model
Rad = 1.467. To account for the different
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radiative corrections the Al dummy background is scaled by the ratio of the dummy

radiative corrections, 1.823, to the target cell corrections, 1.467. The resultant scaled Al

background is shown in red in Figure 3.17. This red histogram is then subtracted from

the blue histogram that represents the 3He production data that is still contaminated

by aluminum.

Figure 3.17: Scaled Aluminum Background. The red histogram shows the scaled
Al background, and the blue histogram shows the 3He production data before the Al
background is subtracted.

Since the production data was taken on 3He we do not anticipate seeing events at

xBj > 3 since that is the elastic peak. However, there are clearly events in this region

above the elastic peak. These events must be coming from something other than the

3He gas. Notice that above the 3He elastic peak the scaled Al background closely

matches the production background. This is strong evidence that these events are

coming from scattering off of the Al of the cell. Once the Al background is subtracted

out most of the events above the 3He elastic peak disappear leaving only the desired

electrons that were scattered from the 3He target. This can be seen in Figure 3.18.
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3.10 Electron Yields to Cross Sections

At this point we have made numerous cuts and corrections to our data with the goal

of getting a clean electron sample scattered from the 3He target. Now we must use this

data to obtain a cross section. We showed in Figure 2.4 in Section 2.2 that experiment

E08-014 definitely captured elastically scattered electrons. We can determine how

many electrons we detected after we apply all of the physics cuts and corrections to

the xBj plot of the production runs.

To find the number of elastically scattered electrons we need to be able to count

how many electrons are in the elastic peak. To accomplish this we need a method to

fit the data such that the area of the elastic peak can be measured. The xBj plot can

be broken down in to two areas, the quasielastic region and the elastic peak. We want

to use one function to describe each region, and then combine these two functions to

fit the relevant region of xBj with this combined fit.

Two functions immediately spring to mind as good candidates for the fit. Recall

that the xBj plot is logarithmic, and notice that the quasielastic region sloping down

to the elastic peak appears roughly linear on this log plot. This indicates that an

exponential function will likely yield reasonable fit results for the quasielastic region.

As we are only interested in elastic electrons we only need to fit the quasielastic region

near the elastic peak (xBj >2.5). To fit the quasielastic region near the elastic peak a

two parameter exponential function as in Equation 3.14 was chosen with P0 and P1

being free parameters.

Fexp = e(P0+P1x) (3.14)

Next we want to fit the elastic peak around xBj = 3. While a Poisson distribution

may technically better describe the distribution of the electrons in the elastic peak a

simple Gaussian describes the peak equally well. As such, Equation 3.15 was chosen to

fit the elastic peak with free parameters P0, P1, and P2. Finally by summing Equations

3.14 and 3.15 we have a combined fit that can be used to fit the region of xBj around
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the elastic peak. This combined fit is given in Equation 3.16 with free parameters P0

through P4.

FGaus = P0 e

(
− 1

2

(
x−P1
P2

)2
)

(3.15)

Fcombined = e(P0+P1x) + P2 e

(
− 1

2

(
x−P3
P4

)2
)

(3.16)

Applying the combined fit to the xBj plot after applying physics cuts, corrections,

and the aluminum background subtraction we get the result seen in Figure 3.18, where

the solid blue line is the combined fit. The combined fit seems to be doing a good

job of capturing the quasielastic region before the elastic peak while also locating the

elastic peak well. The fit is allowed to extend slightly beyond the peak for the purpose

of creating some analysis histograms, but this extended region does not influence the

number of electrons found in the elastic peak. We can also see that as we discussed in

Section 3.9 once the Al background is subtracted out there are almost no events above

the 3He elastic peak.

The number of electrons under the Gaussian part of the combined fit is then the

number of elastic electrons detected by the experiment prior to some corrections. After

physics and acceptance cuts, but before live-time, GC efficiency, Trigger efficiency,

and VDC efficiency corrections, experiment E08-014 detected 565 electrons elastically

scattered from 3He. Table 3.7 shows a summary of the correction values applied to

the number of electrons detected. Multiplying the uncorrected yield by all of these

corrections factors we find the experimental yield of electrons elastically scattered from

3He is 627 electrons.

Now we need to determine how this electron yield from the production data

corresponds to a cross section value. To do this we will use the Monte Carlo simulation

program SIMC discussed in 3.7. SIMC has a built in model of the 3He cross section

that has the correct shape of the form factors and cross section derived from older fits
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Figure 3.18: Combined Fit of xBj for E08-014. The histogram is the plot of all
of the E08-014 3He production runs containing elastic data after applying physics
cuts, corrections, and the aluminum background subtraction. The solid blue line is
the combined fit of an exponential, for the quasielastic region, and a Gaussian, for the
elastic region.

Correction Type Efficiency (%) Correction Factor

Live-time 95.27 1.050
GC Efficiency 96.55 1.036

Trigger Efficiency 98.858 1.0155
VDC Efficiency 99.175 1.0083

Table 3.7: Summary of Correction Factors

of the 3He world data [29]. We use SIMC to simulate electrons elastically scattered off

of 3He with the same energy, angle, charge, and acceptance cuts as our experiment.

This purely elastic data is shown in Figure 3.19. The tail below the elastic peak at

xBj = 3 is due to correcting for radiative effects. The tail falls of around xBj = 1.6

due to the acceptance limits of SIMC.

The goal at this point is to use the same combined fit we used for the production

data to fit the SIMC data for a direct comparison. Clearly, having the elastic events

from SIMC is not yet enough to match our experimental data since the SIMC data
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Figure 3.19: SIMC Elastically Scattered Electrons. These electrons were gener-
ated with the same kinematics, acceptances, and charge as experiment E08-014. The
elastic peak is seen at xBj = 3 with a tail due to correcting for radiative effects below
xBj = 3. The radiative tail falls off below xBj = 1.6 due to the acceptance limits of
SIMC.

has no quasielastic events which make up the bulk of our dataset. To make the SIMC

data comparable to the production data we need to add in the equivalent quasielastic

events. This was done by taking the same type of exponential fit from Equation 3.14

and fitting the quasielastic region below the elastic peak of the production data. This

exponential fit was done in the region where SIMC predicts there to be fewer than ten

elastic electrons so as to only fit quasielastic data.

A histogram was then binned to this fit of the quasielastic data and can be seen

in Figure 3.20 as the black histogram. Note that the fit is allowed to extend slightly

beyond the elastic peak for the purpose of obtaining a good total fit, but this extended

region does not influence the number of electrons found in the elastic peak. The new

histogram representing only quasielastic data was then summed with the SIMC elastics

only histogram in the region before and up to the 3He elastic peak. This new combined
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SIMC and quasielastic histogram is then of the same shape as the production data

in the region of interest allowing it to be fit with Equation 3.16. The areas under

the Guassian portions of the combined fits are then directly proportional to the cross

section values for SIMC and the production data since the elastic electron yields are

proportional to the cross sections.

Figure 3.20: Histogram Binned to Fit of Quasielastic Background. The black
histogram is binned to the fit of the quasielastic background of xBj without the elastic
events. The blue histogram shows the production data including elastics with physics
cuts for comparison.

While the shape of the form factors and cross section built into SIMC is correct

the magnitude at Q2 ≈ 34.2 fm−2 is likely off. This is why the SIMC elastic electron

yield doesn’t perfectly match the experimental data electron yield. So to find the cross

section value of the production data we scale the SIMC elastic data by a constant

magnitude up or down until the area of the Gaussian portion of the combined SIMC

fit, the elastic electron yield, matches the area of the Gaussian portion of the combined

fit of the production data. When the two Gaussian areas of the combined fits match

the electron yields of SIMC and the experimental data then match meaning the cross
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sections are equivalent. This matching of the SIMC yield to the production yield leaves

us with the scale factor, CSIMC , we applied to the SIMC data to match the production

data.

Since the Gaussian areas of the combined fits and the cross sections are directly

proportional, and we have matched the Gaussian areas of SIMC and production data,

we can multiply the cross section value in SIMC by CSIMC to find the cross section

value of the production data. Figure 3.21 shows the xBj plot for the production data

and its combined exponential and Gaussian fit in blue as well as the SIMC elastics

histogram summed with the fitted quasielastic background histogram with its combined

fit in red.

Figure 3.21: Elastic Peak Fits of 3He Production Runs and SIMC Elastics
Summed with QE Background Fit. The blue histogram shows the production
data for E08-014 with physics cuts, and its elastic peak is fit by the blue line. The
red histogram is the sum of the SIMC elastics histogram from Figure 3.19 and the
histogram binned to the fit of the quasielastic background from Figure 3.20, and it’s
elastic peak is fit by the red line.

Table 3.8 lists the parameters of the total fits to the production data and yield

matched SIMC data. The SIMC elastic peak is slightly wider than the production
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peak indicating that the smearing function in SIMC may be tuned too high. The slight

offset between the two elastic peaks is likely due to a small offset in Ztarget, however

this should not influence the area under the elastic peak and thus not change the

resultant cross section.

For this analysis the scale factor needed to match the yields, CSIMC , was found to

be 1.01984. This means that the model cross section needed to be increased by 1.984%

to match the experimental data. When this adjustment is made the model built into

SIMC will then yield the cross section for elastic scattering off of our 3He production

data. This cross section is found to be 1.335 × 10−10 fm2/sr or 1.335 × 10−6 µb/sr.

Combined Fit Par: P0 P1 P2 P3 P4

Production Data: 17.0 -4.38 297 3.02 -0.0152
SIMC Elastics Plus
QE Background Fit

: 16.4 -4.12 282 3.04 -0.0177

Table 3.8: Combined Exponential and Gaussian Fit Parameters

To test if the scale factor (CSIMC) is reasonable we can remake the SIMC elastic

histogram with the SIMC cross section model multiplied by CSIMC . Once a new set

of elastic events are generated we can rerun the yield matching code with the new

Monte Carlo results. If our scale factor applied to the cross section is correct we would

expect the yields of the production data and the new SIMC elastics summed with the

QE background to exactly match without any scaling needed (i.e. CSIMC = 1). This

test was performed and the electron yields were found to match with CSIMC = 1 as

desired.

3.11 Bin Centering Corrections

Now that we have found the magnitude of our 3He elastic cross section we must ask,

“Where should we place this data point in Q2?” The immediately intuitive answer to

this question is that we should place this point at the center of our bin in Q2. However,

this is not the correct place for our data point because the shape of the cross section
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across the range of our Q2 bin is not linear.

To find the correct location for our data point in Q2 we will follow the procedure

laid out in [30]. To see the issue with placing our point at the center of our bin let us

look at a plot of our cross section at 3.356 GeV seen in Figure 3.22. Note that the

specific form factors chosen for this cross section are chosen as a representative fit for

the group of ‘good’ sum of Gaussian fits as discussed later in Section 4.3.3. A ‘good’

fit here was determined by having a low χ2 value and more importantly the physical

characteristics we would expect from a form factor. For a plot of the new cross section

fit, the previous cross section fit from [29], and the 3He cross section measured in this

analysis see Section 4.3.3 and Figure 4.13.

Figure 3.22: 3He Elastic Cross Section at E0 = 3.356 GeV This cross section
was produced using a representative fit from the sum of Gaussians fits discussed in
Section 4.3.3. Notice that the shape of the log plot looks linear in the region of Q2 ≈
35 fm−2.

We know our point should be located somewhere in the neighborhood of Q2 ≈ 35

fm−2 simply from the kinematics of the experiment. Looking around Q2 ≈ 35 fm−2 in

Figure 3.22 the plot appears linear. However, the plot is in a log scale indicating that
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the actual shape is an exponential. To see the true shape of the cross section let us

first define our bin in Q2, and then zoom in on our region of interest while removing

the log on the Y -axis.

To find our bin size in Q2 we can use our cuts on the in-plane angle φ. Since we

know the beam energy we can calculate Q2 using Equations 1.3 and 1.1 knowing that

φ is the analyzer variable for the arctangent of the deviation from the set spectrometer

scattering angle. Table 3.9 shows the size of our analysis bin in various units. Figure

3.23 shows the cross section in the region of the analysis bin with the log plot removed

to show the true shape.

Variable Bin Minimum Bin Maximum

Analyzer φ (Radians) -0.03 0.03
Deviation from

Spectrometer Angle
(Radians)

-0.29991 0.29991

Angle (Radians) 0.3372 0.3972
Angle (Degrees) 19.32 22.75
Q2 (GeV2) 1.188 1.604
Q2 (fm−2) 30.55 41.24

Table 3.9: Bin Width at 3.356 GeV and Spectrometer Setting of 21.04◦

Figure 3.23 makes it clear that the cross section across our bin is not linear, and

thus taking the average Q2 of the bin to set our cross section’s Q2 value is incorrect.

Instead we must account for the fact that the shape of the cross section biases our data

towards lower Q2. This can be done by taking a weighted average of the Q2 values in

our bin where the weights are the cross section values at each Q2. Performing this

calculation we find that the weighted average Q2 for our analysis bin is 34.19 fm−2.

This is a significant deviation from the bin center of 35.90 fm−2. We now see that as

expected the shape of the cross section requires us to place our data point at a lower

Q2 than the bin center.
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Figure 3.23: 3He Elastic Cross Section Q2 Bin at 3.356 GeV This plot shows
the same cross section as Figure 3.22, except zoomed in on the analysis bin region with
the log on the Y -axis removed. The two vertical black lines represent the minimum
and maximum Q2 of the analysis bin.

3.12 Uncertainty

Thus far, we have found the magnitude of the 3He elastic cross section and

determined where to place this data point in Q2. Our next duty is to quantify the

various sources of uncertainty that apply to our cross section. The uncertainty can be

broken in to statistical uncertainty and systematic uncertainty. Statistical uncertainty

describes the innate statistical fluctuations of measurements of an observable due

to the inherent limitations of the tool making the measurements and the number of

measurements made. Statistical uncertainty can be decreased by increasing the number

of measurements made.

Systematic uncertainty describes uncertainty introduced from measuring instru-

ments or incorrectly calibrated simulation tools or models. Systematic uncertainty

can also come from unpredictable experimental conditions like environmental noise.

Systematic errors are reproducible and generally in the same direction so taking more
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measurements will not significantly reduce them. This section will go into detail on

how each source of uncertainty was quantified. Table 3.10 contains a summary of the

experimental uncertainties on the 3He elastic cross section that are described in detail

below.

Uncertainty Source
Cross Section
Uncertainty

Statistical Sources

Electron Yield 4.21%
Al Background Subtraction 1.1%
Total Statistical 4.36%

Systematic Sources

Target Density 3.08%
Optics Calibration 2.25%
GC Efficiency 1.32%
Beam/Target Offsets 1.1%
Radiative Corrections 1%
Beam Charge 1%
VDC Single-Track Efficiency 1%
Trigger Efficiency 1%
Beam Energy 0.72%
SIMC Model Comparison to Reality 0.5%
PR Cut 0.055%
Ytarget Position 0.045%
Live-time 0.0115%
Total Systematic 4.72%

Total Uncertainty
Statistical & Systematic

6.42%

Table 3.10: Table of Uncertainties

First let us examine our statistical uncertainties. Our primary source of statistical

uncertainty is derived from our yield of elastic electrons. As discussed in Section 3.10

experiment E08-014 had a yield of 565 electrons elastically scattered off of 3He. The

uncertainty on this value is described by Equation 3.17, where Ne is the number of

elastically scattered electrons. The uncertainty in the number of electrons is directly

proportional to the cross section. Thus, the statistical uncertainty on the cross section

due to the electron yield is 4.21%.
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δe =
1√
Ne

(3.17)

The other source of statistical error comes from the aluminum background sub-

traction discussed in Section 3.9. By subtracting out the Al contamination in the

region of the elastic peak we have necessarily introduced another opportunity for

uncertainty to creep into our measurement. In the region of the elastic peak, defined

as 2.95 < xBj < 3.10, there were 1093 events prior to the Al background subtraction.

