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Abstract

We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution func-
tions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions
and identify those that contain the invariant amplitude determining the gluon PDF in the light-cone z2 → 0 limit.
One-loop calculations have been performed in the coordinate representation and in an explicitly gauge-invariant
form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of the ln

(
−z2

)
-dependence at short

distances z2. The UV terms cancel in the reduced Ioffe-time distribution (ITD), and we obtain the matching relation
between the reduced ITD and the light-cone ITD. Using a kernel form, we get a direct connection between lattice
data for the reduced ITD and the normalized gluon PDF. We also show that our results may be used for a rather
straightforward calculation of the one-loop matching relations for quasi-PDFs.

1. Introduction

Lattice calculations of parton distribution functions
(PDFs) are now a subject of considerable interest and
efforts (see Ref. [1] for a recent review and references
to extensive literature). Modern efforts aim at the ex-
tractions of PDFs f (x) themselves rather than their xN

moments. On the lattice, this is possible if one starts
with equal-time correlators, the idea put forward in
Refs. [2, 3] and emphasized by X. Ji in the paper [4]
that strongly stimulated further development. Its ba-
sic concept is a “parton quasi-distribution” (quasi-PDF)
Q(y, p3) [4, 5], and usual PDFs are obtained from the
large-momentum p3 → ∞ limit of quasi-PDFs.

Other approaches, such the “good lattice cross sec-
tions” [6, 7], the Ioffe-time analysis of equal-time cor-
relators [3, 8, 9] and the pseudo-PDF approach [10, 11,
12] are coordinate-space oriented, and extract parton
distributions taking the short-distance z3 → 0 limit.

Both the p3 → ∞ and z3 → 0 limits are singular,
and one needs to use matching relations to convert the
Euclidean lattice data into the usual light-cone PDFs.
In the quasi-PDF approach, such relations were studied
for quark [4, 13, 14, 15] and gluon PDFs [16, 17, 18],
for pion distribution amplitude (DA) [19] and general-
ized parton distributions (GPDs) [19, 20, 21].

Within the pseudo-PDF approach, the matching rela-
tions were derived for non-singlet PDFs [22, 23, 24, 25,
15]. The strategy of the lattice extraction of non-singlet
GPDs and the pion DA using the pseudo-PDF meth-
ods was outlined in a recent paper Ref. [26], where
the matching conditions for these cases have been also
derived. In the present paper, our main goal is to de-
scribe the basic points of the pseudo-PDF approach to
extraction of unpolarized gluon PDFs, and also to find

one-loop matching conditions.
In the gluon case, the calculation is complicated

by strict requirements of gauge invariance. In this
situation, a very effective method is provided by the
coordinate-representation approach of Ref. [28]. It is
based on the background-field method and the heat-
kernel expansion. It allows, starting with the original
gauge-invariant bilocal operator, to find its modifica-
tion by one-loop corrections. The results are obtained
in an explicitly gauge-invariant form.

In this approach, there is no need to specify the na-
ture of matrix element characteristic of a particular par-
ton distribution. This means that one and the same
Feynman diagram calculation may be used both for
finding matching conditions for PDFs, given by for-
ward matrix elements, and for DA’s and GPDs corre-
sponding to non-forward ones (see Ref. [26] for an il-
lustration of how this works in case of quark operators).

The paper is organized as follows. In Section 2, we
analyze the kinematic structure of the matrix elements
of the gluonic bilocal operators, and identify those that
contain information about the twist-2 gluon PDF.

Then we discuss one-loop corrections. In Section 3,
we analyze the gauge-link self-energy contribution and
specific properties of its ultraviolet (UV) and short-
distance behavior. Our results for the vertex corrections
to the gluon link are given in Section 4 in the form that
is valid both in forward and non-forward cases. The
“box” diagram is discussed in Section 5. Since our
results in this case are rather lengthy, we present just
some of them, and in the forward case only. The gluon
self-energy corrections are discussed in Section 6.

The subject of Section 7 is the structure of pertur-
bative evolution of the gluon operators and matching
conditions. Section 8 contains a summary of the paper.
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2. Matrix elements

The nucleon spin-averaged matrix elements for op-
erators composed of two-gluon-fields (with all four in-
dices non-contracted) are specified by

Mµα;λβ(z, p) ≡ 〈p|Gµα(z) Ẽ(z, 0; A)Gλβ(0)|p〉 , (2.1)

where Ẽ(z, 0; A) is the standard 0 → z straight-line
gauge link in the gluon (adjoint) representation

Ẽ(z, 0; A) ≡ P exp
[
−ig zσ

∫ 1

0
dt Ãσ(tz)

]
. (2.2)

The tensor structures for a decomposition over invariant
amplitudes may be built from two available 4-vectors
pα, zα and the metric tensor gαβ. Incorporating the an-
tisymmetry of Gρσ with respect to its indices, we have

