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Abstract of the Dissertation

Deep inelastic scattering from A = 3 nuclei:

Nucleon structure and the EMC effect

by

Tyler Thomas Kutz

Doctor of Philosophy

in

Physics

Stony Brook University

2019

The MARATHON experiment ran at Jefferson Laboratory in 2018, measuring deep in-
elastic scattering of 10.6 GeV electrons from the proton (p), deuterium (D), tritium (3H),
and helium-3 (3He). MARATHON’s experimental observables are cross section ratios, most
notably 3H/3He. This ratio of mirror nuclei is used for a novel extraction of the nucleon
structure function ratio F n

2 /F
p
2 with minimal nuclear corrections. Determining leading-twist

F n
2 /F

p
2 at high x provides important constrains on the ratio of nucleon valence quark distribu-

tions d/u. The ratios 3H/D and 3He/D allow a determination of the EMC effect in the light-
est nuclei sensitive to possible isospin dependence of nuclear effects. Using MARATHON’s
F n

2 /F
p
2 to correct for unequal number of protons and neutrons, the isoscalar EMC ratios

for tritium and helium-3 are obtained. Lastly, the D/p ratio allows a comparison of the
MARATHON experiment to SLAC measurements, and provides data to which the A = 3
ratios can be renormalized. The MARATHON results emphasize the importance of higher-
twist effects in extracting d/u from DIS measurements, and can help constrain said effects.
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Chapter 1

Introduction

Most ordinary matter in the universe is made up of hadrons, composite particles of quarks

bound by gluons. Notable among hadrons are the nucleons - protons and neutrons - which

are the constituents of atomic nuclei. The discovery of the proton and neutron in the early

20th century was largely driven by a desire to explain the structure of matter (in this case,

nuclei) in terms of fundamental constituents. It was not long before this same strategy to

describe the structure of hadrons led to the prediction and discovery of quarks.

1.1 Quarks, gluons, and QCD

Quarks were proposed independently by Murray Gell-Mann [1] and George Zweig [2] in

1964. The motivation for the quark model was to provide an underlying structure to the

proliferation of discovered hadrons, based on the flavor SU(3) symmetry group of the three

lightest quark flavors: up, down, and strange. Flavor SU(3) is not a fundamental symmetry

and was ultimately found to be broken. In 1968, pioneering experiments at the Stanford

Linear Accelerator (SLAC) found evidence for small, point-like constituents in the proton.

Due to initial hesitation that these point-like objects were the quarks of Gell-Mann and

Zweig, they were referred to as “partons”, a general term for hadronic constituents still used

today. In the subsequent decades, a total of six quark flavors were theorized and discovered.
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Flavor Mass Charge (e) Flavor quantum number

up (u) 2.16+0.49
−0.26 MeV +2

3
Iz = +1

2

down (d) 4.67+0.48
−0.17 MeV −1

3
Iz = −1

2

strange (s) 93+11
−5 MeV −1

3
Strangeness = -1

charm (c) 1.27± 0.02 GeV +2
3

Charm = +1

bottom (c) 4.18+0.03
−0.02 GeV −1

3
Bottom = -1

top (t) 172.9± 0.4 GeV +2
3

Top = +1

Table 1.1: Properties of the six known quarks.
All quarks have spin S = 1

2
and baryon number B = 1

3
. Produced from [3].

The properties of the known quarks are listed in Table 1.1.

The theory of quarks, gluons, and the strong interaction is quantum chromodynamics

(QCD), so named for the color charge carried by quarks and gluons. QCD arises from the

local invariance of the color SU(3) symmetry group. Each quark flavor belongs to the funda-

mental color triplet, where the three states are identified with three values of color charge:

red (r), green (g), and blue (b). Antiquarks are expressed in the conjugate representation,

with charges antired (r), antigreen (g), and antiblue (b). The massless gauge bosons of QCD,

the gluons, belong to the color octet, carrying both color and anticolor charge. The strong

interaction between quarks and gluons, sometimes called the “color force”, is mediated by

the exchange of gluons.

Color-charged particles are only observed as constituents of colorless objects, or more

precisely, in color singlet states. This is known as color confinement. This can be achieved

by combining one of each color or anticolor (rgb or rgb) to form hadrons with baryon number

B = 1, the baryons. Alternatively, combining color and anticolor (rr, gg, or bb) results in

hadrons with B = 0, the mesons. Exotic colorless states involving more than three quarks

are theoretically allowed.

QCD has many unique features. Its gauge bosons themselves carry color charge, meaning

2



that in addition to quark-gluon couplings, gluon-gluon couplings are also allowed. This is in

contrast to the photons of quantum electrodynamics (QED), which are electrically neutral

and cannot couple to themselves. At low energy scales typical of nuclei, the strong coupling

αs is of order unity. This precludes the traditional perturbative approach of quantum field

theory, which expands interactions in powers of the coupling. For α � 1, such as in QED,

such expansions rapidly converge. For α ≈ 1, they do not. This has led to the development of

lattice QCD, which carries out low-energy QCD calculations on a spacetime lattice, without

the need for a perturbative expansion. However, QCD is an asymptotically free theory.

As energy scales increase and length scales decrease, the running coupling becomes weaker,

eventually reaching αs � 1. This splits QCD into two regimes: a high-energy region where

perturbative techniques are valid, and a low-energy region where lattice calculations are

required.

1.2 Quarks in the nucleon

The nucleons are baryons, color singlet states formed by three quarks collectively carrying one

of each color charge. In the proton, these three quarks have flavor uud, and in the neutron,

udd. However, this simple picture belies the true nature of the nucleon’s parton structure.

The nucleons contain gluons, arising from both the exchange of gluons mediating the strong

interaction (responsible for binding the quarks), and from the perturbative emission of gluons

by quarks. These gluons can radiate additional gluons or split into quark-antiquark pairs.

Thus, the “valence” quarks composing the color singlet actually exist in a “sea” of radiated

gluons, quarks, and antiquarks.

Developing a rigorous description of the nucleons in terms of these quarks, antiquarks,

and gluons is currently an active area of research. How do properties of the nucleon, such

as mass and spin, emerge from partons? Of particular interest, and perhaps the most

accessible experimentally, are fractional momentum distributions of partons. That is, what

3



fraction of a nucleon’s momentum is carried by different types of partons? How does this

change when nucleons are bound inside a nucleus? The momentum distributions of free and

bound nucleons can provide important insight into the nature of QCD interactions. Precise

measurements of these momentum distributions are critical to unraveling the emergence of

nucleons and nuclei from QCD.

Illuminating this momentum structure, particularly in regions where a single quark carries

most of the nucleon momentum, is one of the goals of the MARATHON1 experiment, which

ran spring 2018 in Experimental Hall A at Jefferson Laboratory. MARATHON studied

high-energy scattering of electrons from hydrogen (proton), deuterium, tritium, and helium-

3. The experimental observables are cross section ratios between various pairs of these nuclei.

These ratios are sensitive to the parton structure of free nucleons, and how the structure

of nucleons is modified when bound in nuclei (known as the EMC effect). MARATHON

aims to directly extract (up to some theoretical model dependence) the ratio of free nucleon

structure functions F n
2 /F

p
2 from the tritium to helium-3 ratio, and to measure the EMC

effect in A = 3 nuclei with the ratios of tritium and helium-3 to deuterium. With input

from theory, F n
2 /F

p
2 can be used to determine d/u, the ratio of down to up quarks in the

nucleon. In addition to allowing the direct extraction of these quantities, the MARATHON

data will add to the global data set that is used by many to perform fits of theoretical or

phenomenological models to experimental data. This is particularly important for helium-3

and tritium, the lightest possible nuclei with mirror isospin symmetry. Tritium’s radioactive

nature complicates measurements, and therefore very few data on this nucleus currently

exist.

Chapter 2 will discuss theoretical and experimental aspects of deep inelastic scattering,

nucleon structure, and the EMC effect. Chapter 3 provides motivation for the MARATHON

experiment and describes the apparatus used to carry out the measurement. Chapter 4

details the analysis procedure, with the various cuts and corrections developed to extract

1An “acronym” loosely derived from: MeAsurement of the Fn
2 /F

p
2 , d/u RAtios and A = 3 EMC effect

in deep inelastic scattering off the Tritium and Helium mirrOr Nuclei.
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the cross section ratios. Finally, Chapter 5 will show the experimental results and subsequent

interpretation using input from theoretical models.
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Chapter 2

Nucleon structure

2.1 Deep inelastic scattering

Since the discovery of the atomic nucleus, scattering experiments continue to be the most

powerful tool for probing subatomic structure. A commonly used process is the electro-

magnetic scattering of an electron from a nucleus, where a beam of electrons incident on

target nuclei scatter via the exchange of a virtual photon. The electron-photon vertex is

well understood in QED, allowing clean separation of the nucleus-photon vertex and infor-

mation on nuclear structure contained therein. Given the relatively weak strength of QED

interactions, the process can be approximated by the exchange of a single photon, with only

a small correction required to account for higher-order processes.

Figure 2.1 depicts a typical scattering process of an electron from a nucleus A. The initial

and final electron four-momenta are k =
(
E, k

)
and k′ =

(
E ′, k

′
)

, respectively. The four-

momentum transfer between the electron and nucleus is carried by the photon, q = k − k′.

P is the four-momentum of the target nucleus; for a fixed-target experiment, P = (MA, 0),

where MA is the mass of the nucleus. The final hadronic state X is, in general, not the same

as the incoming nucleus A.
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e(k)

X(W)
A(P)

γ(q)

e′�(k′�)

Figure 2.1: Feynman diagram for DIS process

It is useful to define several Lorentz invariant quantities to describe the scattering process:

• ν = (q · P )/M = E − E ′ is the electron’s energy loss.

• Q2 = −q2 ≈ 4EE ′(1− cos θ) is the momentum transfer squared. The electron mass is

neglected, a valid approximation in the ultra-relativistic limit.

• W 2 = (P + q)2 = M2
A + 2MAν −Q2 is the mass of the recoiling system.

The sensitivity of a scattering process scales with the wavelength of the photon probe,

which is inversely proportional to the photons energy and momentum (ν and Q2). There-

fore, selecting processes with certain kinematics will change the effective degrees of freedom

observed in the interaction. Low-energy elastic processes, where the electron scatters from

the nucleus as a whole, are sensitive to the extended structure of the nucleus but not the

individual nucleons within. Quasielastic processes occur in the low-energy limit of inelastic

scattering, where the electron effectively scatters from quasi-free protons and neutrons. In-

elastic processes with sufficiently large energy and momentum transfer become sensitive to

the quarks and gluons within the nucleon. Here, it is common to rescale kinematic variables

in terms of the proton mass M , rather than the nuclear mass MA. These processes are re-

ferred to as deep inelastic scattering (DIS), as the exchanged photon is probing deep within

the nucleon (Q2 �M2) in highly inelastic processes (W 2 �M2).
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Inclusive Deep Inelastic Scattering (DIS)

Q
2 = �q

2 = 4EE 0
sin

2(
✓
2
)

⌫ = E � E
0

x =
Q

2

2M⌫
(Bjorken x)

W
2 = (q + p)2 = M

2 + Q
2(
1
x
� 1)

Inclusive: only the scattered electron are detected;
DIS: the scattering at large W

2 and large momentum transfer
MARATHON 4 / 39

Resonance DIS

Figure 2.2: Final-state mass W spectrum of electron-nucleon scattering. Produced from [4].

The differential proton cross section as a function of W is shown in Figure 2.2. The elastic

peak occurs at the proton mass, W ≈M . The resonance region contains peaks resulting from

discrete excited proton states. Beyond the resonances, the complicated multi-body debris

left by interactions with large W results in a smooth spectrum. This is the DIS region.

2.1.1 DIS differential cross section

The inclusive eA→ eX cross section is given by the contraction of the leptonic and hadronic

tensors:

d2σ

dE ′ dΩ
=
α2

Q4

E ′

E
LµνW

µν (2.1)

where α is the fine structure constant. Both tensors are process-dependent. The leptonic

tensor is constructed from the independent momenta at the lepton vertex, k and k′. For

single photon exchange,

Lµν = 2(kµk
′
ν + k′µkν − k · k′gµν). (2.2)

The hadronic tensor is constructed from the independent momenta at the hadron vertex, P

and q. In contrast to the tensor for point-like leptons, the hadronic tensor for single photon
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exchange contains independent structure functions W1 and W2,

W µν =

(
−gµν +

qµqν

q2

)
W1(ν,Q2) +

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)
W2(ν,Q2)

M2
. (2.3)

The structure functions parameterize our ignorance of the hadron’s structure. In general,

they are functions of any two independent Lorentz scaler variables, typically chosen to be ν

and Q2.

With the tensors defined, the DIS cross section can be written as

d2σ

dE ′ dΩ
=

4α2E ′2

Q4
cos2 θ

2

[
W2(ν,Q2) + 2W1(ν,Q2) tan2 θ

2

]
(2.4)

2.1.2 Scaling and the quark parton model

As DIS requires very large energy and momentum transfer, it is useful to consider the limit

where Q2 → ∞, while Q2/ν remains fixed. It was demonstrated by Bjorken [5], based on

the sum rules of Callan and Gross [6], that in this asymptotic limit the structure functions

exhibit scaling behavior,

MW1(ν,Q2)→ F1(x) (2.5)

νW2(ν,Q2)→ F2(x) (2.6)

where x = Q2/2Mν is the Bjorken scaling variable. That is, the structure functions no

longer depend independently on ν and Q2, but on their ratio.

This leads to a useful, though ultimately incomplete, description of hadrons: the quark

parton model (QPM). The QPM requires working in the infinite momentum frame (IMF),

where the hadron is moving with infinite momentum. This satisfies several critical conditions.

First, the IMF corresponds to the Q2 → ∞ limit required for the onset of scaling. Second,

in the IMF the momenta of the parton constituents are parallel to the momentum of the
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parent hadron, with a negligible transverse component. Lastly, in the IMF the interaction

between the virtual photon and the quark occurs over a timescale much shorter than that

of interactions between quarks. Thus, from the photon’s perspective, the quarks are non-

interacting.

Consider a hadron in the QPM with four-momentum P = (p, 0, 0, p). A quark constituent

carrying a fraction y of the hadron’s momentum has four-momentum yP = (yp, 0, 0, yp).

Therefore, after a scattering interaction via the exchange of a virtual photon with four-

momentum q, the quark’s invariant momentum is:

(yP + q)2 = (yP )2 −Q2 + 2yq · p

= (yP )2 −Q2 + 2yMν (2.7)

The initial and final invariant momenta of the quark are small compared to Q2 and q · p and

can be neglected. This yields y = Q2/2Mν, the quantity previously identified as the Bjorken

scaling variable x.

In the QPM, the exchanged virtual photon sees the hadron as a collection of non-

interacting quarks, and can only couple to quarks carrying momentum fraction x. Thus,

the hadronic cross section must be the incoherent sum of constituent quark cross sections

and is dependent on the fractional momentum distributions of the quarks. The leads to

structure functions that are charge-weighted sums of the quark fractional momentum distri-

butions:

F1(x) =
1

2

∑

q

e2
q[q(x) + q(x)] (2.8)

F2(x) = x
∑

q

e2
q[q(x) + q(x)] (2.9)

where the sum is over quark flavor q and eq is Coulomb charge. The parton distribution func-

tions (PDFs) q(x,Q2) and q(x,Q2) describe the probability of finding a quark or antiquark

of flavor q carrying fractional momentum x.
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Physically, the onset of scaling can be thought of as resolving the smallest possible struc-

ture within the nucleon. If Q2 is sufficiently large to resolve the point-like quarks, there is no

additional structure to be resolved, and the cross section should become scale-invariant. At

SLAC in 1968, ep DIS measurements revealed very weak Q2 dependence of the cross section.

This observation is considered to be the discovery of the nucelon’s point-like constituents.

In terms of the structure functions F1 and F2, which are functions of the scaling variable x,

the DIS cross section is:

d2σ

dE ′ dΩ
=

4α2E ′2

Q4
cos2 θ

2

[
F2

ν
+

2F1

M
tan2 θ

2

]
(2.10)

2.1.3 Scaling violation

The simplicity of the QPM is useful, but neglects the nature of QCD. Within the nucleon, the

quarks radiate gluons, which in turn radiate additional gluons or split into quark-antiquark

pairs, making non-negligible contributions to the PDFs and structure functions. These

perturbative processes depend on the strong coupling αs, which is dependent on scale (in

this case, Q2). This results in PDFs and structure functions that are, in fact, sensitive to the

scale at which they are probed. The scale dependence of PDFs is described by the DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation,

d

d lnQ2
q(x,Q2) =

αs
2π

∫ 1

x

dy

y
q(y,Q2)Pqq

(
x

y

)
+O(α2

s), (2.11)

where the splitting function Pqq(x/y) describes the probability that a quark carrying mo-

mentum fraction x resulted from a quark carrying momentum fraction y > x that lost energy

by radiating a gluon. The splitting functions for this and other processes (Pgq, Pqg, Pgg) are

calculated in QCD and also depend on Q2. It is important to note that QCD cannot predict

the PDFs a priori. However, given a PDF measured at an input scale µ2, the DGLAP

equations can accurately evolve the PDFs to another scale Q2.
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While the quarks can be considered non-interacting during DIS processes, QCD reveals

that they are surrounded by a perturbatively-radiated cloud of gluons, quarks, and anti-

quarks. As the Q2 scale increases, more and more of these previously virtual partons are

resolved. The critical point: while the QPM is a function of x, QCD is a function of Q2.