In this same region there were 34 Al events. We can once again use Equation 3.17

to estimate the uncertainty on the Al events. We find that these 34 events have an

uncertainty of 17% or ± 6 electrons.

This is a high uncertainty on a small number so to have a conservative estimate

the uncertainty was doubled from ± 6 electrons to ± 12 electrons. When the Al

background is subtracted from the 3He production data we have either 1071 (1093 - 34

+ 12) electrons remaining or 1047 (1093 - 34 - 12) electrons remaining. The uncertainty

is then ± 12 electrons from the mean number of electrons remaining after the Al

subtraction. This gives 1059 ± 12 electrons yielding an uncertainty of 1.1%. Note that

this uncertainty is categorized as statistical in nature. It could be reasonably argued

to be systematic, but as taking more production data would lower this uncertainty it

has been categorized as statistical.

Next we will account for the systematic uncertainties on our cross section result.

The largest source of systematic uncertainty comes from the density of the gaseous

3He in the target cell. This issue was discussed in Section 3.5. The density study

performed in [23] lists the uncertainty on the 3He density as 3.08% which will apply

directly to the cross section as the cell density is directly proportional to the cross

section.

The next largest source of systematic uncertainty comes from the optics calibration

of the HRSs. This calibration was discussed in Section 2.10.2. The precision of this

calibration is limited by the physical characteristics of the optics sieve plate used for
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the calibration shown in Figure 2.31. The optics calibration works by locating where

electron events fall within the holes of the sieve to create a pattern which can be found

in the detector, and then be connected back to the target coordinate system.

These electron events fall randomly anywhere inside a given sieve hole. By using

the outermost holes of the sieve with data inside of them one can define an area inside

which all the optics data is found. The precision of the measurement of the size of

this internal area is limited by the size and spacing of the sieve holes. This gives an

uncertainty on the area containing data within the sieve. This area corresponds to the

uncertainty in the solid angle from the optics calibration. The solid angle includes the

uncertainties of both the in-plane angle (φ) and out-of-plane angle (θ) as well as the

momentum dp since that is directly related to φ for elastic scattering.

To estimate the inherent uncertainty of the optics calibration a Monte Carlo

simulation was built. This simulation creates a sieve of N by M holes. Events are

then randomly placed in each hole. The electron events placed in holes on the outer

edge of the sieve are then connected by a straight line to their adjacent outer edge

hole’s electron event. Once all of the outer edge holes are connected they create a

polygon whose internal area can then be calculated. This process is shown for a 5X5

sieve in Figure 3.24, where there are five of these randomly determined areas shown.

This process is repeated one million times resulting in one million different possible

areas based on the hole sizes, spacings, and where the events were randomly placed.

A histogram of all of these possible areas can then be created. This histogram forms

an excellent Guassian shape which can then be fit with a Gaussian function. From

this Guassian function a standard deviation (one σ) can be found to estimate the

uncertainty of the area. The plot of one million randomly generated areas using the

geometry of Figure 3.24 is shown in Figure 3.25. By fitting a Gaussian to the histogram

of areas the standard deviation is found to be 30.2 mm2 on an area of 5000 mm2. For

this analysis a two σ (95%) confidence interval was chosen giving an uncertainty of

60.4 mm2 on 5000 mm2 or 1.21% in this example.

This is almost sufficient to estimate the optics calibration uncertainty. However,
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Figure 3.24: Optics Sieve Monte Carlo This figure represents a 5X5 hole region of
the optics sieve. The red dots are randomly placed events and the five connecting red
lines enclose the outer area of the sieve defining the region of the optics data.

we can do better than estimating the whole acceptance using one sieve size. This

is because as one steps through the target cell in Ytarget the solid angle acceptance,

and thus the sieve size, changes as shown in Figure 3.26. So to accurately estimate

the sieve uncertainty an optics run with similar kinematic settings to this analysis’

kinematics was studied [31].

This optics run contained 11 carbon foils evenly space in Ytarget. By finding how

many holes each foil had significant data in the Monte Carlo could be configured to

match the solid angle acceptance for each of the 11 slices of Ytarget. The Monte Carlo

was then run one million times for each of these solid angles, and the results of the two

σ area uncertainties were added in quadrature to find the total solid angle uncertainty.

This overall two σ uncertainty was found to contribute 2.25% uncertainty to the final

cross section.

The next largest systematic uncertainty comes from the GC efficiency given by

Equation 3.7 discussed in Section 3.4.5. The uncertainty on this efficiency is directly
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Figure 3.25: Optics Sieve Monte Carlo Areas Histogram This figure shows the
results of one million areas created by placing points randomly in the outer sieve holes
and connecting them to their nearest neighbor. It is fitted with a Guassian in red to
find the standard deviation.

proportional to the uncertainty in the cross section and is given in Equation 3.18 from

[21]. Here εGC is the efficiency of the GC, T3 is the number of events measured by

the main trigger, T7 is the number of events measured by the coincidence trigger, and

T3&7 is the number of times both triggers fired. Inserting the relevant values yields an

uncertainty on the cross section of 1.32%.

δGC = εGC

√
T7 − (T3&7)

T7
(3.18)

There is also a systematic uncertainty introduced by the beam and target offsets

with respect to the set spectrometer angle. To estimate this uncertainty the Mott

cross section was calculated at E08-014’s energy and two angles. One angle was 1

mrad above the set spectrometer angle, and the other value was set 1 mrad below the

set spectrometer angle. The difference in these two Mott cross sections then closely

represent the uncertainty a reasonably sized offset would introduce to the absolute
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Figure 3.26: Solid Angle Acceptance of 3He Cell in Ytarget. The top left plot
shows the electron events distributed in Ytarget. The second from the top left shows
the solid angle acceptance (θ vs. φ) for all of Ytarget. The remaining plots show the
solid angle acceptance at different slices of Ytarget every centimeter in Ytarget from
Ytarget = -5 cm to Ytarget = 5 cm. The important thing to notice is that the solid angle
acceptance is not constant along Ytarget.

cross section. This beam and target offset uncertainty is found to be 1.1%.

The systematic uncertainty on the cross section due to radiative corrections in

SIMC has been shown to be on the order of 1% [10]. The uncertainty on the cross

section due to the beam charge measurement from the BCMs has also been shown to

be 1% [10]. Both the VDC single track efficiency uncertainty and the trigger efficiency

uncertainty are directly proportional to the cross section, and have both been estimated

to be 1% [7].

The next largest systematic uncertainty comes from the uncertainty in the beam

energy. The beam energy measurement is currently known to have an uncertainty

of 0.04% [32]. However, this is not the uncertainty contributed to the cross section

from the beam energy. To find the uncertainty on the cross section SIMC was run two

more times with the same cuts and experimental conditions as previously except the

beam energy was set 0.04% higher once and 0.04% lower once. The resulting cross
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sections from SIMC then given an upper and lower bound on the cross section due to

fluctuations in beam energy. The uncertainty on the cross section from the uncertainty

in the beam energy was then found to be 0.72%.

The cross section model in SIMC also introduces some uncertainty to our cross

section. This uncertainty has been previously studied in detail, and was found to

contribute approximately 0.5% uncertainty to the cross section [33]. Note that binning

the cross section in xBj gives less of a change in cross section over the bin than if the

data had been binned in E′. This helps to reduce the uncertainty on the cross section

from the SIMC model.

The remaining systematic uncertainties are fairly small. One of these is the degree

of uncertainty introduced by the pion rejector cut applied to the data. The ‘good

electron’ region of the GC spectrum where the events are almost certainly electrons is

defined as ADC channels 300-500. In this region there were 51439 events. Applying

the PR cut removes 777 of these events from the sample. Using equation 3.17 the

uncertainty on these 777 events is found to be ± 28 events. The maximum events

remaining after the PR cut is then 50690 (51439 - 777 + 28), and the minimum number

is 50634 (51439 - 777 - 28). The average number of events remaining after the PR cut

is then 50662 ± 28 which gives an uncertainty to the final cross section of only 0.055%.

Some uncertainty is introduced from the Ytarget positioning. One can never do

better than finding the location of a single optics foil when calibrating Ytarget. These

foils can be found with approximately 0.2 mm accuracy. For our 20 cm target this

gives an uncertainty of 0.1% on the Ytarget position. As we did with the beam energy

uncertainty we ran SIMC twice more with the minimum and maximum possible

Ytarget offsets and compared the uncertainty this introduces to the cross section. The

uncertainties are asymmetric in this case with the positive Ytarget uncertainty being

0.045% and the negative being 0.017%. Both values are quite small and barely influence

the cross section at all. We will conservatively say that this can introduce up to 0.045%

uncertainty to the final cross section.

The final source of measurable uncertainty comes from the live-time calculation
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discussed in Section 3.4.1. The uncertainty on the live-time can be calculated as in

Equation 3.19, where εLT is the live-time for the experiment, T3Scaler
is the scaler

number of main triggers (T3), and T3File
is the electronics output number of main

triggers detected. This value applies directly to the cross section. Inserting the relevant

values the uncertainty on the cross section due to the live-time uncertainty is found to

be 0.0115%.

δLT = εLT

√
T3Scaler

− T3File

T3Scaler

(3.19)

3.13 Comparisons with Other Measurements

Now that we have a value for our cross section with reasonable uncertainties we

want to see how it compares to other measurements and fits. For these comparisons

we will use the elastic 3He cross section measurements from [3] as well as the final sum

of Gaussians fit from [29]. In [3] there are several elastic cross section measurements

of 3He in similar kinematic regions to those of experiment E08-014. Let us examine

the data point measured at the closest kinematic to experiment E08-014. This point

was taken at E0 = 3.304 GeV and a scattering angle of 20.83◦ giving an elastic cross

section of 1.57 × 10−6 µb/sr ± 0.10 × 10−6 µb/sr at Q2 = 34.1 fm−2.

The point found in this analysis is taken at E0 = 3.356 GeV and a scattering angle

of 20.51◦ giving a cross section of 1.335 × 10−6 µb/sr ± 0.086 × 10−6 µb/sr at Q2 =

34.19 fm−2. The error bars for these points almost overlap in spite of their slightly

different kinematics. These two values can be said to be in reasonable agreement,

especially considering that the Q2 value for this experiment is larger. This implies

that our extracted cross section should be smaller than the point from [3] which agrees

with the data.

Next let us take the SOG form factor fits from [29] and calculate the cross section

from these fits at our kinematics. The Amroun fit at E0 = 3.356 GeV and a scattering

angle of 20.51◦ gives a cross section of 1.887 × 10−6 µb/sr. This is significantly different
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from the cross section derived in this thesis. However, the datasets from [29] had very

little data in this high Q2 region. Significantly more data in this high Q2 region was

added by [3] and [34] which were used in this analysis. This explains why the Amroun

cross section prediction diverges from the cross section found in this analysis. Overall,

the cross section found in this thesis seems to be in reasonable agreement with other

measurements, and indicates that older fits may shift noticeably when the new higher

Q2 data is introduced.
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Chapter 4

Global Fits

This chapter will discuss the world data for 3H and 3He elastic cross sections. This

data will then be fit using a sum of Gaussians (SOG) technique. These new global

fits will incorporate modern datasets added to the world data since the last global

fits were performed. This will include new high Q2 data from JLab for 3He as well as

the 3He cross section extracted in this thesis. The SOG fitting technique allows the

electric and magnetic form factors to be easily extracted as well as for charge radii to

be calculated. These new results will then be compared to past fits as well as some

theory predictions.

4.1 World Data

The world data for 3H and 3He elastic cross sections spans 50 years and many

different laboratories. Due to the expansiveness of the dataset there are many in-

consistent methodologies employed in the different analyses collected. Efforts were

taken to make these comparisons as consistent as reasonably possible, however it was

often impossible with the existing literature to be certain which techniques were used.

Methodological differences in modifications like radiative corrections and Dirac Wave

Born Approximation (DWBA) techniques would be extremely time consuming to force

all datasets into complete agreement. As such some of the datasets fit together are not
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completely apples-to-apples comparisons. Fortunately, the methodological differences

result in very minor changes to the final cross sections, and thus do not significantly

impact the efficacy of the new global fits.

Table 4.1 lists the literature comprising the current world data of 3H elastic cross

sections and Table 4.2 contains the 3He world data compiled for this analysis. The

table is organized chronologically from oldest dataset to most recent. The table lists

the title of each publication, the first author listed on each publication, the journal

the publication appeared in, and the location of the measurement with the year it was

published. The table also contains physics data on each experiment. This physics data

includes the rough Q2 range covered by the experiment, whether the paper lists cross

sections explicitly, whether the paper lists form factors explicitly, if the paper applied

a phase shift correction to account for the plane wave approximation, and finally a

brief note on the radiative corrections each paper used. Whenever a table entry wasn’t

listed or was unclear in the literature a ‘?’ was used.



Table 4.1: Accumulated World Data for 3H Elastic Scattering

Title Authors Journal
Date/

Location

Q2 Range

(fm−2)

Cross

Sections

Form

Factors

Phase

Shift

Radiative

Corrections

Elastic Electron Scattering

from Tritium and Helium-3
Collard

Phys. Rev.

Vol. 138, No. 1B [35]

1965*

SLAC
1-8 Yes Yes ? Tsai

Triton Form Factor

from 0.29-1.00 fm−2
Beck

Phys. Rev. C

Vol. 25, No. 3, 1152-1155 [36]

1982

Saskatchewan
0.29-1 Yes

Yes

(GE)
?

Meister

Yennie

Tritium Form Factors

at Low q
Beck

Phys. Rev. C

Vol. 30, No. 5, 1403-1408 [37]

1984*

NBS MIT
0.05-3 Yes Yes

Yes

(qeff )
Mo/Tsai

Tritium Electromagnetic

Form Factors
Juster

Phys. Rev. Letters

Vol. 55, No. 21, 2261-2264 [38]

1985

Saclay
0.3-31

In Amroun

1994

Yes

(SOG)
? Auffret

Isoscalar and Isovector Form

Factors of 3H and 3He for Q

below 2.9 fm−1 from Electron-

Scattering Measurements

Beck
Phys. Rev. Letters

Vol. 59, No. 14, 1537-1540 [39]

1987

Bates
0.03-9 No

Yes

(Iso)
Yes Mo/Tsai

3H and 3He

Electromagnetic

Form Factors

Amroun
Nuc. Phys.

A579 596-626 [29]

1994*

Saclay
1-47 Yes Yes Yes

Mo/Tsai, Schwinger

and bremsstrahlung +

Landau Straggling



Table 4.2: Accumulated World Data for 3He Elastic Scattering

Title Authors Journal
Date/

Location

Q2 Range

(fm−2)

Cross

Sections

Form

Factors

Phase

Shift

Radiative

Corrections

Elastic Electron Scattering

from Tritium and Helium-3
Collard

Phys. Rev.

Vol. 138, No. 1B [35]

1965*

SLAC
1-8 Yes Yes ? Tsai

Elastic Electron Scattering

from 3He at High

Momentum Transfer

Bernheim
Lettere Al Nuovo Cimento

Vol. 5, No. 5, 431-434 [40]

1972

Orsay
9-16 No Yes ? “Usual”

Electromagnetic Structure

of the Helium Isotopes
McCarthy

Phys. Rev. C

Vol. 15, No. 4, 1396-1414 [41]

1977

Stanford HEPL
0.3-20 No Yes Yes Mo/Tsai

Low-Momentum-Transfer

Elastic Electron

Scattering from 3He

Szalata
Phys. Rev. C

Vol. 15, No. 4, 1200-1203 [42]

1977*

National Bureau

of Standards

0.03-0.33

Yes

3He/12C

Exp.