Mµα;λβ(z, p) =(
gµλpαpβ − gµβpαpλ − gαλpµpβ + gαβpµpλ

)
Mpp

+
(
gµλzαzβ − gµβzαzλ − gαλzµzβ + gαβzµzλ

)
Mzz

+
(
gµλzαpβ − gµβzαpλ − gαλzµpβ + gαβzµpλ

)
Mzp

+
(
gµλpαzβ − gµβpαzλ − gαλpµzβ + gαβpµzλ

)
Mpz

+
(
pµzαpλzβ − pαzµpλzβ − pµzαpβzλ + pαzµpβzλ

)
Mppzz

+
(
gµλgαβ − gµβgαλ

)
Mgg , (2.3)

where the amplitudesM are functions of the invariant
interval z2 and the Ioffe time [27] (pz) ≡ −ν (the minus
sign is introduced for further convenience).

Since the matrix element should be symmetric with
respect to interchange of the fields (which amounts to
{µα} ↔ {λβ} and z → −z), the functions Mpp, Mzz,
Mgg, Mppzz and Mpz − Mzp are even functions of ν,
whileMpz +Mzp is odd in ν.

The usual light-cone gluon distribution is obtained
from the combination gαβM+α;+β(z, p), with z taken in
the light-cone “minus” direction, z = z−. Then

gαβM+α;+β(z−, p) = 2p2
+Mpp(ν, 0) , (2.4)

i.e., the PDF is determined by theMpp structure,

Mpp(ν, 0) =
1
2

∫ 1

−1
dx e−ixνx fg(x) . (2.5)

Thus, we should choose the operators with the sets
{µα; λβ} that containMpp in their parametrization.

Note that it is the density of the momentum
G(x) ≡ x fg(x) carried by the gluons rather than their
number density fg(x) that is a natural quantity in this
definition of the gluon PDF. In the local z− = 0 (or
ν = 0) limit, the x-integral gives the fraction of the
hadron’s plus momentum carried by the gluons. In the
absence of gluon-quark transitions, this fraction is con-
served, which puts a restriction on the gg-component of
the Altarelli-Parisi kernel. Namely, it should have the
plus-prescription property when applied to G(x).

Due to antisymmetry of Gρσ with respect to its in-
dices, the values α = + and β = + are excluded from the
summation in Eq. (2.4). Furthermore, since g−− = 0,
the combination gαβM+α;+β(z, p) includes only summa-
tion over transverse indices i, j = 1, 2, i.e. reduces to
gi jM+i;+ j(z, p) ≡ M+i;i+(z, p) (we switched here to Eu-
clidean summation over i), for which we have

M+i;i+ = M0i;i0 + M3i;i3 + (M0i;i3 + M3i;i0) . (2.6)

In the local z3 = 0 limit, these three combinations
are proportional to E2

⊥, B2
⊥ and the third component

(E × B)3 of the Poynting vector, respectively.
The decomposition of these combinations (with sum-

mation over i) in the basis of theM structures is

M0i;i0 =2p2
0Mpp + 2Mgg , (2.7)

M3i;i3 =2p2
3Mpp + 2z2

3Mzz

+ 2z3 p3

(
Mzp +Mpz

)
− 2Mgg , (2.8)

M0i;i3 =2p0

(
p3Mpp + z3Mpz

)
, (2.9)

M3i;i0 =2p0

(
p3Mpp + z3Mzp

)
. (2.10)

All of them contain the Mpp function defining the
gluon distribution, though with different kinematical
factors. Unfortunately, none of them is justMpp: they
all contain contaminating terms. Moreover, the M3i;i3
matrix element (proposed originally [4] for extractions
of the gluon PDF on the lattice) contains three contam-
inations, while the others have just one addition. In
particular, the matrix element M0i;i0 hasMgg as a con-
taminating term. It is easy to see that

M ji; ji ≡ 〈p|G ji(z)G ji(0) |p〉 = 2Mgg , (2.11)

where the summation over both i and j is assumed.
Hence, the combination

M0i;i0 − M ji; ji =2p2
0Mpp (2.12)

may be used for extraction of the twist-2 functionMpp.
Combining together matrix elements of different

types, one should take into account that, off the light
cone, these matrix elements have extra ultraviolet di-
vergences related to presence of the gauge link. Due to
local nature of ultraviolet divergences, each matrix el-
ement, for any set of its indices {µα; λβ}, is multiplica-
tively renormalizable with respect to these divergences
[29]. However, choosing different sets of {µα; νβ}, we
get, in general, different anomalous dimensions.

Thus, it is not evident a priori which linear com-
binations of these matrix elements are multiplicatively
renormalizable. In Ref. [30], it was established that
the combinations represented in Eq. (2.6), namely,
M0i;i0, M3i;i3, M0i;i3 + M3i;i0 (and also M0i;i3 − M3i;i0),
with summation over transverse indices i, are each mul-
tiplicatively renormalizable at one loop level.