The DIS cross section is still expressed by Equation (2.10), with the understanding that F1

and F2 (and the related PDFs) are functions of both x and Q2.

2.1.4 Nuclear photoabsorption ratio R = σL/σT

The DIS cross section can equivalently be viewed as the probability that the exchanged

virtual photon is absorbed by the nucleus. In this case, the cross section is expressed as

d2σ

dE ′ dΩ
= Γ

[
σT (x,Q2) + ε σL(x,Q2)

]
, (2.12)

where σT and σL are the nuclear absorption cross sections for transversely and longitudinally

polarized virtual photons, respectively. The flux of transverse photons is

Γ =
α

2π2Q2

E ′

E

ν(1− x)

1− ε (2.13)

and the ratio of longitudinal to transverse photons is

ε =

[
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

]
. (2.14)

It is common to rewrite the cross section as

d2σ

dE ′ dΩ
= ΓσT (1 + εR), (2.15)

where R = σL/σT is ratio of the transverse to longitudinal photabsorption cross sections.

Equating this picture with the one presented in Section 2.1.1 yields the following rela-
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tionship between the structure functions and photoabsorption cross sections:

F1 =
Mν(1− x)

4π2α
σT (2.16)

F2 =
ν2(1− x)

4π2α(1 + ν2/Q2)
σT (1 +R) (2.17)

The F1 structure function is purely transverse, while the F2 structure function is a combi-

nation of transverse and longitudinal. Thus, individually determining the structure functions

requires a “separation” of the longitudinal and transverse contributions to the cross section.

To obtain F2 from a measured cross section, knowledge of R is required. To obtain the F2

ratio of two nuclei from a measured cross section ratio, knowledge of the nuclear dependence

of R is required. The L/T separation is achieved using a Rosenbluth separation style tech-

nique, where the reduced cross section (d2σ/dE ′ dΩ)/Γ is measured at multiple values of ε

and fixed x, Q2. The intercept and slope of a linear fit yield σT and R. Cross section ratios

of nucleus A and B are sensitive to the difference in R,

dσA
dσB

≈ σTA
σTB

[1 + ε′∆R] (2.18)

where ε′ = ε/(1 + εRB) and ∆R = RA−RB. This requires an absolute value of R for one of

the nuclei (typically nucleus B is deuterium).

Early measurements of ∆R were consistent with zero [7, 8, 9]. This led to the assumption

that R was independent of nucleus, and measuring the cross section ratio of two nuclei was

equivalent to measuring the ratio of their F2 structure functions. However, more recent

measurements [10, 11] have have cast doubt on this assumption, with ∆R in some cases

being > 2σ from zero. This has prompted the proposal of a dedicated experiment in Hall

C at Jefferson Lab to carry out high-precision L/T separations on several targets ranging

from hydrogen to gold. A nuclear dependence of R would have serious implications for the

interpretation of past and future cross section ratio measurements. However, for the time
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being most cross section ratio analyses continue to assume that R is independent of nucleus.

2.2 Structure of the nucleon

Electron scattering experiments are sensitive to the nucleon quark content through the struc-

ture functions. Although the nucleons contain only up and down valence quarks, their quark

seas contain strange quarks as well. Heavier quark flavors are suppressed by the limited

energy scales in the nucleon. Thus, the sums in Equations (2.8) and (2.9) run over q = {u,

d, s}. Since u and d form an isospin doublet, it is typical to define up = dn ≡ u, dp = un = d,

and sp = sn ≡ s (with analogous relations for the antiquarks). The nucleon F2 structure

functions in the QPM can then be explicitly expressed as

F n
2 = x

[(
1

9

)
(u+ u) +

(
4

9

)
(d+ d) +

(
1

9

)
(s+ s)

]
(2.19)

F p
2 = x

[(
4

9

)
(u+ u) +

(
1

9

)
(d+ d) +

(
1

9

)
(s+ s)

]
(2.20)

Using leptonic probes on free protons is readily achievable at both fixed-target and collider

facilities, allowing precise determination of the proton structure functions. A representation

of global F p
2 data is shown in Figure 2.3a, including measurements by H1/ZEUS at DESY

[12], BCDMS and NMC at CERN [13, 14], E665 at Fermilab [15], and SLAC [16]. Several of

these collaborations also measured the deuterium structure function, [17, 14, 15, 16], which is

shown in Figure 2.3b. Note the Q2 dependence of the structure functions arising from scaling

violations. Due to the lack of free neutron targets, such measurements are not available for

the neutron structure function F n
2 .

Recall that the structure functions are process-dependent, so measuring cross sections

and structure functions of various interactions will probe different linear combinations of the

PDFs. Combining measurements from multiple experiments, probes, and targets can allow

a global fit of the nucleon PDFs. For example, the Coordinated Theoretical-Experimental
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Figure 2.4: CJ15 PDFs for various flavors at Q2 = 10 GeV2. Plot from [19].

Project on QCD/Jefferson Lab (CJ) collaboration completes such fits. An illustrative plot

of PDF fits from CJ15 are shown in Figure 2.4. The low-x region is dominated by the

perturbative sea, while the high-x region is dominated by valence quarks. Of particular

interest is the down to up quark ratio d/u in the limit x → 1 (the significance of this

quantity will be discussed in the following section). This ratio is shown in Figure 2.5 for

various global PDF fits. As can be seen, the uncertainties grow quite large as x→ 1 due to

the poorly constrained neutron structure function.

The PDFs, particularly at large x, are critical to hadronic physics. Predictions of cross

sections at high-energy hadron colliders require PDFs as input to the calculation. The

currently large uncertainties associated with PDFs at large x results in large uncertainties in

the cross section predictions, limiting the impact of collider measurements. For example, a

prediction of the inclusive Higgs cross section to NNLO varies as much as 13% depending on

which PDF parameterization is used [18]. Providing experimental constraints on the PDFs

at large x is essential to the future of hadronic physics.
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Figure 2.5: d/u ratio at Q2 = 10 GeV2 for various PDF fits. Plot from [19].

2.2.1 Flavor dependence of valence structure

Constraining d/u at large x does not necessarily require a global PDF fit. Rather, one can

take advantage of the fact that in the x → 1 limit, F2 is primarily sensitive to the valence

structure of the nucleon. This means that the strange contribution in Equation (2.19) and

(2.20) can be neglected, and

F n
2

F p
2

=
u+ 4d

4u+ d
=

1 + 4(d/u)

4 + (d/u)
(2.21)

Therefore, a determination of F n
2 /F

p
2 at high x can be used to extract information on the

flavor structure of the nucleon’s valence quarks. The value of d/u is driven by the QCD

interactions of the valence quarks, which can lead to the suppression or enhancement of

different quark states. Various theoretical and phenomenological predictions for valence

quark dynamics predict different values for d/u and F n
2 /F

p
2 in the x → 1 limit. Some of

these predictions are summarized below.
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2.2.1.1 SU(6)

Under the naive assumption of spin-flavor SU(6) symmetry, QCD interactions do not dis-

criminate between the spin and flavor states of the quarks. Therefore, the wavefunction for

a spin-up (↑) proton can be expressed in terms a spin up or down (↑ or ↓) valence quark and

its valence “diquark” partner with total spin S:

p↑ =
1√
2
u↑(ud)S=0 +

1√
18
u↑(ud)S=1 −

1

3
u↓(ud)S=1 −

1

3
d↑(uu)S=1 −

√
2

3
d↓(uu)S=1 (2.22)

Note that in this case, there is equal probability of finding the diquark with S = 0 or S = 1.

If SU(6) symmetry was exactly preserved, the up content of the proton would be identical

to the down content of the neutron (and vice versa) for all x, leading to

F n
2

F p
2

=
2

3
,

d

u
=

1

2
[SU(6) symmetry] (2.23)

However, SU(6) symmetry is known to be broken: the up, down, and strange quarks have

different masses, the nucleons and ∆ have different masses, and measurements of F n
2 /F

p
2 differ

significantly from 2/3. What is the mechanism by which the flavor symmetry is broken, and

what consequence would this mechanism have in the x→ 1 limit?

2.2.1.2 Scalar diquark

A phenomenological approach by Close [20] defines the spin-up proton wavefunction similarly

to Equation (2.22), but with the diquark core specified by its isospin state |I, Iz〉 rather

than flavor composition. Further, breaking of SU(6) symmetry is allowed by introducing
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amplitudes f0(x) and f1(x) on the S = 0 and S = 1 states, respectively.

ψ =
1√
2

(ψ0 + ψ1) (2.24)

ψ0 = [u↑ |0 0〉S=0] f0(x) (2.25)

ψ1 =

[
1

3
p↑ |1 0〉S=1 −

√
2

9
p↓ |1 0〉S=1 +

2

3
d↓ |1 1〉S=1 −

√
2

9
d↑ |1 1〉S=1

]
f1(x) (2.26)

In the case of f0 = f1, the SU(6) wavefunction is recovered.

Using the expectation value of the magnetic moment operator, the ratio of the ∆+(1236)

transition magnetic form factor G∆
M to the proton magnetic form factor Gp

M is found to be

G∆
M

Gp
M

∼ ψ1

ψ0

= 1− x (2.27)

where the x dependence is parameterized by a fit to elastic data. Note that this behavior

indicates a suppression of diquark states with S = 1 as x → 1, leading to a dominance of

scalar diquark states. The expectation value of the charge squared operator is used to find

the structure functions:

F n
2 ∼ ψ0 + 3ψ1 (2.28)

F n
2 ∼ 4ψ0 + 2ψ1. (2.29)

Combining Equations (2.27) and (2.28)-(2.29) yields

F n
2

F p
2

=
1 + 3ψ1/ψ0

4 + 2ψ1/ψ0

=
4− 3x

6− 2x
. (2.30)
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giving a prediction of

F n
2

F p
2

→ 1

4
,

d

u
→ 0 [Scalar diquark] (2.31)

as x→ 1.

2.2.1.3 Perturbative QCD (pQCD) and quark counting

Alternative explanations come from pQCD effects in the nucleon. These arguments are

based on the fact that in order for a single valence quark to be carrying nearly all the

nucleon momentum (i.e., x → 1), the quark must have a large invariant mass. Since the

normal bound-state wavefunction is dominated by quark states with low invariant mass, this

highly off-shell configuration can only be achieved by the exchange of hard gluons.

Farrar and Jackson [21] note that gluon exchange is constrained by the spins of the

diquark spectator. When the spectator quarks have antialigned spins, they can exchange

transverse gluons, flipping their spins. When their spins are aligned, conservation of angular

momentum requires that they only exchange longitudinal gluons. In the exchange of high

invariant mass gluons between low invariant mass quarks, longitudinal gluons are suppressed

by a factor of (1 − x) relative to transverse gluons. This favors states where the diquark

spectators have antialigned spins, and thus the struck quark’s spin is aligned with the parent

nucleon’s.

The same result is obtained by Brodsky et al. [22]. Based on quark-counting rules

for the exchange of two hard gluons between three valence quarks, it is found that quark

distributions as x→ 1 have the limiting behavior (1− x)3+2∆Sz , where ∆Sz is the difference

in helicity between the struck quark and parent nucleon. Thus, states with antialigned quark

and nucleon helicities decrease by an extra power of (1 − x) relative to states with aligned

helicities.

By Equations (2.21) and (2.22), the suppression of states where the struck quark has
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spin opposite the parent nucleon results in

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[pQCD] (2.32)

as x→ 1.

2.3 The EMC effect

It was originally assumed that the structure of free nucleons was identical to the structure of

nucleons bound in nuclei. This assumption had both qualitative and quantitative motivation.

First, the nuclear shell model - a model which describes atomic nuclei in terms of independent

nucleons filling energy levels - was remarkably successful at reproducing, and even predicting,

nuclear properties. Second, it was thought that the typical QCD energy scales of quarks and

gluons (GeV) would be completely unaffected by the typical binding energies of atomic nuclei

(MeV). In 1983, the European Muon Collaboration (EMC) found that the ratio of the per-

nucleon F2 structure function of iron to deuterium differed significantly from unity [23]. This

surprising phenomenon, named the EMC effect after its discoverers, indicates that the quark

and gluon structure of bound nucleons is altered in the nuclear environment.

The EMC effect has since been studied in a wide range of nuclei. Figure 2.6 shows the

EMC effect in a sample of nuclei, using measurements by Jefferson Lab [24], SLAC [25],

NMC [26, 27], EMC [28], Rochester-MIT-SLAC [29, 30], and BCDMS [31]. EMC ratios tend

to share the same qualitative features which are generally described as: the shadowing region

(x < 0.1) where the ratio is suppressed, the antishadowing region (0.1 < x < 0.3) where the

ratio is enhanced, and the EMC region (0.3 < x < 0.7) where the ratio linearly decreases. For

x > 0.7, the ratio increases dramatically. The suppression in the shadowing region tends to

increase with A, while the enhancement in the anti-shadowing region is largely independent

of A. In the EMC region, the strength of the effect is oftentimes quantified by the linear

slope of the decreasing ratio, which becomes steeper with A. An advantage to this approach
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Figure 2.6: The EMC effect in various nuclei. Plots and fits (red crosshatch bands) from
[32].

is that the slope is independent of normalization uncertainties, which can be quite large and

vary between targets and experiments.

The difference of EMC ratios from unity isn’t entirely due to the modification of individual

nucleons. For instance, Fermi motion of nucleons in the nucleus smears the nuclear structure

function. This so-called Fermi smearing is present at all x, but in particular is responsible

for the steep rise in EMC ratios for x > 0.7. However, this does not completely account for

modification of the nuclear structure functions, indicating that the structure of the nucleons

themselves are also modified. There is currently no universally accepted theory explaining

this nucleon modification.
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2.3.1 The F n
2 dilemma

The important theoretical implications of determining F n
2 /F

p
2 and d/u have motivated much

effort to extract these quantities directly from experimental data. However, as previously

mentioned, the lack of free neutron targets means that F n
2 cannot be directly measured,

but must be obtained from measurements of bound neutrons. Historically, the standard

approach has been to extract F n
2 /F

p
2 from deuterium and proton data. But even weakly-

bound deuterium - often treated as a proxy for a proton plus neutron target - is subject

to nuclear effects that must be removed to accurately determine the neutron contribution.

This challenge has been well-known since the beginning of the DIS era [33], although the

full extent of nuclear effects was not immediately known. Prior to the discovery of the EMC

effect, it was thought that the neutron structure functions could be obtained from proton and

deuterium data by simply accounting for Fermi smearing in deuterium. In the conventional

approach [34], the structure function for nucleus A is given as the convolution of the nucleon

structure functions with the nucleon momentum distributions in the nucleus,

FA
2 (x) =

∑

N

∫
dy fAN (y) FN

2

(
x

y

)
, (2.33)

where the sum is over the nucleons N . The momentum distributions fAN (x) are obtained from

a theoretical solution for the nuclear wavefunction. An extraction of F n
2 /F

p
2 was carried out in

1979 by Bodek et al. [35] using SLAC DIS measurements of the proton and deuterium. The

convolution formalism was used to “unsmear” the measured deuterium structure function,

and the neutron structure function was obtained by subtraction of the proton structure

function.

The discovery of the EMC effect made it clear that nuclear effects could not be accounted

for with Fermi smearing alone. A variety of models were developed to explain the growing set

of nuclear EMC effect measurements, each of them having unique implications for obtaining

F n
2 /F

p
2 from deuterium. A re-analysis of the SLAC data was performed in 1991 by Whitlow et
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larger F n
2 /F p

2 values as compared with the Fermi-motion only extracted values. As can be

seen in Figure 3, the difference at x = 0.85 can be up to ∼ 50%.

Figure 3: The Fn
2 /F p

2 ratio extracted from proton and deuteron DIS measurements [11] with a)

a Fermi-smearing model (Bodek et al. [12]), b) a covariant model that includes binding and off-

shell effects (Melnitchouk and Thomas [34]), and c) the “nuclear density model” [39] that also

incorporates binding and off-shell effects (Whitlow et al. [36]).