Yes

(F 2
ch)

Yes

“In the

Standard

Fashion”

Elastic Scattering

from 3He and 4He at

High Momentum Transfer

Arnold
Phys. Rev. Letters

Vol. 40, No. 22 [43]

1978*

SLAC
18-103 No

Yes

(A1/2)
? ?

Magnetic Form

Factor of 3He
Cavedon

Phys. Rev. Letters

Vol. 49, No. 14, 986-989 [44]

1982

Saclay
7-32

In Amroun

1994

Yes

(F 2
M )

Yes

(HADES)
Yes



3He Magnetic

Form Factor
Dunn

Phys. Rev. C

Vol. 27, No. 1, 71-82 [45]

1983*

Bates
0.08-11 Yes Yes Yes

Bergstrom +

Mo/Tsai

Elastic Electron Scattering

from 3He and 4He
Otterman

Nuclear Physics

A436 688-698 [46]

1985

Mainz
0.2-3.7 No Yes

Yes

(HADES)
Mo/Tsai

Isoscalar and Isovector Form

Factors of 3H and 3He for Q

below 2.9 fm−1 from Electron-

Scattering Measurements

Beck
Phys. Rev. Letters

Vol. 59, No. 14, 1537-1540 [39]

1987

Bates
0.03-9 No

Yes

(Iso)
Yes Mo/Tsai

Isospin Separation of Three-

Nucleon Form Factors
Amroun

Phys. Rev. Letters

Vol. 69, No. 2, 253-256 [47]

1992*

Saclay
2.6-37

In Amroun

1994
No Yes “Standard”

3H and 3He

Electromagnetic

Form Factors

Amroun
Nuc. Phys.

A579 596-626 [29]

1994*

Saclay
2-48 Yes Yes Yes

Mo/Tsai, Schwinger

and bremsstrahlung +

Landau Straggling

Measurement of the Elastic

Magnetic Form Factor of 3He

at High Momentum Transfer

Nakagawa
Phys. Rev. Letters

Vol. 86, No. 24, 5446-5449 [34]

2001*

Bates
6-43 Yes

Yes

(|FM |2)
Yes Mo/Tsai

JLab Measurements of the

3He Form Factors at Large

Momentum Transfers

Camsonne
Phys. Rev. Letters

Vol. 119, No. 162501, 1-6 [3]

2016*

JLab
25-61 Yes Yes

Yes

(qeff )
Yes
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The datasets used in the SOG global fits in this thesis are marked with a * after

the listed dates. The datasets that are new as of the previous fits in Amroun [29] are

Camsonne [3], Nakagawa [34], and the cross section measurement from this analysis.

Not all of the listed datasets could be used in this analysis for various reasons. The

most common reason a dataset was not used was simply that the publication did not

list its cross section data points explicitly in the publication so they could not be added

to the fit. Another common reason was publications listing only the extracted form

factors and not cross sections. This is not an issue when the publication also lists the

beam energy and scattering angle for each data point (or Q2 and one of either the

energy or angle) as the cross section can be computed using these values. However,

numerous publications list only the form factors without energies or angles making

it impossible to calculate a cross section for each data point to be used in the global

fit. Some publications like Arnold 1978 [43] used different ways to parametrize form

factors, and whenever possible these methods were converted to cross sections.

4.2 Sum of Gaussians Parametrization

The sum of Gaussians (SOG) parametrization is a powerful method for fitting

nuclear cross section data developed by Ingo Sick in the early 1970s [48]. It attempts to

fit elastically scattered electron cross sections by representing the electric and magnetic

charge densities as the sum of numerous Gaussians (see Figure 4.1). The Fourier

transforms of these densities yield the electric form factor (sometimes referred to as the

charge form factor, Fch) and the magnetic form factor (Fm) respectively. The technique

attempts to remain model independent while taking several physical requirements

for the form factors and nuclear wave functions in to account. However, a model

dependence of sorts does enter the fits in the form of the radii at which the various

Gaussians are situated. SOG fits make the extraction of the charge and magnetic form

factors easy to extract, and along with them the charge density and charge radii of

the target.
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Sick outlines the rules for removing a global model dependence when fitting cross

section data as follows,

1. “Accept some clearly specified limitation to generality (accept some

model dependence), since data with infinite qmax are not available

(wavelengths smaller than λ = 2π
qmax

are not determined by experi-

ment).

2. Choose a restriction to generality which can be justified by physical

arguments.

3. Write the density in a manner which decouples densities at different

radii as much as possible.” [48]

One of the first physical restrictions that can be applied by the SOG parametrization

is on the nuclear charge densities. No structures in the nuclear charge densities are

allowed to be smaller than the RMS radii of the proton [48]. As this thesis is often

using [29] as a point of comparison this work employs the same minimum size allowed

for structure used by Amroun et al. [29] of 0.8 fm, or slightly less than the proton’s

radius.

Gaussians are used to build the structure of the fits since they fall off quickly enough

so as to not strongly interfere with other Gaussians not nearby them, satisfying rule 2

above, while also being quite flexible when summed to mimic a distribution. Gaussians

also work well with the rules and limitations imposed earlier. However, one should note

that the Gaussians have no physical meaning themselves. One can write the nuclear

charge density as shown in Equation 4.1, where the charge density is represented as a

sum of numerous Gaussians set at different radii Ri (an example is given later in this

section and can be seen in Figure 4.1). The cross sections are then fitted using the

Ai as the free parameters. These Gaussians have their full width at half maximum

restricted by the parameter γ as required by the physical restrictions imposed above.

The smallest width structure allowed is given by Γ where Γ = 2γ
√

ln(2) [48].
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ρ(r) ∝
N∑
i=1

Aie
−(r−Ri)

2/γ2
(4.1)

As previously mentioned, the Ri, representing the radii at which different Gaussians

are located, form their own sort of model dependence. Since we are unable to study

what happens above qmax the Ri are analogous to a model of how the charge density

behaves above qmax. This issue can be resolved by choosing many different Ri values

randomly and fitting the Ai to the data for each set of Ri chosen randomly. The choice

of Ri may be random, but it does have numerous conditions applied. More will be

said on the selection of the Ri later in Section 4.3.1.

Once a large number of fits of the data using different sets of Ri have been generated

the ‘good’ fits must be distinguished from the ‘bad’. This is done in several ways which

will be discussed in more detail in Section 4.3.2, and include finding lower χ2 fits as

well as making sure the fits’ form factors appear physical. Once the ‘good’ fits are

identified an uncertainty band can be built up by plotting each of the fits on top of

one another. After a sufficient number of different ‘good’ Ri sets have been fitted to

the data the whole of the available model space has been explored.

The charge density is expected to have a derivative of zero at a r = 0 [48]. This is

not accounted for in Equation 4.1. To resolve this issue a tail can be added to each

Gaussian that represents the Gaussian’s behavior at r < 0. This modified definition of

the charge density is given in Equation 4.2 [48].

ρ(r) =
Ze

2π3/2γ3

N∑
i=1

Qi

1 +
2R2

i
γ2

(
e−(r−Ri)

2/γ2
+ e−(r+Ri)

2/γ2
)

(4.2)

Equation 4.2 is normalized by Equation 4.3. The Qi are now the parameters fitted to

the data. The Qi are required to be positive as they represent the fraction of electric

or magnetic charge carried by each Gaussian.
∑
Qi = 1 is also required of the Qi

terms as all of the charge fractions must sum to the total charge (one). Note that∑
Qi also equals the Y -intercept of the corresponding charge or magnetic form factor.

Z is the atomic number of the target and e is the elementary charge [48].
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4π

∫ ∞
0

ρ(r)r2dr = Ze (4.3)

Figure 4.1 shows the charge density for 3He along with the individual Gaussians

from the sum of Gaussians in Equation 4.2. Summing each of these 12 Gaussians

results in the charge density shown in the figure. The 3He charge density shown in

Figure 4.1 is derived from the 3He representative form factor fits discussed in Section

4.3.3. Examining the first few Gaussians one finds that Gaussian 1 contains 35.7%

of the charge density, Gaussian 2 contains 33.3% of the charge density, Gaussian 3

contains 1.9% of the charge density, and Gaussian 4 contains 15.1% of the charge

density. In general the Gaussians centered at smaller radii hold a larger portion of

the total charge density than those centered at larger radii with a few exceptions, like

Gaussian 3.

Figure 4.1: Individual Gaussians of the 3He Charge Density. The charge density
for 3He is plotted using the representative form factor fits from Section 4.3.3. Each
individual Gaussian from Equation 4.2 is shown. Summing these individual Gaussians
yields the 3He charge density.

When using the plane wave Born approximation (PWBA) the electric and magnetic

form factors can be parametrized as in Equation 4.4 [48].
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F(ch,m)(q) = exp

(
−1

4
q2γ2

) n∑
i=1

Qi(ch,m)

1 + 2R2
i /γ

2

(
cos(qRi) +

2R2
i

γ2

sin(qRi)

qRi

)
(4.4)

At this point we will follow the procedure laid out in [29] and note that there is a typo

in the reference. In [29] Equation (1) the -1/2 in the exponent should be a -1/4. Again

the Qi are fitted to the data and represent the fraction of the electric or magnetic

charge carried by each Gaussian. The Ri are the radii at which the Gaussians are

placed. q is the four-momentum transferred via the virtual photon as discussed in

Section 1.1. Lastly γ is defined as γ
√

3
2 = 0.8 fm [29].

The cross section can be represented in PWBA with the SOG parametrization as

shown in Equation 4.5.

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

η

[
Q2

q2
F 2
ch(q) +

µ2Q2

2M2

(
1

2

Q2

q2
+ tan2

(
θ

2

))
F 2
m(q)

]
(4.5)

Here η = 1 + Q2/4M2, Q2 is the squared four-momentum transfer from 1.3, q2 is

the three-momentum squared, µ is the magnetic moment of the target (µ3He = -

2.1275×(3.0/2.0) and µ3H = 2.9788×(3.0/1.0)), and M is the mass of the target (M3He

= 3.0160293 amu and M3H = 3.0160492 amu) [29].

The Mott cross section,
(
dσ
dΩ

)
Mott

, is given in Equation 1.25. Recall that Z2

accounts for the charge of the target with Z being the target’s atomic number, E′

E0
is

the recoil factor with E0 being the scattered electron’s initial energy and E′ is the

energy after scattering, α is the fine structure constant, and θ is the scattering angle.

It is extremely important to be mindful of the units one is using when working with

these equations. Be cautious of interchanging degrees and radians for the scattering

angle, fm−2 and GeV2 for the squared four-momentum values, fm−1 and GeV for the

energies, and amus and GeV for the mass units. Equation 4.6 shows the equivalent

amount of GeV2 to fm−2 in nuclear units.



CHAPTER 4. GLOBAL FITS 109

1 GeV2 ≈ 25.7 fm−2 (4.6)

The assumption that the wave functions of the electrons are plane waves is not

entirely correct. The nucleus’ charge distorts these wave functions due to the Coulomb

interaction, and thus shifts the Q2 value to Q2
eff given in Equation 4.7. This leads to

Q2
eff taking the place of Q2 in the above equations in this section (i.e. Q2 is taken

from the literature and then Q2
eff is then calculated and used in the fits) [3].

Q2
eff = Q2

(
1 +

1.5Zα

E0 × 1.12×A
1
3

)2

(4.7)

Here A is the mass number and the other variables are defined above. The three-

momentum, q2, is then given by Equation 4.8 where ν = E0 − E′ as in 1.2.

q2 = ν2 −Q2
eff (4.8)

4.3 New SOG Fits

The world data for 3H and 3He described in Section 4.1 will be fitted with the sum

of Gaussians parametrization described in Section 4.2 in this section. This section will

explain the choices made for each of the SOG fits such as the number of Gaussians

used to fit the world data. It will also describe the choices made involving the Qi fit

parameters. The placement and spacing of the Ri radii at which the Gaussians are

placed will also be discussed. A method used to try to optimize the fits by adjusting

the Ri spacing while attempting to minimize χ2 will be described.

4.3.1 Gaussian Radii Placement

As discussed in Section 4.2, the Ri are the radii at which the SOG Gaussians are

placed. This means that they represent a sort of model dependence. To explore all of

the model space many different random Ri combinations must be used to fit the world
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data. However, selecting the Ri totally at random is extremely inefficient since we are

only interested in Ri combinations that yield reasonable fits and physical form factors.

To explore the Ri combinations we want to apply a few rules to their selection. The

first of which is that there is some radii, Rmax, beyond which the charge density has

fallen almost to zero. Therefore, there is no reason to position any Ri beyond Rmax.

For 3H and 3He Rmax is ≈ 5 fm, although it is allowed to diverge from this radii as the

fits are optimized. For the majority of fits, after the optimization procedure discussed

below, Rmax is found to be in the range of 4 fm < Rmax < 6 fm centered around 5 fm.

Once a reasonable upper limit on the radii is established the spacing separating the

Ri from one another must be determined. It has been found that the spacing of the Ri

for Ri < Rmax/2 should be approximately half as far apart as the Ri spacing for the

radii positioned at Ri > Rmax/2 [48]. This is done so that the charge density region

with more charge, i.e. closer to the nucleus, is described by more Gaussians. This

allows the structure to be better captured by the SOG fits. Further away from the

nucleus, where there is less charge, fewer Gaussians are needed to accurately describe

the structure of the charge density.

Once the Ri values are selected they are fitted using the SOG parametrization.

Since we are interested in the fits that best describe the data it is logical to search for

the lowest χ2 fits. We also want fits that produce form factors that have the physical

properties we expect. This makes it is important to inspect the form factors visually

for physicality. We define χ2 as in Equation 4.9, where N is the number of data points

being fit, σexp is the experimentally measured cross section at a particular Q2, σfit

is the cross section given by the global fit at the same Q2 as the experimental cross

section, and ∆ is the total uncertainty attached to the experimental cross section

at the given Q2. (Note that all χ2 minimization fits in this analysis were performed

using Minuit which can be found in [49].) A lower χ2 value naively indicates a better

fit, but numerous flaws can occur when using only χ2 [50]. Numerous other tests for

the ‘goodness’ of the fit were also applied to avoid this problem and are discussed in

Section 4.3.2.
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χ2 =

N∑
n=1

(σexp − σfit)2

∆2
(4.9)

Initial Ri spacings tend to be fairly unfavorable and produce large χ2 values and

strangely shaped form factors. To minimize the χ2 as much as possible the Ri values

need to be allowed to shift. This is accomplished by first fitting the data with an initial

set of Ri values. After the initial fit is done each of the Ri values is then optimized. If

R0 was initially 0.2 fm the fit would then be redone with R0 = 0.1 fm and then R0

= 0.3 fm. The Ri are each shifted up and down 0.1 fm until χ2 gets larger. The Ri

that yielded the smallest χ2 is then kept as the ‘optimal’ Ri. Once this procedure is

completed for each Ri in ascending order the lowest, or at least close to the lowest, χ2

value for Ri similar to the initial set of Ri has been found.

As an example, let us examine the initial Ri spacings for 3H using eight Gaussians

(see Figure 4.1 to see what the individual Gaussians look like). While the order of

the Gaussians is irrelevant it is easier to code the Ri in ascending radii length. Next

we choose R0-R7 to meet the rules defined above. We want the sum of the spacings

between the individual Ri to be approximately 5 fm, and the Ri spacing between

consecutive Gaussians should be smaller at smaller radii. For 3H with eight Gaussians

the initial Ri spacing is produced within given ranges randomly and then optimized

as previously described. The ranges for the Ri spacings are divided in steps of 0.1

fm. The first Gaussian is placed near R = 0 fm and was chosen to be R0 = 0.2-0.3

fm. This means that R0 was randomly selected to initially be 0.2 fm or 0.3 fm. Note

that an R0 of 0 fm leads to poles in the parametrization. To avoid this issue a small

number is used in place of 0 if R0 = 0 fm is found to be the optimal radius.