Furthermore, the combination Gi jGi j (with summa-
tion over transverse i, j) equals to 2G12G12, whose ma-
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trix elements are multiplicatively renormalizable. As
we will see, it has the same one-loop UV anomalous di-
mension as M0i;i0, hence the combination of Eq. (2.12)
is multiplicatively renormalizable at one loop level.

The combination gαβM3α;3β, containing a covariant
summation over α and β, was also found to be multi-
plicatively renormalizable. It is given by

gαβM3α;3β =
(
2p2

3 − m2
)
Mpp + 3z2

3Mzz

+ 3p3z3

(
Mzp +Mpz

)
+ p2

0z2
3Mppzz − 3Mgg , (2.13)

and has the largest number (four) of contaminations.
The function gαβM0α;0β, also involving a covariant

summation, was used in the first attempt [31] of the
lattice extraction of the gluon PDF. However, as noted
in Ref. [30], it is not multiplicatively renormalizable.

In any theory with a dimensionless coupling con-
stant, the matrix elements M(z, p) contain ∼ ln

(
−z2

)
terms corresponding to perturbative (or “DGLAP”
for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [32, 33,
34]) evolution. One may wonder which combinations
have a diagonal DGLAP evolution at one loop.

To answer these questions, we have calculated the
modification of the original bilocal operator by one-
loop gluon exchanges.

3. Link self-energy contribution and ultraviolet di-
vergences

The simplest diagram corresponds to the self-energy
correction for the gauge link (see Fig. 1). Its calculation
is the same as in case of the quark bilocal operators
(see, e.g., Ref. [23]). At one loop, one should just the
change the color factor CF → CA. Thus, we have

ΓΣ(z) =(ig)2 CA
1
2

∫ 1

0
dt1

∫ 1

0
dt2 zµzν Dc

µν[z(t2 − t1)] ,

(3.1)

where Dc
µν(z) = gµν/4π2z2 is the Feynman-gauge gluon

propagator in the coordinate representation. The result-
ing integrals over the link parameters t1, t2∫ 1

0
dt1

∫ 1

0

dt2
(t2 − t1)2 (3.2)

diverge when t1 ∼ t2, i.e., when the endpoints t1z and t2z
of the gluon propagator are close to each other. So, one
may suspect that this divergence has an ultraviolet ori-
gin. To see that this is the case, we use the dimensional
regularization (DR) [35] in the UV region, switching to
d dimensions. Then the gluon propagator in the coordi-
nate space has an extra factor (−z2)2−d/2. This results in
an extra (t2− t1)2−d/2 factor in Eq. (3.2), and the integral
there converges for sufficiently small d.

To preserve gauge invariance, our calculations were
made using massless gluons and the dimensional reg-
ularization. However, in case of the link self-energy

z t1z t2z 0

Figure 1: Self-energy-type correction for the gauge link.

diagram, the use of DR (which is basically just a mathe-
matical trick) is rather misleading in a couple of points.

The relevant subtleties may be illustrated by using
the Polyakov prescription 1/z2 → 1/(z2 − a2) for the
gluon propagator in the coordinate representation [36]
(see also Refs. [37, 23]). It softens the gluon propaga-
tor at intervals −z2 . a2, and eliminates its singularity
at z2 = 0. In this respect, it is similar to the UV regu-
larization produced by a finite lattice spacing. Then

ΓΣ(z, a) = − g2 CA
z2

8π2

∫ 1

0
dt1

∫ 1

0

dt2
z2(t2 − t1)2 − a2 .

(3.3)

The regularized integral vanishes on the light cone
z2 = 0 and converges for spacelike z. Taking z = z3
and calculating the integrals gives [37, 23]

ΓΣ(z3, a) = −CA
αs

2π

 2
z3

a
tan−1

( z3

a

)
− ln

1 +
z2

3

a2

 .
(3.4)

The result contains a linear ∼ 1/a divergence that is
missed if one uses DR. Furthermore, for a fixed a and
small z3 it behaves like z2

3/a
2, i.e., ΓΣ(z, a) vanishes for

z3 = 0, as expected: there is no link if z3 = 0. It also
vanishes on the light cone z2 = 0.

The fact that ΓΣ(z3 = 0, a) = 0 means that this term
gives no corrections to the energy-momentum tensor
(EMT) for a fixed a. Since the matrix element of the
EMT gives the fraction of the hadron momentum car-
ried by the gluons, the link self-energy correction does
not change this fraction. This is natural phenomenon in
the absence of the gluon-quark transitions.