Whitlow et al. [36] incorporated binding effects using the “nuclear density model” of

Frankfurt and Strikman [39]. In this model, the EMC effect for the deuteron scales with

nuclear density as for heavy nuclei:

F d
2

F p
2 + F n

2

= 1 +
ρd

ρA − ρd

[
FA

2

F d
2

− 1

]
, (13)

where ρd is the charge density of the deuterium nucleus, and ρA and FA
2 refer to a heavy

nucleus with atomic mass number A. This model predicts for the ratio F n
2 /F p

2 values that

11

nucelar density model
binding + offshell effects
Fermi smearing

Figure 2.7: F n
2 /F

p
2 extracted from SLAC deuterium and proton data using various models

for nuclear effects. Produced from MARATHON proposal [38].

al. [16], using improved radiative corrections and more precise measurements of the nuclear

photoabsorption ratio R = σL/σT . The analysis also extracted F n
2 /F

p
2 using a “nuclear

density model” [36], which assumed that the EMC effect scaled with nuclear density, and

could be extrapolated to deuterium from measurements in heavier nuclei. Many modern

theoretical models take a more fundamental approach, incorporating effects from nuclear

binding and off-mass-shell nucleons [37]. Binding effects are well understood, and can be

applied in the convolution formalism with the nuclear wavefunction. Nucleon off-shell effects,

however, cannot be applied by convolution, and must be treated as an additive correction to

the smeared structure functions. The offshell functions are empirically constrained, though

some features (such as parameterization and normalization) have theoretical motivation.

Figure 2.7 show the extraction of F n
2 /F

p
2 from SLAC data using each of these models. As

can be seen, differences in the treatment of nuclear effects in deuterium can cause large

discrepancies in the determination of F n
2 /F

p
2 . Therefore, current knowledge of F n

2 is highly

model-dependent.

24



2.3.2 Isoscalar EMC ratios

The nuclear EMC effect is typically expressed as the ratio of per-nucleon structure functions

of nucleus A to deuterium:

R(A) =
FA

2 /A

FD
2 /2

(2.34)

Since deuterium is also subject to nuclear effects, this is not the same as the ratio to free

nucleons. However, FD
2 can be directly measured, so it provides a convenient and consistent

way to compare modification in heavier nuclei. Deuterium’s EMC ratio can be expressed as

R(D) =
FD

2

F n
2 + F p

2

, (2.35)

although this is model-dependent due to F n
2 .

Deuterium is an isoscalar nucleus, having one proton and one neutron. Many of the heavy

nuclei used in EMC measurements do not have equal numbers of protons and neutrons. It

is common to apply a multiplicative isoscalar correction to these EMC ratios, adjusting for

the excess of protons or neutrons

fAiso =
1
2
(1 + F n

2 /F
p
2 )

1
A

(Z + (A− Z)F n
2 /F

p
2 )

(2.36)

This correction is also model-dependent, as it contains the ratio F n
2 /F

p
2 . Note that for

symmetric nuclei, fiso
A = 1.

25



Chapter 3

The MARATHON experiment

In 2006, MARATHON was formally proposed to Experimental Hall A at Thomas Jefferson

National Accelerator Facility (Jefferson Lab). The experiment was designed to take advan-

tage of the planned 12 GeV energy upgrade to the Continuous Electron Beam Accelerator

Facility (CEBAF), Jefferson Lab’s flagship electron accelerator. The proposal was condi-

tionally approved pending the design and review of a safe tritium target, and an updated

proposal was submitted in 2010 [38]. Several other experiments taking advantage of the

tritium target were proposed and accepted. The tritium experiments program commenced

December 2017 and concluded November 2018, with MARATHON taking production data

January-April 2018.

3.1 Motivation

3.1.1 F n
2 /F

p
2 from mirror A = 3 nuclei

The MARATHON experiment proposes to extract F n
2 /F

p
2 from DIS measurements on tritium

(3H) and helium-3 (3He). The novel extraction method, first proposed in 2000 [39], exploits

the approximate mirror symmetry of tritium and helium-3. In terms of the nuclear and
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nucleon structure functions, EMC-type ratios can be defined for the two nuclei:

R(3H) =
F

3H
2

2F n
2 + F p

2

(3.1)

R(3He) =
F

3He
2

F n
2 + 2F p

2

(3.2)

These equations can be used to define the so-called “super-ratio”, a ratio of the helium-3 to

tritium EMC ratios:

R =
R(3He)

R(3H)
(3.3)

Inverting these expressions yields the ratio of neutron to proton structure functions,

F n
2

F p
2

=
2R− F 3He

2 /F
3H
2

2F
3He
2 /F

3H
2 −R

(3.4)

Under the commonly made assumption that the nuclear photoabsorption ratio R = σL/σT

is independent of nucleus1, the nuclear structure function ratio can be obtained simply by

measuring the DIS cross section ratio,

F
3He
2

F
3H
2

=
σ

3He

σ3H
(3.5)

Thus, combining an experimental measurement of σ
3He/σ

3H with a theoretical calculation

of R allows the extraction of the free nucleon structure function ratio, F n
2 /F

p
2 . Unlike

the extraction from proton and deuterium data, which depends on accurately calculating

the absolute magnitude of nuclear effects in deuterium, this approach depends only on the

relative magnitude of nuclear effects in helium-3 and tritium. This could significantly reduce

the theoretical model dependence of the extraction.

1See Chapter 2.1.4 for a discussion on the validity of this assumption
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3.1.2 EMC effect in A = 3 nuclei

The nuclear EMC effect remains poorly understood. Any universal explanation of the EMC

effect must be able to reproduce the effect in the lightest nuclei, and tritium and helium-3 are

of particular interest as they are the lightest nuclei sensitive to possible isospin dependence

of the EMC effect. While the EMC effect has been extensively studied in many nuclei, very

little data exists for A = 3 nuclei. Limited helium-3 measurements have been made at low

x [40] and medium to high x [24]. Due to the practical complications of using radioactive

tritium as a target, there exists very little tritium scattering data at all, and no measurements

of the EMC effect. Precise measurements of these EMC ratios will test competing model

calculations and provide critical constraints on theoretical explanations of the EMC effect.

3.2 Experimental apparatus

3.2.1 CEBAF

CEBAF is responsible for delivering beam electrons to Jefferson Lab’s four experimental

halls. The accelerator has a racetrack design, with two linear accelerators (linacs) joined on

either end by circular arcs. Electrons originate in the injector, make multiple passes through

the accelerator until reaching the desired energy, and then go to the beam switchyard where

they are directed to individual halls. See Figure 3.1 for the layout of the accelerator.

The electron source in the injector is a gallium arsenide (GaAs) photocathode. Alternat-

ing pulses from four seed lasers (one for each hall) eject electrons from the crystal, creating

a train of electron bunches at 1497 MHz. A -100 kV gun and set of cryomodules (discussed

in the next paragraph) accelerate the electrons to 100 MeV, at which point they are injected

into the north linac.

The north and south linacs each contain 200 radio-frequency (RF) cavities housed in

25 cryomodules, where they are cooled to superconducting temperatures with 2 K liquid
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Figure 3.1: CEBAF layout. Red linac region represents 20 original cryomodules in 6 GeV
accelerator. Blue linac region represents 5 new cryomodules for 12 GeV upgrade.

Locations of Experimental Halls A, B, C, and D are shown.

helium-4. The RF cavities have a resonant frequency of 1497 MHz (which is why the electron

bunch train is created with the same frequency). By precisely coordinating the arrival of

the electron bunches with the oscillating electric fields in the RF cavities, the electrons are

continuously accelerated as they pass through the cryomodules. During the MARATHON

experiment, electrons gained approximately 1.05 GeV of energy per linac (2.1 GeV for one

full pass).

The linacs are joined by circular arcs with magnetic fields to bend the electron trajecto-

ries. Since the electrons gain energy with every pass through a linac, there must be separate

arcs and magnetic fields for bending electrons of different energies. There are ten total arcs,

five on either side of the linacs, supporting 5-pass beam to Halls A, B, and C (at end of

the south linac) and 5.5-pass beam to Hall D (at the end of the north linac). The arcs are

vertically stacked. Before and after each arc are spreader and combiner magnets for sorting

electrons into and out of their appropriate arcs.
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Once electrons reach the desired energy, an RF separator directs them to the beam switch

yard. Here, a second RF separator directs electron bunches to their respective Halls.

3.2.2 Hall A beamline

3.2.2.1 Beam current monitors

The beam current must be constantly monitored to determine the total number of electrons

incident on the target. The Hall A beam current monitors (BCMs) consist of two RF cavities

and an Unser monitor. The RF cavities are tuned to resonate at 1497 MHz and contain a

large loop antenna coaxial to the cavity. When the electron beam passes through the cavity,

it excites electromagnetic modes that are picked up by the antenna. The antenna output

voltage is proportional to the beam current in the cavity. The Unser monitor is a parametric

current transformer consisting of five toroids. When electrons pass through the monitor, the

transformer’s output voltage is proportional to the beam current.

The Unser monitor can be precisely calibrated for absolute current measurements us-

ing a wire carrying a well-defined DC current. However, the Unser’s output signal drifts

significantly over periods of several minutes, making it unsuitable to continuously monitor

the beam current. Rather, the Unser monitor is used to provide the absolute calibration

of the cavity monitor, which is stable over large periods of time. To calibrate the cavities,

beam is requested at several current values between 3 < I < 22.5 µA for approximately

1-2 minute intervals (see Figure 3.2). The absolute current for each interval (determined by

the calibrated Unser monitor) is then plotted against the frequency response f of the cavity

monitors, and the BCM gain g and offset b are obtained from the slope and intercept of a

linear fit (see Figure 3.3). The beam current is determined by:

I = gf + b (3.6)

The gains found from the three BCM calibrations performed during the MARATHON
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Figure 3.2: BCM calibration data.

run are plotted in Figure 3.4, showing good stability of the cavity monitor.

3.2.2.2 Beam position monitors

Two beam position monitors (BPMs), located 7.52 m and 1.29 m upstream of the target,

are used to measure the position and direction of the beam. In the hall coordinate system,

the beam travels along ẑ and the transverse plane is defined by x̂ (horizontal, beam left) and

ŷ (vertical). Each BPM contains four stripline antennae located at ±u and ±v, where u and

v are along axes rotated 45◦ about ẑ. The induced current in each antenna is proportional

to the distance to the beam. The difference over sum of currents in opposing antennae

determine the relative position of the beam to 100 µm for currents > 1 µA.

Calibrating to the absolute hall coordinates is completed with a Harp scan, an invasive

method of determining the absolute position of the beam. The Harp consists of three wires

(one vertical and two diagonal) that are scanned through a low-current beam at a known
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Figure 3.4: BCM gains from MARATHON calibrations.
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rate. The Harp wire positions are precisely surveyed in hall coordinates, so when the wires

intersect the beam, the absolute beam position is known. This information can be used to

determine the rotation matrix θθθ and offset bbb to transform from the BPM coordinates (u, v)

to the hall coordinates (x, y):



x

y


 =



θ00 θ01

θ10 θ11






u

v


+



bx

by


 (3.7)

Equation (3.7) expands into two equations, each with three unknowns. Therefore, a Harp

scan must be completed at three unique values of absolute beam position to completely

calibrate the BPMs.

3.2.2.3 Beam rastering

The small spot size of the beam (<400 µm) can cause significant heating in small portions

of the target and the beam dump. To mitigate this effect, a raster is applied to the beam

to deposit power over a larger area. This is done with a set of four rastering coils, two for

each transverse direction, located 23 m upstream of the target. MARATHON only used a

single pair of coils, one for each transverse direction. The coils are driven by a triangular

wave current at 25 kHz, creating oscillating transverse magnetic fields that perturb the beam

trajectory. This scans the beam over a rectangular footprint, typically 4 mm x 4 mm at the

target. The driving currents were also recorded by an analog to digital converter (ADC).

Determining the position of the rastered beam at the target is critical to accurately

reconstructing the z-vertex and momentum of each event. This requires calibrating the

raster current to the absolute position at the target, allowing the determination of the

absolute beam position at target, (xtg, ytg), in terms of the raster currents, (Rx, Ry), and

offsets, (bx, by). Since there is no coupling between the horizontal and vertical components,
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Figure 3.5: Distribution of all event triggers versus horizontal and vertical raster current
with carbon hole target.

there is a single calibration factor S for each direction:

xtg = RxSx + bx (3.8)

ytg = RySy + by (3.9)

Prior to the implementation of the 25 kHz triangle wave raster, the mapping from raster

current to absolute position at the target was found by directly comparing the mean and

RMS of the raster current to the mean and RMS of the BPM measurements. However, some

of the BPM electronics effectively act as a low-bandpass filter with a frequency cutoff of 30

kHz. This results in an attenuation of the BPM amplitude relative to the raster current

amplitude. An alternative must be found for the absolute position calibration of the raster

current. For MARATHON, the calibration was performed with two inputs: a 2D sigmoid

fit to the distribution obtained from the carbon hole target, and the correlation between the

horizontal raster current and the reconstructed z-position of the scattering event.

Among the solid targets used for MARATHON was a carbon hole target, a thin carbon
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foil with a 2 mm diameter hole. Figure 3.5 shows a 2D histogram of carbon hole data binned

by vertical and horizontal raster current (in ADC units). Since the absolute radius of the

hole is known, fitting the distribution with an appropriate function can provide information

on the absolute position calibration for the raster current. The function must account for

the fact that misconstructed events smear the hole edge and populate the hole center, and

that the relationship between raster current and absolute position might be different for the

horizontal and vertical direction. These requirements are satisfied by a 2D sigmoid function

with 7 free parameters pi:

f(x, y) =
p0

1 + e−p1[p22(p3−x)2+p24(p5−y)2−r2]
+ p6 (3.10)

p0 and p6 are the function values outside and inside the hole, respectively. p1 describes the

hardness of the hole edge in the reconstructed distribution. p2 and p4 are the horizontal and

vertical calibration factors from raster current to absolute position, corresponding to Sx and

Sy in Equations (3.8) and (3.9). p3 and p5 are the horizontal and vertical position of the hole

center. Finally, r = 1 mm is the absolute radius of the hole. Although the 2D sigmoid fit

to the carbon hole distribution was found to be quite stable, the best-fit p2 and p4 did not

result in a good raster calibration. This was ostensibly due to ambiguity in the location of

the true hole edge in the smoothly-varying sigmoid function. More information was required

to fix the calibration.

A properly calibrated raster should result in no correlation between the horizontal raster

current and the reconstructed z-position. This condition was not satisfied by using the

calibration obtained from the sigmoid fit. In an effort to fix the horizontal raster calibration,

the correlation between horizontal current and reconstructed z-position was compared for

two incorrect raster calibration values (see Figure 3.6). The horizontal calibration value

Sx was fixed by linearly interpolating between the two incorrect values to minimize the

correlation between the horizontal current and reconstructed z-position (see Figure 3.7).
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Figure 3.6: Horizontal raster current vs. reconstructed z for two incorrect raster
calibrations.
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Figure 3.7: Horizontal raster current vs. reconstructed z for interpolated raster calibration.
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A similar method could be used to calibrate the vertical raster, by minimizing the corre-

lation of the vertical raster current with the reconstructed W 2 of an identifiable momentum

feature (such as an elastic peak). However, MARATHON’s DIS data had no such feature.

With Sx fixed, the vertical raster calibration was obtained by returning to the 2D sigmoid

fit. The function value at the hole edge fedge was found from Equation (3.10), with p2 = Sx

and y = p4. The remaining parameters used their best-fit values. Since the physical hole is

symmetric, the function value should be constant along the hole edge. This was exploited

to find the vertical raster calibration. Setting Equation (3.10) equal to fedge with x = p2

allowed the expression to be solved for p4. This was the value used for Sy.

The raster offsets were determined using the BPMs. As the rasters scan symmetrically,

the time-averaged beam position should be equal to the beam position with zero raster

current. By projecting a line to the target through the average beam positions measured by

the two BPMs, Equations (3.8) and (3.9) (with Rx = Ry = 0) fix the offsets bx and by.

3.2.2.4 Beam energy measurement

The beam energy is determined using the so-called ARC method, which takes advantage of

the fact that the deflection angle of an electron through a magnetic field is proportional to

its momentum:

p = (0.299792 GeV rad T−1 m−1)×
∫
B · d`
θ

. (3.11)

Eight identical dipoles are used to bend the beam through the Hall A arc from the switchyard

into Hall A. BPMs before and after the dipoles determine the total deflection angle θ. A

ninth identical dipole, powered in series with the ones in the arc, is used to determine the field

integral. A platform containing two pick-up coils and a nuclear magnetic resonance (NMR)

probe is moved through the center of the dipole. The flux through the coils is integrated,

while the NMR probe fixes the absolute calibration of the field. It is assumed that the eight

dipoles in the arc have the same field integrals as the one measured.

37



Figure 3.8: CAD model of gas target cell. Image from [41].

3.2.3 Target system

The target system used by MARATHON contained over 10 gas and solid targets used for

physics, background, and calibration measurements. The design of the gas targets was driven

primarily by safety considerations for the tritium target. Atypical for Hall A, the target

gases were not circulated but rather completely contained within sealed, modular cells. See

Figure 3.8. This allowed the tritium cell to be filled and sealed off-site, eliminating the need

for Jefferson Lab to handle tritium directly. The cells were constructed from aluminum, with

a cylindrical gas volume 25 cm in length and 12.7 mm in diameter. A flange attached to

the upstream end of the cell sealed the gas volume and defined the entrance window. The

incoming and outgoing electron beam had to pass through the cell entrance and exit windows

(or endcaps), and electrons scattered into the spectrometers had to pass through the cell side

walls. Therefore, these boundaries were designed to be as thin as possible (≈0.25-0.50 mm)

without compromising the safe containment of the tritium gas. Due to machining tolerances,

the cell thicknesses vary between cells, and the side thickness varies along the length of a

cell.