After the first Gaussian is placed at R0 Gaussians R1−7 are placed by semi-randomly

choosing their distance from the radii prior to them. The spacing for R1−4 = 0.5-0.6

fm and for R5−7 = 0.8-0.9 fm chosen randomly in the same manner as R0. Notice that

the radii further from the nucleus are placed approximately twice as far apart as the

inner radii in accordance with the rules previously described. We can take the average
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spacing of each consecutive radius and sum them to find Rmax. Doing this we find

0.25 fm + 4×0.55 fm + 3×0.85 fm = 5 fm which is the target Rmax. This process is

then repeated for hundreds of semi-randomly generated Ri sets which span the model

space for 3H and 3He.

4.3.2 Number of Gaussians

To utilize the SOG parametrization it is necessary to select the number of Gaussians,

NGaus, to use for each fit. This process involves balancing several competing interests.

If too few Gaussians are used the structure of the form factors may not be described in

enough detail, but if too many Gaussians are used the data may be overfit. Overfitting

would lead to the statistical noise in the data being mistaken for signal. The goal is

then to fit the data as well as possible with no more parameters than required. A

commonly used tool for selecting the best model is to calculate the χ2 value for a fit,

however χ2 alone is insufficient and can often be deceptive and lead to issues such as

overfitting [50].

To avoid this issue numerous other tests and metrics were applied when selecting

NGaus for 3H and 3He. Among these are the χ2 value, the reduced χ2 value, Bayesian

information criterion, Akaike information criterion, the sums of the fractions of the

electric and magnetic charges held by the Gaussians, the percentage of fits that were

deemed ‘good’, and finally a visual inspection of the form factors for known physical

characteristics [50]. By combining these different tests it is possible to determine the

number of Gaussians that provide an optimal fit. Note that it is not uncommon for

two consecutive numbers of Gaussians to yield reasonably similar fits.

Reduced χ2, or χ2
r, is similar to χ2 from Equation 4.9 except that it takes the

number of data points and the number of parameters used in the fit in to account.

The equation for reduced χ2 used in this analysis is given in Equation 4.10, where χ2

is from 4.9, N is the number of data points in the fit, and Nvar is the number of free

parameters, or variables, used in the fit. Note that while χ2 must always decrease with

the number of parameters added χ2
r can increase if too many parameters have been
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added. This makes finding the fits with the lowest χ2
r an elementary, but still useful,

test that the proper number of parameters are being use to describe the data.

χ2
r =

χ2

N −Nvar − 1
(4.10)

The next two tests applied to determine the number of Gaussians to use in the

SOG fits are Akaike information criterion (AIC) defined in Equation 4.11 [51] and

Bayesian information criterion (BIC) defined in Equation 4.12 [52] [50]. AIC and BIC

are both a more advanced type of statistical test useful for selecting the proper model

to use. The primary difference between the two is that BIC applies a larger penalty

based on the number of model parameters used to fit the data. The way to select

the correct model is to find the lowest AIC and BIC values, while remembering that

these tests may choose slightly different models than the other tests and each other.

To determine how much more evidence there is for one model versus another we can

look at the difference between their BIC values, ∆BIC. A ∆BIC of 0 < ∆BIC < 2

indicates no real difference between models, 2 < ∆BIC < 6 indicates that there is

positive evidence for the lower valued model, 6 < ∆BIC < 10 indicates strong evidence

for the lower valued model, and ∆BIC > 10 indicates very strong evidence for the

lower valued model [53].

AIC = N ln

(
χ2

N

)
+ 2Nvar (4.11)

BIC = N ln

(
χ2

N

)
+ ln (N)Nvar (4.12)

When selecting the number of Gaussians to use the sum of the electric and magnetic

charges is also examined. The sum of the Qi charges should sum to a charge of unity,

however the fits do not enforce this requirement. Instead the sum of the Qi are allowed

to fluctuate with the best fit values of the individual Qi. This then makes the sums

another sort of test of the goodness of each fit. A ‘better’ fit, or one that complies
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more with our predetermined knowledge of the form factors, will have Qi sums closer

to unity. Values further from unity can indicate a worse fit, but they also help to

indicate where more data is needed.

Finally a visual inspection of the form factors is applied. It is known that the form

factors should have sharp minima as discussed in Section 1.3. Often the fits will have

only a dip in the form factor where a sharp minimum should exist and can thus be

discarded. An example of this is seen in Figure 4.2a. These nonphysical ‘dip only’ fits

tend to have higher χ2 values so cutting on χ2 can generally eliminate them. More

specifically, this is done by plotting the charge form factor, Fch, and lowering the χ2

cut until all of the ‘dip only’ minima fits are removed leaving only the sharp minima

expected. These remaining fits are deemed to be the ‘good’ fits. This process is done

with the charge form factor as we have better data there. This procedure generally

improves the corresponding magnetic form factors as well, but the lack of high Q2

data for Fm leads to more nonphysical or odd fits of Fm.

When fitting with any number of Gaussians many of the resulting fits do not meet

the definition of a ‘good’ fit described above. The ratio of the ‘good’ fits to total fits

attempted is representative of the likelihood of fits of NGaus to converge to physical

looking fits. Assume NGaus = 9 gives a ‘good’ fit 40% of the time, and NGaus = 8

gives a ‘good’ fit 5% of the time and has a slightly lower average BIC than NGaus

= 9. This analysis takes the low convergence rate as evidence against the slightly

lower BIC results and may favor the marginally higher BIC results due to their better

convergence rate assuming ∆BIC between the two average BIC values is small.

Previous analyses have also done a good job locating the first diffractive minima

of the form factors and can be used to check the reasonableness of this analysis’ fits.

For example [29] locates the first minima of both 3H and 3He, and [3] locates the

minima for 3He. If this analysis’ results diverge significantly in the previously well

understood regions that is taken to be a strike against the model selected. Note that

some movement in the 3He magnetic form factor is not unexpected since new high Q2

data is being incorporated into this analysis.
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Now that we have established the tools with which to select a model, let us

determine how many Gaussians to use when fitting 3H and 3He. 3He will be examined

first due to there being more, and often higher quality, data for 3He than 3H. The

method used to determine the number of Gaussians (i.e. the model) to use to fit the

data was to run 100 fits of the 3He world data for each reasonable value of NGaus.

Then the various tests and metrics laid out above were computed for that value of

NGaus. These results were then compared and the ‘optimal’ number of Gaussians was

determined.

Table 4.3 shows the results of this model selection analysis for 3He. All of the

values in the table are averages of the surviving ‘good’ fits and the best values are

bolded as is the final selection for NGaus. χ
2
max is the maximum χ2 cut that removed

all of the nonphysical dip minima in the charge form factor, and ‘Good Fits’ is the

number of the 100 fits that survived this cut. Note that not all of these factors are

weighted equally. The highest preference is given to BIC and AIC followed by χ2
r and

visually inspecting the form factors. The other factors add more detailed information

and are used more as tiebreakers and to raise red flags if something major is wrong.

NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim χ2

max

‘Good’
Fits

8 584.9 2.417 255.4 223.2 1.008 1.111 765 11
9 470.4 1.960 204.6 172.4 1.009 1.021 521 58
10 469.2 1.971 209.5 173.8 1.008 1.082 519 66
11 445.1 1.886 201.4 162.2 1.008 1.040 503 67
12 436.3 1.864 201.7 159.0 1.008 1.026 501 75
13 439.1 1.893 208.9 162.7 1.009 1.040 500 56

Table 4.3: Determination of NGaus for 3He. Statistical values used to determine
the optimal NGaus to use for the SOG fits from an initial sample of 100 fits for each
value NGaus. NGaus is the number of Gaussians used in the SOG fits, Avg. χ2 is
the average χ2 value for the fits, χ2

r is the average reduced χ2 value for the fits, BIC
is the average Bayesian information criterion value of the fits, AIC is the average
Akaike information criterion value of the fits,

∑
Qich is the average sum of the Qich fit

parameters,
∑
Qim is the average sum of the Qim fit parameters, χ2

max is the maximum
χ2 value for a fit to be deemed ‘good’, and ‘Good Fits’ is the number of fits out of 100
that converged to ‘goodness’. The optimal value for each variable is bolded.
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Examining Table 4.3 it is clear that no model had the best value in every category

so some further analysis is required to select NGaus for 3He. NGaus = 12 has the best

value in both χ2
r and AIC which are both important metrics. Examining the BIC it

is seen that NGaus = 12 and NGaus = 11 have nearly identical BIC values. In fact

∆BIC< 0.4 which indicates a negligible preference between the models. All of the∑
Qich values are fairly close, offering little insight. The

∑
Qim value for NGaus =

12 is on the better end of the spectrum as well. NGaus = 12 also had the most fits

converge to be designated ‘good’ fits with charge form factors that appear physical.

NGaus = 12 further had the lowest average χ2 value, but this metric can be misleading

as χ2 must always decrease as the number of parameters increases. However, because

of the different Ri configurations and averaging the χ2 results for the fits the average

χ2 shown in the table does not always have to decrease with increasing NGaus. Upon

reviewing these metrics, it is fairly clear the NGaus = 12 is the best model to use for

fitting the 3He data.

Table 4.4 mirrors Table 4.3 and shows the results of this model selection analysis

for 3H. It is immediately obvious that the χ2 values are larger for 3H than they were

for 3He. This is because the world data for 3H is less complete than that of 3He,

especially at higher Q2, and the quality of the data is not as good as that of 3He. The∑
Qi values are also further from unity with the magnetic charges being especially

far off. Once again, this is a product of the dearth of high Q2 and back angle data in

the world data. If more of this data could be obtained for 3H the reduced χ2 of the

fits would likely decrease. The poor
∑
Qim agreement with the expectation of unity

also demonstrates the analysis value of not forcing the Qi to sum to unity which could

hide the need for more high Q2 and back angle data.

There are two entries for NGaus = 8 labelled ‘8 close’ and ‘8 wide’. These refer to

the initial spacing of the Ri values. For the close entry R0 = 0.2-0.3, R1−4 = 0.3-0.4,

and R5−7 = 0.5-0.6, and for the wide entry R0 = 0.2-0.3, R1−4 = 0.5-0.6, and R5−7 =

0.8-0.9 as explained in Section 4.3.1. This meant for the close Ri the average starting

Rmax = 3.3 fm and for the wide spacing Rmax = 5 fm which is what we expect from



CHAPTER 4. GLOBAL FITS 117

previous analyses [29]. This test was done to see if the final fit results depended

strongly on the starting Ri spacing, or if the Ri optimization produced consistent

results with less reasonable initial Ri values.

Fortunately, the results for the closer and wider Ri spacings come out very similar

indicating that the initial choice of Ri does not significantly change the final result.

This test had also previously been done for 3He with NGaus = 10 with similar results

to 3H with NGaus = 8. The major difference between the initial spacings was that the

closer, less reasonable, Ri took longer for the Ri optimization code to process. This was

because the code had to check more values for each Ri before finding similar optimal

values to the larger initial Ri spacings. The close Ri also had fewer fits converge to be

designated ‘good’ fits indicating that more of the initial Ri were unfavorable models

than the wider spacings. We can conclude that if the initial Ri distributions are off the

final fit results should generally still be reliable, but they may take longer to process

and have fewer fits converge to be deemed ‘good’.

NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim χ2

max

‘Good’
Fits

7 611.7 2.793 263.0 238.9 1.084 1.327 611.7 1
8 close 601.8 2.773 264.7 237.1 1.090 1.329 603 32
8 wide 601.8 2.799 264.7 237.0 1.090 1.333 603 39

9 601.8 2.826 270.1 239.0 1.088 1.320 604 95
10 601.9 2.844 275.6 241.0 1.092 1.296 603 78
11 600.8 2.773 280.6 242.6 1.087 1.341 602 88

Table 4.4: Determination of NGaus for 3H. Statistical values used to determine the
optimal NGaus to use for the SOG fits from an initial sample of 100 fits for each value
NGaus. NGaus is the number of Gaussians used in the SOG fits, Avg. χ2 is the average
χ2 value for the fits, χ2

r is the average reduced χ2 value for the fits, BIC is the average
Bayesian information criterion value of the fits, AIC is the average Akaike information
criterion value of the fits,

∑
Qich is the average sum of the Qich fit parameters,

∑
Qim

is the average sum of the Qim fit parameters, χ2
max is the maximum χ2 value for a fit

to be deemed ‘good’, and ‘Good Fits’ is the number of fits out of 100 that converged
to ‘goodness’. The optimal value for each variable is bolded.

Again, the agreement between the metrics is not unanimous, and in fact it is even

less clear than for 3He. Let us begin by examining the lowest BIC value for NGaus
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= 7. The other metrics also look decent until one notices that only one fit met the

standards for a ‘good’ fit. This failure for the vast majority of fits to look physical

indicates that NGaus = 7 is probably not a good choice for the best model. Examining

the lowest AIC value for the wider Ri spacings and NGaus = 8 the other metrics look

acceptable with a reasonable number of fits converging to ‘goodness’. ∆BIC for the

wider Ri spacings and NGaus = 8 compared to NGaus = 7 is only 1.6 indicating that

there is little reason to prefer one model over the other. The higher Gaussian fits

look reasonable as well, but the AIC, and especially BIC, grow significantly as NGaus

increases ruling out these fits. The closer spacing for NGaus = 8 was eliminated for the

reasons discussed above like taking longer to process and having fewer fits converge

but yielding similar results to the wider spaced Ri models. Accounting for all of this

we select NGaus = 8 with the wider initial Ri spacings.

4.3.3 3He Fits

Now that we have selected NGaus = 12 for 3He we can run several hundred fits

with pseudorandom starting Ri values along with the Ri optimization procedure. The

initial spacing of the Ri values for these fits was R0 = 0.1-0.2, R1−6 = 0.3-0.4, and

R7−11 = 0.5-0.6 as explained in Section 4.3.1. A total of 1352 individual fits using the

pseudorandom Ri values were generated. Table 4.5 shows the results of these 1352 fits

without any χ2
max cut and with a χ2

max = 500 in the same fashion as Tables 4.3 and

4.4. This χ2 cut was determined by decreasing the value of the cut until all of the Fch

form factors had nicely defined sharp first minima and the unphysical form factors

were eliminated as discussed in Section 4.3.2. 852 fits survive the χ2 cut of 500, and

the remaining fits have charge form factors with the desired sharp minima.

Table 4.5 shows that the χ2
max cut improves all of the metrics as expected. Of the

1352 fits 852, 63%, survive the χ2
max cut showing that the fits are not struggling to

converge to ‘goodness’. There are 259 data points for 3He resulting in a χ2 of 436.6.

This works out to a χ2 of 1.686 per data point. This value indicates a reasonably



CHAPTER 4. GLOBAL FITS 119

NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim χ2

max

Below
Cut

12 523.7 2.238 249.1 184.8 1.010 1.046 No Cut 1352
12 436.6 1.866 201.9 159.2 1.008 1.022 500 852

Table 4.5: Metrics for Final 3He Fits. NGaus is the number of Gaussians used in
the SOG fits, Avg. χ2 is the average χ2 value for the fits, χ2

r is the average reduced χ2

value for the fits, BIC is the average Bayesian information criterion value of the fits,
AIC is the average Akaike information criterion value of the fits,

∑
Qich is the average

sum of the Qich fit parameters,
∑
Qim is the average sum of the Qim fit parameters,

χ2
max is the maximum χ2 value for a fit to be deemed ‘good’, and ‘Below Cut’ is the

number of fits that survived the χ2
max cut.

good fit, but could be decreased if the individual datasets were each given a floating

normalization. (A floating normalization would scale the results of each individual

dataset by a constant so as to account for systematic differences between the individual

datasets. For example, if one dataset’s average results were consistently higher than

the average of the other datasets’ results by 10%, then the first dataset would be

scaled down by a constant so that its average would agree with the average of the

other datasets. This procedure requires that the average of the majority be ‘correct’,

i.e. that it approaches the true underlying function being measured, otherwise the

data is being moved towards the wrong central value. It would be a simple matter

to determine each dataset’s normalization if the true function were known, but the

purpose of these measurements is to find the true function.) This analysis chose not

to apply floating normalizations to the individual datasets so as to better represent

the current state of the world data and its uncertainties and disagreements.

