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W.K. Brooks,38 V.D. Burkert,37 F. Cao,9 D.S. Carman,37 J.C. Carvajal,14 A. Celentano,18 P. Chatagnon,22 T.

Chetry,27 G. Ciullo,17, 13 P.L. Cole,25, 16 M. Contalbrigo,17 V. Crede,1 R. Cruz-Torres,26 A. D’Angelo,19, 33

N. Dashyan,46 R. De Vita,18 A. Deur,37 S. Diehl,9 C. Djalali,31, 35 M. Dugger,4 R. Dupre,22 M. Ehrhart,3

A. El Alaoui,38 L. El Fassi,27, 3 A. Filippi,20 A. Fradi,‡ G. Gavalian,37 Y. Ghandilyan,46 F.X. Girod,37, 8

D.I. Glazier,41 W. Gohn,9 E. Golovatch,34 R.W. Gothe,35 K. Griffioen,45 M. Guidal,22 L. Guo,14, 37 K. Hafidi,3

H. Hakobyan,38, 46 M. Hattawy,32 F. Hauenstein,32 T.B. Hayward,45 D. Heddle,2, 37 K. Hicks,31 M. Holtrop,29

Y. Ilieva,35 I. Illari,15 D. Ireland,,41 B. Ishkanov,34 E.L. Isupov,34 D. Jenkins,44 H.S. Jo,24 K. Joo,9 S. Joosten,3

D. Keller,43, 31 M. Khachatryan,32 A. Khanal,14 M. Khandaker,30, § A. Kim,9 C.W. Kim,15 W. Kim,24 F.J. Klein,7

V. Kubarovsky,37 L. Lanza,19 M. Leali,40, 21 K. Livingston,41 I .J .D. MacGregor,41 D. Marchand,22 N. Markov,9

L. Marsicano,18 V. Mascagna,39, 21, ¶ B. McKinnon,41 C.A. Meyer,6 Z. Meziani,3, 36 T. Mineeva,38, 9

V. Mokeev,37, 34 C. Munoz Camacho,22 M. Osipenko,18 M. Paolone,36 L.L. Pappalardo,17 R. Paremuzyan,29

E. Pasyuk,37 W. Phelps,2 O. Pogorelko,28 J.W. Price,5 Y. Prok,32, 43 D. Protopopescu,41 M. Ripani,18

J. Ritman,23 A. Rizzo,19, 33 G. Rosner,41 C. Salgado,30 A. Schmidt,26, ∗∗ R.A. Schumacher,6 U. Shrestha,31

N. Sparveris,36 S. Stepanyan,37 I.I. Strakovsky,15 S. Strauch,35 J.A. Tan,24 N. Tyler,35 M. Ungaro,37, 9

L. Venturelli,40, 21 H. Voskanyan,46 E. Voutier,22 X. Wei,37 D.P. Watts,42 N. Zachariou,42 and Z.W. Zhao10, 35

(The CLAS Collaboration)
1Florida State University, Tallahassee, Florida 32306, USA

2Christopher Newport University, Newport News, Virginia 23606, USA
3Argonne National Laboratory, Argonne, Illinois 60439, USA

4Arizona State University, Tempe, Arizona 85287, USA
5California State University, Dominguez Hills, Carson, California 90747, USA

6Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
7Catholic University of America, Washington, D.C. 20064, USA
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We performed a study of the π+π+π− system photoproduced in the charge-exchange reaction
γp → π+π+π−n, with a special emphasis on a search for the π1(1600) exotic meson. Data were
collected with the CLAS spectrometer at Jefferson Lab during the g12 run period. A tagged photon
beam with Eγ = 4.4 − 5.4 GeV on a liquid-hydrogen target was utilized. In order to enhance
peripheral production, events were selected with low four-momentum transfer to the recoil neutron.
A mass-independent partial wave analysis was performed on a sample of 6× 105 events, the largest
3π photoproduction dataset published to date. In addition to the previously observed a2(1320) and
π2(1670) states, the presence of the a1(1260) meson photoproduction was established for the first
time. However, no evidence was found for photoproduction of the exotic JPC = 1−+ π1(1600) meson
with the ρπ decay mode, a state claimed to be observed in previous measurements with incident
pion beams. The exotic JPC = 1−+ partial waves do not show any peaking intensity, and their
phase motions relative to the resonant π2(1670) waves are consistent with non-resonant behavior.