MARATHON used five identical (up to machining tolerances) gas cells. Four contained
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Target
Fill pressure

(kPa)
Fill temperature

(K)
Thickness
(mg/cm2)

1H 3549 297.4 ± 0.1 70.8 ± 0.4
2H 3549 296.1 ± 0.1 142.2 ± 0.8
3H 1400 296.3 ± 0.1 85.1 ± 0.8

3He 1742 294.5 ± 0.1 53.4 ± 0.6

Table 3.1: Fill parameters and thicknesses of MARATHON gas targets.

gases for the primary physics measurements: hydrogen (1H), deuterium (2H), tritium (3H),

and helium-3 (3He). The cell volumes were measured at Jefferson Lab and found to be

V = 33.28 ± 0.3 cm3. The tritium cell used for MARATHON was filled and sealed by

Savannah River Tritium Enterprise at the Savannah River Site on October 23, 2017. The

cell was shipped to Jefferson Lab and stored in triple containment until it was installed

shortly before the experiment. The hydrogen, deuterium, and helium-3 cells were filled at

Jefferson Lab. The fifth cell was left empty to measure the background from the aluminum

endcaps. Table 3.1 shows the fill parameters and thicknesses of each gas target.

In addition to the gas cells, the target ladder included a variety of solid targets. A thin

carbon foil with a 2 mm hole was used for beam centering checks and the raster calibration. A

dummy target consisting of two aluminum foils spaced 25 cm apart (replicating the length of

the gas cells), but much thicker than the gas cell endcaps, was used for additional background

measurements. An optics target consisting of 11 equally spaced carbon foils was used for

optics reconstruction checks. Finally, there was a thick aluminum foil and thin foils of carbon,

titanium, and beryllium oxide.

All the targets were arranged on a vertical, motor-controlled ladder, allowing remote

adjustment of the target in the beamline. See Figure 3.9. The target ladder was cooled

to approximately 40 K using a 15 K liquid helium-4 supply and controlled heater. Various

sensors were implemented for monitoring the temperature of the targets, the cryogen flow

rate and temperature, and the heater power. In the event of a tritium leak or other disaster,
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Figure 3.9: Photo of MARATHON target ladder.
Photo credit: D. Meekins and R. Cruz-Torres

the scattering chamber contained an emergency pump that vented to a high altitude above

Hall A.

3.2.4 High resolution spectrometer

MARATHON required the detection of electrons that participated in large energy transfer

DIS processes in the target. Selecting these electrons for detection was completed using

Hall A’s pair of high-resolution spectrometers (HRS). The left (L) and right (R) HRS rotate

independently about the hall center, allowing coverage of central scattering angles ranging

from 12.5◦ to 150◦ (LHRS) and 130◦ (RHRS). The spectrometers were designed to have a
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Figure 3.10: Schematic layout of HRS. Dashed line indicates central trajectory. From [42].

momentum resolution of 10−4 over the momentum range 0.8-4.0 GeV. Each HRS has three

quadrupole magnets and one dipole magnet, ordered QQDQ, which are shown schematically

in Figure 3.10. The dipole has a 45◦ vertical bend, defining the dispersive direction of

the spectrometer. The first quadrupole (Q1) focusses in the dispersive direction, while the

subsequent quadrupoles (Q2 and Q3) focus in the non-dispersive direction.

The trajectory of particles through the HRS is described in the transport coordinate

system (TCS). The coordinate system is defined relative to the central trajectory, which is

the idealized trajectory of a particle whose angle and momentum match exactly the central

settings of the spectrometer. The z-axis is parallel to the central trajectory. The x-axis is

perpendicular to the z-axis, pointing in the dispersive direction of the spectrometer dipole.

The y-axis is perpendicular to both, ŷ = x̂ × ẑ, and thus points in the non-dispersive

direction. The direction of a trajectory is specified by the tangent of angles relative to the

central trajectory, θ = dx/dz and φ = dy/dz. Momentum is expressed as the fractional

deviation from the momentum of central trajectory, δp/p. A particle is fully defined in the
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TCS by the vector

x =




x

θ

y

φ

δp/p




(3.12)

These variables are measured at the focal plane downstream of the spectrometer. How-

ever, determining the kinematics of an event requires knowledge of these variables at the

original scattering vertex. To first order, the propagation of a particle through the HRS can

be described by a single transport matrix T. That is, a particle’s variables at the focal plane,

xfp, are related to the variables at the target, xtg, by:

xfp = Txtg (3.13)

The inverse of the transport matrix, T−1, allows the reconstruction of the target variables

based on the measured focal plane variables. In practice, the expansion in focal plane

variables is performed up to fifth order. The single reconstruction matrix is replaced with a

set of tensors that are polynomials of xfp. Thus, the target variables xα ( = x, θ, y, φ, δp/p)

are reconstructed by

xα =
∑

j,k,l

∑

i

(C
αjkl

i xifp)θ
j
fpy

k
fpφ

l
fp. (3.14)

The superscripts indicate the power of each focal plane variable, and C
αjkl

i are the corre-

sponding optics matrix elements for variable α

The optics tensor elements C
αjkl

i are tuned using a dataset that covers the entire space

of θtg, ytg, φtg, and δp/p [43]. To reduce the number of unknowns at the target, xtg is

effectively fixed at zero by constraining the beam position at the target. The spectrometer

setting is scanned over −4.5% < δp/p < 4.5%, moving the elastic peak across the focal

plane. Further, data is taken with a special collimator called the sieve, placed downstream
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(a) before optics calibration (b) after optics calibration

Figure 3.11: Reconstructed sieve data from E12-07-108. The crosshairs indicate the
absolute position of the sieve holes.

of the target prior to any magnetic fields. The sieve contains a grid of small holes that,

when carefully positioned and surveyed, correspond to precise positions and angles in the

TCS. Such a dataset allows the optimization of the tensor elements to reproduce the known

variable values at the target.

The optics tensor elements are unique for a given spectrometer tune, defined by a partic-

ular combination of field settings for each magnet. Many experiments in Hall A, including

MARATHON, use the standard HRS tune described in [42]. Completing a full optics cali-

bration is time-consuming, requiring time to both take the data and to install and survey

the sieve. For this reason, MARATHON did not perform an optics calibration, but rather

relied on the calibration obtained from experiment E12-07-108. This experiment also used

the standard HRS tune, and no configuration changes were made before MARATHON that

would affect the resulting optics tensor. See Figure 3.11 for the reconstructed sieve data

before and after the E12-07-108 optics calibration.
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3.2.5 Detector package

Each HRS is equipped with a detector package for particle tracking, counting, and identifi-

cation. Historically, the RHRS was used to detect final-state hadrons when required, while

the LHRS detected electrons. This led to some small geometrical differences in the left and

right detectors, although the overall package is functionally the same. A schematic of the

detector setup is shown in Figure 3.12.

Lead glass 
calorimeter

S0 scintillator

VDCs

Electronics 
racks

Gas Cherenkov

S2 scintillator

Central trajectory 
Figure 3.12: Schematic layout of detector package. The calorimeter is depicted in the LHRS

configuration. Orange elements represent structural elements of the detector package.
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3.2.5.1 Vertical drift chambers

As previously discussed, precisely determining the position and angle of particles at the focal

plane is critical to reconstructing event kinematics. This was done using a pair of vertical

drift chambers (VDCs) [44], located approximately 3.5 m downstream of the Q3 exit. Each

VDC contains two grounded sense wire planes suspended between conducting foils held at

-4 kV, creating a very strong electric field directed away from the wires. The chamber is

circulated with an equal mix (by volume) of argon and ethane gas, which is ionized when

charged particles pass through it. The freed electrons are accelerated by the field, and the

resulting ionization avalanche results in charge that collects on the sense wires and is read

out as the signal.

The wire directions of the two planes are orthogonal to each other and form a 45◦ angle

with both the dispersive and non-dispersive axis of the TCS, such that the wire planes

are horizontal in lab coordinates. Within each plane, the sense wires are separated by a

perpendicular distance of 4.24 mm. The wire spacing and orientation of the wire planes

ensures that the central trajectory of the HRS traverses 5 wire regions, and extreme tracks

traverse 3 wire regions. A consequence of this orientation is that the ionization charge drifts

vertically, hence the name vertical drift chamber. The two sense wire planes are separated

by a vertical distance of 26 mm, and the two VDCs are positioned such that corresponding

sense wire planes in each chamber are separated by a vertical distance of 0.335 m. See

Figure 3.13.

The VDC uses drift time measurements from the sense wires to determine the position

of the traversing particle. The measured drift time from the particle trajectory to the sense

wire corresponds to the perpendicular distance between them. Each VDC wire is connected

to a dedicated time to digital converter (TDC) channel, with the wire signal acting as the

start and the event trigger acting as the common stop for all channels. Figure 3.14 shows

a typical TDC spectrum for one wire. The peak at short drift time is populated by events

that pass very close to the sense wire, where the electric field has transitioned from contstant
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All outside surfaces of the Stesalit frames are
plated with a 70 mm thick layer of copper to
suppress RF pickup and static charge buildup.

Further, after assembly, the entire chassis is
covered with an outer sheathing of 125 mm thick
copper. The individual copper plates forming this

Fig. 1. Schematic layout of the VDCs (not to scale). The rectangular area of each wire frame aperture is 2.118m! 0.288m (see Section
3.2.1). The U and V sense wires are orthogonal to each other and lie in the horizontal plane of the laboratory. They are inclined at an
angle of 451 with respect to both the dispersive and non-dispersive directions. The lower VDC coincides (essentially) with the
spectrometer focal plane. The vertical offset between like wire planes in 0.335m.

K.G. Fissum et al. / Nuclear Instruments and Methods in Physics Research A 474 (2001) 108–131110

Figure 3.13: Schematic layout of VDCs. From [44].
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Figure 3.14: TDC spectrum of a VDC sense wire.

to quasiradial. The central region is populated by events that pass through the the VDC

region with a uniform electric field, resulting in an approximately flat distribution. Events

that pass very far from the sense wire have the largest drift time and decreasing probability

of detection, resulting in the spectrum going to zero.

A group of adjacent sense wires with a TDC signal form a wire cluster. Timing mea-

surements from a cluster can identify the 1D point (in that plane’s coordinates) where the

trajectory crossed the wire plane. For a nominal trajectory traversing five wire regions, the

per-plane time resolution is 4.5 ns, corresponding to a position resolution of 225 µm. Since

the sense wires in each plane are orthogonal, a cluster in both planes can determine the 2D

intersection point. Correlated clusters in all four planes of both VDCs form a track, which

is fully defined by its angle as well as position.

To compare drift times from different sense wires, timing offsets for each TDC channel

need to be accounted for. This is completed by selecting a reference time t0 to which all TDC

spectra are aligned. Typically, t0 is chosen to be the steep edge of low-drift time events at

large TDC channel, identified by finding the drift time with the largest derivative. The TDC

signals are offset (in software) to align t0 for all wires. Figure 3.15 shows a two-dimensional

histograms of calibrated TDC spectrum versus wire number. The edge of the short drift
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Figure 3.15: Calibrated TDC spectra of all VDC wires.

time peak is aligned for all wires.

3.2.5.2 Scintillators

Two plastic scintillating detectors were used for event triggering. The scintillation photons

emitted by high energy particles in the plastic are detected by photomultiplier tubes (PMTs),

indicating the incidence of a particle. The S0 scintillator consists of a single plastic paddle

equipped with a PMT on the top (A) and bottom (B) of the paddle. The S2 scintillator

consists of 16 adjacent paddles, each equipped with a PMT on the left (L) and right (R) side

of the paddle. A schematic of the scintillators is shown in Figure 3.16. A scintillator trigger

requires a coincidence between both PMTs viewing a paddle (A and B for S0, or L and R

for any of the S2 paddles). See Section 3.2.5.5 for more details on the trigger.

3.2.5.3 Gas Cherenkov detector

A threshold gas Cherenkov detector [45] was used for both event triggering and particle

identification. When high-energy charged particles pass through a material at speeds faster

than the local phase velocity of light, Cherenkov radiation is emitted. The detector has a

large gas volume that acts as the Cherenkov radiator. The depth of the detector is such that
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Figure 3.16: Schematic layout of scintillators.
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Particles
from the
spectrometer

Figure 3.17: Front (left) and side cross section (right) schematic of gas Cherenkov detector.
From [45].

the central trajectory of the LHRS (RHRS) has a pathlength of 1 m (1.5 m) through the

gas. At the rear of the detector are ten spherical mirrors arranged in two columns, designed

and positioned to reflect the Cherenkov radiation into PMTs on the sides of the detector.

As the mirrors must be positioned in the path of the detected particle, they were designed to

be very thin (5.5×10−3 radiation lengths) to minimize the effect on the particle’s trajectory.

See Figure 3.17 for a schematic of the detector. The detector is circulated with CO2 gas at

atmospheric pressure, which has a refractive index of n = 1.00041. Since the threshold for

Cherenkov radiation is β > 1/n, this means that the minimum detection energy for electrons

is 0.017 GeV. On the other hand, pions and protons require 4.8 and 32 GeV, respectively,

which are outside of the HRS momentum range. This provides a very effective method of

discriminating electronic from hadronic events.

Each PMT is connected to a dedicated ADC channel, with a typical spectrum shown

in Figure 3.18. The large, sharp peak, is the pedestal, The small subsequent peak is the

minimum possible response produced by the PMT, corresponding to the emission of one
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Figure 3.18: ADC spectrum of gas Cherenkov PMT.

photoelectron (PE) from the cathode. The continuous signal at higher channels is from the

emission of multiple photoelectrons. The scaling between PEs and observed ADC signal

depends on the PMT gain and the ADC sensitivity, which must be calibrated with some

absolute scale. This is accomplished by extracting the gain coefficient required to scale the 1

PE peak for all PMTs to 300 channels above pedestal. For the ADC signal from each PMT,

the pedestal and 1 PE peaks are fit with Gaussians, determining the mean positions xped

and x1PE. The gain coefficient is then determined by:

G =
300

x1PE − xped
(3.15)

The total detector response is determined by summing the calibrated ADC signals from all

PMTs.

3.2.5.4 Calorimeter

The final detector in each package is a lead glass calorimeter for particle identification. The

calorimeters consist of two layers of lead glass blocks, with each block connected to a PMT.
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High energy particles shower as they travel through the lead glass, and the resulting light

is detected by the PMTs. Summing the shower signal from all blocks yields the energy

deposited by the particle. Electrons deposit all their energy in the calorimeter, but hadrons

do not.

In the LHRS, the first lead glass layer contains 34 blocks of dimension 15 cm × 15 cm ×

30 or 35 cm, oriented perpendicular to the particle tracks. The blocks are arranged in two

columns, with one column containing the shorter blocks and the other column containing

the longer blocks. The second layer is nearly identical, with the short/long blocks swapped

and the whole layer shifted by 50 mm. This ensures that no block gaps exist continuously

through both layers. In the RHRS, the first layer contains 48 blocks of dimension 10 cm ×

10 cm × 35 cm, oriented perpendicular to the particle tracks and arranged in two columns.

The second layer contains 75 blocks of dimension 15 cm × 15 cm × 35 cm, oriented parallel

to the particle tracks and arranged in a 5×15 grid. Schematics of both calorimeters are

shown in Figure 3.19.

Each lead glass block is attached to a PMT connected to a dedicated ADC channel. The

scaling between the absolute energy deposited in the block and the observed ADC signal

depends on the PMT gain and ADC sensitivity, which must be calibrated using the absolute

energy of each event. The energy deposited in a single block is simply the product of the

block’s coefficient C and ADC signal A. Thus, the total energy of a single event i can be

expressed by a sum over all calorimeter blocks j:

Ei =
blocks∑

j

CjAij. (3.16)

The coefficients Cj can be calibrated by comparing the total calorimeter energy, Ei, to the

event momentum obtained by the optics reconstruction of the VDC track, pi. Unlike the

gas Cherenkov calibration, where the gain coefficients could be individually determined, the

calorimeter calibration requires the sum of all blocks. Thus, the block coefficients must be

52



SF-5

XP2050
Al 25 mm

14.5 x 14.5 x 30 (35) cm50 mm

XP2050 14.5 x 14.5 x 35 cm

R 3036

Al 19 mm

Al 13 mm

SF-5

10 x 10 x 35 cm

TF-1

HRS-L

HRS-R

Figure 3.19: Schematic layout of shower calorimeters. Particles enter from the bottom.
TF-1 and SF-5 refer to the type of lead glass. XP2050 and R3060 refer to the PMT model.

From [42].

determined simultaneously.