However, if one formally takes the a → 0 limit for
a fixed z3 in Eq. (3.4), then ln

(
1 + z2

3/a
2
)

converts into

the expression ln
(
z2

3/a
2
)

singular for z3 = 0. Similarly,
using the DR, one faces an outcome proportional to

(−z2µ2
UV)εUV/εUV = 1/εUV + ln

(
−z2µ2

UV

)
+ . . . , (3.5)

where µUV is the scale accompanying this UV dimen-
sional regularization. Thus, one may apparently con-
clude that, in addition to the UV divergence, this dia-
gram contains a singularity on the light cone z2 = 0.

For this reason, in our DR results we will explicitly
separate the z2-dependence induced by the UV singular
terms (that actually vanish on the light cone if one uses
a more physical regularization, such as lattice spacing),
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and that present in the DGLAP-evolution logarithms
ln

(
−z2µ2

IR

)
, where µIR is the scale associated with the

DR regularization of the collinear singularities.
The main difference is that if, instead of DR, one reg-

ularizes collinear singularities by using a physical IR
cut-off Λ (like nonzero gluon virtuality or gluon mass),
the one-loop result, proportional to the modified Bessel
function K0(

√
−z2Λ2), remains singular for z2 = 0, un-

like the UV-induced logarithm ln
(
1 − z2/a2

)
.

Only the UV singularities are present in case of
the link self-energy diagram. Its correction to the
Gµα(z)Gλβ(0) operator is given by

−
g2Nc

4π2[(−z2µ2
UV + iε)]

d
2−2

Γ
(
d/2 − 1

)
(3 − d)(4 − d)

Gµα(z)Gλβ(0) ,

(3.6)

where the 1/(3−d)(4−d) factor results from the integral∫ 1

0
dt1

∫ t1

0
dt2 (t1 − t2)2−d =

1
(3 − d)(4 − d)

produced by the DR of the gluon propagator
Dc(t1z − t2z).

4. Vertex contributions

There are also vertex diagrams involving gluons that
connect the gauge link with the gluon lines, see Fig. 2.
Clearly, the gluon exchange produces a correction just
to one of the fields in the Gµα(z)Gλβ(0) operator, while
another remains intact.

4.1. UV divergent term
In particular, the diagram 2a changes Gµα(z) into the

sum of two terms. One of them contains UV diver-
gences, while the other one is UV finite.

0 0z z tztz

a) b)

Figure 2: Vertex diagrams with gluons coming out of the gauge link.

The first term is given by

Ncg2

8π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

∫ 1

0
du

(
u3−d − u

)
×

(
zαGzµ(ūz) − zµGzα(ūz)

)
, (4.1)

where Gzσ ≡ zρGρσ and ū ≡ 1 − u. The overall
d-dependent factor here is finite for d = 4, but the

u-integral diverges at the lower limit. Thus, just like in
the case of the link self-energy diagram, the divergence
appears in the integral over a dimensionless parameter
t specifying the location of the endpoint of the gluon
line on the gauge link. The divergence disappears if
one uses the UV regularization by taking d = 4− 2εUV,
which converts it into a pole at εUV = 0.

Since the ultraviolet divergence comes from the
u→ 0 integration, we can isolate it by taking ū = 1
in the gluonic field, which gives

Ncg2

4π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

(
1

4 − d
−

1
2

)
×

(
zαGzµ(z) − zµGzα(z)

)
. (4.2)

The remainder is given by

Ncg2

8π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

∫ 1

0
du

[
u3−d − u

]
+(0)

×
(
zαGzµ(ūz) − zµGzα(ūz)

)
, (4.3)

where the plus-prescription at u = 0 is defined as∫ 1

0
du

[
f (u)

]
+(0) g(u) =

∫ 1

0
du f (u)[g(u) − g(0)] .

(4.4)

At first sight, the field Gµα(z) = zαGzµ(z) − zµGzα(z)
accompanying the UV pole in Eq. (4.2) does not look
like the field Gµα(z) in the original operator. Thus, one
may worry that we are not dealing here with a multi-
plicative UV renormalization. So, let us perform an ex-
plicit check for our particular case when z = {0, 0, 0, z3}.

To begin with, we see that Gµα(z) = 0 when both
µ and α are transverse indices i, j. This corresponds
to a multiplicative renormalization with the anomalous
dimension (AD) equal to zero.

Take now µ = 0. Then G0α(z) = zαGz0(z), so that
G0i(z) = 0 while G03(z) = z2

3G30(z) = −z2
3G03(z). Fi-

nally, if µ = 3, then G3α(z) = −z3Gzα(z) = −z2
3G3α(z),

which gives G3i(z) = −z2
3G3i(z) and G30(z) = −z2

3G30(z)
(same result as above).