The standard quark model predicts the spectrum of
the ordinary qq̄ mesons. They are classified in terms of
the JPC multiplets, where J is the total angular momen-
tum, P is the parity, and C is the particle-antiparticle
conjugation parity. The J , P , and C quantum numbers
satisfy the relations

~J = ~L+ ~S, P = (−1)L+1, C = (−1)L+S , (1)

where L is the relative orbital angular momentum be-
tween the quark and the antiquark and S is the intrinsic
parity of the qq̄ pair. As a result, certain JPC combi-
nations are forbidden for a simple qq̄ system. Quantum
Chromodynamics (QCD), however, allows for additional
states in the presence of a gluonic excitation. Due to
the self-interacting nature of the gluon, such an excita-
tion can be modelled as having a constituent gluon on par
with the constituent quarks. With this additional gluonic
degree of freedom, all possible JPC multiplet values are
allowed for a hybrid qq̄g configuration, including “exotic”
ones that are forbidden for ordinary mesons. Observing
a state with such quantum numbers is a direct signature
for an exotic hybrid meson. In this paper, we present the
results of our search for a photoproduced exotic meson
with a decay mode into three charged pions.
Recent lattice QCD calculations predict that the low-

est lying hybrid state will have JPC = 1−+ with a mass of
about 1.9 GeV [1]. In the framework of the QCD-inspired
flux-tube model, the decay of hybrids into two S-wave
mesons, such as the ρ(770)π decay, will be suppressed
in favor of a decay into an S-wave and a P -wave meson,
such as the b1(1235)π and the f1(1285)π decays [2]. Nev-
ertheless, the two S-wave meson decay mode for hybrids
might not be negligible [3].

A review of the current theoretical and experimental
status of hybrid mesons can be found in [4]. Possible
candidates for a light JPC = 1−+ exotic hybrid meson
have been seen by the VES, E852, COMPASS, Crystal
Barrel, CLEO-c and others in peripheral π−p interac-
tions, p̄p annihilations and χc1 decays. Of special inter-
est to our 3π analysis is the π1(1600) state, said to have
been observed in the ρπ [5–8] decay mode, as well as
in the η′π [9–12], f1(1285)π [13, 14] and b1(1235)π [14–
16] channels. Nonetheless, the π1(1600) state is not yet
solidly established. A different analysis of a larger ρπ

dataset from E852 found no evidence for an exotic reso-
nance at 1.6 GeV in the 3π final state [17]. On the other
hand, a recent comprehensive study of the ρπ channel by
COMPASS has confirmed the π1(1600) state with a rel-
atively large width [18]. JPAC group came to a similar
conclusion based on a coupled-channel analysis of the ηπ
and η′π results from COMPASS [19].

There are theoretical reasons to assume that an inci-
dent photon beam may be more favorable than an inci-
dent pion beam for the production of exotic hybrids [20].
There is even a prediction that the π1(1600) is expected
to be photoproduced with a cross section similar to the
a2(1320) meson [21]. However, experimental photopro-
duction data are very scarce, and rarely have sufficient
statistics to allow an amplitude analysis to be performed.
The CEBAF Large Acceptance Spectrometer (CLAS) at
Jefferson Lab collected 8.3× 104 γp → π+π+π−n events
in 2001 during the g6c run, with the subsequent partial-
wave analysis (PWA) of these events [22]. No clear res-
onant structure was observed in the intensities of the
JPC = 1−+ exotic partial waves. However, photopro-
duction of the π1(1600) state at the same relative cross
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sections as reported in pion production could not be ruled
out due to limited statistics and lack of the phase infor-
mation for the partial waves.
To explore the photoproduction of the exotic hy-