The goodness of a calibration can be described by defining:

χ2 =
events∑

i

(
blocks∑

j

CjAij − pi
)2

(3.17)

By minimizing χ2 with respect to the block coefficients, one can find the set of coefficients

required to convert observed ADC signal to absolute energy.

As a cross check, two methods were used for minimizing χ2. The first method used the

TMinuit class, a C++/ROOT implementation of the Minuit minimization program, with

the block coefficients as free parameters. The calibration obtained with this method was

found to be stable agains variation in initial parameter values and step sizes. The second

method reduced the minimization to a set of linear equations by taking the derivative of

Equation 3.17 with respect to the coefficient of block k and setting equal to zero to find the
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minimum,

∂χ2

∂Ck
= 0 (3.18)

leading to the equation

events∑

i

(
blocks∑

j

CkAijAik

)
=

events∑

i

piAik. (3.19)

This can be summarized for all blocks, k = {0, 1, 2...N}, with the matrix equation:

events∑

i




Ai0Ai0 Ai0Ai1 Ai0Ai2 . . . Ai0AiN

Ai1Ai0 Ai1Ai1 Ai1Ai2 . . . Ai1AiN

Ai2Ai0 Ai2Ai1 Ai2Ai2 . . . Ai2AiN
...

...
...

. . .
...

AiNAi0 AiNAi1 AiNAi2 . . . AiNAiN







C0

C1

C2

...

CN




=
events∑

i




piAi0

piAi1

piAi2
...

piAiN




(3.20)

Thus, by filling the leftmost and rightmost matrices with ADC and tracking information

from each event, this expression can to solved for the column of block coefficients.

The calibrations obtained with these two methods were effectively identical. The cal-

ibrated energy spectrum from the calorimeter is shown in Figure 3.20. A minimum gas

Cherenkov signal cut has been applied in order to emphasize the electron peak at 3.1 GeV,

corresponding to the momentum setting of the spectrometer.

3.2.5.5 Trigger setup

The event triggers for MARATHON were formed using various combinations of the S0 and

S2 scintillators and the gas Cherenkov detector. The LHRS and RHRS had separate triggers,

but were formed from identical combinations of detectors. Three event triggers were defined,

numbered T1-T3 for the LHRS and T4-T6 for the RHRS:

• T2/T4: Coincidence of both scintillators, S0 & S2
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Figure 3.20: Energy spectrum from calorimeter.

• T3/T5: Coincidence of both scintillators and gas Cherenkov, (S0 & S2) & GC

• T4/T6: Coincidence of either scintillator and gas Cherenkov, (S0 — S2) & GC

Both HRS also had a clock trigger operating at 103.7 kHz.

3.3 Runplan

MARATHON production data was taken with a beam energy of 10.6 GeV, the maximum

energy deliverable to Hall A during the run period. This beam energy, made possible by Jef-

ferson Lab’s 12 GeV energy upgrade, was critical to accessing the high momentum and energy

transfers required to make high-x measurements in the DIS region. Different kinematic set-

tings can be accessed by adjusting the HRS momentum and/or angle; during MARATHON,

the HRS momentum was fixed, and higher x points were accessed by increasing the HRS

angle. The LHRS momentum was set at 3.1 GeV. The cryogenic cooling on the RHRS dipole

was found to be unstable when the magnet was set above 3 GeV, so the RHRS momentum

was set at 2.9 GeV. These settings correspond to energy transfers of ν ≈ 7.5 GeV.

Due to safety considerations for the tritium target, limits were placed on beam operations

55



KIN E (GeV) E ′ (GeV) θ (◦) x Q2 (GeV2) W 2 (GeV2)

1 10.6 3.1 17.58 0.22 3.07 11.89
2 10.6 3.1 19.12 0.26 3.62 11.33
3 10.6 3.1 20.58 0.30 4.19 10.76
4 10.6 3.1 21.93 0.34 4.76 10.20
5 10.6 3.1 23.21 0.38 5.32 9.63
7* 10.6 3.1 25.59 0.46 6.45 8.51
9* 10.6 3.1 27.78 0.54 7.57 7.38
11* 10.6 3.1 29.92 0.62 8.76 6.20
13* 10.6 3.1 31.73 0.70 9.82 5.13
15* 10.6 3.1 33.56 0.78 10.96 4.00
16* 10.6 2.9 36.12 0.82 11.82 3.51

Table 3.2: MARATHON runplan.
KIN1-KIN15 were taken with the LHRS. KIN16 was taken with the RHRS.

*took data both before and after the two week beam shutdown

to Hall A. These included a maximum allowed beam current of 22.5 µA, and a mandatory

4 mm × 4 mm raster. These restrictions applied to all targets, not just the tritium target.

Table 3.2 shows the kinematic settings of production data. The KIN numbering is based

on the original runplan, in which kinematic settings were equally spaced with ∆x = 0.04. Due

to time constrains, even-numbered settings above KIN5 were eliminated, with the exception

of the highest x setting, KIN16. For nearly the whole production run, the RHRS was set to

KIN16, where the event rate was lowest. The LHRS was used to scan the lower kinematics.

Data for KIN7-KIN15 was taken in two passes. The first pass covered the kinematic range

more quickly at the cost of not collecting the full desired statistics. From KIN1 to KIN5,

data was taken on hydrogen, deuterium, tritium, helium-3, and the empty cell. For the

remaining kinematics, hydrogen was omitted.

During each kinematic setting, the targets were alternated for periods of approximately

one hour of beam on target. When the desired statistics for a target was reached, it would

be removed from the rotation. Following beam downtime of 2 hours or more, the carbon

hole target was used to verify the beam was centered on the target ladder.

MARATHON’s kinematic coverage (combining data from all targets) is shown in Fig-
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ure 3.21. The different colors represent different spectrometer settings. The Q2 of the data

depends strongly on x, scaling as:

Q2 = (14 GeV2) · x (3.21)

Requiring W 2 > 3 GeV2 eliminated a small portion of the highest-x data. As all the data

had Q2 > 2 GeV2, no Q2 was necessary.

It should be noted that in the middle of the experimental run, multiple transformers

were blown in the central helium liquefier (responsible for supplying 2 K helium-4 to the

cryomodules). The accelerator was shut down for approximately two weeks while the trans-

formers were replaced. This happened in between the first and second pass on the LHRS.

No differences in the data quality before and after the shutdown were observed.

In addition to production data, a variety of specialized runs were taken for calibrations

and systematic corrections. These will be addressed in the following chapter.
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(a) x vs. Q2 (GeV2)

(b) x vs. W 2 (GeV2)

Figure 3.21: MARATHON kinematic coverage.
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Chapter 4

Data analysis

4.1 Cross section ratios

An absolute cross section can be extracted from experimental data by

σ ≡ d2σ

dE ′ dΩ
=

(
1

∆E ′ ∆Ω ε

)(
N

Q η

)
(4.1)

where (∆E ′ ∆Ω) is the energy and solid angle acceptance of the spectrometer, ε is the

detection efficiency of the detector system, N is the number of scattered electrons counted

by the detector system, Q is the beam charge deposited on the target, and η is the thickness

(nuclei · cm−2) of the target. Note that for MARATHON, all the gas target cells had the

same geometry, so η can be replaced by the number density n (nuclei · cm−3), which differs

by a factor of the cell length.

The quantities in the first parentheses depend only on intrinsic properties of the spec-

trometer and detector system. There are multiple methods that can be employed to find the

spectrometer acceptance, which typically require a Monte Carlo simulation of the spectrom-

eter and input from a cross section model. This process is complicated and can contribute

significantly to systematic uncertainties. Additionally, as the acceptance can depend on

the spectrometer settings, the acceptance must be determined for each kinematic setting.
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Detector efficiencies should not depend on the spectrometer position, as long as the detec-

tor settings remain unchanged. Conversely, the second parentheses contains quantities that

depend on the target. These depend on the underlying DIS processes of interest: given

a certain number of scattering opportunities (also called luminosity, L = Qn), how many

electrons are scattered and detected at particular kinematics?

MARATHON is primarily interested in determining cross section ratios between various

nuclear targets, based on simultaneous measurements carried out with identical spectrometer

and detector settings. This has an important impact on the required analysis. When forming

cross section ratios, quantities related to the spectrometer and detector will cancel, leaving

only the quantities that depend on the target. Therefore, the cross section ratio between

nucleus A and B will reduce to

σA
σB

=

(
NA

QA nA

)/(
NB

QB nB

)
≡ YA
YB

, (4.2)

where Y = N/Qn is referred to as the normalized yield. Thus, the analysis only needs to

determine the normalized yields for each target, and the ratio of these are equivalent to the

ratio of the corresponding cross sections.

Practically, the normalized yields will be extracted from a series of many data acquisition

(DAQ) runs. These data must be combined to give a single value of the measured yield.

This can be done by summing the total number of detected electrons and normalizing by

the total luminosity over the course of the whole experimental run. That is,

Y =

∑
Ni∑
Qini

, (4.3)

where the sum is over run number i.

First, cuts must be developed to ensure that only appropriate electron scattering events

are counted (Section 4.2). Next, various corrections must be developed for both physical

effects and sources of contamination (Section 4.3). Once this is complete, the normalized
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yields and cross section ratios can be determined.

4.2 Cuts

4.2.1 Kinematics

To ensure that only DIS events were used in the MARATHON analysis, a cut was placed on

the invariant mass W 2 of the final hadronic state:

W 2 > 3 GeV2 (4.4)

This cut eliminated a relatively small number of KIN16 events (the highest x data). All of

the MARATHON data satisfied the desired minimum momentum transfer Q2 > 2 GeV2, so

no explicit cut on Q2 was required.

4.2.2 Acceptance

A set of cuts on the target observables θtg, φtg, and δp/p were applied to avoid the edges of the

spectrometer acceptance. This is necessary as the optics reconstruction (see Section 3.2.4)

is over-constrained, leading to erratic behavior on the acceptance boundary. For the HRS,

the standard cuts typically used are:

−0.06 ≤ θtg ≤ 0.06

−0.03 ≤ φtg ≤ 0.03

−0.04 ≤ δp/p ≤ 0.04

(4.5)

where θtg = φtg = δp/p = 0 corresponds to the central trajectory of the spectrometer. Recall

that the HRS have a fractional momentum resolution of approximately 10−4. In addition to

avoiding the acceptance edges, the acceptance cuts for MARATHON must satisfy an addi-
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tional condition. As described in Section 4.1, extracting cross section ratios from normalized

yields assumes that the acceptance is the same for both sets of scattering data. Therefore,

MARATHON must ensure that within the applied acceptance cuts, the acceptance function

is the same for each target and will cancel in cross section ratios.

The yield in a particular bin will be proportional to the product of the acceptance function

and cross section:

N ∝ A(ν, θ)σ(ν, θ) (4.6)

Therefore, the shape of the acceptance function can be obtained by taking the ν vs. θ event

distribution and normalizing by the cross section of each bin (obtained from a model). The

ratio of acceptance functions for different targets should be flat. The acceptance ratios for

each cross section ratio measured by MARATHON are shown in Figure 4.1. As expected,

the ratios are mostly flat. The large deviations on the edges are statistical fluctuations in

less populated bins. Note that if the full normalization, including luminosity, was taken into

account, each of these ratios should be unity.

0

0.5

1

1.5

2

2.5

3

D/p acceptance ratio

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
 (deg)θ

7.3

7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

 (
G

eV
)

ν

D/p acceptance ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

H/D acceptance ratio3

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
 (deg)θ

7.3

7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

 (
G

eV
)

ν

H/D acceptance ratio3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

He/D acceptance ratio3

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
 (deg)θ

7.3

7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

 (
G

eV
)

ν

He/D acceptance ratio3

0

0.5

1

1.5

2

2.5

3

He acceptance ratio3H/3

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
 (deg)θ

7.3

7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

 (
G

eV
)

ν

He acceptance ratio3H/3

Figure 4.1: Acceptance function ratio for each cross section ratio.
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Figure 4.2: Reconstructed vertex z for tritium target.

4.2.3 z vertex

The reconstructed scattering vertex z is shown in Figure 4.2. The most dominant feature in

the distribution are two peaks arising from electrons scattering off the aluminum endcaps of

the target cell. In order to isolate events scattered from the gas target nuceli, a cut is placed

on vertex z to exclude the endcap peaks. Despite this cut, there is a residual contamination

from endcap scattering events that are mis-reconstructed in the center of the target (see

Section 4.3.3). As the contamination depends on the HRS angle, a different vertex z cut

was allowed for each kinematic setting. When the HRS are set to a more forward angle,

the contamination from mis-reconstructed events is larger. However, the event rate is high

enough that a stricter vertex z cut can be applied while retaining adequate statistics. For

larger HRS angles, the contamination is smaller, while the event rate is lower. This allows

a more relaxed vertex z cut to increase the included statistics. The vertex z cuts for each

kinematic setting are shown in Table 4.1.
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KIN zmin (cm) zmax (cm)

1 -8.0 10.0
2 -8.0 10.0
3 -8.0 10.0
4 -8.0 10.0
5 -9.0 10.0
7 -9.0 10.0
9 -9.5 10.0
11 -9.5 10.0
13 -10.0 10.5
15 -10.0 10.5
16 -10.5 11.0

Table 4.1: Vertex z cut used for each kinematic setting.

4.2.4 Tracking

Two cuts are applied using the tracking information from the VDCs. A cut on β = v/c

is applied to separate up-going particles exiting the spectrometer from down-going cosmic

rays (the sign of β depends on which VDC detects the particle first). Also, a cut is applied

selecting events with strictly one track.

β > 0

ntrack = 1

(4.7)

Obviously, a good electron event must have ntrack ≥ 1. For events with multiple tracks,

a series of more complicated cuts can be used to determine which track should be used.

However, MARATHON observed that only approximately 1% of all events meeting good

electron cuts contained more than one track. It was decided that this negligible gain in

statistics was not worth making the more complicated cuts, so only single-track events were

included.
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4.2.5 Particle identification

The gas Cherenkov detector and lead glass calorimeter are used to make particle identification

(PID) cuts to separate electron from hadron events in the detector. In particular, these PID

cuts must exclude the pions that are commonly part of the final hadronic state of DIS

scattering. Due to the β threshold for Cherenkov radiation, requiring a minimum signal

from the gas Cherenkov detector effectively excludes hadrons, which are much more massive

than electrons. In the calorimeter, the electromagnetic shower caused by an electron is

expected to deposit all of the electron’s energy in the detector, while hadrons only leave a

portion of their energy. Requiring a minimum E/p, where E is the total energy deposited in

the calorimeter and p is the reconstructed track momentum, is also effective at separating

electrons from hadrons. MARATHON used the following PID cuts on the gas Cherenkov

signal GC and calorimeter E/p to isolate electrons:

GC > 1500 (LHRS)

GC > 2000 (RHRS)

E/p > 0.7

(4.8)

These cuts are visualized in Figure 4.3. The efficiency of these cuts must be determined

to estimate the residual contamination from non-electron events. Traditionally, this is done

by applying a tight cut on one detector to select a clean electron (or pion) sample, and

determining the electron (or pion) efficiency of the cut on the other detector by

ε =
Ncut

Nsample

(4.9)

where Ncut is the number of electrons (or pions) passing the cut, and Nsample is the number

of particles in the sample. The total PID efficiency is then found by the product of the
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Figure 4.3: PID cuts used for MARATHON. LHRS gas Cherenkov cut is shown.

individual gas Cherenkov and calorimeter efficiencies:

εPID = εGCεcal (4.10)

In additional to observing the expected pion peak, leaving a low energy signal in both the gas

Cherenkov and calorimeter, MARATHON observed an unexpected background signal. This

signal, while leaving just trace amounts of energy in the calorimeter, was able to produce

large signals in the gas Cherenkov detector (see again Figure 4.3). Some hypotheses regarding

the origin of this signal are that high-energy neutral particles (produced by the upgraded

CEBAF beam energy) are scattered from the HRS dipole into the detectors, or that charged

pions produced in the target decay into muons. While this signal can still be completely

excluded with a cut on E/p, it complicates the calorimeter efficiency calculation as it is

impossible to get a clean electron sample with a gas Cherenkov cut alone.

An alternative approach was taken to determine the efficiencies, using four populations

of events. N0 is the total number of events passing the acceptance and tracking cuts, with

no PID cut applied. NGC is the subset of N0 that passes the gas Cherenkov cut. Ncal is
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the subset of N0 that passes the calorimeter E/p cut. Finally, NPID is the subset of N0

that passes both the gas Cherenkov and E/p cut. The total population N0 is the sum of

the number of electrons Ne and non-electrons Nx. The probabilities that an electron passes

the individual detector cuts are PGC
e and P cal

e , with analogous probabilities PGC
x and P cal

x

for non-electrons. These probabilities are equivalent to the detector cut efficiencies. The

relationship between these quantities is summarized in the following equations.