Thus, for all the cases, Gµα(z) is a multiple of
Gµα(z). Namely, when one of the indices equals 3, we
have a nontrivial anomalous dimension, since G3α(z) =

−Gα3(z) = −z2
3G3α(z). In all other cases, we have a triv-

ial (vanishing) AD, since Gi j(z) = 0 and G0i(z) = 0.
As mentioned, the link self-energy diagram has both

linear and logarithmic UV divergences, while the ver-
tex diagrams have just logarithmic UV divergences.
Adding the logarithmic UV divergence coming from
the link self-energy to the UV divergences of the ver-
tex diagrams, we find, in particular, that the matrix ele-
ments M0i;i0 and Mi j;i j have the logarithmic AD due to
the link self-energy diagram only. Call it γ. Comparing
overall factors in Eqs. (3.6) and (4.2), we conclude that
M3i;i3 has the logarithmic AD equal to 2γ and matrix
elements M0i;i3 ± M3i;i0 have the logarithmic AD equal
to 3

2γ. In addition, all of these structures acquire at one
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loop the same factor due to the linear UV singularity.

4.2. Evolution term

Our calculations show that the second, UV finite
term from the diagram 2a is given by

Ncg2

8π2

Γ(d/2 − 2)
(d − 3)(−z2)d/2−2

∫ 1

0
du

[
u3−d − 1

]
+(0)

×Gµα(ūz)Gλβ(0) . (4.5)

Note that the gluonic operator in Eq. (4.5) has the same
tensor structure as the original operator Gµα(z)Gβν(0)
differing from it just by rescaling z → ūz. There is no
mixing with operators of a different type.

The u-integral in this case does not diverge for d = 4,
but the overall Γ(d/2 − 2) factor has a pole 1/(d − 4).
It corresponds to a collinear divergence because all the
propagators correspond to massless particles. Taking a
nonzero gluon mass λ, one would get a finite result con-
taining K0(

√
−z2λ) (see, e.g., Ref. [23] for a discussion

of the quark vertex diagram in a similar context).
Still, K0(

√
−z2λ) is only finite as far as z2 is finite.

The IR cut-off does not eliminate the logarithmic singu-
larity ln

(
−z2λ2

)
that K0(

√
−z2λ) has on the light cone.

In the z = z3 case, z2
3 works like an ultraviolet cut-off

for this singularity. This may be contrasted with the UV
divergent contributions, where the UV cut-off is pro-
vided by the Polyakov regularization parameter a (or
lattice spacing aL) while z2

3 appears on the IR side of
the relevant logarithm ln

(
z2

3/a
2
)
.

5. Box diagram

There is also a contribution given by the diagram 3
containing a gluon exchange between two gluon lines.
This diagram does not have UV divergences, but it has
DGLAP-type ln z2

3 contributions. In contrast to the ver-
tex diagrams, the original Gµα(z)Gνβ(0) operator gener-
ates now a mixture of bilocal operators corresponding
to various projections of Gµα(ūz)Gνβ(0) onto the struc-
tures built from vectors p, z and the metric tensor g.

In particular, in case of the original
〈p|G0i(z)G0i(0) |p〉 matrix element, the box di-
agram contribution is expressed through matrix
elements of 〈p|G0i(uz)G0i(0) |p〉, 〈p|G3i(uz)G3i(0) |p〉,
〈p|G30(uz)G30(0) |p〉 and 〈p|Gi j(uz)Gi j(0) |p〉 types.

z 0

Figure 3: Box diagram.

All these matrix elements also appear in the box dia-
gram if one starts with the 〈p|G3i(z)G3i(0) |p〉 matrix
element. Thus, in both cases we have a complicated
mixing of different types of operators.

The situation is simpler for matrix elements

M±03(z, p) ≡ 〈p|G0i(z)Gi3(0) ±G3i(z)Gi0(0) |p〉 . (5.1)

Namely, for M+
03(z, p) (or M−03(z, p)) combination,

the box diagram contribution is expressed through
M+

03(uz, p) (or M−03(uz, p)) only. However,

M−03 ≡ M0i;i3 − M3i;i0 =2p0z3

(
Mpz −Mzp

)
. (5.2)

does not contain the twist-2 functionMpp, and is of no
interest. For M+

03(z, p), the box contribution is given by

Ncg2Γ(d/2 − 1)

4π2 (
−z2)d/2−2

∫ 1

0
du

(
ūu +

2
3

ū3
)

M+
03(uz, p)

+
Ncg2Γ(d/2 − 2)

4π2 (
−z2)d/2−2

∫ 1

0
du [ū(1 + u2) − u]M+

03(uz, p) .

(5.3)

Here, the Γ(d/2 − 2) terms are singular for d = 4,
which results in ln

(
−z2

)
terms generating the DGLAP

evolution. The Γ(d/2 − 1) terms are singular for d = 2,
which corresponds to the fact that the gluon propagator
in two dimensions has a logarithmic ln

(
−z2

)
behavior in

the coordinate space. For d = 4, these terms are finite.
Note that, unlike the vertex part, the box contribution
does not have the plus-prescription form.