brid mesons, the HyCLAS experiment was proposed in
2003 [23]. The HyCLAS experiment took data during the
g12 run period with CLAS in 2008. A beam of circularly
polarized tagged photons with energies up to 5.4 GeV
was produced via bremsstrahlung of a 5.7 GeV electron
beam passing through a radiator [24]. The CLAS spec-
trometer was divided into six identical sectors distributed
azimuthally about the beamline. Each sector consisted
of a segmented scintillator start counter for timing and
triggering, three layers of drift chambers for charged-
track reconstruction, a scintillator time-of-flight system
and a gas Cherenkov counter for particle identification,
and an electromagnetic calorimeter. A large supercon-
ducting toroidal magnet was utilized for momentum mea-
surement of the charged tracks. Complete details of the
CLAS spectrometer design can be found in Ref. [25].
The target, a cylindrical liquid-hydrogen cell, was moved
90 cm upstream from its typical position at the center of
CLAS in order to improve the acceptance for the forward-
going fast pions and, therefore, to optimize the detector
for the higher-energy meson spectroscopy run.
From the 2.6 × 1010 triggers collected by CLAS-g12,

7 × 108 events had three reconstructed charged pions.
Timing and vertex cuts were applied to clean up the sam-
ple. Next, a missing neutron was identified via kinematic
fitting. To suppress the s-channel processes, only events
with the incoming beam energy above 4.4 GeV were cho-
sen, leaving 7.4×106 events after these steps. To enhance
the peripheral production off a recoil neutron and sup-
press the production of excited baryons, a selection on
small values of |t′| = |t| − t0 was necessary, where t is
the four-momentum transfer squared from the incoming
beam to the recoil neutron, and t0 is the minimum value
of |t| allowed by kinematics for a given value of the 3π
mass. The observed distribution of |t′| follows the e−b|t′|

dependence expected for single-pion t-channel exchange
production. However, to eliminate the visible peaks from
the excited baryon background in the πp and ππp mass
spectra, an additional cut on the pion’s laboratory scat-
tering angle θlab was necessary. Specifically,

|t′| = |t| − t0 < 0.1 (GeV)2 , θlab[π
+
slow] < 25o, (2)

where π+
slow is the positive pion with the smaller magni-

tude of momentum.
After these cuts, the final γp → π+π+π−n data sam-

ple of 6 × 105 events was used in a partial-wave analy-
sis. The measured slope parameter b for the exponential
t′ distribution was equal to 14.39 (GeV)−2 for the final
sample. Figure 1 illustrates the main features of these
events. The invariant mass of the 3π system (Fig. 1a)
exhibits a clear peak at the mass of the a2(1320) meson,
along with a broad enhancement in the 1.5-1.7 GeV mass
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FIG. 1. Final event sample: (a) the 3π invariant mass; (b)
the π−π+

fast (red curve) and π−π+
slow (black curve) invariant

mass distributions; (c) Dalitz plot for M3π < 1.5 GeV (low
mass region); (d) Dalitz plot for M3π > 1.5 GeV (high mass
region).

region. Fig. 1b shows the π+π− invariant mass distribu-
tions, where the fast and slow pions are separated by the
relative value of their momenta. The ρ(770) intermediate
isobar is seen for both the π−π+

slow and π−π+
fast combina-

tions, with an additional peak from the f2(1270) isobar
for the fast pion. There is also a negligible KS peak from
the misidentified events. Dalitz plots for two different
3π-mass regions (below and above 1.5 GeV) are shown
in Fig. 1c (low mass) and Fig. 1d (high mass). Again the
ρ and f2 intermediate ππ isobars are visible.

The data were divided into 20-MeV-wide bins of the 3π
mass to perform a mass-independent partial-wave analy-
sis, which is an event-based maximum-likelihood fit. The
decay amplitudes of partial waves were calculated using
the helicity formalism in the reflectivity basis within the
framework of the isobar model [26]. The amplitudes were
symmetrized over the two positive pions. Effects of the fi-
nite experimental acceptance were taken into account by
means of the normalization integrals. To calculate these
integrals, t-channel Monte Carlo phase space events were
generated and passed through a GEANT simulation of
the CLAS detector.