The
∑
Qich = 1.008 when we expect it to equal unity from physical considerations

of the form factors discussed in Section 1.3. This means the fits on average see 0.8%

more electric charge than expected. This occurs because we did not force the form

factors to approach unity at the origin. Again, we hope to represent the world data

as is and use the
∑
Qi to indicate the quality and completeness of the available data.

If we forced the form factors to unity at the origin their slope would be artificially

decreased in magnitude near zero. Still,
∑
Qich = 1.008 is close to one and indicates

that the world data describes the charge form factor for 3He well.
∑
Qim = 1.022
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shows an excess of 2.2% in the magnetic charge which is worse than the electric charge

due again to the lack of high Q2 data. Even so, the
∑
Qim for 3He from the fits seems

to correspond decently well with our prior expectations.

Now let’s examine the fits from Table 4.5 visually. Figure 4.2 shows the resulting

charge form factors of each of the 1352 fits of the 3He world data. Figure 4.2a shows

the 1352 fits without any χ2
max cut, and Figure 4.2b shows the 852 fits surviving a

χ2
max = 500 cut. Plotted along with this analysis’ fits in red is a blue line representing

the average fit result from [29] in the range that analysis considered its fits to be valid.

Examining the 1352 fits with no χ2
max cut in Figure 4.2a the first feature to notice

is that many of the fits are behaving in an unphysical manner. We observe numerous

‘dip only’ minima where the first sharp minima is expected. Numerous fits also have

first or second minima located in the already well understood region of 20-30 fm−2

where there are not expected to be minima. We want to eliminate these kinds of fits

as we know them to be nonphysical from theory and prior measurements.

To eliminate these fits we can impose a cut, χ2
max, which removes fits with higher

χ2 as described in Section 4.3.2. Removing higher χ2 fits will generally remove the

worse fits first, hopefully eliminating the least physical looking results. A cut of χ2
max

= 500 on these 1352 fits results in 852 fits surviving and is shown in the plot in Figure

4.2b. By lowing χ2
max until the last of the ‘dip only’ minima were removed we have

eliminated the nonphysical fits leaving only the desired ‘good’ fits. Now it is clear that

our results for the 3He charge form factor are in excellent agreement with [29]. No

changes were expected in the charge form factor due to the addition of more high Q2

data as the charge form factor is dominated by the low Q2 data which was already

robust. If the new high Q2 data is going to change our understanding of a form factor

it is far more likely to be the magnetic form factor.

Figure 4.3 shows the resulting magnetic form factors of each of the 1352 fits of

the 3He world data. Figure 4.3a shows the 1352 fits without any χ2
max cut plotted

together, and Figure 4.3b shows the 852 fits surviving the χ2
max = 500 cut. Beginning

with the fits without a χ2
max cut from Figure 4.3a there are many unphysical fits again.
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(a) Charge Form Factors from 1352 3He Fits with no χ2
max cut.

(b) Charge Form Factors from 852 3He Fits surviving a χ2
max = 500 cut.

Figure 4.2: 3He Charge Form Factors. These charge form factors (red lines) were
derived from 1352 fits of the 3He world data using pseudorandom initial Ri values and
the Ri optimization procedure. The blue line is the fit from [29].
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Most of these are identified by the location of their first minima being unreasonable,

or by the minima not being sharp. It is expected that the magnetic form factor fits

will be less clean than the charge form factor fits due to the relative lack of high Q2

data. This is also why the χ2
max cut was applied to the charge form factor instead of

the magnetic. These fits are again greatly cleaned up once the χ2
max cut is applied.

Figure 4.3b shows the resulting magnetic form factors of each of the 852 fits of the

3He world data that survive the χ2
max = 500 cut plotted together. Immediately it is

obvious that the cut has removed most of the nonphysical and bizarre looking results.

However, unlike the charge form factor we are no longer in excellent agreement with

the fit from [29]. This is to be expected because the new data points from [3] and the

point from this analysis add many new high Q2 data points to the world data. The

magnetic form factor is mostly influenced by these high Q2 points unlike the charge

form factor which is more influenced by low Q2 points. So it is unsurprising that the

charge form factor remains the same while the magnetic form factor evolved with the

addition of new data. Indeed, the new fits with the new datasets added indicate that

the first diffractive minimum for the 3He magnetic form factor is a few femtometers

higher in Q2 than previously predicted. The consensus of new fits places this minimum

at 19-20 fm−2 as opposed to the previous fit from [29] which placed the minimum at

18 fm−2.

Now that we have functions describing the form factors we can calculate the charge

densities as discussed in Section 4.2. Figure 4.4 shows the charge densities for 3He

prior to the χ2
max cut’s application in 4.4a as well as the charge density for 3He with a

χ2
max cut = 500 in 4.4b. Without the cut the charge density shapes are quite variable

at small radii and vary widely in magnitude. However, once the nonphysical fits are

removed by the χ2
max cut the only charge densities remaining are extremely consistent

in shape and magnitude. Below a radius of about 0.5 fm the charge density comes to

a relatively stable plateau. We also note that the charge density tapers off by a radius

of 5 fm justifying our guess of Rmax in Section 4.3.1.

Using Equation 1.19 we can also calculate the RMS charge radii for each of the
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(a) Magnetic Form Factors from 1352 3He Fits with no χ2
max cut.

(b) Magnetic Form Factors from 852 3He Fits surviving a χ2
max = 500 cut.

Figure 4.3: 3He Magnetic Form Factors. These Magnetic form factors (red lines)
were derived from 1352 fits of the 3He world data using pseudorandom initial Ri values
and the Ri optimization procedure. The blue line is the fit from [29].
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(a) Charge densities of 1352 3He fits with no χ2
max cut.

(b) Charge densities of 852 3He fits surviving a χ2
max = 500 cut.

Figure 4.4: 3He Charge Densities. The units of the Y -axis are the elementary
electron charge per cubic fermi.

individual fits. Figure 4.5 shows a plot of the 1352 charge radii resulting from the

fits of 3He world data. Figure 4.5a shows the 1352 fits without a χ2
max cut, and 4.5b



CHAPTER 4. GLOBAL FITS 125

shows the 852 fits surviving the χ2
max = 500 cut. Notice that after the cut is applied

the second peak at higher radii disappears indicating that it was nonphysical form

factors that were yielding these larger radii. The average of all the RMS charge radii

surviving the fit was 1.90 fm. A Gaussian fit to these radii finds a mean of 1.90 fm with

a standard deviation of 0.00144 fm. We see that the radii are well grouped and form a

reasonable semblance of a Gaussian distribution. Note that the Ri used for each fit

were selected in discrete increments of 0.1 fm, but if the Ri were chosen continuously

a better Gaussian for the charge radii distribution might be obtained.

It must be noted that the standard deviation of the charge radii shown here does

not represent the full uncertainty on the charge radius. This is because the
∑
Qi

were not forced to equal one as discussed in Section 4.3.2. By allowing the
∑
Qi to

float freely this analysis has diverged from the method used by most other charge

radii measurements derived from form factors. There is an additional uncertainty on

the charge radius in this analysis derived from the uncertainty in the
∑
Qi. It would

have been ideal to quantify this uncertainty by fixing the
∑
Qi to different values

and studying how this influenced the resultant charge radii. Unfortunately, the code

initially written to perform these fits uses Minuit which is not able to fix relations

between different free parameters in this manner [49].

It is hoped that a future study of this uncertainty could be made using a more

flexible fitting code, but until that analysis is preformed one must keep in mind the

additional uncertainty on the charge radii which is not given in this thesis. This

additional uncertainty is smaller for 3He than for 3H since the
∑
Qi were closer to

unity for 3He than 3H. This
∑
Qi uncertainty is also larger for the magnetic form

factors than the charge form factors and is the reason magnetic radii are not calculated

in this analysis. For example, the
∑
Qich for 3He is about 1.008 which quite close to

unity so the additional uncertainty on the charge radius for 3He should be relatively

small. It would also be informative to refit individual datasets that quote a charge radii

that forced the
∑
Qi to equal one without this requirement to attempt to quantify

any additional uncertainty introduced to their charge radii due to forcing this relation
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(a) RMS charge radii of 1352 3He fits with no χ2
max cut.

(b) RMS charge radii of 852 3He fits surviving a χ2
max = 500 cut.

Figure 4.5: 3He RMS Charge Radii.

between their ‘free’ parameters.

The parameters of the 3He fits can be plotted as well for further information. Figure

4.6 shows the Qi fit parameters discussed in 4.2 with Figure 4.6a showing the Qich
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parameters and Figure 4.6b showing the Qim parameters. Each of the 12 parameters

is shown up to a maximum value of 0.5. The structure of the parameter plots did not

vary significantly after the χ2
max cut was applied so only the plots with the cut are

shown. One important thing to notice is that the Qi values are larger for the inner

Gaussians placed at smaller radii. The inner Gaussians have far more influence over

the fit than the outer ones which makes since as most of the structure of the charge

density is located at smaller radii as well. A small change in Qi1−3 can have drastic

effects on the form factors, but small changes to the higher Qi have almost no influence

on the form factors.

Also note that the inner Qi parameters have a much wider spread in values than

the outer Qi. This is because the fits are extremely sensitive to the final combination

of Ri selected which flow from the pseudorandom Ri initially generated for each fit.

This means that the Qi values vary widely from fit to fit as seen in the large spread

of the inner parameters. As such, attributing an uncertainty to each parameter is

fairly meaningless since each set of parameters is representative only of the specific

‘model’ created by the Ri of that single fit. It would be satisfying if the average value

of each Qi and Ri could be found and then used to plot an average set of form factors.

However, due to the strong correlation between the Qi and Ri when this was attempted

the fit was very poor and nonphysical in nature.

Plotted in Figure 4.7 are the Ri values (4.7a) and the separation between consecutive

Ri values (4.7b) of the fits of the 3He world data in fm. Little difference was made

after the χ2
max cut was applied so only the final 852 fits surviving the cut were plotted.

The individual Ri are seen to be fairly well grouped around the same values. This

is especially true for the lower radii which have more influence over the fits than the

large radii due to their larger Qi values. The consistent positioning of the radii after

the optimization procedure described in 4.3.1 demonstrates that the pseudorandom Ri

generated tend to converge to consistent values and not wander randomly.

We also see that our prior that Rmax will be ≈ 5 fm agrees with the largest Ri

after the fitting procedure. Finally, we notice that the distance between consecutive Ri
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(a) Qich parameters for 3He with χ2
max = 500.

(b) Qim parameters for 3He with χ2
max = 500.

Figure 4.6: 3He Qi Fit Parameters. The X-axis of these plots is the Qi value in
the range of -0.1 to 0.5. The Y -axis is the number of counts. The plots run from Q0

up to Q11. Notice that the distributions are each roughly centered about a specific
value showing that the SOG fits are consistently finding similar Qi values. Also notice
that the smaller radii parameters generally have larger values.
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values does fluctuate somewhat, but the separations still tend to converge to a central

value, particularly at the lower radii. We had previously guessed that the separation

between consecutive Ri would roughly double for Ri > Rmax/2 which is also consistent

with these results.

The set of new world data fits for 3He have essentially created an uncertainty

band for the form factors by spanning the set of Ri models. To make these new fits

applicable a specific parametrization of the form factors is required. To select this

representative fit for 3He a single fit at the middle of the distribution of all new fits,

with physical characteristics and reasonable values for the metrics listed in Table 4.3,

was selected. Table 4.6 and Table 4.7 show the parameters for the representative fit

of the 3He world data along with the metrics used to test the ‘goodness’ of the fit

respectively.

Parameter
Number

Ri (fm) Qich Qim

1 0.3 0.0996392 0.159649
2 0.7 0.214304 0.0316168
3 0.9 0.0199385 0.277843
4 1.1 0.195676 0.0364955
5 1.5 0.0785533 0.0329718
6 1.6 0.167223 0.233469
7 2.2 0.126926 0.117059
8 2.7 0.0549379 0.0581085
9 3.3 0.0401401 0.0485212
10 4.2 0.0100803 1.77602 × 10−12

11 4.3 0.0007217 0.0240927
12 4.8 4.98962 × 10−12 8.94934 × 10−12

Table 4.6: Parameters for 3He World Data Representative Fit. These fit
parameters give the analytical form factors when plugged into Equation 4.4.

Figure 4.8 shows plots of the representative charge and magnetic form factors for

the new 3He world data fits. The charge form factor error band is very well determined

until Q2 ≈ 55 fm−2 where it begins to expand. (Note that the error bands used for

3He and 3H in this thesis were created and/or digitized with the incredibly useful free

tool [54].) The magnetic form factor is very well determined below Q2 ≈ 12 fm−2.
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(a) Ri values (fm) of fits of 3He world data χ2
max = 500.

(b) Separation of consecutive Ri values (fm) of fits of 3He world data χ2
max = 500.

Figure 4.7: 3He Ri Values and Separations. The top plot shows the values for Ri
from R0 up to R11, and the bottom plot shows the distance separating each consecutive
Ri, where the X-axes are in fm. Notice that each plot is roughly centered about a
specific value showing that the SOG fits are consistently finding similar Ri values and
separations. Also notice that the distributions widen at larger radii.
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NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim

12 436.1 1.864 201.6 158.9 1.008 1.020

Table 4.7: Metrics for 3He World Data Representative Fit. NGaus is the number
of Gaussians used in the SOG fits, Avg. χ2 is the average χ2 value for the fits, χ2

r

is the average reduced χ2 value for the fits, BIC is the average Bayesian information
criterion value of the fits, AIC is the average Akaike information criterion value of the
fits,

∑
Qich is the average sum of the Qich fit parameters, and

∑
Qim is the average

sum of the Qim fit parameters.

As Fm approaches its first minimum the error band expands considerably producing

a range of about 4 fm−2 in Q2 where the diffractive minimum is located. The error

band then tightens again between 22 and 36 fm−2 with the addition of the new 3He

data from JLab and this analysis. The error band then expands again as a possible

second diffractive minimum is approached due to leaving the Q2 range in which robust

experimental data exists.

The representative fits for the 3He form factors can also be plotted along with

the world data and the previous fit from [29] as shown in Figure 4.9. Note that the

Amroun fits are deemed valid only up to 35 fm−2 but were extended for the sake of

comparison. The Cavedon data [44] shown in Figure 4.8b is also in the Amroun paper.

The form factor points shown are derived from Rosenbluth separations performed by

the experiments used for this analysis’ global fits. There are fewer discreet form factor

points plotted than there were cross section data points fitted since the experiments

did not perform Rosenbluth separations for each Q2 value due to the time this would

take. Some papers, like Amroun 1994, did not publish their form factor data point

values explicitly, but instead only plotted these points so they are not shown. Notice

that the world data for Fch agrees quite well with both the new and old fits. The only

noticeable change is at Q2 ≈ 55 fm−2 the new point from Camsonne 2016 pulled the

form factor down slightly. Fm has changed more with the addition of the new data

from Nakagawa 2001, Camsonne 2016, and this analysis’ data point. The Nakagawa

and Camsonne data have pulled the first difractive minimum higher in Q2, and have

decreased its magnitude fairly significantly after the first minimum.
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(a) 3He Charge Form Factor for the New Representative Fit of World Data.