6. Gluon self-energy diagrams

One may expect that the plus-prescription form
would appear after the addition of the gluon self-energy
diagrams, one of which is shown in Fig. 4a. These dia-
grams have both the UV and collinear divergences. On
the lattice, the UV divergence is regularized by the lat-
tice spacing. In a continuum theory, one may use the
Polyakov prescription 1/z2 → 1/(z2 − a2) for the gluon
propagator. The collinear divergences may be regular-
ized by taking a finite gluon mass λ. The result is a
ln

(
a2λ2

)
contribution. However, it does not have the

z-dependence, and apparently cannot help one to build
the plus-prescription form for the ln z2

3 part of the box
contribution.

z 0

a)

z 0

b)

Figure 4: Gluon self-energy-type insertions into the right leg.
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A possible way out is to represent ln
(
a2λ2

)
as the dif-

ference ln
(
z2

3λ
2
)
− ln

(
z2

3/a
2
)

of the evolution-type loga-

rithm ln
(
z2

3λ
2
)

and a UV-type logarithm ln
(
z2

3/a
2
)
. The

latter can be added to the UV divergences of the di-
agrams 1 and 2 corresponding to link self-energy and
vertex corrections. The ln

(
z2

3λ
2
)

part is then added to
the evolution kernel.

To be on safe side with gauge invariance, we use
the dimensional regularization. Then the analog of the
ln

(
a2λ2

)
logarithm is a pole 1/(2 − d/2) sometimes

written as 1/εUV − 1/εIR. For our purposes, it is more
convenient to symbolically write it in a form similar
to ln

(
a2λ2

)
. Changing λ → µIR and a → 1/µUV we

get ln
(
µ2

IR/µ
2
UV

)
, and then split this into the difference

ln
(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

We should also take into account the diagrams (one
of them is shown in Fig. 4b) with an extra gluon line go-
ing out of the link-gluon vertex. The combined contri-
bution of the Fig. 4 diagrams and their left-leg analogs
is given by

g2Nc

8π2

1
2 − d/2

[
2 −

β0

2Nc

]
Gµα(z)Gλβ(0) , (6.1)

where β0 = 11Nc/3 in gluodynamics, so that
the terms in the square bracket combine into 1/6.
As discussed above, we will treat 1/(2 − d/2) as
ln

(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

7. When DGLAP is diagonal

The M+
03 combination defined by Eq. (5.1) contains

the twist-2 amplitudeMpp,

M+
03 ≡M0i;i3 + M3i;i0

= 4p0 p3Mpp + 2p0z3

(
Mpz +Mzp

)
, (7.1)

though with a higher-twist admixture Mzp +Mpz. In
the local limit, the relevant operator is proportional to
the 3rd component of the Poynting vector

S3 = (E × B)3 = E1B2 − B1E2 = −(G01G13 + G32G20) .

As already mentioned, the box part of the one-loop
correction to the matrix element M+

03(z3, p) has a simple
DGLAP structure (5.3). Combining all the gluon one-
loop corrections to it, we get, in the MS scheme,

g2Nc

8π2

∫ 1

0
du

{[(
3
2
−

1
6

)
log

(
z2

3µ
2
UVe2γE/4

)
+ 2

]
δ(ū)

−2 log
(
z2

3µ
2
IRe2γE/4

) [ (1 − uū)2

ū

]
+

(7.2)

+

[
u − 3

u
ū
− 4

log(ū)
ū

]
+

+ 2
(
ūu +

2
3

ū3
)}

M+
03(uz, p) .

The first line here comes from the UV-singular con-
tributions. It contains the δ(ū) factor which reflects
the local nature of the UV divergences and converts

M+
03(uz, p) into M+

03(z, p). The second line contains the
Altarelli-Parisi (AP) kernel

Bgg(u) =2
[
(1 − uū)2

1 − u

]
+

. (7.3)

It has the plus-prescription structure reflecting the fact
that, in the local limit,Mpp(z, p) is proportional to the
matrix element of the gluon energy-momentum tensor.
From now on, “+” means the plus-prescription at 1.

The third line contains z3-independent terms com-
ing from the vertex diagrams (these have the plus-
prescription form) and from the box diagram. The latter
may be written as a sum of the term 2

(
ūu + 2

3 ū3
)
+

that
has the plus-prescription form and the term 2

3δ(ū) that
may be combined with the UV terms.