The mass-independent PWA fit determined the un-
known production amplitudes for each partial wave in
each mass bin. These amplitudes were used to calculate
the observables in the reaction such as intensities and
phases for the partial waves. It was determined that a
spin-density matrix of rank 1 was sufficient to describe
the data [27]. As the final step, a mass-dependent Breit-
Wigner fit of intensities and phases was performed to
study any resonant behavior in those waves.

The notation used to describe the partial waves is
JPCM ǫ[Y π]L, where J is the total angular momentum,
P is the parity, C is the C-parity, M is the projection of
J , ǫ is the reflectivity, Y is the intermediate isobar with
parameters from the Particle Data Group (PDG) [28],



4

TABLE I. Partial waves used in the final fit.

Partial waves for M3π < 1.38 GeV

JPC = 1++: 1++1±[ρπ]S , 1
++1±[σπ]P , 1

++1±[ρπ]D
JPC = 1−+: 1−+1±[ρπ]P
JPC = 2++: 2++1±[ρπ]D
JPC = 2−+: 2−+1±[ρπ]P
Background

Additional partial waves for M3π > 1.38 GeV

JPC = 2−+: 2−+1±[f2π]S , 2
−+1±[f2π]D

and L is the relative orbital angular momentum between
the isobar and the bachelor pion. To achieve an accept-
able quality of the fit, 13 partial waves were needed in the
low 3π mass region below 1.38 GeV, and 17 partial waves
in the high 3π mass region above 1.38 GeV. The extra
waves were due to the opening of the f2π mass threshold.

The partial waves included in the final PWA fit are
listed in Table I. Many additional partial waves were
studied but found to be insignificant. An isotropic non-
interfering background wave was also included to accom-
modate the presence of misidentified events from other
topologies in the final event sample. The production of
all zero-projection M = 0 waves was found to be strongly
suppressed, consistent with a single-pion exchange mech-
anism, since the helicity of a photon beam is never zero
and the exchange particle is spinless. In addition, pairs
of waves with the same quantum numbers apart from
the opposite reflectivities (i.e., M ǫ = 1+ and M ǫ = 1−

pairs) had roughly equal yield, since an unpolarized or
circularly polarized photon beam has equal amounts of
opposite linear polarizations; as a result, waves of oppo-
site reflectivities should be produced equally regardless
of the naturality of the dominant exchange particle [29].
The goodness of fit was verified by comparing the exper-
imentally observed angular and mass distributions with
the predicted ones. The latter were obtained by weight-
ing phase space Monte Carlo events with the spin-density
matrix found in the PWA fit, and by applying the effects
of the simulated detector acceptance. All observed and
predicted distributions were in good agreement with each
other [30].

The features of the most important partial waves are
presented below. Figures 2a and 2b show the intensi-
ties of the 2++1±[ρ(770)π]D and 1++1±[ρ(770)π]S par-
tial waves. The intensities are summed over both re-
flectivities. The JPC = 2++ wave is the dominant par-
tial wave in the data. The mass-dependent Breit-Wigner
fit of the JPC = 2++ wave intensity yielded a mass
M = 1.331±0.001 GeV and width Γ = 0.108±0.002 GeV
for the peak in the 2++D wave, consistent with the pa-
rameters reported for the a2(1320) meson [28].