(b) 3He Magnetic Form Factor for the New Representative Fit of World Data.

Figure 4.8: 3He Form Factors for the New Representative Fit of World Data.
The selected representative fit is shown in black and its error band is shaded in red.

Our understanding of the form factors in different kinematic ranges depends on

the 3He cross section world data distribution seen in Figure 4.10. Looking at the

distribution of the world data it becomes clear that most of the data exists below Q2

≈ 12 fm−2, and above that value it becomes quite sparse. This analysis has previously



CHAPTER 4. GLOBAL FITS 133

(a) 3He Representative Charge Form Factor with World Data and Amroun Fit

(b) 3He Representative Magnetic Form Factor with World Data and Amroun Fit.

Figure 4.9: 3He Representative Form Factors with World Data and Amroun
Fit. The red lines are the new representative fits. The blue lines are the previous
Amroun fits. Note that the Amroun fits are deemed valid only up to 35 fm−2 but
were extended for the sake of comparison. The points represent published form factor
measurements from the datasets used for this analysis’ global fits. These points were
extracted via standard Rosenbluth separations.
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discussed the need for more high Q2 data, and Figure 4.10 reinforces how the dearth

of this data is restricting our understanding of the 3He form factors.

Figure 4.10: 3He Cross Section World Data Distribution. This plot shows the
3He cross section world data distribution in Q2 used in this analysis.

This representative fit has a total χ2 of 436.1 and a reduced χ2 of 1.864 for 259

3He elastic cross sections. Recall that this analysis did not float the normalization of

the different datasets leading to a slightly larger χ2. When examining how well the

representative fit is describing the data it can be helpful to look at the χ2 values for

each data individual point in each dataset as shown in Figure 4.11. This plot indicates

that much of the total χ2 comes from the older datasets found in Collard and Szalata.

The point from this analysis (orange) has a χ2 of ≈ 4.

It can also be illuminating to look at the residual of the fit for each data point in

each dataset as shown in Figure 4.12. Note that since the plot encompasses many orders

of magnitude the residual is plotted as Equation 4.13, where σexp is the experimental

cross section measured and σfit is the cross section predicted by the fit at those same

kinematics. Firstly, there are two heavy outliers from Arnold [43], but this is not very

surprising since these points were taken at very high Q2. Zooming in on the remaining
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Figure 4.11: 3He Representative Fit χ2 vs. Q2.

points they mostly look to be normally distributed about zero, although the points

from Collard may lie a little high as do some of the high Q2 points from Amroun.

This indicates that floating the normalizations of the different datasets would not have

improved the overall χ2 significantly. We also find that the point from this analysis

lies below the representative fit.

Residual =
σexp − σfit

σfit
(4.13)

The representative fits for the charge and magnetic form factor can be combined to

yield the full elastic 3He cross section using Equation 4.5. Figure 4.13 shows the elastic

3He cross section using the kinematics of experiment E08-014 along with this analysis’

new data point. The new cross section fit is fairly similar to the previous fit from [29].

The new high Q2 data, including the point from this analysis, have brought the cross

section down slightly in the region of Q2 = 30 - 40 fm−2. The new cross section also

falls off more quickly above Q2 = 50 fm−2 than the previous fit fell off. The majority

of this movement is attributable to the changes in the magnetic form factor fit. The
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(a) No Zoom.

(b) Zoomed In.

Figure 4.12: 3He Representative Fit Residual vs. Q2. The upper plot shows
a view of each data point’s residual, and the lower plot shows a zoomed in version
without the two high residual points for clarity.

new cross section measurement from this analysis can be seen better in the zoomed

in plot (Figure 4.13b). In this plot we see that the new data point is closer to this

analysis’ cross section fit. The uncertainty on the new data point nearly overlaps with
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the new cross section fit and is certainly close enough to be consistent with the fit.

(a) Log Plot Zoomed Out.

(b) No Log on Y -axis and Zoomed In.

Figure 4.13: 3He Elastic Cross Section. The upper plot is the 3He elastic cross
section using the kinematics of experiment E08-014 with the Y -axis on a log scale.
The red line represents the new 3He cross section fit using the new representative
form factor fits from this work, and the blue line is the cross section built from the
previous form factor fits found in [29]. The black dot represents the new 3He cross
section measurement from this analysis. The lower plot depicts the same functions as
the upper plot, but it removes the log on the Y -axis and zooms in on the cross section
measurement from this analysis.
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4.3.4 Revisiting the E08-014 Cross Section

Now that we have obtained a new representative fit for the expanded set of world

data it is prudent to revisit the cross section extracted in Chapter 3. To find the

elastic cross section for 3He presented earlier the elastic electrons were simulated with

the Monte Carlo SIMC. This Monte Carlo had a previous fit for the 3He cross section

from [29]. We now have a fit that incorporates more high Q2 data in the region of this

analysis’ cross section measurement. Let us now replace the previous fit in SIMC with

our new fit and recalculate the cross section.

Once again the cross section in SIMC will be scaled by a constant value until the

elastic electron yield from simulation matches that of the experiment. SIMC will then

produce the average cross section for our 3He data point. Since the shape of the two

fits should be similar, and the cross section clearly does not change based on the fit

used, we expect to find a very similar cross section value with the new fit compared

to the value from the previous fit. Matching the electron yields requires scaling the

SIMC cross section by a constant value of CSIMC = 1.23197. This is a larger scale

factor than previously and is due to the decreased magnitude of Fm in the new fit at

this point’s Q2 of 34.19 fm−2. The cross section yielded by SIMC after the yields are

matched is found to be 1.345 × 10−6 µb/sr ± 0.086 × 10−6 µb/sr. This is in extremely

close agreement (better than 1%) with the previous fit’s cross section of 1.335 × 10−6

µb/sr ± 0.086 × 10−6 µb/sr as we expected.

4.3.5 3H Fits

Now that we have selected NGaus = 8 for 3H we can run several hundred fits with

the pseudorandom starting Ri values along with the Ri optimization procedure. The

initial spacing of the Ri values for these fits was R0 = 0.2-0.3, R1−4 = 0.5-0.6, and

R5−7 = 0.8-0.9 as explained in Section 4.3.1. A total of 2600 individual fits using the

pseudorandom Ri values were generated. Table 4.5 shows the results of these 2600 fits

without any χ2
max cut and with a χ2 maximum of 603 in the same fashion as Tables
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4.3 and 4.4. 908 fits survive the χ2 cut of 603, and the remaining fits have charge form

factors with the desired sharp minima.

NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim χ2

max

Below
Cut

8 611.4 2.817 266.2 238.5 1.089 1.335 No Cut 2600
8 601.8 2.773 264.7 237.1 1.090 1.329 603 908

Table 4.8: Metrics for Final 3H Fits. NGaus is the number of Gaussians used in
the SOG fits, Avg. χ2 is the average χ2 value for the fits, χ2

r is the average reduced χ2

value for the fits, BIC is the average Bayesian information criterion value of the fits,
AIC is the average Akaike information criterion value of the fits,

∑
Qich is the average

sum of the Qich fit parameters,
∑
Qim is the average sum of the Qim fit parameters,

χ2
max is the maximum χ2 value for a fit to be deemed ‘good’, and ‘Below Cut’ is the

number of fits that survived the χ2
max cut.

Table 4.8 shows that the χ2
max cut again improves all of the metrics as expected.

Of the 2600 fits 908, 35%, survive the χ2
max cut. This shows that the fits have

more difficulty converging than they did for 3He, but they still converge with enough

regularity to get a useful and reliable sample of fits. There are 234 data points for 3H

resulting in a χ2 of 601.8. This works out to a χ2 of 2.572 per data point. This value

is significantly higher than the value for 3He of 1.686 implying that the data for 3H

is not as robust. Later in this section we will see that much of this larger χ2 is due

to disagreement between the various experimental measurements. If the individual

datasets were given a floating normalization the χ2 value would decrease significantly,

but this would mask the actual state of the 3H world data. The fits still look very

reasonable and agree well with past results.

The
∑
Qich = 1.090 when we expect it to equal unity from physical considerations

of the form factors discussed in Section 1.3. This means the fits on average see 9%

more electric charge than expected. Again, this occurs because we did not force the

form factors to approach unity at the origin, but this demonstrates our relatively

worse understanding of the charge form factor for 3H compared to 3He. If we forced

the form factors to unity at the origin they would artificially turn over even more at

small radii.
∑
Qim = 1.329 shows an excess of 32.9% in the magnetic charge which
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is much worse than the charge form factor for 3H or either form factor for 3He. Now

we see the analytical use of not forcing the Qi to sum to unity artificially. If we had

done this it would not be nearly as clear that most of our uncertainty about the 3H

form factors comes from our lack of understanding of the magnetic form factor. This

continues to stress the need for more high Q2 and back angle data for 3H to improve

our understanding of the form factors.

Figure 4.14 shows the charge form factors from each of the 2600 fits from Table

4.8. Figure 4.14a shows the 2600 fits without any χ2
max cut plotted together, and

Figure 4.14b shows the 908 fits surviving a χ2
max = 603 cut. Plotted along with this

analysis’ fits in red is a blue line representing the average result from [29] in the range

that analysis considered its fits to be valid. It is important to note that no new data

has been added for 3H so we do not expect our results to diverge much from past

results like [29]. This makes the 3H results more useful to check the consistency of our

methodology with past results and as a point of comparison to the 3He results. It was

initially hoped that new 3H data would be available for this analysis from the planned

experiment E12-14-009 [55] which was the original basis for this thesis. Unfortunately,

due to budget uncertainty and continuing resolutions this experiment was cancelled.

Happily, Hall A was able to take some elastic 3H data in the end, and once the data

has been analyzed it should be a simple matter to add it to this analysis.

Looking at Figure 4.14a we notice that many of the fits are again behaving in a

nonphysical manner. We observe numerous ‘dip only’ minima where the first sharp

minimum is expected. These are even more shallow than the 3He dips and often almost

miss the first minima entirely. There are even two fits that seemingly failed to converge

at all and stand out wildly from the others. The location of the first minima look to

be in good agreement with previous measurements even without the nonphysical fits

being removed. The second minima, however, is barely pinned down at all. It seems as

though it could be located anywhere from Q2 = 26 - 60+ fm−2 with a denser grouping

around 30 fm−2. Some of the fits indicate the presence of a second minimum at much

higher Q2 based on the current data.
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(a) Charge Form Factors from 2600 3H Fits with no χ2
max cut.

(b) Charge Form Factors from 908 3H Fits surviving a χ2
max = 603 cut.

Figure 4.14: 3H Charge Form Factors. These charge form factors (red lines) were
derived from 2600 fits of the 3He world data using pseudorandom initial Ri values and
the Ri optimization procedure. The blue line is the fit from [29].
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Now we apply the χ2
max = 603 cut, and get Figure 4.14b with the resulting charge

form factors that survive. Immediately it is obvious that the cut has removed most of

the nonphysical and bizarre looking results. The results remain in reasonable agreement

with [29] except the peak after the first minima is higher and falls off faster. The

cluster of second minima near 30 fm−2 has almost entirely disappeared. There is still

no determination of the location of a secondary diffractive minima with the current

data indicating it could be located anywhere from Q2 = 30 - 60+ fm−2 or not exist at

all. There is simply not enough high precision data in the world data to make any

determinations beyond Q2 ≈ 25 fm−2.

Figure 4.15 shows the resulting magnetic form factors of each of the 2600 fits of

the 3H world data. Figure 4.15a shows the 2600 fits without any χ2
max cut plotted

together, and Figure 4.15b shows the 908 fits surviving the χ2
max = 603 cut. Beginning

with the fits without a χ2
max cut in Figure 4.15a we see that, as with the charge form

factor, there are many nonphysical fits. Most of these are ‘dip only’ minima. The fits

are decently consistent overall, and the location of the first minima is consistent with

past results.

Next we examine the magnetic form factors of the 908 fits of the 3H world data that

survive the χ2
max = 603 cut shown in Figure 4.15b. Once again, the cut has removed

most of the nonphysical and bizarre looking results. After this cut our results still

remain in agreement with [29]. This is as we expect since no new 3H data was added

to the world data. The fits indicate that a secondary diffractive minima could be

anywhere from Q2 = 36 - 60+ fm−2 and offer little insight beyond this range. Again,

the magnetic form factor is less well determined than the charge form factor fits due

to the relative lack of high Q2 and back angle data, and collecting more of this data is

the best way to improve our knowledge of the 3H magnetic form factor.

Using the functions describing the form factors we can calculate the charge densities

as discussed in Section 4.2. Figure 4.16 shows the charge densities for 3H prior to the

χ2
max cut’s application in 4.16a as well as the charge density for 3H with a χ2

max cut

= 603 in 4.16b. Without the cut the charge density appears to be bundled in two
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(a) Magnetic Form Factors from 2600 3H Fits with no χ2
max cut.

(b) Magnetic Form Factors from 908 3H Fits surviving a χ2
max = 603 cut.

Figure 4.15: 3H Magnetic Form Factors. These Magnetic form factors (red lines)
were derived from 2600 fits of the 3He world data using pseudorandom initial Ri values
and the Ri optimization procedure. The blue line is the fit from [29].
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different groups, one predicting a higher density at a radius of zero and one predicting

a lower density at zero. There is even a single fit which failed to converge well centered

around 2 fm. Each of these groups has a fairly wide spread of magnitudes at low radii.

However, once the nonphysical fits are removed by the χ2
max cut the higher bundle of

fits disappears leaving only the lower.

The shapes of the 3H charge densities of the ‘good’ fits are fairly consistent, but

where they reach the origin still has a much wider spread than 3He’s charge density.

Once again this is due to the dearth of data for 3H, especially at higher kinematics.

Below a radius of about 0.5 fm the charge density turns over and comes to to a plateau.

This turnover occurs at smaller radii for fits with larger charge density at low radii.

Again, the charge density tapers off by a radii of 5 fm justifying the guess of Rmax in

Section 4.3.1.

Using Equation 1.19 we can also calculate the RMS charge radii for each of the

individual fits. Figure 4.17 shows a plot of the 2600 charge radii resulting from the

fits of 3H world data. Figure 4.17a shows the 2600 fits without a χ2
max cut, and 4.17b

shows the 908 fits surviving the χ2
max = 603 cut. The cut removes some of the radii at

the edges of the distribution, but it does not significantly alter its overall shape. The

average of all the RMS charge radii surviving the cut was 2.02 fm. A Gaussian fit to

these radii finds a mean of 2.02 fm with a standard deviation of 0.0133 fm. Recall that

there is an additional uncertainty on this charge radius beyond the standard deviation

due to the uncertainty on the
∑
Qi as discussed in Section 4.3.3. This additional

uncertainty for 3H is larger than that of 3He since the
∑
Qich for 3H is approximately

1.089, but the
∑
Qich for 3He was only 1.008. The 3H radii are less well grouped than

the 3He radii and form a less well defined Gaussian distribution, but they still appear

to be clustered roughly around a mean value without errant peaks separated from

the prime distribution. Note that the Ri used for each fit were selected in discrete

increments of 0.1 fm, but if the Ri were chosen continuously a better Gaussian for the

charge radii distribution might be obtained.

As was done with 3He, the parameters of the 3H fits can be plotted for further
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(a) Charge densities of 2600 3H fits with no χ2
max cut.

(b) Charge densities of 908 3H fits surviving a χ2
max = 603 cut.

Figure 4.16: 3H Charge Densities. The units of the Y -axis are the elementary
electron charge per cubic fermi.

insight. Figure 4.18 shows the Qi fit parameters discussed in 4.2 with Figure 4.18a

showing the Qich parameters and Figure 4.18b showing the Qim parameters. Each of
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(a) RMS charge radii of 2600 3H fits with no χ2
max cut.