N0 = Ne +Nx (4.11)

NGC = PGC
e Ne + PGC

x Nx (4.12)

Ncal = P cal
e Ne + P cal

x Nx (4.13)

NPID = PGC
e P cal

e Ne + PGC
x P cal

x Nx (4.14)

Note that since a clean electron sample can be obtained with a cut on E/p, PGC
e and PGC

x

can be calculated using the traditional approach. This leaves four unknowns to be found

using Equations (4.11)-(4.14). The resulting relative contamination from non-electron events

that pass both PID cuts can be calculated by

x

e
=
PGC
x P cal

x Nx

NPID

, (4.15)

and was found to be negligibly small for all targets.

4.3 Systematic corrections

4.3.1 DAQ deadtime

When the DAQ gate is active following an event, additional event triggers attempting to

activate the gate are ignored. This is known as DAQ deadtime. Every event trigger is
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Figure 4.4: Average DAQ deadtime for each kinematic setting.

counted by a scaler, regardless of whether or not the event trigger activated the DAQ gate to

record the event information. This allows the percentage of events excluded due to deadtime

to be determined by:

CDT =
Nscaler −NDAQ

Nscaler

(4.16)

where Nscaler is the total number of event triggers counted by the scalar, and NDAQ is the

total number of events recorded by the DAQ. The number of good electron events meeting

all cuts can then be corrected to account for events that were excluded due to deadtime.

The average deadtime for each of MARATHON’s kinematic settings is shown in Figure 4.4.

4.3.2 Target density fluctuation

As the beam passes through the target, it deposits energy in the cell walls and gas itself,

raising the temperature of the target. The gas targets are sealed, and therefore the overall

gas density must remain constant. However, the gas volume immediately surrounding the

path of the beam is heated more than the rest of the gas, causing a localized decrease in gas
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Figure 4.5: Beam-induced density fluctuation with fit for each MARATHON target.

density that must be accounted for when calculating luminosity. This is oftentimes referred

to as target “boiling”, although the target is not actually boiling. Since the heating effect

depends on the power being deposited in the target, it will be a function of the beam current.

To quantify this correction, several runs were taken on each gas target with currents

ranging from 2.5 µA to the maximum allowed 22.5 µA. The normalized yield (corrected for

DAQ deadtime and detector efficiencies) was calculated for each run. Any dependence of

the yield on current must be due to beam-induced changes in the local target density. As a

proof of principle, this method was tested on a solid target, which does not experience these

density fluctuations. The solid target showed a normalized yield that was independent of

beam current. On the other hand, the gas target data shows a clear decrease (see Figure 4.5)

that is fit with a second-order polynomial in beam current I:

Cdens(I) = aI2 + bI + c (4.17)

Since the correction must reflect the relative decrease in target density, the data for each

69



0.15− 0.1− 0.05− 0 0.05 0.1 0.15
vertex z (m)

3−10

2−10

1−10

1  p  D

H3 He3 

 Empty

Reconstructed vertex z
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target is normalized such that c = 1. When the luminosity for each run is calculated, the

measured target density must be corrected by a factor of Cdens(Iavg), where Iavg is the average

beam current for that run.

4.3.3 Endcap contamination

Although cuts are placed on vertex z to eliminate the endcap peaks, due to the resolution of

reconstruction, it is possible that events scattered from the endcaps are reconstructed in the

gas volume of the cell. Figure 4.6 shows the vertex z distribution for all gas cells, including

the empty target cell. While there is no gas in the cell volume for electrons to scatter from,

there is a continuous distribution of events reconstructed between the endcaps.

To quantify the size of this contamination, a common normalization must be found to

compare the empty cell data to the gas cell data. This was done by finding the normalized

yield of the upstream endcap for each cell, and scaling them to match (as shown in Figure 4.6).

The same cuts used for the primary yield analysis (neglecting the vertex z cut) were used

to determine the endcap yields. The relative endcap contamination CEC for each target

was found by integrating the empty cell distribution over the accepted vertex z range, and
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dividing by the integral of the gas cell distribution over the same range. The contamination

is dependent on spectrometer angle, and must be determined for each of MARATHON’s

kinematic settings. The ratio of the endcap contaminations for target A and B is fit with

an exponential function,

CA
EC

CB
EC

= 1± eax+b (4.18)

where the + or − depends on which target in the ratio had the larger contamination. The

contamination ratio and fits for each MARATHON cross section ratio are shown in Figure 4.7.

These fits were used to calculate and correct the endcap contamination for each bin, using

the corresponding x-position of that bin.

4.3.4 Radiative effects

4.3.4.1 External radiation

When electrons pass through material, both before and after scattering, they can lose energy

through processes such as ionization and bremsstrahlung. For electrons that lose energy,
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simply calculating kinematic variables using the beam energy (for E) and detected energy

(for E ′) does not reflect the kinematics of the actual scattering event that took place. This

results in events being binned incorrectly. Note that since electrons can only lose energy

through such processes, these events will always appear to have a larger energy transfer than

reality.

The four gas target cells used for MARATHON were designed to be identical, however,

due to machining tolerances ended up having variations in the thickness of the cell walls.

Further, each cell contained a different density of a different gas, each with a unique radia-

tion length. It was therefore possible that the energy loss was not the same between targets,

resulting in net bin migrations that did not cancel in the cross section ratios. In order to

evaluate this effect, a GEANT4 simulation of the target system was developed. The simula-

tion geometry included all material that the electrons pass through between the accelerator

and spectrometer:

• 0.2 mm beryllium (window separating accelerator beamline from Hall A beamline)

• Gas target

• 0.4 mm aluminum (scattering chamber exit window)

• 81.6 cm air (gap between scattering chamber and spectrometer)

• 0.305 mm Kapton (spectrometer entrance window)

Items with specified thicknesses were common to all targets. Most importantly, the simula-

tion could switch between different targets, defined by the measured thicknesses of each cell

and fill parameters of each gas. See Figure 4.8 for a visualization of events and geometry in

the simulation.

Electrons were generated upstream of the target at the MARATHON beam energy of 10.6

GeV, and propagated to a random scattering vertex uniformly sampled within the target.

The kinematics of the scattering event were chosen by sampling uniformly in cos θ and Q2.
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Figure 4.8: Geometry and events in GEANT4 energy loss simulation. Grey and yellow
volumes indicate material the electrons must pass through. The red lines are simulated

electron tracks.
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This is, of course, unphysical. However, since the relevant quantity to be extracted is the

relative probability that an event migrate from one bin to another, physical sampling (i.e.,

from a cross section model) was not necessary. After scattering, the electron was propagated

through the remaining material before entering the spectrometer. Relevant energy loss and

multiple scattering processes were included in the GEANT4 physics list.

The simulation output included two sets of kinematic variables. The observed values

were calculated using the initial beam energy (excluding pre-scattering energy loss) and the

final detected energy (including post-scattering energy loss). The true values were calculated

using the energy entering the scattering process (including pre-scattering energy loss) and

the energy immediately after scattering (excluding post-scattering energy loss). This allowed

a comparison of the true event kinematics, representing the energies of the actual scattering

process, to the observed event kinematics that have been smeared by energy loss effects. Fi-

nally, the output included the electron position and angle entering the spectrometer, allowing

acceptance cuts (replicating cuts on real data) to be applied.

The simulation was run for the first kinematic setting, where effects from differences

in cell geometry would be maximized due to the forward scattering angle. An illustrative

histogram of the results is shown in Figure 4.9. The vertical axis is x calculated with the

true variables; the horizontal axis is x calculated with the observed variables. Both axes have

bins of width ∆x = 0.02, comparable to the bin size used for the data analysis. The bins

outlined in red indicate events that are observed in the same bin as their true kinematics.

All other bins are populated by events that migrated from their true bin to another due to

energy loss.

A comparison between targets can be made by quantifying the bin migration. Let Ntrue

be the number of events (meeting acceptance cuts) whose true kinematics place it in a

particular x bin. Let Nobs be the number of events (meeting acceptance cuts) whose observed

kinematics place it in the same bin. The net effect of bin migration due to energy loss can
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Figure 4.9: Distribution of simulated events binned by true and observed x values
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Figure 4.10: Ratio of simulated bin migration magnitudes for each cross section ratio.
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then be quantified by:

R =
Ntrue

Nobs

(4.19)

The simulation was used to determine R for each target. Figure 4.10 shows the ratio of R for

each of the four cross section ratios measured by MARATHON. The results are consistent

with one, indicating that bin migration from energy loss and multiple scattering cancels in

cross section ratios.

4.3.4.2 Internal radiation

Figure 2.1 depicts the lowest-order QED interaction between an electron and a nucleus. The

cross section for this O(α2) process, sometimes referred to as the Born cross section, is the

most convenient to theoretically analyze. Interpreting the DIS cross section in terms of struc-

ture functions and PDFs assumes this leading-order interaction. However, the probability

of this exact process occurring is zero [46]. Various higher-order processes contribute to the

measured cross section (see Figure 4.11), and experimentally there is no way to distinguish

the true nature of each event. These must be removed using input from QED.

A standard prescription for removing these radiative effects is given by Mo & Tsai [46, 48].

While the photon-hadron coupling is unknown (indeed, this is what the experiment seeks

to measure), the electron-photon couplings are well understood in QED. This allows the

portion of the radiative interactions depicted in Figure 4.11 to be calculated theoretically,
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Figure 4.11: Born and higher order contributions to total QED cross section. Reproduced
from [47].
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regardless of the details of the omitted hadronic vertex. Keeping only O(α3) terms allows the

radiated cross section to be expressed as an integral over the Born cross section. Thus, with

a reasonable input for the Born cross section and the radiative matrix elements calculated

in QED, the full radiated cross section can be calculated. Of course, this introduces model

dependence based on the choice of Born cross section model.

Radiative corrections to the DIS cross section can arise in two ways. First, events from

the elastic peak (including the O(α3) contributions) can radiate energy, forming a large tail

that extends to the DIS region. This contribution is calculated by treating the elastic peak

as a discrete state and accounting for all possible ways that an elastically scattered electron

can lose energy. Second, the O(α3) interactions contribute directly to the DIS cross section.

This contribution is calculated by treating the DIS region as a continuum of discrete states,

and integrating the radiative effects over all states above the elastic peak.

In this approach, the model radiated cross section σradmod can be calculated, given a model

Born cross section σBornmod as input. Thus, the experimental cross section σexp, which includes

all radiative effects, can be corrected by:

σBornexp = σexp

(
σBornmod

σradmod

)
(4.20)

The fractional contribution of the Born cross section to the full cross section will be referred

to as the radiative correction factor:

Crad =
σBornmod

σradmod

(4.21)

MARATHON used an existing FORTRAN implementation of the Mo & Tsai prescription

to provide radiative corrections for all gas targets. This required absolute cross sections

for the proton, deuterium, tritium, and helium-3 as input. In order to assess the model

dependence of the radiative corrections, multiple models were used to obtain cross sections

for each nucleus. The proton and deuterium cross sections were obtained from measurements
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of F2 structure functions with corresponding measurements of R = σL/σT . For tritium and

helium-3, the cross section was obtained from models of the EMC ratio (σA/σD) multiplied

by the absolute deuterium cross section. If the EMC model only provided the isoscalar ratio

for an A = 3 nucleus, a model for F n
2 /F

p
2 to remove the isoscalar correction. The various

references used for these cross section inputs are given below.

• Proton and deuterium

1. F2 from SLAC with R = σL/σT = 0.18 [35],

2. F2 from NMC [49], R = σL/σT from R1998 [50]

• EMC ratios FA=3
2 /FD

2

1. Nuclear model by S. Kulagin and R. Petti (KP) [51, 52, 53]

2. Isoscalar EMC ratio for A = 3 nucleus from SLAC data [25]

• F n
2 /F

p
2

1. Linear parameterization, F n
2 /F

p
2 = 1− 0.8x [25]

2. Structure functions from QCD extraction of PDFs by CJ15 [19]

3. Extraction from NMC measurements of deuterium and hydrogen [54]

(no nuclear corrections applied!)

While the absolute radiative correction for each target could be as large as 15%, the net

correction to the MARATHON cross section ratios was significantly smaller (see Figure 4.12).

For D/p, the correction is≤ 4%; for all other ratios, it is≤ 1%. As the primary MARATHON

measurement is cross section ratios, the model dependence should be evaluated on the ratio

of radiative corrections between targets. It was found that the variation between models was

≤ 0.35%, with the exception of combinations using F n
2 /F

p
2 from NMC, which reached 1% at

high x. However, the NMC model does not account for any nuclear effects when extracting

F n
2 /F

p
2 from deuterium and proton data. While this could be a reasonable approximation
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Figure 4.12: Radiative correction to cross section ratios used for MARATHON.

at low x, it leads to large inaccuracy at high x. The high x behavior of the NMC model

will not be considered for the MARATHON systematics. MARATHON has assigned a

0.5% uncertainty to each cross section ratio due to model variations. The official radiative

correction for MARATHON used FD
2 and F p

2 from SLAC, EMC ratios from KP, and the

linear parameterization of F n
2 /F

p
2 .

4.3.5 Charge-symmetric background

High energy photons are created in the target, either directly radiated by the beam electrons

or resulting from the decay of neutral pions produced by DIS processes. These photons

can decay into e−e+ pairs, some of which enter the acceptance of the spectrometer. When

taking standard production data, the spectrometer is set to negative polarity to select the

DIS electrons. This rejects the positrons, but allows their electron pairs to be detected. The

measured electron yield is includes the sum of electrons from DIS and the background from
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pair-produced electrons:

Y e−

meas = Y e−

DIS + Y e−

BG (4.22)

These background electrons are indistinguishable from DIS electrons. In order to quantify

and correct this background, a series of runs were taken with the spectrometer switched to

positive polarity. With this setting, both the background electrons and DIS electrons are

rejected by the spectrometer, while the positrons are detected. Since the pair production is

charge symmetric, the positron yield observed with positive spectrometer polarity is equal

to the electron background yield with negative spectrometer polarity:

Y e+

BG = Y e−

BG (4.23)

The fractional contribution of background electrons to the measured electron yield can then

be expressed in terms of the positron yield,

Y e−
BG

Y e−
meas

=
Y e+

BG

Y e−
meas

, (4.24)

allowing the background to be removed from the measured yield:

Y e−

DIS = Y e−

tot

(
1− Y e+

BG

Y e−
meas

)
(4.25)

As the rate of pair production could depend on the target, positron data was taken on all

four gas targets (plus the empty cell to measure the endcap contamination). The distribu-

tion of pair-produced electrons and positrons is not uniform, so the size of the background

will depend on the angle of the spectrometer. Positron data was taken at multiple kine-

matic settings to allow the kinematic dependence to be determined. However, due to time

constraints, no positron data was taken beyond KIN3.

Extraction of the positron yield was nearly identical to the extraction of the electron

yields. Identical acceptance and PID cuts were applied. The data was corrected for DAQ
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Figure 4.13: Charge-symmetric background contamination for each target.

deadtime and endcap contamination, in the same manner described by Sections 4.3.1 and

4.3.3. An additional correction was applied for the non-positron contamination left by the

PID cut. This was done by fitting the non-positron tail in the calorimeter spectrum and

subtracting the integrated contribution above the E/p cut. This correction was necessary

due to the limited number of positron events, resulting in a higher percent contamination

allowed by the PID cuts. The relative contaminations of positron to total electron yield C±

for each target were fit with an exponential function:

C± = eax+b (4.26)

The data and fits are shown in Figure 4.13. The fits (including extrapolation to high x) were

used to calculate and correct the electron background contamination for each bin, using the

corresponding x-position of that bin.
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4.3.6 Tritium β-decay

Tritium is radioactive, β-decaying to helium-3 (3H →3 He + e− + νe) with a half-life of

τ1/2 = 4500± 8 days [55]. As previously mentioned, this required special precautions for the

safe handling and operation of the tritium target. In addition, it meant that the composi-

tion of the tritium target was continuously changing. When calculating the luminosity, the

exponentially decreasing tritium density must be accounted for. When counting scattered

electron events, events scattered from the exponentially increasing number of helium-3 nuclei

must be removed. A correction accounting for both of these effects had to be developed.

For cleaner notation, in this section the subscripts T and H will refer to tritium (3H) and

helium-3 (3He), respectively.

The time evolution of the tritium and helium-3 number densities can be described simply

with exponential functions,

nT (t) = n0
T e
−t/τ (4.27)

nH(t) = n0
T

(
1− e−t/τ

)
(4.28)

where n0
T is the initial tritium number density and the initial helium-3 number density is

zero. Since the decay process conserves the total number of nuclei, the total nuclear number

density ntot should remain constant in time:

ntot = nT (t) + nH(t) (4.29)

= n0
T (4.30)

The helium-3 contamination in the tritium target can be quantified as the helium-3 fraction

of total nuclei,

fH(t) =
nH(t)

ntot
=
(
1− e−t/τ

)
, (4.31)

which approaches 1 as t → ∞. The helium-3 fraction, shown in Figure 4.14, grew to
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Figure 4.14: Fractional helium-3 contamination in tritium target. The shaded bands
represent the different experimental periods during which tritium data was taken.

approximately 3% by the end of the spring run.