7.1. Reduced Ioffe-time distribution
The combination Mpz +Mzp is an odd function of

ν = z3 p3. Writing it as 2z3 p3m+
zp(ν, z2

3), we have

M+
03(z3, p) = 4p3 p0[Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3)] . (7.4)

Dividing out the kinematical factor 4p3 p0, we deal with

M̃pp(ν, z2
3) ≡ Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3) , (7.5)

which is a function of ν and z2
3. Now, just like in the

quark case considered in Refs. [10, 12], we can intro-
duce the reduced Ioffe-time distribution

M̃(ν, z2
3) ≡

M̃pp(ν, z2
3)

M̃pp(0, z2
3)
. (7.6)

Since M̃pp(ν, z2
3) is obtained from the multiplicatively

renormalizable combination M+
03, the UV divergent

Z(z2
3µ

2
UV ) factors generated by the link-related and

gluon self-energy diagrams cancel in the ratio (7.6).
Hence, the z2

3-dependence of the reduced pseudo-ITD
M̃(ν, z2

3) comes from the logarithmic DGLAP evolution
and higher-twist O(z2

3) effects. As a result, the denom-
inator factorM(0, z2

3) has no logarithmic evolution de-
pendence on z2

3.
Thus, neglecting O(z2

3) terms, we conclude that, in
the absence of the quark-gluon mixing, M̃(ν, z2

3) satis-
fies the evolution equation

d
d ln z2

3

M̃(ν, z2
3) = −

αs

2π
Nc

∫ 1

0
du Bgg(u)M̃(uν, z2

3)

(7.7)

with respect to z2
3. A similar (but more lengthy) equa-

tion may be written when the mixing is also taken into
account. We postpone the discussion of this subject to
a more detailed publication.

7.2. Matching relations
A disadvantage of the M+

03(z3, p) combination is that,
for kinematic reasons, it vanishes when p3 = 0 (see
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Eq. (7.4)). Thus, to extract M̃pp(ν, z2
3) for ν = 0, one

should make measurements of M+
03(z3, p) for a few low

values of p3 and divide p3 out of the results.
The combination M0i;i0 − Mi j;i j = 2p2

0Mpp of Eq.
(2.12), being proportional to p2

0, does not have this
problem. Furthermore, it gives the twist-2 ampli-
tude Mpp without contaminations. The amplitude
Mpp(ν, z2

3) obtained in this way may be used to form
the reduced pseudo-ITD M(ν, z2

3). Using the results
of our calculations for the one-loop corrections to
M0i;i0 and Mi j;i j, and keeping just the Mpp term in
the correction (while skipping the “higher twist” terms
Mzz,Mzp,Mpz,Mppzz) we obtain the matching relation

M(ν, z2
3) =

I(ν, µ2)
I(0, µ2)

−
αsNc

2π

∫ 1

0
du
I(uν, µ2)
I(0, µ2)

×
{
[ln

(
z2

3µ
2e2γE/4

)
+ 2] Bgg(u)

+4
[
log(ū)

ū

]
+(1)

+
2
3

[
1 − 6u − u3

]
+

 (7.8)

between the “lattice function” M(ν, z2
3) and the light-

cone ITD I(ν, µ2) related to the gluon PDF fg(x, µ2) by

I(ν, µ2) =
1
2

∫ 1

−1
dx eixν x fg(x, µ2) . (7.9)

Since x fg(x, µ2) is an even function of x, the real part of
I(ν, µ2) is given by the cosine transform of x fg(x, µ2),
while its imaginary part vanishes.

The factor I(0, µ2) has the meaning of the fraction of
the hadron momentum carried by the gluons,

I(0, µ2) =

∫ 1

0
dx x fg(x, µ2) ≡ 〈x〉µ2 . (7.10)

Thus, Eq. (7.8) allows to extract the shape of the gluon
distribution. Its normalization, i.e., the value of 〈x〉µ2 .
should be found by an independent lattice calculation,
similar to that performed in Ref. [38].

Substituting Eq. (7.9) into the matching condition
(7.8), we can rewrite the latter in the kernel form

M(ν, z2
3) =

∫ 1

0
dx

x fg(x, µ2)
〈x〉µ2

R(xν, z2
3µ

2) , (7.11)

where the kernel R(xν, z2
3µ

2) is given by

R(y, z2
3µ

2) = cos y −
αs

2π
Nc

{[
ln

(
z2

3µ
2 e2γE+1

4

)
+ 2

]
RB(y)

+ RL(y) + RC(y)
}
, (7.12)

with RB(y) being the cosine Fourier transform of the AP
kernel

RB(y) =

∫ 1

0
du Bgg(u) cos(uy) . (7.13)

Its calculation is straightforward, and the result is ex-

pressed in terms of cos y, sin y and the integral cosine
Ci(y) and sine Si(y) functions. The latter come from the
1/(1 − u) part of B(u), which gives∫ 1

0
du

[
1

1 − u

]
+

cos(uy) = sin(y)Si(y)

+ cos(y) [Ci(y) − log(y) − γE] . (7.14)

Similarly, RL(y) is the cosine transform of the
4[(ln(1 − u)/(1 − u)]+ term. It is given by a hyperge-
ometric function

RL(y) = 4 Re
[
iyeiy

3F3(1, 1, 1; 2, 2, 2;−iy)
]
. (7.15)

The RC(y) term is given by the cosine transform of
the remaining polynomial, and the expression for it in-
volves cos y, sin y and inverse powers of y.