(b) RMS charge radii of 908 3H fits surviving a χ2
max = 500 cut.

Figure 4.17: 3H RMS Charge Radii.

the 8 parameters is shown up to a maximum value of 0.5. As previously, the structure

of the parameter plots did not vary significantly after the χ2
max cut was applied so

only the plots with the cut are shown. The results are consistent with those of 3He in
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Section 4.3.3 in that the Qi values are larger for the inner Gaussians placed at smaller

radii, and thus they have the strongest influence on the overall fits. The Qi are still

strongly coupled to the Ri distribution, or ‘model’, of each individual fit with wide

spreads in the Qi parameter values, especially for the inner Qi .

Plotted in Figure 4.19 are the Ri values (4.19a) and the separation between

consecutive Ri values (4.19b) of the fits of the 3H world data in fm. The insights

gleaned from these plots parallel those found for 3He in Section 4.3.3. The Ri values

are well grouped indicating the fitting procedure is finding similar results regardless of

the pseudorandom initial conditions. Again we see that Rmax ≈ 5 fm. Finally, the

distance between consecutive Ri values still fluctuates somewhat, but the separations

tend to converge to a central value, and the separation between consecutive Ri values

roughly doubles for the larger half of the radii.

A representative fit for the 3H form factors was selected in the same manner as the

one selected for 3He in Section 4.3.3. Table 4.9 and Table 4.10 show the parameters

for the representative fit of the 3H world data along with the metrics used to test

the ‘goodness’ of the fit respectively. Figure 4.20 shows plots of the representative

charge and magnetic form factors for the new 3H world data fits (error bands were

again created with [54]). The charge form factor error band is well determined past

the first minimum until about Q2 ≈ 24 fm−2 where it begins to expand. Above Q2 ≈

24 fm−2 there is alomost no knowledge of the shape or magnitude of Fch due to a lack

of high Q2 data. The magnetic form factor is fairly well determined through the first

minimum and up to Q2 ≈ 30 fm−2. As Fm passes above Q2 ≈ 30 fm−2 there is almost

no information about the form factor. Once again, to improve the understanding of

the 3H form factors more high Q2 and back angle data is required.

The representative fits for the 3H form factors can also be plotted along with the

world data and the previous fit from [29] as shown in Figure 4.9. Note that the Amroun

fits are deemed valid only up to 25 fm−2 and 31 fm−2, for Fch and Fm respectively, but

were extended for the sake of comparison. The form factor points shown are derived

from Rosenbluth separations performed by the experiments used for this analysis’
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(a) Qich parameters for 3H with χ2
max = 603.

(b) Qim parameters for 3H with χ2
max = 603.

Figure 4.18: 3H Qi Fit Parameters. The X-axis of these plots is the Qi value in
the range of -0.1 to 0.5. The Y -axis is the number of counts. The plots run from Q0

up to Q7. Notice that the distributions are each roughly centered about a specific
value showing that the SOG fits are consistently finding similar Qi values. Also notice
that the smaller radii parameters generally have larger values.
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(a) Ri values (fm) of fits of 3H world data χ2
max = 500.

(b) Separation of consecutive Ri values (fm) of fits of 3H world data χ2
max = 500.

Figure 4.19: 3He Ri Values and Separations. The top plot shows the values for Ri
from R0 up to R7, and the bottom plot shows the distance separating each consecutive
Ri, where the X-axes are in fm. Notice that each plot is roughly centered about a
specific value showing that the SOG fits are consistently finding similar Ri values and
separations. Also notice that the distributions widen at larger radii.
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Parameter
Number

Ri (fm) Qich Qim

1 0.3 0.151488 0.190646
2 0.8 0.348372 0.301416
3 1.4 0.29635 0.318972
4 1.9 0.0978631 0.159433
5 2.5 0.121983 0.173933
6 3.3 0.0242654 0.106361
7 4.1 0.049329 0.0665564
8 4.8 4.40751 × 10−11 0.0148866

Table 4.9: Parameters for 3H World Data Representative Fit. These fit pa-
rameters give the analytical form factors when plugged into Equation 4.4.

NGaus Avg. χ2 χ2
r BIC AIC

∑
Qich

∑
Qim

8 601.9 2.774 264.7 237.1 1.089 1.332

Table 4.10: Metrics for 3H World Data Representative Fit. NGaus is the number
of Gaussians used in the SOG fits, Avg. χ2 is the average χ2 value for the fits, χ2

r

is the average reduced χ2 value for the fits, BIC is the average Bayesian information
criterion value of the fits, AIC is the average Akaike information criterion value of the
fits,

∑
Qich is the average sum of the Qich fit parameters, and

∑
Qim is the average

sum of the Qim fit parameters.

global fits. As discussed in Section 4.3.3 there are far fewer discreet form factor points

available as there have not been many Rosenbluth separations performed for 3H. Again,

the Amroun data is not shown as it was not explicitly published. Notice that the

new Fch fit once again agrees with the old fit and world data with some small shifts

in magnitude beyond the first minimum. Above Q2 ≈ 30 fm−2 the Fch fits start to

diverge from a lack of data. The new Fm fit agrees quite well with both the world

data and old fit until Q2 ≈ 30 fm−2 where all of the fits start to diverge and beyond

which we have little knowledge.

Our understanding of the form factors in different kinematic ranges depends on

the 3H cross section world data distribution seen in Figure 4.22. Looking at the

distribution of the world data it becomes clear that most of the data exists below Q2

≈ 10 fm−2 and is sparse above there tapering off completely around Q2 ≈ 32 fm−2. As

with 3He, the dearth of high Q2 and back angle 3H elastic scattering data is restricting

our understanding of the form factors.
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(a) 3H Charge Form Factor for the New Representative Fit of World Data.

(b) 3H Magnetic Form Factor for the New Representative Fit of World Data.

Figure 4.20: 3H Form Factors for the New Representative Fit of World Data.
The selected representative fit is shown in black and its error band is shaded in red.

This representative fit has a total χ2 of 601.9 for 234 3H elastic cross sections. This

results in an average χ2 per point of 2.572. Recall that this analysis did not float the

normalization of the different datasets leading to a larger χ2. Figure 4.23 shows a plot

of χ2 versus Q2 for each data point in each dataset in the global fits. The highest Q2
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(a) 3H Representative Charge Form Factor with World Data and Amroun Fit

(b) 3H Representative Magnetic Form Factor with World Data and Amroun Fit.

Figure 4.21: 3H Representative Form Factors with World Data and Amroun
Fit. The red lines are the new representative fits. The blue lines are the previous
Amroun fits. Note that the Amroun fits are deemed valid only up to 25 fm−2 and 31
fm−2, for Fch and Fm respectively, but were extended for the sake of comparison. The
points represent published form factor measurements from the datasets used for this
analysis’ global fits. These points were extracted via standard Rosenbluth separations.
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Figure 4.22: 3H Cross Section World Data Distribution. This plot shows the
3H cross section world data distribution in Q2 used in this analysis.

data points come from the older datasets of Collard and Beck. It is interesting to note

that there seems to be some structure to the Amroun dataset which will be discussed

more shortly.

Figure 4.23: 3H Representative Fit χ2 vs. Q2.
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The plot of the representative fit’s residual, given by Equation 4.13, is shown in

Figure 4.24. The residual plot for 3H is more revealing than that of 3He. While there

are no obvious outliers there is significant structure. The data points from Amroun

seem to be low on average and the points from Collard appear to be high. The Beck

data points seem fairly normally distributed. This means that if the normalization

had been floated the χ2 could be reduced significantly as there do seem to be strong

biases based on the experiments.

Figure 4.24: 3H Representative Fit Residual vs. Q2.

4.3.6 3He Comparison with Theory and Previous Measurements

Now that we have new form factor fits for 3He and 3H it is important to see how

they compare to previous fits and theoretical predictions. We have already shown

the previous fit from Amroun et al., but the error bands were previously excluded for

clarity and will now be examined [29]. Four theory predictions from Marcucci et al.

will also be compared to the current fits of the world data [56]. The four predictions

include a ‘conventional’ approach, two χEFT calculations, and finally a covariant

spectator theorem prediction. These methods will be briefly described below, but for
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a more fulsome explanation of the theory predictions see the text in [56].

Paraphrasing the description of the ‘conventional’ approach used by Macucci et

al. this technique simulates 2 and 3-body nucleon interactions within the nucleus and

applies relativistic corrections. It also models the nucleon’s interactions with external

electroweak forces through both one and many-body currents. It removes nucleon

resonances and replaces these with effective potentials and currents [56].

The χEFT predictions in Marcucci et al. uses the chiral symmetry of quantum

chromodynamics to describe the internal strong and EM interactions. This technique

requires momentum space cutoffs to regularize operators with divergent behavior at

large momenta. These cutoffs are selected at 500 MeV for one model and 600 MeV for

the other χEFT model [56].

The final theoretical model employed in Marcucci et al. is the covariant spectator

theorem (CST). Again, paraphrasing [56], CST is a covariant field theory where

nucleons and light mesons are used as the effective degrees of freedom. Currents and

form factors can be extracted from the field theory’s approximate solutions. This

theory is also fully relativistic.

Figure 4.25 shows the new 3He Fch fits from this analysis, the representative fit

from this analysis, Amroun et al.’s previous fit and error band, and the four theory

predications from Marcucci et al. (Note that the error bands from Amroun and

the theory curves from Marcucci were digitized with the tool found in [54]). It is

immediately clear that the new fits (red) are in excellent agreement with the fit from

Amroun et al. These fits are very tightly grouped and agree well until Q2 ≈ 60 fm−2.

This makes sense as the abundance of high precision low Q2 data for 3He means we

expect the charge form factor to be well understood.

Examining how well theory is predicting the data fits we can see that the ‘conven-

tional’ approach (green) is doing a good job. This method locates the first minima well

and also approximates the magnitude of Fch successfully. It is not totally in agreement

with the data fits on the location of the second minimum, but so little data exists in

this region that this difference hold little useful meaning. CST on the other hand, is
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Figure 4.25: 3He Fch Comparison of Results. The red lines are the individual fits
from this analysis. The black line is the representative fit for this analysis. The blue
line and shaded region is the fit from [29] and its error band. The theory predictions
from [56] are the green, pink, purple, and blue lines for the ‘conventional’ approach,
CST, χEFT 500, and χEFT 600 methods respectively.

doing a far worse job predicting the fits to data. CST estimates the first minimum

significantly higher in Q2 than the fits find, and CST also overestimates the magnitude

of Fch below the first minimum and underestimates it above.

The χEFT predictions are in disagreement with one another. The χEFT prediction

with a cutoff of 500 MeV finds the first minimum successfully and then underestimates

the magnitude of Fch above that minimum. Whereas, χEFT 600 expects a minimum at

higher Q2 while also poorly predicting the magnitude of Fch. Overall, the ‘conventional’

approach from [56] does the best job predicting the data fits and does so quite accurately.

Figure 4.26 mirrors Figure 4.25 but for the 3He magnetic form factor. The new

world data fits (red) are much less tightly grouped than they were for the 3He Fch.

This is because the Fm is more dependent on the scarce high Q2 and back angle data.

Above Q2 of 40 fm−2 the fits diverge and actually split in to two distinct paths, one of
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which finds a second minimum before Q2 = 60 fm−2, and the other which does not.

When compared with the previous fits from [29] we see that the first minimum has

shifted higher in Q2 by approximately one to four fm−2. We also see that the Fm

magnitude of the new fits has decreased in magnitude above Q2 of 25 fm−2 with the

addition of the new high Q2 data.

Figure 4.26: 3He Fm Comparison of Results. The red lines are the individual fits
from this analysis. The black line is the representative fit for this analysis. The blue
line and shaded region is the fit from [29] and its error band. The theory predictions
from [56] are the green, pink, purple, and blue lines for the ‘conventional’ approach,
CST, χEFT 500, and χEFT 600 methods respectively.

Turning once more to the theory predictions in [56], we see that all of the predictions

predict a significantly lower Q2 for the location of the first diffractive minimum. The

‘conventional’ approach and χEFT 600 come closest to finding the location of the

minimum but still fall short. The magnitude of Fm estimated by the ‘conventional’

approach is too large in the region of the minimum; however, if the minimum of the

‘conventional’ approach were shifted up in Q2 to match the world data fits it appears

that the magnitude would then approximate Fm relatively well.



CHAPTER 4. GLOBAL FITS 158

χEFT 500 and the CST predictions both fail to predict the 3He Fm well in either

minimum location or magnitude. Overall, theory is struggling to predict the world

data fits for Fm. It is notable that the new minimum location has actually shifted

further away from theory and not closer to theory. This development merits further

study to understand why the theory is poorly predicting the data.

This analysis found a 3He charge radius of 1.90 fm with a standard deviation

of 0.00144 fm from the new fits to world data in Section 4.3.3. Recall that there is

an additional uncertainty on the charge radius due to not forcing the
∑
Qi to equal

unity as discussed in Section 4.3.3. Previous measurements from Saclay and Bates

found charge radii of 1.96 fm ± 0.03 fm and 1.87 fm ± 0.03 fm respectively [55]. The

new world data fits are slotting nicely in between these two experimental results, but

the uncertainties do not quite overlap with the previous Saclay measurement. It is

possible the uncertainties would overlap if this analysis had been able to quantify the

additional uncertainty on the 3He charge radius due to not fixing the
∑
Qi. Theoretical

predictions of the 3He charge radius also exist. Green’s function Monte Carlo (GFMC)

methods predict a charge radius of 1.96 fm ± 0.01 fm and chiral effective field theory

(χEFT) predicts a radius of 1.962 fm ± 0.004 fm [55]. Both of these predictions are

larger than the radius found by this analysis, but the experimental fit results and

theory predictions are still fairly close.

Recall that the charge radius is determined by the slope of the charge form factor

at a Q2 of zero, and that the value of Fch at Q2 = 0 (i.e. the Y -intercept of the charge

form factor) is the same as the value of the
∑
Qich . From physical considerations we

expect
∑
Qich = 1 as discussed in Section 4.2. However, this analysis chose not to force

the Qi parameters to sum to unity as not doing so provides another useful measure

of the completeness of the world data without glossing over gaps and disagreements

between the various measurements. For the 3He fits the average
∑
Qich = 1.00840.

The data and fit are doing an excellent job agreeing with our prior expectation that∑
Qich = 1 with

∑
Qich only being slightly too high as seen in Figure 4.27. This

slightly high
∑
Qich increases the negative magnitude of the Fch slope a small amount
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so the charge radius we find would have been very slightly smaller if we had forced∑
Qich = 1.

Figure 4.27: 3He Fch at Q2 = 0. This plot shows the 3He charge form factor near
Q2 = 0. The red line of the new form factor fit clearly has a Y -intercept of slightly
greater than unity unlike the older blue line fit from [29]. This different intercept
slightly changes the charge radius extracted for 3He by altering the slope at Q2 = 0.

4.3.7 3H Comparison with Theory and Previous Measurements

We can apply the same comparisons to past fits and theory predictions performed

in Section 4.3.6 to 3H as well. Figure 4.28 shows the charge form factor fits and theory

predictions for 3H in the same manner as was done for 3He. (Note that the error bands

from Amroun and the theory curves from Marcucci were digitized with the tool found

in [54]). Comparing this analysis’ fits to [29] they are in good agreement. The first

minimum is almost identical, and the error bands overlap nicely, although there is

a slight difference in magnitude after the first minimum. This is likely due to this

analysis having access to the data of fewer experiments than [29] had. The fits diverge

above Q2 of 25 fm−2 due to a lack of data in this region. Since no new elastic 3H

data has been added to the world data we expect to have strong agreement with the
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previous fits of the same data, and the agreement of the two results demonstrates the

consistency of our technique with past techniques.