The raw normalized yield obtained from the tritium target is

Yraw =

∑
(NT,i +NH,i)∑

Qintot
, (4.32)

where NT and NH are the number of detected events where the electron scattered from a

tritium or helium-3 nucleus, respectively. These events look identical to the spectrometer

and detectors and therefore cannot be eliminated with any cut on the data. The tritium

cross section ratios require the clean normalized tritium yield,

YT =

∑
NT,i∑

QinT (ti)
, (4.33)

and removing the contamination from helium-3 scattering will require the normalized helium-
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3 yield,

YH =

∑
NH,i∑

QinH(ti)
, (4.34)

Some simple algebraic manipulation of Equation 4.32, outlined below, allows the extraction

of YT in terms of Yraw and YH .

Yraw =

∑
NT,i +NH,i

Qintot

=

∑
NT,i

ntot
∑
Qi

+

∑
NH,i

ntot
∑
Qi

=

( ∑
NT,i∑

QinT (ti)

)(∑
QinT (ti)

ntot
∑
Qi

)
+

( ∑
NH,i∑

QinH(ti)

)(∑
QinH(ti)

ntot
∑
Qi

)

= YT

(∑
Qi(1− fH(ti))∑

Qi

)
+ YH

(∑
QifH(ti)∑

Qi

)

= YT (1− 〈fH〉) + YH〈fH〉

In the last line, the charge-averaged helium-3 fraction is defined as:

〈fH〉 =

∑
QifH(ti)∑

Qi

(4.35)

This leads to the final expression for the normalized tritium yield:

YT = Yraw

(
1

1− 〈fH〉

)
− YH

( 〈fH〉
1− 〈fH〉

)
(4.36)

Until this point, only data from the tritium target cell has been considered; references

to helium-3 referred exclusively to helium-3 within the tritium cell resulting from tritium

β-decay. However, by Equation (4.36), the normalized helium-3 yield YH is required for

the correction. Clearly, YH cannot be determined from the tritium target data. However,

MARATHON also required the measurement of the normalized helium-3 yield with a dedi-

cated helium-3 target. This can be used to correct the tritium data.
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4.4 Normalized yields

4.4.1 Extracting from data

The normalized yields were extracted in bins covering the range 0.18 < x < 0.84, with a

bin width of ∆x = 0.03. Combining all of the cuts and corrections previously discussed,

the yield for a bin centered at xbin and Q2
bin is determined by the following expression and

quantities

Y (xbin) =

∑
Ni/(1− CDT,i)

n
∑
Cdens(Ii)Qi

× (1− CEC(xbin))× CRC(xbin, Q
2
bin)× (1− C±(xbin)) (4.37)

• Ni is the number of events from run i that are contained in the bin range and satisfy

all kinematic, acceptance, tracking, and PID cuts.

• CDT,i is the DAQ deadtime correction for run i.

• n is the target density.

• Cdens(Ii) is the beam-induced target density fluctuation correction, evaluated at the

average run current I = Ii.

• Qi is the total charge on target for run i (see discussion below).

• CEC(xbin) is the relative endcap contamination, evaluated at x = xbin.

• CRC(xbin, Q
2
bin) is the radiative correction, evaluated at x = xbin and Q = Q2

bin.

• C± is the relative charge-symmetric background, evaluated at x = xbin.

The total charge Q is simply the beam current integrated over the length of the run. The

BCM signal is recorded by a scalar, where the total number of counts NBCM represents the

integrated BCM signal. The clock is also connected to a scalar, where the number of counts

Nclock is divided by the clock frequency fclock to obtain the total time of the run. In terms
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of these measurements and the calibrated BCM parameters (see Section 3.2.2.1), the total

charge can be calculated by:

Q = gNBCM + b

(
Nclock

fclock

)
(4.38)

Adjacent kinematic settings produced data in the same bin. Due to the condition that

all spectrometer settings be identical in order for the yield ratio to be equivalent to the

cross section ratio, data from different kinematic settings were never combined at the yield

level. Rather, cross section ratios for the overlapping bin were determined separately for

each kinematic setting, and then combined by a weighted average.

Additionally, the tritium yield must be corrected for β-decay using Equation (4.36). The

helium-3 yield extracted from helium-3 target data using Equation (4.37) was used for the

β-decay correction.

4.4.2 Uncertainties

4.4.2.1 Bin-by-bin uncertainties

For a given bin, the statistical uncertainty of the yield measurement is determined by:

δYstat =
√
N (4.39)

where N is the total number of events observed in that bin.

Reasonable variations in the applied acceptance cuts resulted in cross section ratio varia-

tions on the order of ≤ 0.2%, which is assigned as the acceptance cut uncertainty. Reasonable

variations in the PID cuts resulted in cross section ratio fluctuations that were negligibly

small (≤ 0.02%).

For all of the corrections that rely on fitting a function to data (beam-induced target

density fluctuation, endcap contamination, and charge-symmetric background), the uncer-
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tainties of the individual data points were used as weights in the fitting procedure. This

allows the covariance matrix of each fit to be used to estimate the uncertainty on the correc-

tion. For a correction parameterized by a function f with N free parameters (p0, p1...pN),

the uncertainty in the correction can be found by:

δC2 = ddd>σσσcovddd (4.40)

where ddd is a column matrix with di = ∂f/∂pi, and σσσ is the covariance matrix from the fit.

Uncertainty in the calculated charge can arise from uncertainty in the calibrated values of

the BCM gain and offset. Mathematically, the BCM calibration values do not cancel exactly

in the cross section ratios. However, when the uncertainty from the BCM calibration values

are propagated through the ratio of total charge calculated for two different targets, the

results are negligibly small. For this reason, uncertainty in the calculated charge is neglected.

Although the radiative corrections are applied individually to the extracted yields, the

uncertainty arising from model dependence is applied to the cross section ratio (see Sec-

tion 4.3.4.2). An uncertainty of 0.5% will be added in quadrature to the total uncertainties

of the cross section ratios.

The tritium β-decay correction depends on the helium-3 fraction and charge. Note that

in Equation (4.35), the charge enters in both the numerator and denominator. Thus, by the

same reasoning that the charge calculation uncertainty is neglected in the yield ratios, it can

be neglected in the β-decay correction. The only other quantity that could cause uncertainty

in the β-decay correction is the tritium half-life (8 days, corresponding to < 0.2%). When

this uncertainty is propagated to the helium-3 fraction, it is negligibly small for the duration

of the experiment. Therefore, no uncertainty will be included for this correction.
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4.4.3 Normalization uncertainty

One of the major contributions to uncertainty in the normalized yield measurement is the

overall normalization of the data by the target density. Clearly, for experiments that form

ratios from the yields of different nuclear targets (such as MARATHON), these uncertainties

do not cancel. The nominal relative uncertainties in density for the MARATHON targets,

determined by the precision of the fill parameters of the cell, are 0.56% for hydrogen, 0.56%

for deuterium, 0.94% for tritium, and 1.12% for helium-3. Pairs of these relative uncertainties

are added in quadrature to obtain the normalization uncertainty for a cross section ratio. For

the 3H/3He ratio, which have the largest uncertainties, this corresponds to a normalization

uncertainty of nearly 1.5%. This strongly limits the impact of the F n
2 /F

p
2 extraction. For

this reason, the MARATHON analysis used a model-driven normalization procedure to fix

the normalization of the A = 3 targets. This is discussed in detail in the following chapter.
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Chapter 5

Results

5.1 Cross section ratios

Normalized yields for each target were extracted following the procedure described in Chapter

4. Ratios of these yields were formed to obtain four cross section ratios:

• σ(D)/σ(p), for comparison to SLAC data and normalization of MARATHON data

• σ(3H)/σ(3He), for the A = 3 super-ratio extraction of F n
2 /F

p
2

• σ(3H)/σ(D), the tritium EMC ratio

• σ(3He)/σ(D), the helium-3 EMC ratio

As discussed in Chapter 2, the MARATHON analysis assumes the nuclear independence

of R = σL/σT . Therefore, these cross section ratios will be treated interchangeably with

the ratios of the corresponding F2 structure functions. Subsequent references to the cross

section/structure function ratios will simply indicate the relevant nuclei (for instance, tri-

tium to deuterium will be indicated by 3H/D). All ratios will be shown per-nucleon unless

otherwise noted. Please note that these cross section ratios are considered preliminary by

the MARATHON collaboration, and that the systematic uncertainties are currently being
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Figure 5.1: Preliminary D/p cross section ratio measured by MARATHON, compared to
previous measurements.. Shaded band indicates normalization uncertainty.

finalized. The official results will be contained in a pending MARATHON publication. See

Appendix A, Table A.1 for the numeric values displayed in the following figures.

The MARATHON result for D/p is shown in Figure 5.1. Also shown on the plot are

selected data points from FD
2 /F

p
2 measurements made at SLAC by experiments E49a, E49b,

and E89a. A tight cut was placed on the SLAC data to only include points that satisfy the

condition
∣∣Q2 − (14 GeV2)× x

∣∣ < 1 GeV2, (5.1)

ensuring that the SLAC data being compared were at similar kinematics to the MARATHON

data (see Equation (3.21)). The normalization uncertainty of the MARATHON data is 0.8%

and is shown in the figure. The normalization uncertainty of the SLAC data is quoted at

1%. Within uncertainties, the MARATHON measurement is consistent with the SLAC

measurements, albeit with much smaller point-to-point uncertainties.

The MARATHON result for 3H/3He is shown in Figure 5.2. This is the first measurement
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Figure 5.2: Preliminary 3H/3He cross section ratio measured by MARATHON. No
normalization uncertainty is shown, as this will be determined by the renormalization

procedure.

of this ratio, so no comparison can be made to previous data. A distinct feature of the ratio

is the plateau at large x, the region where F n
2 /F

p
2 constrains d/u.

The MARATHON results for tritium and helium-3 EMC ratios, 3H/D and 3He/D, are

shown in Figures 5.3 and 5.4. Once again, there are no previous measurements with which

to compare the tritium result. However, the EMC effect in helium-3 has been previously

measured by HERMES at DESY [40] and by E03-103 at Jefferson Lab [24], and are shown

alongside the MARATHON measurement. Minimum cuts of Q2 > 2 GeV2 and W 2 > 3 GeV2

have been applied, which eliminated some low-x HERMES points and some high-x E03-103

points. Note that HERMES only published isoscalar-corrected data (see Section 2.3.2),

using F n
2 /F

p
2 from NMC measurements of the proton and deuterium. For the purposes of

this comparison, the isoscalar correction has been removed using the NMC parameterization

of F n
2 /F

p
2 . In addition, the HERMES ratio was published with a +0.9% renormalization

to the measured value in order to agree with NMC measurements of the EMC effect in
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Figure 5.3: Preliminary 3H/D cross section ratio measured by MARATHON. No
normalization uncertainty is shown, as this will be determined by the renormalization

procedure.
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Figure 5.4: Preliminary 3He/D cross section ratio measured by MARATHON, compared to
previous measurements.. No normalization uncertainty is shown, as this will be determined

by the renormalization procedure. See text for comments on the HERMES data.
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4He. Although the motivation for this renormalization is questionable, the as-published

HERMES points are included in the figure. The MARATHON measurement agrees well

with the E03-103 result, while both Jefferson Lab measurements are systematically lower

than the HERMES measurements.

5.2 Nuclear models

5.2.1 Overview

This analysis used two nuclear models to provide the predictions necessary to extract F n
2 /F

p
2

from the measured cross section ratios. The first model was developed by S. Kulagin and

R. Petti (KP) [51, 52, 53]. The KP model is a phenomenological fit to global structure

function ratio data. Well-established nuclear effects (i.e., Fermi motion and binding effects)

are applied to the nuclear structure functions using the convolution formalism. Off-shell

nuclear effects are described by a function with three free parameters which are empirically

constrained. It is assumed that these off-shell effects are isospin-symmetric, altering the

bound neutron and proton structure functions equally. Further, the off-shell function is

considered universal for all nuclei. As the KP model is fit to structure function data of

nuclei ranging from hydrogen to lead, predictions for light nuclei are strongly influenced by

observations in heavy nuclei.

The second model is based on a global QCD fit of PDFs completed by the CJ15 col-

laboration [19]. The CJ15 analysis only uses structure function data from the proton and

deuterium. In deuterium, Fermi motion and binding effects are accounted for in the convo-

lution formalism, and the parameterization of off-shell effects is identical to that of the KP

model. Additionally, CJ15 includes constraints from observables in measurements of pp and

pD collisions. Of particular impact are measurements of the W -boson charge asymmetry

made by the DØ collaboration at the Tevatron [56, 57], which provide constraints on the

PDFs at large x. In a separate analysis [58], the CJ15 PDFs and off-shell correction were
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used to calculate structure functions for A = 3 nuclei. For this reason the model will be

referred to as CJ, although it should be noted that the A = 3 structure functions are not a

part of the official CJ15 analysis.

5.2.2 Model inputs for F n
2 /F

p
2 extraction

In order to extract F n
2 /F

p
2 from a measurement of bound nucleons, a model prediction of

the nuclear effects is required. Section 3.1.1 described how F n
2 /F

p
2 can be obtained from

F
3He
2 /F

3H
2 , given a model prediction of the super-ratio R (Equation (3.3)) as input. Extract-

ing F n
2 /F

p
2 from F

3He
2 /F

3H
2 , in particular at high x, is the primary goal of MARATHON. The

A = 3 EMC effect and corresponding super-ratio predictions from KP and CJ are shown in

Figures 5.5 and 5.6. Note that while the individual A = 3 EMC predictions can grow quite

large and disagree between models, both models predict a super-ratio within 2.5% of unity

over the MARATHON x range.

Extracting F n
2 /F

p
2 from other cross section ratios will be required for MARATHON’s

renormalization procedure (described in the following section), each of which will require

and addition model prediction. Define an EMC-type ratio for nucleus A as

R(A) =
FA

2

NF n
2 + ZF p

2

(5.2)

where N is the number of neutrons and Z is the number of protons.

The EMC-type ratio for deuterium, R(D), can be inverted to find F n
2 /F

p
2 :

F n
2

F p
2

=
FD

2 /F
p
2

R(D)
− 1 (5.3)

requiring a model prediction of R(D) as input. The R(D) predictions from KP and CJ are

shown in Figure 5.7.

The ratio of the EMC-type ratio for nucleus A to deuterium can be defined as the so-called
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Figure 5.5: Super-ratio R prediction from KP nuclear model.
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Figure 5.6: Super-ratio R prediction from CJ nuclear model.
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Figure 5.7: R(D) predictions from KP and CJ nuclear models.

EMC super-ratio:

REMC =
R(A)

R(D)
(5.4)

This can be inverted to find F n
2 /F

p
2 ,

F n
2

F p
2

=
ZREMC − FA

2 /F
D
2

FA
2 /F

D
2 −NREMC

(5.5)

which requires a model input for REMC . The EMC super-ratio predictions for tritium and

helium-3 from KP and CJ are shown in Figures 5.8 and 5.9.
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Figure 5.8: REMC(3H) predictions from KP and CJ nuclear models.
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Figure 5.9: REMC(3He) predictions from KP and CJ nuclear models.
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5.3 Renormalization

5.3.1 Procedure

Calculating the luminosity used to normalize detected electron counts requires knowledge

of the target density. Determination of target densities can suffer from large uncertainties,

due to both uncertainty in measuring the physical parameters of the target (temperature,

pressure, volume) and uncertainty in how these parameters are used to calculate the target

density (i.e., the equation of state). As previously mentioned, the A = 3 targets used

by MARATHON suffered from larger density uncertainties than the proton and deuterium

targets. For this reason, the MARATHON proposal argued that cross section ratios including

A = 3 targets should be renormalized by comparing to D/p data. This renormalization

procedure is described below.

The nucleon structure function ratio F n
2 /F

p
2 is a universal property of free neutrons

and protons. If nuclear effects are accurately accounted for, extractions of F n
2 /F

p
2 from

measurements of bound nucleons must be the same, regardless of which nuclei were used in

the measurement. For MARATHON, this means that F n
2 /F

p
2 extracted from all four cross

section ratios should agree. Of course, discrepancies in F n
2 /F

p
2 from different cross section

ratios could imply that the model is not properly accounting for nuclear effects in one or

more nucleus. However, MARATHON will assume that discrepancies are due to incorrect

normalization of the A = 3 targets, and use the universality of F n
2 /F

p
2 to renormalize the

data.

First, a cross section ratio must be chosen to which the A = 3 data is normalized.

For MARATHON, the D/p ratio was chosen. Not only does this cross section ratio have

the smallest normalization uncertainty of all the MARATHON ratios, but this ratio has

also been well-studied at SLAC, allowing comparisons to another measurement. Second, a

region in x must be chosen at which to perform the renormalization. In general, nuclear

effects (and their uncertainties) increase with increasing x, making a low-x region (x < 0.4)
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preferable. Measurements of the EMC effect in many nuclei tend to cross unity around

x ≈ 0.3, indicating a minimization of nuclear effects. For this reason, MARATHON has

chosen to normalize at x = 0.3.