The mass-dependent Breit-Wigner fit of the 1++S

partial-wave intensity yielded a mass M = 1.169 ±
0.004 GeV and width Γ = 0.29 ± 0.02 GeV. This struc-
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FIG. 2. (a,b): The intensities of the JPCM ǫ[Y π]L =
2++1±[ρ(770)π]D wave (a) and the 1++1±[ρ(770)π]S wave (b)
combined over M ǫ = 1± reflectivities. The curves show the
mass-dependent Breit-Wigner fits. (c,d): The relative phase
differences between the 1++S and 2++D waves for M ǫ = 1−

(c) and M ǫ = 1+ (d) reflectivities. The curves show the ex-
pected Breit-Wigner phase difference with parameters from
the mass-dependent fit of intensities.

ture in the 1++S wave can be identified as the a1(1260)
meson. Note that the parameters of this state mea-
sured by multiple experiments are widespread [28]. Fig-
ures 2c and 2d show the phase difference between the
1++S and 2++D waves for M ǫ = 1+ and M ǫ = 1−.
The curve shows the expected Breit-Wigner phase differ-
ence between the a1(1260) and a2(1320) resonances with
their parameters obtained in the mass-dependent fit. The
curves are in good agreement with the data in the reso-
nant region. We note that the a1(1260) meson has not
been reported previously in charge-exchange photopro-
duction.

In the high 3π-mass region above the f2(1270)π
mass threshold, the dominant partial wave is the
2−+1±[f2(1270)π]S wave. The combined intensity of the
2−+1±S waves is presented in Figure 3a. The mass-
dependent Breit-Wigner fit for the 2−+1± S-wave re-
sulted in a mass M = 1.634 ± 0.002 GeV and width
Γ = 0.252 ± 0.005 GeV, consistent with the well-known
π2(1670) meson [28]. Figure 3b shows the combined in-
tensity of the 1−+1±P exotic waves, while the relative
phase differences with the much stronger 2−+S waves
are shown in Figures 3c,d for both M ǫ = 1± reflec-
tivities. The curves on these plots demonstrate the ex-
pected Breit-Wigner behavior for three different assump-
tions about the resonant nature of the exotic 1−+ wave,
while the 2−+ π2(1670) reference wave is always assumed
to be resonating with parameters obtained in the Breit-
Wigner fit of its intensity. The solid red curve corre-
sponds to the assumption of a non-resonant exotic wave.
In the case of the short-dashed blue line, the 1−+ is as-
sumed to be resonant with the parameters reported by
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FIG. 3. (a,b): Combined intensities of the JPCM ǫ[Y π]L =
2−+1±[f2(1270)π]S (a) and 1−+1±[ρ(770)π]P (b) waves. The
mass-dependent fit of the 2−+ wave intensity is shown by
the curve. (c,d): The relative phase differences of the exotic
1−+P waves against the 2−+S waves for the two M ǫ = 1±

reflectivities. The curves represent the expected phase differ-
ence against a resonant π2(1670) state for the 3 assumptions
of a non-resonant exotic wave (solid red curve), a resonant
π1(1600) state with the E852 parameters for the 3π decay
(short-dashed blue curve) [6], and a resonant π1(1600) state
with the E852 parameters for the η′π decay (long-dashed pur-
ple curve) [10].

the E852 group in the 3π decay mode [6] of the π1(1600)
exotic candidate. For the long-dashed purple line, the
π1(1600) parameters are taken from the E852 report on
the η′π decay mode [10], where the observed π1(1600)
state was dominant but somewhat broader. One may
conclude that the measured phase difference along with
the absence of a clear structure in the intensity strongly
favors a non-resonant 1−+P behavior.

As an additional check, the 1−+P exotic waves were
compared with the 2−+1±D waves, whose combined in-
tensity can be seen in Figure 4a. The latter waves cor-
respond to the D-wave mode of the π2(1670) decay. The
1−+P wave phase motions for two reflectivities are shown
in Figures 4b,c. Once again, the phase motions are non-
resonant with respect to the D-wave amplitudes of the
π2(1670) resonance in the same way as they are non-
resonant with respect to the S-wave amplitudes.

To summarize, we performed a partial wave analysis
of the reaction γp → π+π+π−n for incident photon en-
ergies Eγ = 4.4− 5.4 GeV. We observed the well known
a2(1320), π2(1670), and − for the first time in photo-
production − a1(1260) resonances. However, neither the
intensity nor the phase motion of the JPC = 1−+ exotic
partial wave indicates the charge-exchange photoproduc-
tion of the π1(1600) hybrid meson candidate.
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