Figure 4.28: 3H Fch Comparison of Results. The red lines are the individual fits
from this analysis. The black line is the representative fit for this analysis. The blue
line and shaded region is the fit from [29] and its error band. The theory predictions
from [56] are the green, pink, purple, and blue lines for the ‘conventional’ approach,
CST, χEFT 500, and χEFT 600 methods respectively.

It should be noted that JLab has recently gathered new 3H elastic data that has

yet to be analyzed. Integrating this new data with this analysis should be a simple

matter after the data are analyzed. However, the new data are not at very high Q2 so

it may not influence the fits greatly. The new data are useful in that they overlap with

data from [36] and can be used to normalize that data such that it can be incorporated

in future fits.

Turning to the theory predictions, the ‘conventional’ approach is performing best

once more. It is successfully finding the first minimum, but it predicts a significantly

larger Fch magnitude beyond the minimum. χEFT 600 similarly predicts the minimum

while also overestimating the magnitude of the form factor. χEFT 500 underestimates
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the location of the minimum in Q2 while overestimating the magnitude by an even

greater value. Finally, CST greatly overestimates the Q2 location of the first minimum

while also underestimating the form factor magnitude. The ‘conventional’ and χEFT

600 models predicted the minimum well, but it appears that there is still a need to

better understand the magnitude of 3H’s Fch.

Figure 4.29 shows the magnetic form factor fits and theory predictions for 3H in the

same manner as was done previously. Like the charge form factor, the magnetic form

factor updated world data fits are in strong agreement with the previous fit in [29].

The Fm error band comprised by the new fits almost perfectly overlaps with Amroun

et al. Again, no new data was added, so this is to be expected. The fits are grouped

relatively well until Q2 of 30 fm−2 after which they begin to diverge from each other.

Figure 4.29: 3H Fm Comparison of Results. The red lines are the individual fits
from this analysis. The black line is the representative fit for this analysis. The blue
line and shaded region is the fit from [29] and its error band. The theory predictions
from [56] are the green, pink, purple, and blue lines for the ‘conventional’ approach,
CST, χEFT 500, and χEFT 600 methods respectively.

Theory predictions for the magnetic form factor of 3H all anticipate a significantly
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lower Q2 first minimum than is indicated by fits of the world data. The ‘conventional’

approach and χEFT 600 come closest to finding the minimum but still underestimate

it by three or four fm−2. These two predictions also overestimate the magnitude of

Fm, but if they were shifted up in Q2 to match the location of the first minimum the

magnitudes would line up with the new fits decently. The χEFT 500 and CST fits

both predict a first minimum that is far too low while also overestimating the Fm

magnitude.

Examining the success of the four theoretical models at predicting the experimen-

tal data it is clear that the ‘conventional’ approach, modelling two and three-body

interactions with relativistic corrections, was the most successful. χEFT predictions

often came close to matching the ‘conventional’ model’s success, but the χEFT models

were heavily dependent on their momentum space cutoffs. The CST model generally

did a poor job at predicting the data. The successful theories are doing a good job

predicting the charge form factor, Fch, although they miss the magnitude a bit in

3H. However, all of the models seem to be having a more difficult time predicting the

magnetic form factor both in minima location and magnitude.

This analysis found a 3H charge radius of 2.02 fm with a standard deviation of

0.0133 fm as discussed in Section 4.3.5. Recall that there is an additional uncertainty

on the charge radius due to not forcing the
∑
Qi to equal unity as discussed in Section

4.3.3, and this additional uncertainty is likely to be significant as discussed in Section

4.3.5. Past measurements from Saclay found a charge radius of 1.76 fm ± 0.09 fm, and

measurements from Bates found a charge radius of 1.68 fm ± 0.03 fm [55]. GFMC

predictions estimate a radius of 1.77 fm ± 0.01 fm, and χEFT predicts a radius of

1.756 fm ± 0.006 fm.

We also discussed in Section 1.3 how we expect the 3He charge radius (found to be

1.90 fm in this analysis) to be larger than the 3H charge radius which does not appear

to be the case here. Clearly the new world data fits are finding a significantly larger

charge radius than past results and theory. However, it is easy to see why this analysis

is in disagreement with past measurements. Because this analysis did not force
∑
Qich
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= 1 as discussed in Sections 4.2 and 4.3.6, the slope of the form factor at Q2 = 0 is

purely determined by the free parameters Qich . Once the additional uncertainty on

the charge radius from not forcing the
∑
Qich = 1 is accounted for the results may

be in much more reasonable agreement. Unfortunately, this analysis was unable to

quantify this additional uncertainty.

Examining this more closely, the 3H charge radius has an average
∑
Qich for the

new world data fits of 1.08991, or almost 9% larger than if the free parameters were

forced to sum to unity. This higher Fch value at Q2 = 0, shown in Figure 4.30, means

that the negative slope of the form factor has a larger magnitude than if Fch were

forced to unity at Q2 = 0. Equation 1.19 shows that a larger negative slope will yield

a larger charge radius. This analysis’ larger radius is due to not forcing
∑
Qich = 1 as

past fits have done. (The
∑
Qim significantly diverging from unity is why magnetic

radii were not calculated in this analysis since their values would be dominated by not

forcing the
∑
Qim to unity.) By not forcing

∑
Qich = 1 we can see that the 1984 Beck

data [37] is pulling the charge form factor up at very low Q2. Now it is clear that the

3H world data is either less complete and accurate and/or there is more disagreement

between the different experiments’ results (in this case it is both) than is the case for

3He. This would have been hard to identify if the
∑
Qich were forced to sum to unity

or if we had floated the normalizations of the different experiments.

4.3.8 3He and 3H Comparison

Now that we have found new representative form factors for both 3He and 3H, we

can return to the fact that these are mirror nuclei and compare their form factors and

charge densities. Recall that the only differences in these quantities will be due to

the different Coulomb forces in the nuclei since the strong force does not distinguish

between protons and neutrons as discussed in Section 1.4.

Figure 4.31 shows the 3He and 3H charge form factors plotted together. Notice

that the first diffractive minimum for 3He comes before the first 3H minimum. As

discussed in Section 1.4 this indicates that 3He has a larger charge radius than 3H. This
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Figure 4.30: 3H Fch at Q2 = 0. This plot shows the 3H charge form factor near Q2

= 0. The red line of the new form factor fit has a Y -intercept ≈ 9% greater than unity
unlike the older blue line fit from [29]. This different intercept significantly changes
the charge radius extracted for 3H by altering the slope at Q2 = 0.

is because 3He has a stronger repulsive Coulomb force than 3H which pushes the radius

further out against the binding strong force. We can use Equation 1.12 to estimate

what the charge radii would be if these nuclei could be modelled as homogeneous

hard spheres of charge. The first minimum for 3He is located at Q2 ≈ 11 fm−2 which

estimates a charge radius of 4.5√
11 fm−2

= 1.36 fm. Whereas, the first minimum for 3H

is located at Q2 ≈ 13 fm−2 which estimates a charge radius of 4.5√
13 fm−2

= 1.25 fm.

The new fits found a 3He charge radius of 1.90 fm, and a 3H charge radius of 2.02

fm (remember there is significant uncertainty on the 3H charge radius as discussed in

4.3.5). These larger radii show that these nuclei are not simply hard spheres of charge.

In reality the charge densities fall off more gradually with the radius as seen in Figure

4.33.

We also see that the new fits find a larger charge radius for 3H than 3He. This is

in spite of the fact that 3H has a later first diffractive minimum than 3He indicating

that the 3H charge radius should be smaller. We know that the 3H charge radius
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Figure 4.31: Fch Comparison This plot shows the new representative charge form
factor fits for 3He (red line) and 3H (blue line). Fch is only plotted up to Q2 = 35
fm−2 since beyond this range the individual fits begin to diverge.

looks artificially large due to not forcing the
∑
Qich = 1 as discussed in Section 4.3.7.

This is because the
∑
Qich changes the slope of the form factor near Q2 = 0, but the

location of the first diffractive minima are barely affected by the
∑
Qich . This means

that the relative locations of the first 3He and 3H minima still accurately reflect the

relative sizes of the charge radii (i.e. that the 3He charge radius is larger than the 3H

charge radius). This same comparison is also shown for the magnetic form factors in

Figure 4.32. While this analysis did not study magnetic radii, Figure 4.32 shows that

the 3He magnetic radius should be larger than that of the 3H magnetic radius.

Lastly, we can compare the charge densities of 3He and 3H as in Figure 4.33. We

see that there is more total electric charge for 3He than 3H. This is clearly due to 3He

having two protons and 3H only having one. Integrating over the total charges for

each nuclei one finds that 3He has a total charge of 2.01e, and 3H has a total charge of

1.09e with e being the elementary charge. These values are slightly higher than we

expect from the atomic numbers, but this is again a consequence of not forcing the∑
Qich to unity. We also see that the charge density of 3He extends out beyond that
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Figure 4.32: Fm Comparison This plot shows the new representative magnetic form
factor fits for 3He (red line) and 3H (blue line). Fch is only plotted up to Q2 = 35
fm−2 since beyond this range the individual fits begin to diverge.

of 3H.

Figure 4.33: Charge Density Comparison This plot shows the new representative
charge density fits for 3He (red line) and 3H (blue line). The units of the Y -axis are
the elementary electron charge per cubic fermi.
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The 3He plateau region near Q2 = 0 is wider than the corresponding plateau in 3H

indicating that there is a larger region of near constant charge density at the center of

the 3He nucleus than the 3H nucleus. (However, there is more uncertainty on the 3H

charge density near Q2 = 0 as seen in Figure 4.16b which means a range of plateau

shapes are possible for 3H). While it is clear that the different Coulomb forces in the

two nuclei cause some differences, the total shapes of the form factors and charge

densities are quite similar due to the mirror nuclei having the same ground state

shell-model states.
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Chapter 5

Conclusions

A new 3He elastic cross section was extracted from JLab Hall A experiment E08-

014. This required isolating the elastically scattered electrons from a large quasielastic

background. This analysis found an elastic electron yield of 627 electrons. The small

number of elastic events contributed strongly to the uncertainty in this new cross

section. The elastic electron yield was simulated using the Monte Carlo SIMC which

contained an older model of elastic 3He form factors from [29]. The elastic SIMC

results were then summed with a fit of the quasieastic background of the experimental

data so as to be comparable to the full experimental yield (elastic and quasielastic

events). The SIMC yield was then scaled to match the experimental yield so that

SIMC would produce the experimental cross section. Bin centering corrections were

then applied to find the Q2 at which to place the new cross section, and finally the

various sources of uncertainty were compiled. This resulted in a new 3He elastic cross

section measurement of 1.335 × 10−6 µb/sr ± 0.086 × 10−6 µb/sr at a Q2 value of

34.19 fm−2.

The world data for both 3H and 3He elastic cross sections were then collected with

the addition of new JLab high Q2 data and this analysis’ cross section. These cross

sections were then fit with a sum of Gaussians parametrization which allowed the

charge and magnetic form factors to be extracted. Representative charge and magnetic

form factor parametrizations were chosen from the center of each set of new SOG form
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factor fits for 3H and 3He. Error bands were then defined about these representative

fits spanning the width of all possible ‘good’ SOG fits. Figure 4.20 shows the new

representative form factor fits for 3H and the fit parameters are given in Table 4.9.

Figure 4.8 shows the new representative form factor fits for 3He and the fit parameters

are given in Table 4.6.

The charge and magnetic form factors for 3H remained consistent with past fits from

[29] since no new data has been added to the world data yet. The charge form factor

for 3He also remained unchanged with past fits since there is an abundance of excellent

data influencing Fch. The magnetic form factor for 3He did change significantly with

the addition of new high Q2 data. The first diffractive minimum in Fm shifted higher

in Q2 by several fm−2, and the magnitude of Fm decreased somewhat after the first

minimum. Overall, our knowledge of the form factors declines considerably at higher

Q2 (< ≈ 25-30 fm−2).

The new fits were compared to past fits of the data from Amroun et al. [29] and

theory predictions from Marcucci et al. [56]. The 3H charge form factor fits and theory

predictions can be found in Figure 4.28, and the 3H magnetic form factor fits and

theory predictions can be found in Figure 4.29. The 3He charge form factor fits and

theory predictions can be found in Figure 4.25, and the 3He magnetic form factor fits

and theory predictions can be found in Figure 4.26. The new form factor fits broadly

agreed with the past Amroun fits except for the shift in the 3He magnetic form factor

discussed above. Theory is doing a good job predicting the charge form factors using

a ‘conventional’ approach which accounts for two and three-body nucleon interactions

and relativistic corrections. χEFT predictions are also often successful at predicting

the charge form factors. However, theory struggles to predict the magnetic form factors

of either 3H or 3He.

Charge densities were then calculated along with charge radii for both targets using

the new form factor fits. The average charge radius for 3He was found to be 1.90 fm

with a standard deviation of 0.00144 fm. This value is in decent agreement with past

measurements (Saclay 1.96 fm ± 0.03 fm and Bates 1.87 fm ± 0.03 fm). However,
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the average charge radius for 3H was found to be 2.02 fm with a standard deviation

of 0.0133 fm. This value is much larger than past measurements (Saclay 1.76 fm ±

0.09 fm and Bates 1.68 fm ± 0.03 fm). Recall that there is an additional uncertainty

on each of the charge radius results due to not forcing the
∑
Qi to equal unity as

discussed in Section 4.3.3, and this additional uncertainty is much larger for 3H. Not

restricting the free parameters in this manner caused the magnitude of the negative

slope of the 3H Fch at a Q2 of zero to increase causing a larger radius to be found, but

this choice also gives us another method to evaluate how well the new fits comply with

our physical expectation that
∑
Qich = 1 as discussed in Section 4.2. Unfortunately,

this analysis was unable to quantify the additional uncertainty on the charge radii due

to not forcing the
∑
Qich = 1, but if this uncertainty were accounted for the 3H results

in particular would likely be in much better agreement with past measurements.

The updated representative form factors were then used to replace the older

parametrization of the form factors in SIMC. Using the updated SIMC Monte Carlo

the 3He elastic cross section from experiment E08-014 was recalculated using the elastic

electron yield from the modified SIMC code. These two cross section values, the newer

and older parametrizations, should be in agreement with one another using the cross

section extraction technique discussed in Chapter 3. In fact, the updated form factor

SIMC model finds a cross section of 1.345 × 10−6 µb/sr ± 0.086 × 10−6 µb/sr at a

Q2 value of 34.19 fm−2 as opposed to the older model which estimated 1.335 × 10−6

µb/sr.

Going forward, there are several logical extensions to this work. It should be

relatively straightforward to expand the fitting code to fit the cross sections of other

light nuclei. If the code were to be expanded to heavier nuclei a full phase shift

correction would need to be applied in place of Q2
eff . Performing these fits with

different functions like Fourier-Bessel functions would make for an interesting point

of comparison to the SOG fits. Collecting more high Q2 and back angle data would

considerably improve our understanding of the form factors, especially Fm. JLab’s

Hall A is well equipped to make these measurements with its maximum back angle of
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150◦ and maximum beam energy of 11 GeV.

The discrepancy between theory and experiment on the location of the first diffrac-

tive minimum for the 3He Fm could also be resolved by JLab. By performing an

asymmetry measurement using a polarized 3He target and a polarized electron beam

the location of the Fm minimum can be found. This is because the asymmetry will flip

sign when passing the diffractive minimum. This asymmetry measurement is given in

Equation 5.1, where N+ is the normalized counting rate for positive beam helicity and

N− is the normalized counting rate for negative beam helicity [57]. This experiment

would determine whether theory is wrong, experiment is wrong, or both are wrong on

the location of the 3He magnetic form factor’s first diffractive minimum.

Ameas =
N+ −N−

N+ +N−
(5.1)
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