The normalization procedure is as follows. The relevant cross section ratios will be fit

in the region 0.25 < x < 0.35 with a linear function. Fitting the measured points not only

allows a normalization exactly at x = 0.3 (regardless of bin location), but also allows a

normalization to SLAC D/p (which is binned differently than MARATHON). From each fit,

F n
2 /F

p
2 is extracted using the equations described in Section. Note that extracting F n

2 /F
p
2

from a fit to the cross section ratio points, is identical to performing a fit to directly to F n
2 /F

p
2

extracted from the points themselves. The F n
2 /F

p
2 fits is then evaluated exactly at x = 0.3.

From the difference between each A = 3 extraction with the D/p extraction, the required

renormalization of the A = 3 cross section ratios to obtain agreement can be determined. To

estimate the uncertainty of the renormalization, the procedure will be performed four times,

with each combination of D/p measurement (MARATHON and SLAC) and nuclear model

(KP and CJ).

This is an over-constrained problem. The three ratios involving A = 3 nuclei (3H/3He,

3H/D, 3He/D) can be independently renormalized with this method. However, these three

measurements used the same two A = 3 targets. Therefore, the individual renormalizations

of the tritium and helium-3 targets obtained from the EMC ratios must combine to yield

the same renormalization obtained from 3H/3He. This can be used to verify the consistency

of the results.

Fits to the D/p cross section ratios are shown in Figure 5.10. The points from vari-

ous SLAC experiments have been combined and fit simultaneously. Note that the F n
2 /F

p
2

extraction requires the full structure function ratio, so these are no longer the per-nucleon

structure functions shown previously. The point-to-point uncertainties were used as weights

in the fit, allowing the covariance matrix to be estimated.

Comparisons of F n
2 /F

p
2 extracted from each A = 3 ratio to D/p are shown in Figures 5.11,
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Figure 5.10: Fits to D/p from SLAC and MARATHON.

5.12 and 5.13. In each figure, the subfigures in the left and right columns show F n
2 /F

p
2

extracted using the KP and CJ models, respectively. The subfigures in the top and bottom

row compare to F n
2 /F

p
2 extracted from MARATHON and SLAC D/p, respectively. To obtain

the normalization for each ratio, the fits are evaluated at x = 0.3 and the difference in F n
2 /F

p
2

is determined. Using the equations used to extract F n
2 /F

p
2 , the required shift to the cross

section ratios to obtain agreement in F n
2 /F

p
2 can be calculated. The relative renormalization

of the data can then be found.

5.3.2 Final normalization and uncertainty

The resulting renormalizations for the EMC ratios are shown in Figures 5.14 and 5.15. Each

figure shows four renormalization values for each combination of nuclear model and D/p

dataset. For tritium, the obtained renormalizations are very close to zero (≤ 1%). The SLAC

D/p gives a higher renormalization than SLAC D/p, and KP gives a higher renormalization
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Figure 5.11: Comparison of F n
2 /F

p
2 extractions from D/p and 3H EMC ratio.
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Figure 5.12: Comparison of F n
2 /F

p
2 extractions from D/p and 3He EMC ratio.
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Figure 5.13: Comparison of F n
2 /F

p
2 extractions from D/p and 3H/3He ratio.

than CJ. For helium-3, the obtained renormalizations are somewhat larger (between 1-3%).

Here, the MARATHON D/p gives a higher renormalization than SLAC D/p, and KP gives

a higher renormalization than CJ.

The uncertainty of each point includes error calculated from the covariance matrices of the

fits, which include the point-to-point uncertainties of each dataset. In addition, the uncer-

tainty includes the normalization uncertainty of each D/p dataset. When normalizing to D/p

from MARATHON, the same deuterium data is used for both EMC ratios (3H/D, 3He/D)

and D/p. This means that the uncertainties in the deuterium normalization are correlated

between each F n
2 /F

p
2 extraction. Analytically propagating the deuterium normalization un-

certainty to the renormalization uncertainty is non-trivial...rather, a numerical approach was

used. By maximally varying the deuterium normalization within its uncertainty (adjusting

both the EMC and D/p ratios), the corresponding shift to the EMC normalizations was cal-

culated. This allowed the uncertainty from the deuterium normalization to be determined,
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Figure 5.16: Renormalization to 3H/3He.

including the correlation between ratios.

Figure 5.16 shows the renormalizations to the 3H/3He ratio. For each combination of

nuclear model and D/p dataset, two points are shown. The red squares indicate the the direct

renormalization of the 3H/3He ratio; the blue circles indicate the 3H/3He renormalization

resulting from the individual renormalizations of the EMC ratios. As can be seen, they are

effectively the same, although the direct normalization has significantly smaller uncertainties.

To determine the renormalization of each ratio, a weighted average of each of the points

shown in Figures 5.14-5.16 is performed. The uncertainty in the normalization arising from

the data itself is found by the simple arithmetic mean of the uncertainties of each point. The

resulting renormalizations are:

N(3H/D) = (−0.27± 1.25)% (5.6)

N(3He/D) = (1.74± 1.22)% (5.7)

N(3H/3He) = (−2.15± 0.84)% (5.8)
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Figure 5.17: Renormalized preliminary 3H/3He cross section ratio. The shaded band
indicates the normalization uncertainty.

5.4 Renormalized results

5.4.1 Cross section ratios

The renormalized 3H/3He and EMC ratios (3H/D, 3He/D) are shown in Figures 5.17, 5.18,

and 5.19, respectively. Note that these are still based on the preliminary MARATHON

results. See Appendix A, Table A.2 for the numeric values displayed in the these figures.

5.4.2 Isoscalar EMC effect in A = 3 nuclei

It is typical to apply an isoscalar correction to EMC ratios of asymmetric nuclei to account for

unequal numbers of protons and neutrons (see Equation (2.36)). MARATHON’s preliminary

F n
2 /F

p
2 (see Section 5.4.3) was fit with a second-degree polynomial to calculate the isoscalar

correction at each EMC ratio point. The preliminary isoscalar-corrected ratios are shown in

Figures 5.20 and 5.21. The figures also include predictions from the KP and CJ models for

each ratio. The KP model tends to provide a better description of the MARATHON data.
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Figure 5.19: Renormalized preliminary 3He/D cross section ratio. The shaded band
indicates the normalization uncertainty.
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Figure 5.20: Preliminary isoscalar 3H EMC ratio.
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Figure 5.21: Preliminary Isoscalar 3He EMC ratio.
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5.4.3 F n
2 /F

p
2

F n
2 /F

p
2 was extracted from the renormalized 3H/3He ratio using both the KP and CJ nuclear

model. These extractions are shown in Figure 5.22, along with the corresponding prediction

of F n
2 /F

p
2 from each model. The points extracted with the KP model are very close to the

KP prediction, though appear to be systematically higher at large x. On the other hand,

a larger discrepancy exists between the points extracted with the CJ model and the CJ

prediction.

Ideally, the discrepancies between extraction with different models, and between the ex-

tractions and predictions, can be eliminated using an iterative extraction. In this procedure,

the model parameterization of F n
2 /F

p
2 is replaced with the F n

2 /F
p
2 extracted with that model.

The super-ratio is recalculated with the new F n
2 /F

p
2 , and the extraction is repeated. This

should eventually result in the extracted F n
2 /F

p
2 matching the F n

2 /F
p
2 parameterization of
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that model. If the procedure is successful, it should also result in the convergence of F n
2 /F

p
2

parameterization and extraction from different nuclear models. MARATHON could employ

this procedure with Kulagin & Petti and the CJ15 collaboration in order to verify conver-

gence of the F n
2 /F

p
2 extraction.

Although completing the iterative extraction will require collaboration with the theorists

responsible for each model, the effects of the procedure can be estimated. Comparing the

F n
2 /F

p
2 extraction from each nuclear model to the prediction from that model, KP clearly

produces better agreement than CJ at high x. The iterative procedure would minimally

shift the KP model, while the first iteration on CJ would shift the model by nearly 25% at

high x. Given how small the initial discrepancy between the KP extraction and prediction

is, the iterative procedure would shift the extraction at the sub-percent level, well within the

uncertainties of the data. Iterating the CJ model should result in convergence very close to

the KP extraction. For the following analysis, the KP extraction will be taken as the F n
2 /F

p
2

result from MARATHON.

The importance of the F n
2 /F

p
2 measurement at high x is to constrain the nucleon va-

lence quark distributions, d/u. One final step remains to obtain d/u from F n
2 /F

p
2 . The

QPM is formulated in the limit of infinite momentum transfer Q2. Obviously, experiments

are performed at finite Q2. There exist 1/Q2 suppressed effects that are relevant at the

finite Q2 values of MARATHON (Q2 < 14 GeV2). The structure functions in the QPM are

so-called leading-twist, where the DIS process involves the interaction of a virtual photon

with a single parton. However, dynamic higher-twist interactions involving multiple partons

can contribute to the DIS cross section at MARATHON kinematics. Target mass effects

(also known as kinematic higher-twist effects), arising from the fact that at finite Q2 the

struck parton’s momentum fraction is not identically equal to Bjorken x, are also relevant.

The relationship between F n
2 /F

p
2 and d/u from Equation (2.21) is valid for the leading-twist

nucleon structure functions, not the full structure functions that are measured experimen-

tally. The highter-twist contributions to the extracted F n
2 /F

p
2 must be removed, allowing
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Figure 5.23: KP prediction of F n
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d/u to be determined. Some studies indicate that both the magnitude and uncertainties

of these corrections are large [59]. This could potentially obscure the d/u interpretation of

MARATHON’s F n
2 /F

p
2 measurement.

A full treatment of higher-twist effects will require the assistance of theorists. The

MARATHON collaboration will work with Kulagin and Petti to obtain the leading-twist

F n
2 /F

p
2 from the data. In the meantime, a simple estimation of the leading-twist structure

functions can be made using the KP nuclear model. The calculations by KP were com-

pleted both with (HT) and without (LT) dynamic higher-twist effects, and also with and

without target mass corrections (TMC). The resulting predictions for F n
2 /F

p
2 are shown in

Figure 5.23. The ratio of the leading-twist to full F n
2 /F

p
2 , shown in Figure 5.24, can be used

to scale F n
2 /F

p
2 from MARATHON for a preliminary estimate of the leading-twist contribu-

tion. This is a sizable correction, reaching approximately 30% at the highest x MARATHON

point. The preliminary estimate of leading-twist F n
2 /F

p
2 from MARATHON is shown as red

points in Figure 5.25. For comparison, the uncorrected values are shown as blue points.
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5.5 Discussion

The MARATHON experiment has carried out important new DIS measurements to aid

the understanding of nucleon and nuclear structure. The low-x measurement of the D/p

cross section ratio allowed a comparison to previous SLAC measurements and provided a

normalization benchmark for the remaining cross section ratios. The 3H/3He cross section

ratio allowed a novel extraction of F n
2 /F

p
2 with minimal nuclear corrections, exploiting the

mirror symmetry of A = 3 nuclei. Lastly, measurements of the 3H/D and 3He/D cross section

ratios determined the EMC effect in A = 3 nuclei.

MARATHON has made the first measurement of the EMC effect in tritium (Figure 5.18).

Additionally, MARATHON has made a new high Q2 and W 2 measurement of the EMC effect

in helium-3 (Figure 5.19). When the data is renormalized following the procedure described

in Section 5.3.1, and MARATHON’s F n
2 /F

p
2 is used for the isoscalar correction, the isoscalar

EMC ratios of tritium and helium-3 (Figures 5.20 and 5.21) are very similar.

The flagship result of MARATHON is the extraction of F n
2 /F

p
2 from A = 3 nuclei. The full

extraction (blue points in Figure 5.25) plateaus at large x, reaching a limit of F n
2 /F

p
2 ≈ 0.45

at x ≈ 0.85. While this limit suggests a nonzero value of the valence quark ratio d/u, a naive

estimate of the leading-twist F n
2 /F

p
2 (red points in Figure 5.25), required to determine d/u,

is quite different. Instead of plateauing, the ratio continues to decrease. If the estimated

trend were to continue to x = 1, an extrapolation suggests that F n
2 /F

p
2 ≈ 0.2, indicating

d/u = 0. A full leading-twist extraction must be carried out with input from theorists for

the final determination d/u from MARATHON data.

The currently large uncertainties in higher-twist effects have the potential to obscure

MARATHON’s constraints on d/u, but this emphasizes the importance of the MARATHON

data. Unraveling nucleon structure, including higher-twist effects, requires precise experi-

mental data to which various theories and models can be compared. MARATHON’s precise

measurements of the 3H/3He cross section ratio and corresponding extraction of F n
2 /F

p
2 are

critical to this process.
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Appendix A

Data tables

This appendix contains the measured (Table A.1) and renormalized (Table A.2) MARATHON

per-nucleon cross section ratios. As the D/p ratio is not renormalized, it only appears in

Table A.1. The δ columns indicate the absolute uncertainty for each ratio, including sta-

tistical and systematic uncertainty added in quadrature. The systematic uncertainty does

not include the normalization uncertainty. See text for details on the normalization uncer-

tainty. Note that all systematic uncertainties are currently being finalized for the official

MARATHON publication, and are subject to change slightly.
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x D/p δ(D/p) 3H/3He δ(3H/3He) 3H/D δ(3H/D) 3He/D δ(3He/D)

0.195 0.862 0.0060 0.924 0.0061 0.962 0.0071 1.045 0.0066
0.225 0.849 0.0059 0.914 0.0060 0.952 0.0071 1.044 0.0065
0.255 0.837 0.0064 0.900 0.0063 0.939 0.0073 1.042 0.0071
0.285 0.828 0.0065 0.885 0.0065 0.930 0.0073 1.050 0.0074
0.315 0.815 0.0066 0.890 0.0070 0.921 0.0077 1.037 0.0075
0.345 0.794 0.0070 0.877 0.0073 0.920 0.0085 1.051 0.0081
0.375 0.772 0.0085 0.873 0.0081 0.926 0.0098 1.064 0.0096
0.405 0.843 0.0085 0.890 0.0103 1.055 0.0106
0.435 0.851 0.0089 0.884 0.0104 1.040 0.0107
0.465 0.838 0.0089 0.885 0.0104 1.054 0.0109
0.495 0.831 0.0086 0.893 0.0102 1.076 0.0107
0.525 0.815 0.0090 0.880 0.0108 1.079 0.0116
0.555 0.811 0.0089 0.862 0.0105 1.063 0.0113
0.585 0.810 0.0092 0.857 0.0107 1.058 0.0116
0.615 0.810 0.0095 0.856 0.0109 1.056 0.0120
0.645 0.795 0.0095 0.858 0.0111 1.079 0.0125
0.675 0.797 0.0101 0.841 0.0115 1.053 0.0130
0.705 0.784 0.0096 0.859 0.0114 1.093 0.0130
0.735 0.789 0.0094 0.861 0.0113 1.088 0.0127
0.765 0.781 0.0094 0.861 0.0114 1.099 0.0129
0.795 0.783 0.0102 0.866 0.0122 1.102 0.0142
0.825 0.789 0.0122 0.885 0.0144 1.119 0.0171

Table A.1: Measured MARATHON per-nucleon cross section ratios.
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x 3H/3He δ(3H/3He) 3H/D δ(3H/D) 3He/D δ(3He/D)

0.195 0.904 0.0061 0.960 0.0071 1.064 0.0066
0.225 0.895 0.0060 0.950 0.0071 1.062 0.0065
0.255 0.881 0.0063 0.936 0.0073 1.060 0.0071
0.285 0.866 0.0065 0.927 0.0073 1.068 0.0074
0.315 0.871 0.0070 0.918 0.0077 1.055 0.0075
0.345 0.858 0.0073 0.918 0.0085 1.069 0.0081
0.375 0.854 0.0081 0.924 0.0098 1.083 0.0096
0.405 0.825 0.0085 0.888 0.0103 1.073 0.0106
0.435 0.833 0.0089 0.881 0.0104 1.058 0.0107
0.465 0.820 0.0089 0.883 0.0104 1.073 0.0109
0.495 0.813 0.0086 0.890 0.0102 1.095 0.0107
0.525 0.797 0.0090 0.878 0.0108 1.098 0.0116
0.555 0.793 0.0089 0.859 0.0105 1.081 0.0113
0.585 0.793 0.0092 0.855 0.0107 1.076 0.0116
0.615 0.792 0.0095 0.854 0.0109 1.075 0.0120
0.645 0.778 0.0095 0.856 0.0111 1.098 0.0125
0.675 0.780 0.0101 0.839 0.0115 1.072 0.0130
0.705 0.768 0.0096 0.857 0.0114 1.112 0.0130
0.735 0.772 0.0094 0.859 0.0113 1.107 0.0127
0.765 0.764 0.0094 0.859 0.0114 1.118 0.0129
0.795 0.766 0.0102 0.864 0.0122 1.121 0.0142
0.825 0.772 0.0122 0.883 0.0144 1.139 0.0171

Table A.2: Renormalized MARATHON per-nucleon cross section ratios.
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