The important point is that R(y, z2
3µ

2) is given by an
explicit perturbatively calculable expression. Using it
and Eq. (7.11) one may directly relateM(ν, z2

3) and the
light-cone PDF fg(x, µ2). Then, assuming some param-
eterization for the fg(x, µ2) distributions, one can fit its
parameters and αs using Eqs. (7.11), (7.12) and the lat-
tice data for M(ν, z2

3). This procedure is essentially the
same as that used in the “good lattice cross sections”
approach [6, 7].

7.3. Matching relations for quasi-PDFs

The kernel relations (7.11), (7.12) directly connect
M(ν, z2

3) and fg(x, µ2). So, there is no need to introduce
intermediate functions, such as quasi-PDFs. Still, our
results for particular matrix elements, such as Eq. (7.2)
for M+

03(z3, p), may be used to get matching conditions
for quasi-PDFs [4], that are generically defined as

Q(y, p3) =
p3

2π

∫ ∞

−∞

dz3M(z3, p) e−iyp3z3 . (7.16)

To this end, one should write the amplitudes
M(z3, p) through the kernel relation (7.11) with
R(xν, z2

3µ
2) given in terms of p3 and z3, call it

J(x, p3, z3). The structure of its dependence on z3 at
one loop may be read off Eq. (7.2),

J1(x, p3, z3) = γU ln z2
3 + CU

+

∫ 1

0
du

[
ln z2

3 Bgg(u) + C(u)
]

eiuxp3z3 . (7.17)

The 1-loop quasi-PDF matching kernel is then given by

Z1(y, x, p3) =
p3

2π

∫ ∞

−∞

dz3 J1(x, p3, z3) e−iyp3z3 .

(7.18)

The CU and C(u) contributions of J1(x, p3, z3) produce
CUδ(y − x) and C(u)δ(y − ux) terms. Hence, the re-
sulting parts of Q(y, p3) are visible in the “canonical”
0 ≤ y ≤ 1 region only. However, the terms with ln z2

3
give nonzero contributions in the y > 1 region as well,
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namely

Z1(y, x, p3)|y>1 =
1
x

[
γU

η − 1
+

∫ 1

0
du

Bgg(u)
η − u

]
, (7.19)

where η = y/x. These contributions are completely de-
termined by the AP kernel Bgg(u) and the UV constant
γU . Using explicit form of Bgg(u), we find∫ 1

0
du

Bgg(u)
η − u

= Bgg(η) ln
η

η − 1

+
11
6

1
η − 1

+ η(2η − 1) +
11
3
. (7.20)

For large η, this expression tends to zero as O(1/η2).
It should be noted that such a behavior results from
any kernel B(u) that has the plus-prescription form.
This observation and the explicit expression given by
Eq. (7.20) may be used to check the gluon-gluon
matching kernels in Refs. [17, 18].

8. Summary.

In this paper, we have presented the results that form
the basis for the ongoing efforts to calculate gluon PDF
using the pseudo-PDF approach.

In particular, we gave a classification of possible
two-gluon correlator functions. We have identified
those of them that contain the invariant amplitude
Mpp(ν,−z2) that determines the gluon PDF in the light-
cone z2 → 0 limit. Since this limit is singular, one
needs the matching conditions that relateMpp(ν, z2

3) to
the light-cone PDF f (x, µ2).

To this end, using the method of Ref. [28], we
have performed calculations of the one-loop corrections
to the gauge-invariant correlator of two gluon field-
strength tensors, with all Lorentz indices explicit. To
preserve gauge invariance, we have used the dimen-
sional regularization.

Since the DR produces the same form ln z2
3µ

2 both
for logarithms related to the UV singularities and
for those reflecting the DGLAP evolution, we have
made an effort to separate these two sources of the
ln z2

3-dependence at small z2
3. When we form a re-

duced ITD M(ν, z2
3), the UV-related contributions are

canceled, and only the DGLAP-related terms remain in
the matching relation between the reduced ITD and the
light-cone ITD.

They may be also written in a kernel form (7.11) that
directly connects lattice data on M(ν, z2

3) with the nor-
malized gluon PDF x fg(x, µ2)/〈x〉µ2 . The average gluon
momentum fraction 〈x〉µ2 needs to be extracted from a
separate lattice calculation.

We have also demonstrated that our results may be
used for a rather straightforward calculation of the one-
loop corrections to quasi-PDFs, providing new insights
concerning their structure that may be used to check the
results for the gluon quasi-PDF matching conditions.

In a future publication, we plan to present more de-
tails of our calculations, and to give a complete result
for the box diagram, in particular for the non-forward
kinematics that are needed in lattice calculations of dis-
tribution amplitudes and GPDs. We also plan to include
calculations for gluon-quark and quark-gluon transi-
tions.
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